【初中数学】广东省惠州市2012届升学中考模拟数学试题 人教版
- 格式:doc
- 大小:517.00 KB
- 文档页数:9
广东省2012年初中毕业生学业考试数学答案解析 一、选择题1.【答案】A【解析】根据负数的绝对值等于它的相反数,得|5|5-=故选A【提示】根据绝对值的性质求解.【考点】绝对值2.【答案】B【解析】66400000 6.410=⨯【提示】科学记数法的形式为10n a ⨯,其中110a ≤<,n 为整数.【考点】科学记数法—表示较大的数3.【答案】C【解析】6出现的次数最多,故众数是6【提示】众数指一组数据中出现次数最多的数据,根据众数的定义即可求解.【考点】众数4.【答案】B【解析】从正面看,此图形的主视图有3列组成,从左到右小正方形的个数是:131, , ,故选:B . 【提示】主视图是从立体图形的正面看所得到的图形,找到从正面看所得到的图形即可.注意所有的看到的棱都应表现在主视图中.【考点】简单组合体的三视图5.【答案】C【解析】设此三角形第三边的长为x ,则104104x -<<+,即614x <<,四个选项中只有11符合条件.【提示】设此三角形第三边的长为x ,根据三角形的三边关系求出x 的取值范围,找出符合条件的x 的值即可.【考点】三角形三边关系二、填空题6.【答案】2(5)x x -【解析】原式2(5)x x =-【提示】首先确定公因式是2x ,然后提公因式即可.【考点】因式分解——提公因式法7.【答案】3x >【解析】移项得,39x >,系数化为1得:3x >.【提示】先移项,再将x 的系数化为1即可.【考点】解一元一次不等式8.【答案】50︒【解析】圆心角AOC ∠与圆周角ABC ∠都对AC ,2AOC ABC ∴∠=∠,又25ABC ∠=︒,则50AOC ∠=︒【提示】根据同弧所对的圆心角等于所对圆周角的2倍,由已知圆周角的度数,即可求出所求圆心角的度数.【考点】圆周角定理9.【答案】1【解析】根据题意得:3030x y -=⎧⎨-=⎩,解得:33x y =⎧⎨=⎩.则20122012313x y ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭.【提示】根据非负数的性质列出方程求出x 、y 的值,代入所求代数式计算即可.【考点】非负数的性质:算术平方根,非负数的性质:绝对值10.【答案】13π-2430sin301AD AB A DF AD EB AB AE ==∠=︒∴=︒==-=,,,,36033【提示】过D 点作DF AB ⊥于点F ,可ABCD 和BCE △的高,观察图形可知阴影部分的面积为ABCD 的面积-扇形ADE 的面积-BCE △的面积,计算即可求解.【考点】扇形面积的计算,平行四边形的性质三、解答题(一)11.【答案】1-【提示】本题涉及零指数幂、负指数幂、特殊角的三角函数值3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【考点】实数的运算,零指数幂,负整数指数幂,特殊角的三角函数值12.【答案】1-【解析】解,原式222299x x x x -+=-=-,当4x =时,原式2491=⨯-=-.【提示】先把整式进行化简,再把4x =代入进行计算即可. 【考点】整式的混合运算——化简求值13.【答案】51x y =⎧⎨=⎩ 【解析】解:①+②得,420x =,解得5x =,把5x =代入①得,54y -=,解得1y =,故此不等式组的解为:51x y =⎧⎨=⎩【提示】先用加减消元法求出x 的值,再用代入法求出y 的值即可. 2AD ABC ∠是BDC ∠是【提示】((2)先根据等腰三角形的性质及三角形内角和定理求出【答案】证明:AB CD ∥ABO ∠=ABO CDO ∴△≌△,AB CD ∴=,∴四边形ABCD 是平行四边形.【提示】先根据AB CD ∥可知ABO CDO ∠=∠,再由BO DO AOB DOC =∠=∠,,即可得出ABO CDO △≌△,故可得出AB CD =,进而可得出结论.【考点】平行四边形的判定,全等三角形的判定与性质四、解答题(二)16.【答案】(1)20%(2)8640【解析】(1)设这两年我国公民出境旅游总人数的年平均增长率为x .根据题意得25000(1)7200x +=. 解得120.220% 2.2x x ===-,(不合题意,舍去).答:这两年我国公民出境旅游总人数的年平均增长率为20%.(2)如果2012年仍保持相同的年平均增长率,则2012年我国公民出境旅游总人数为7200(1)7200120%8640x +=⨯=万人次.答:预测2012年我国公民出境旅游总人数约8640万人次.【提示】(1)设年平均增长率为x ,根据题意2010年公民出境旅游总人数为25000(1)x +万人次,2011年公民出境旅游总人数25000(1)x +万人次.根据题意得方程求解.(2)2012年我国公民出境旅游总人数约7200(1)x +万人次.【考点】一元二次方程的应用 ,AB AC =(此点与B 重合,舍去)【提示】(1)先把(4,2)代入反比例函数解析式,易求k ,再把0y =代入一次函数解析式可求B 点坐.(2)假设存在,然后设C 点坐标是(,0)a ,=,借此无理方程,易得3a =或5a =,其中3a =和B 点重合,舍去,故C 点坐标可求. 【解析】在直角三角形在直角三角形BD BC -解得:300AB =米,答:小山岗的高度为300米.【提示】首先在直角三角形ABC 中根据坡角的正切值用AB 表示出BC ,然后在直角三角形DBA 中用BA 表示出BD ,根据BD 与BC 之间的关系列出方程求解即可.【考点】解直角三角形的应用——仰角俯角问题,解直角三角形的应用——坡度坡角问题19.【答案】(1)1911⨯ 1112911⎛⎫⨯- ⎪⎝⎭ (2)1(21)(21)n n -+ 11122121n n ⎛⎫⨯- ⎪-+⎝⎭【解析】(1)根据观察知答案分别为1911⨯和1112911⎛⎫⨯- ⎪⎝⎭.(2)根据观察知答案分别为1(21)(21)n n -+和11122121n n ⎛⎫⨯- ⎪-+⎝⎭. (3)1234100a a a a a +++++1111111111111112323525727921992011111111111123355779199201111220112002201100201⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯-+⨯-+⨯-+⨯-+⨯- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫=-+-+-+-++- ⎪⎝⎭⎛⎫=- ⎪⎝⎭=⨯=【提示】(1)观察知,找第一个等号后面的式子规律是关键:分子不变,为1.(2)分母是两个连续奇数的乘积,它们与式子序号之间的关系为序号的2倍减1和序号的2倍加1.(3)运用变化规律计算. )求使分式)2223x xy x y --使分式的值为整数的使分式的值为整数的【考点】列表法与树状图法,分式有意义的条件,分式的化简求值21.【答案】(1)证明:BDC '△由BDC △翻折而成,90C BAG C D AB CD AGB DGC ABG ADE ∠=∠=︒'==∠=∠'∴∠=∠,,,,在:ABG C DG '△≌△中,BAD C AB C D ABG ADC '∠=∠⎧⎪'=⎨⎪'∠=∠⎩,ABG C DG ∴'△≌△.(2)724(3)256【解析】(2)由(1)可知ABG C DG ∴'△≌△,GD GB AG GB AD ∴=∴+=,,设AG x =,则8GB x =-,在22Rt ABG AB AG BG +=△中,2,即2226(8)x x +=-,解得74x =, 747tan 624AG ABG AB ∴∠=== (3)AEF △是DEF △翻折而成,EF ∴垂直平分AD ,142HD AD ∴==, 7tan tan 24ABG ADE ∴∠=∠=, 777=424246EH HD ∴=⨯⨯=, EF 垂直平分AD ,AB AD ⊥,HF 是ABD △的中位线,116322HF AB ∴==⨯=,725366EF EH HF =+=+=. 【提示】(1)根据翻折变换的性质可知90C BAG ∠=∠=︒,C D AB CD '==,AGB DGC '∠=∠,故可得出结论.(2)由(1)可知GD GB =,故A G G B A D +=,设A G x =,则8G B x =-,在Rt ABG △中利用勾股定理即可求出AG 的长,进而得出tan ABG ∠的值.(3)由AEF △是DEF △翻折而成可知EF 垂直平分AD ,故142HD AD ==,再根据tan ABG ∠即可得出EF 的长,同理可得HF 是ABD △的中位线,故可得出HF 的长,由EF EH HF =+即可得出结论.【考点】翻折变换(折叠问题),全等三角形的判定与性质,矩形的性质,解直角三角形22.【答案】(1)99AB OC ==,(2)21092s m m =<<() (3)118 729π )ED BC ∥ABC AB = ⎝192S AE OC m ==,212m =-+2729π52E S EF ==【提示】(1)已知抛物线的解析式,当0x =,可确定C 点坐标;当0y =时,可确定A B 、点的坐标,进而确定AB OC 、的长.(2)直线l BC ∥,可得出AED ABC △、△相似,它们的面积比等于相似比的平方,由此得到关于s m 、的函数关系式;根据题干条件:点E 与点A B 、不重合,可确定m 的取值范围.(3)第一小问、首先用m 列出AEC △的面积表达式,AEC AED △、△的面积差即为CDE △的面积,由此可的关于CDE S △、m 的函数关系式,根据函数的性质可得到CDE S △的最大面积以及此时m 的值.第二小问、过E 做BC 的垂线EF ,这个垂线段的长即为与BC 相切的E 的半径,可根据相似三角形BEF △、BCO △得到的相关比例线段求得该半径的值,由此得解.【考点】二次函数综合题。
惠州2012年中考数学模拟试卷(时间:100分钟,满分120分)一、选择题(本大题共5小题,每小题3分,共15分;在每小题给出的四个选项中,只有一个是正确的)1.27的立方根是( ) A .3 B .3- C .9 D .9-2.5月31日,参观上海世博会的游客约为505 000人.505 000用科学记数法表示为( )A .505×103B .5.05×103C .5.05×104D .5.05×105 3.下列计算正确的是( )A .a 4+a 2=a 6B .2a ·4a =8aC .a 5÷a 2=a 3D .(a 2)3=a 54.方程组⎩⎪⎨⎪⎧x +y =3x -y =-1的解是( )A.⎩⎪⎨⎪⎧ x =1y =2B.⎩⎪⎨⎪⎧ x =1y =-2C.⎩⎪⎨⎪⎧ x =2y =1D.⎩⎪⎨⎪⎧x =0y =-1 5.一个几何体的三视图如图所示.那么这个几何体是( )二、填空题(本大题共5小题,每小题4分,共20分)6.若x 、y 为实数,且x +3+|y -2|=0,则x +y = .7.如图,菱形ABCD 中,对角线AC 、BD 相交于点O ,H 为AD 边中点,菱形ABCD 的周长为24,则OH 的长等于 .8.一组数据1,6,x,5,9的平均数是5,那么这组数据的中位数是 . 9.双曲线y =2k -1x的图象经过第二、四象限,则k 的取值范围是 .10.如图,观察每一个图中黑色正六边形的排列规律,则第10个图中黑色正六边形有 个.三、解答题(本大题共5小题,每小题6分,共30分) 11.计算:(-2 011)0+⎝⎛⎭⎫22-1+||2-2-2cos60°.12.解方程:x +4x x -1=3x -1.13.先化简,再求值:⎝ ⎛⎭⎪⎫a -1a 2-4a +4-a +2a 2-2a ÷⎝⎛⎭⎫4a -1,其中a =2- 3.14.如图,已知二次函数y =-12x 2+bx +c 的图象经过A (2,0),B (0,-6)两点.(1)求这个二次函数的解析式;(2)设该二次函数的对称轴与x 轴交于点C ,连接BA 、BC ,求△ABC 的面积.15.某市为缓解城市交通压力,决定修建人行天桥,原设计天桥的楼梯长AB =6 m , ∠ABC =45°,后考虑到安全因素,将楼梯脚B 移到CB 延长线上点D 处,使∠ADC =30°(如图所示).(1)求调整后楼梯AD 的长; (2)求BD 的长(结果保留根号).四、解答题(本大题共4小题,每小题7分,共28分)16.日本福岛出现核电站事故后,我国国家海洋局高度关注事态发展,紧急调集海上巡逻的海检船,在相关海域进行现场监测与海水采样,针对核泄漏在极端情况下对海洋环境的影响及时开展分析评估.如图,上午9时,海检船位于A 处,观测到某港口城市P 位于海检船的北偏西67.5°方向,海检船以21海里/时的速度向正北方向行驶,下午2时海检船到达B 处,这时观察到城市P 位于海检船的南偏西36.9°方向,求此时海检船所在B 处与城市P 的距离?⎝⎛参考数据:sin 36.90≈35,tan 36.90≈34,⎭⎫sin 67.50≈1213,tan 67.50≈12517.2011年6月4日,李娜获得法网公开赛的冠军,圆了中国人的网球梦,也在国内掀起一股网球热.某市准备为青少年举行一次网球知识讲座,小明和妹妹都是网球球迷,要求爸爸去买门票,但爸爸只买回一张门票,那么谁去就成了问题,小明想到一个办法:他拿出一个装有质地、大小相同的2x个红球与3x个白球的袋子,让爸爸摸出一个球,如果摸出的是红球,妹妹去听讲座,如果摸出的是白球,小明去听讲座.(1)爸爸说这个办法不公平,请你用概率的知识解释原因;(2)若爸爸从袋中取出3个白球,再用小明提出的办法来确定谁去听讲座,请问摸球的结果是对小明有利还是对妹妹有利,说明理由.18.绵阳市“全国文明村”江油白玉村果农王灿收获枇杷20吨,桃子12吨.现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.(1)王灿有几种方案安排甲、乙两种货车可一次性地将水果运到销售地?(2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果农王灿应选择哪种方案,使运输费最少?最少运费是多少?19.已知:如图,在Rt △ABC 中,∠C =90°,∠BAC 的角平分线AD 交BC 边于D .(1)以AB 边上一点O 为圆心,过A 、D 两点作⊙O (不写作法,保留作图痕迹),再判断直线BC 与⊙O 的位置关系,并说明理由;(2)若(1)中的⊙O 与AB 边的另一个交点为E ,AB =6,BD =2 3,求线段BD 、BE 与劣弧DE 所围成的图形面积(结果保留根号和π).五、解答题(本大题共3小题,每小题9分,共27分) 20.对于任何实数,我们规定符号⎪⎪⎪ a c⎪⎪⎪b d 的意义是⎪⎪⎪ a c⎪⎪⎪b d =ad -bc . (1)按照这个规定请你计算⎪⎪⎪ 57⎪⎪⎪68的值;(2)按照这个规定请你计算:当x 2-3x +1=0时,⎪⎪⎪⎪⎪⎪x +1x -23xx -1的值.21.已知:如图,在△ABC 中,BC =AC ,以BC 为直径的⊙O 与边AB 相交于点D ,DE ⊥AC ,垂足为点E .(1)求证:点D 是AB 的中点;(2)判断DE 与⊙O 的位置关系,并证明你的结论;(3)若⊙O 的直径为18,cos B =13,求DE 的长.22.如图,已知二次函数y =-x 2+bx +c 的图象经过A (-2,-1),B (0,7)两点.(1)求该抛物线的解析式及对称轴;(2)当x为何值时,y>0?(3)在x轴上方作平行于x轴的直线l,与抛物线交于C、D两点(点C在对称轴的左侧),过点C、D作x轴的垂线,垂足分别为F、E.当矩形CDEF为正方形时,求C点的坐标.参考答案一、选择题1. A2. D3. C4. A5. C 二、填空题6. -17. 38. 59. k <12 10. 100三、解答题11.解:原式=1+2+2-2-1=212.解:方程两边同乘最简公分母x (x -1),得x +4=3x ,解得x =2. 经检验:x =2是原方程的根. ∴原方程的解为x =2. 13.解:原式=⎣⎢⎡⎦⎥⎤a -1a -22-a +2aa -2÷4-aa =aa -1-a -2a +2a a -22·a 4-a=1a -22.当a =2-3时,原式=13.14.解:(1)把A (2,0),B (0,-6)代入y =-12x 2+bx +c ,得⎩⎪⎨⎪⎧ -2+2b +c =0c =-6,解得⎩⎪⎨⎪⎧b =4c =-6. ∴这个二次函数的解析式为y =-12x 2+4x -6.(2)∵该抛物线对称轴为直线x =-42×⎝⎛⎭⎫-12=4,∴点C 的坐标为(4,0),∴AC =OC -OA =4-2=2, ∴S △ABC =12×AC ×OB =12×2×6=6.15.解:(1)已知AB =6 m ,∠ABC =45°, ∴AC =BC =AB ·sin45°=6×22=3 2,∵∠ADC =30°,∴AD =2AC =6 2. 答:调整后楼梯AD 的长为6 2m. (2)CD =AD ·cos30°=6 2×32=3 6,∴BD =CD -BC =3 6-3 2. 答:BD 的长为(3 6-3 2)m.16.解:如图,过点P 作PC ⊥AB ,垂足为C ,设PC =x 海里, 在Rt △APC 中,∵tan ∠A =PC AC, ∴AC =PC tan67.5°=5x12.在Rt △PCB 中,∵tan ∠B =PCBC, ∴BC =x tan36.9°=4x3.∵AC +BC =AB =21×5, ∴5x 12+4x3=21×5,解得 x =60. ∵sin ∠B =PCPB,∴PB =PC sin ∠B =60sin36.9°=60×53=100(海里).∴海检船所在B 处与城市P 的距离为100海里.17.解:(1)∵红球有2x 个,白球有3x 个, ∴P (红球)=2x 2x +3x =25,P (白球)=3x 2x +3x =35,∴P (红球)< P (白球), ∴这个办法不公平.(2)取出3个白球后,红球有2x 个,白球有(3x -3)个, ∴P (红球)=2x5x -3,P (白球)=3x -35x -3,x 为正整数,∴P (红球)- P (白球) =3-x 5x -3. ①当x <3时,则P (红球)> P (白球),∴对小妹有利.②当x =3时,则P (红球)= P (白球),∴对小妹、小明是公平的.③当x >3时,则P (红球)< P (白球),∴对小明有利.18.解:(1)设安排甲种货车x 辆,则安排乙种货车(8-x )辆,依题意得 ⎩⎪⎨⎪⎧4x +28-x ≥20x +28-x ≥12, 解此不等式组得2≤x ≤4.∵x 是正整数,∴x 可取的值为2,3,4.因此安排甲、乙两种货车有三种方案:甲种货车 乙种货车 方案一2辆 6辆 方案二3辆 5辆 方案三 4辆 4辆(2)方案一所需运费为方案二所需运费为300×3+240×5=2 100元;方案三所需运费为300×4+240×4=2 160元.∴王灿应选择方案一运费最少,最少运费是2 040元.19.解:(1)如图 (需保留线段AD 中垂线的痕迹).直线BC 与⊙O 相切.理由如下:连接OD ,∵OA =OD ,∴∠OAD =∠ODA .∵AD 平分∠BAC ,∴∠OAD =∠DAC .∴∠ODA =∠DAC .∴OD ∥AC .∵∠C =90°,∴∠ODB =90°,即OD ⊥BC .又∵直线BC 过半径OD 的外端,∴BC 为⊙O 的切线.(2)设OA =OD =r ,在Rt △BDO 中,OD 2+BD 2=OB 2,∴r 2+(2 3)2=(6-r )2,解得r =2.∵tan ∠BOD =BD OD =3,∴∠BOD =60°. ∴S 扇形ODE =60π·22360=23π. ∴所求图形面积为S △BOD -S 扇形ODE =2 3-23π. 20.解:(1)⎪⎪⎪ 57 ⎪⎪⎪68=5×8-6×7=-2. (2)⎪⎪⎪ x +1x -2 ⎪⎪⎪3x x -1=()x +1()x -1-3x ()x -2 =x 2-1-3x 2+6x=-2x 2+6x -1.又∵x 2-3x +1=0,∴x 2-3x =-1,原式=-2(x 2-3x )-1=-2×(-1)-1=1.21.(1)证明:如图,连接CD ,则CD ⊥AB ,又∵AC =BC ,∴AD =BD , 即点D 是AB 的中点.(2)解:DE 是⊙O 的切线.理由是:连接OD ,则DO 是△ABC 的中位线,∴DO ∥AC .又∵DE ⊥AC ,∴DE ⊥DO ,又∵OD 是⊙O 的半径,∴DE 是⊙O 的切线.(3)∵AC =BC ,∴∠B =∠A ,∴cos ∠B =cos ∠A =13. ∵cos ∠B =BD BC =13,BC =18, ∴BD =6,∴AD =6.∵cos ∠A =AE AD =13, ∴AE =2.在Rt △AED 中,DE =AD 2-AE 2=4 2.22.解:(1)把A (-2,-1),B (0,7)两点的坐标代入y =-x 2+bx +c ,得⎩⎪⎨⎪⎧ -4-2b +c =-1c =7,解得⎩⎪⎨⎪⎧b =2c =7. 所以,该抛物线的解析式为y =-x 2+2x +7,又因为y =-x 2+2x +7=-(x -1)2+8,所以对称轴为直线x =1.(2)当函数值y =0时,-x 2+2x +7=0的解为x =1±2 2,结合图象,容易知道1-2 2<x <1+2 2时,y >0.(3)当矩形CDEF 为正方形时,设C 点的坐标为(m ,n ), 则n =-m 2+2m +7,即CF =-m 2+2m +7.因为C 、D 两点的纵坐标相等,所以C 、D 两点关于对称轴x =1对称,设点D 的横坐标为p ,则1-m =p -1,所以p =2-m ,所以CD =(2-m )-m =2-2m .因为CD =CF ,所以2-2m =-m 2+2m +7,整理,得m 2-4m -5=0,解得m =-1或5.因为点C 在对称轴的左侧,所以m 只能取-1.当m =-1时,n =-m 2+2m +7=-(-1)2+2×(-1)+7=4.于是,点C 的坐标为(-1,4).。
新世纪教育网精选资料版权全部@新世纪教育网2012 年全国初中毕业升学考试模拟试卷数学(考试用时:120 分钟满分:120 分)注意事项:1.本试卷分选择题和非选择题两部分.在本试卷上作答无效...........2.考试结束后,将本试卷和答题卡一并交回.3.答题前,请仔细阅读答题卡上的注意事项...............一、选择题(共 12 小题,每题 3 分,共 36 分.在每题给出的四个选项中只有一项为哪一项符合要求的,用 2B 铅笔把答题卡上对应题目的答案标号涂黑)....1.2的绝对值是().A .2B .2C.11D.2 22.在实数 5、3、 3、 4 中,无理数是().7A .53C.3D.4B.E 73.如图,直线 AB、 CD 被直线 EF 所截,A51B则∠ 3 的同旁内角是().2A.∠1B.∠ 2C3D4 C.∠ 4D.∠5F4.如下图几何体的左视图是().A .B .C.D.5.以下运算正确的选项是().A .a6 2=a3B.5a23a22a.( a)235D. 5a2b 7aba C a a6.如图,已知△ ADE 与△ ABC 的相像比为1: 2,则△ ADE A 与△ ABC 的面积比为().A. 1:2B. 1:4D E C. 2:1D. 4:1B C7.若反比率函数y k的图象经过点(-3, 2),则k的值为().xA.-6 B .6C. -5D. 58.一元二次方程x23x 40的解是().A .x11, x24B.x1 1 , x24C.x1 1 , x24D.x1 1 , x249.以下说法正确的选项是().A.买一张福利彩票必定中奖,是必定事件.B.买一张福利彩票必定中奖,是不行能事件.C.投掷一个正方体骰子,点数为奇数的概率是 1 .3D .一组数据: 1, 7, 3, 5, 3 的众数是 3.10.一个圆锥的侧面睁开图是半径为1 的半圆,则该圆锥的底面半径是().A . 1B.34C.1 D .12311.将抛物线y2x2 12x 16 绕它的极点旋转180°,所得抛物线的分析式是().A.y2x2 12x16 B .y2x212x16C.y 2 x2 12x19 D .y2x212x20 12.如图,已知正方形 ABCD 的边长为 4 , E 是 BC 边上的一个动点, AE⊥EF, EF 交 DC 于 F,设 BE= x, FC = y,则当点 E 从点 B 运动到点 C 时 , y对于x的函数图象是 ( ).A DF B E Cy y y y 22221111O2 4x O24x O2 4 x O24xA .B .C.D.二、填空题(共 6 小题,每题 3 分,共 18分,请将答案填在答题卡上)....13.因式分解:( xy)21=.14.情系玉树大爱无疆,截止 5 月 21 日 12 时,青海玉树共接收国内外处震救灾捐献款物 551300 万元,将551300 万元用科学记数法表示为__________ 万元.15.函数y1的自变量 x 的取值范围是.x116.正五边形的内角和等于______度.17.已知x13,则代数式 x21的值为 _________ .x x218.如图:已知 AB=10 ,点 C 、 D 在线段 AB 上且 AC=DB=2; P 是线段 CD 上的动点,分别以AP 、PB 为边在线段 AB 的同侧作等边△ AEP 和等边△ PFB ,连接 EF ,设 EF 的中点为 G ;当点 P 从点 C 运动到点 D 时,则点 G 挪动路径的长是 ________.FGEA CP D B三、解答题 (本大题共 8 题,共 66 分, 请将答案写在答题 卡上)... . 19.(此题满分 6 分)计算: ( 1) 1(3 2) 0 4cos30° + 2 3320.(此题满分 6 分)先化简,再求值: (x 1 1 )x 2 y ,此中 x3 1, y3 1yx y x 2 y 221.(此题满分 8 分) 求证:矩形的对角线相等.22.(此题满分 8 分)如图是某地 6 月 1 日至 6 月 7 日每日最高、最低气温的折线统计图.请你依据折线统计图,回答以下问题:(1)在这 7 天中,日温差最大的一天是 6 月_____日; (2)这 7 天的日最高气温的均匀数是 ______℃;(3)这 7 天日最高气温的方差是_______ ( ℃ ) 2. 温度( ℃)28272625 2418 日日 17最最 16高低 1514气气 13温温121234567日期(日)23.(此题满分 8 分)某蔬菜企业收买到某种蔬菜104 吨,准备加工后上市销售 . 该企业加工该种蔬菜的能力是:每日能够精加工4 吨或粗加工 8 吨 . 现计划用 16 天正好达成加工任务,则该企业应安排几日精加工,几日粗加工?24.(此题满分8 分)某校初三年级春游,现有36 座和 42 座两种客车供选择租用,若只租用 36 座客车若干辆,则正好坐满;若只租用42 座客车,则能少租一辆,且有一辆车没有坐满,但超出30 人;已知36 座客车每辆租金400 元, 42 座客车每辆租金440 元 .(1)该校初三年级共有多少人参加春游?(2)请你帮该校设计一种最省钱的租车方案....25.(此题满分10 分)如图,⊙ O 是△ ABC 的外接圆, FH 是⊙ O 的切线,切点为 FH ∥ BC,连接 AF 交 BC 于 E,∠ ABC 的均分线 BD 交 AF 于 D,连接 BF.(1)证明: AF 均分∠ BAC ;(2)证明: BF= FD ;(3)若 EF =4, DE= 3,求 AD 的长.ODB EF 26.(此题满分12 分)如图,过A( 8, 0)、 B( 0,83 )两点的直线与直线yF,ACH 3x 交于点 C.平行于y轴的直线l从原点 O 出发,以每秒 1 个单位长度的速度沿x 轴向右平移,到 C 点时停止;l分别交线段 BC 、OC 于点 D 、E,以 DE 为边向左边作等边△ DEF ,设△ DEF 与△ BCO 重叠部分的面积为 S(平方单位),直线l的运动时间为 t(秒).( 1)直接写出 C 点坐标和 t 的取值范围;( 2)求 S 与 t 的函数关系式;( 3)设直线l与 x 轴交于点P,能否存在这样的点P,使得以 P、O、F 为极点的三角形为等腰三角形,若存在,请直接写出点P 的坐标;若不存在,请说明原因.y y8 3 Bl8 3By3xy3x DF C CEAO AO P8x8x备用图1新世纪教育网精选资料 版权全部 @新世纪教育网数学参照答案及评分标准一、 :号12 3 4 5 6 7 8 9 10 11答案B CBACBAADCD二、填空 :13. (xy 1)(xy 1) 14. 5.513 ×10515. x >116.54017. 718. 3三、解答 :19. (本6 分)解:原式 = 3 1 4 3 2 3 ⋯⋯⋯⋯⋯⋯⋯⋯ 3 分2= 3 1 2 3 2 3 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5 分=2⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6 分20.( 此题 6 分) 解 原式x y x yx 2 y⋯⋯⋯⋯⋯⋯ 1 分:=(x 2y2x2y 2 )x 2 y 2=x y x y x 2 y 2⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分x 2 y 2x 2 y= 2x = 2⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分x 2 y xy当 x= 3 1, y 3-1 时,原式=2( 3 23 1)xy1)(=2 1 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分3121.(本 8 分 )已知:四 形ABCD 是矩形 , AC 与 BD 是 角 ⋯⋯⋯⋯⋯ 2 分 求 : AC=BD ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3 分 明: ∵四 形 ABCD 是矩形A∴ AB=DC , ∠ ABC=∠ DCB =90°⋯⋯⋯⋯ 4 分又∵ BC=C B ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分∴△ ABC ≌△ DCB ⋯⋯⋯⋯ 6 分∴AC=BD⋯⋯⋯⋯⋯⋯⋯⋯ 7 分B因此矩形的 角 相等 .⋯⋯⋯⋯ 8 分22. (本 8分 ) (1)6, (2)26,10 [ 明: (1)2 分, (2)3 分, (3)3分](3)723. (本 8分 ) 企业安排x 天粗加工 , 安排 y 天精加工 . ⋯⋯⋯⋯⋯ 1 分12 ADC据 意得 :x y 16 4 分8x ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 y 104x107 分解得 :⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯y 6答 : 企业安排 10 天粗加工 , 安排 6 天精加工 . ⋯⋯⋯⋯ 8 分24. (本 8分 )解(1) 租 36 座的 x . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1 分据 意得 :36x 42( x 1)3 分36x 42( x ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2) 30x 7 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分解得 :9x由 意 x 取 8⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分春游人数 :36 8=288( 人 ). ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分(2) 方案①:租36座 8 的 用 :8 400=3200 元 ,方案②:租 42座 7 的 用 : 7440 3080 元方案③:因 42 636 1 288 ,租 42座 6 和 36座 1 的 用 : 6 440 1 400 3040 元因此方案③:租 42座 6 和 36座 1 最省 . ⋯⋯⋯⋯ 8分( 明:只需 出方案③便可得 分2 分)25. (本 10 分 ) 明( 1) OF∵ FH 是⊙O 的切A ∴OF ⊥FH ⋯⋯⋯⋯⋯ 1 分1 2 ∵FH ∥BC ,O∴ OF 垂直均分 BC ⋯⋯⋯2分D∴ BF FCBEC∴ AF 均分∠ BAC ⋯⋯⋯⋯ 3 分FH( 2) 明 :由( 1)及 条件可知∠ 1=∠2,∠ 4=∠ 3,∠ 5=∠ 2 ⋯⋯⋯⋯⋯ 4 分∴∠ 1+∠ 4=∠ 2+∠ 3A ∴∠ 1+∠ 4=∠ 5+∠ 3 ⋯⋯⋯⋯⋯ 5 分1 2∠ FDB =∠ FBDO∴ BF=FD ⋯⋯⋯⋯⋯⋯ 6 分D( 3)解: 在△ BFE 和△ AFB 中4∵∠ 5=∠ 2=∠ 1,∠ F=∠FB3C5E ∴△ BFE ∽△ AFB ⋯⋯⋯⋯⋯⋯ 7 分FH∴ BFAF,⋯⋯⋯⋯⋯8 分FEBF∴BF 2FE FABF 2⋯⋯⋯⋯⋯⋯⋯⋯ 9 分∴ FAFE∴ FA72 4944∴ AD=497 = 21 ⋯⋯⋯⋯⋯⋯⋯ 10 分4426. (本 12分)解( 1)C (4, 4 3 ) ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2 分 t 的取 范 是:0≤ t ≤ 4⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3 分(2)∵ D 点的坐 是( t ,3t 8 3 ), E 的坐 是( t ,3t )∴DE = 3t8 3 - 3t =8 3 2 3t⋯⋯⋯⋯⋯⋯⋯⋯ 4 分∴等 △ DEF 的 DE 上的高 : 123t∴当点 F 在 BO 上 :12 3t = t ,∴ t =3 ⋯⋯⋯⋯⋯⋯⋯⋯5 分① 当 0≤ t <3 ,重叠部分 等腰梯形,可求梯形上底 :S= t(8 3 2 3t83 2 3t2 3 t) 23= t(16 3 14 3t )273=3t 2 8 3t ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 8 分3② 当 3≤ t ≤ 4 ,重叠部分 等 三角形S=1(83 2 3t)(12 3t)⋯⋯⋯⋯⋯⋯⋯ 9分2= 33t224 3t 48 3⋯⋯⋯⋯⋯⋯⋯⋯ 10 分 (3)存在, P (24, 0)⋯⋯⋯⋯⋯⋯⋯⋯ 12 分72 38 3 2 3t -t⋯ 7 分y8 3Bl Dy3xFCEO PA 8x明:∵ FO ≥ 43 ,FP ≥4 3 , OP ≤4∴以 P ,O , F 以 点的等腰三角形,腰只有可能是 FO , FP,若 FO=FP , t =2( 12-3 t ), t =24,∴ P (24, 0)7 7。
机密★启用前2012年广东省初中毕业生学业考试数 学一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1. —5的相反数是(的相反数是( A )A. 5 B. —5 C. 51D. 51-2. 地球半径约为6 400 000米,用科学记数法表示为(米,用科学记数法表示为( B )A. 0.64×107B. 6.4×106C. 64×105D. 640×1043. 数据8、8、6、5、6、1、6的众数是(的众数是( C )A. 1 B. 5 C. 6 D. 8 4. 如左图所示几何体的主视图是(如左图所示几何体的主视图是( B )5. 已知三角形两边的长分别是4和10,则此三角形第三边的长可能是(,则此三角形第三边的长可能是( C )A. 5 B. 6 C. 11 D. 16 二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上. 6. 分解因式:2x 2 —10x =2x (x —5) . 7. 不等式3x —9>0的解集是的解集是 x>3 。
8. 如图,A 、B 、C 是⊙O 上的三个点,∠ABC = 250, 则∠AOC 的度数是的度数是 500 。
9. 若x 、y 为实数,且满足033=++-y x ,则2012÷÷øöççèæy x 的值是的值是 1 。
10. 如图,在□ABCD 中,AD =2,AB =4,∠A =300,以点A 为圆心,AD 的长为半径画弧交AB 于点E ,连结CE ,则阴影部分的面积是阴影部分的面积是 p 313- (结果保留p )。
)。
三、解答题(一)(本大题5小题,每小题6分,共30分)11. 计算:()128145sin 22-++--。
2012年广东省中考全真模拟试题(二)数学试卷学校:__________班别:__________姓名:__________分数:____________一.选择题(本大题共5小题,每小题3分,共15分):在每小题给出的四个选项中,只有一个是正确的,请将所选选项的字母写在题目后面的括号内。
1.在4-,-π,2-,2四个数中,最小的无理数是( ) A .4- B .-π C .2- D .2 2.函数12y x =+的自变量x 的取值范围是( ) A . 2x >-B . 2x <-C .2x ≠-D . 2x ≥-3.空气的体积质量是0.001239/厘米3,此数保留三个有效数字的近似数用科学记数法表示为( )A.1.239×10-3B.1.23×10-3C.1.24×10-3D.1.24×1034.如图,在□ABCD 中,已知AD =8㎝, AB =6㎝, DE 平分∠ADC 交BC 边于点E ,则BE 等于 ( )A .2cmB .4cmC .6cmD .8cm5.一个长方体的左视图、俯视图及相关数据如图所示,则其主视图的面积是( )A .6B .8C .12D .24二.填空题(本大题共5小题,每小题4分,共20分) :请把下列各题的正确答案填写在横线上。
6.因式分解:a ab 252-= .7.据某地气象部门2010年5月8日7时30分发布的天气预报,我国内地31个城市5月9日的最高气温(℃)统计如下表:1那么这些城市5月9日的最高气温的中位数和众数分别是 和 8.如图,已知AD AB =,DAC BAE ∠=∠,要使AB CDEA可).9=_________. 10.如图,如果以正方形ABCD 的对角线AC 为边作第二个正方形 ACEF ,再以对角线AE 为边作第三个正方形AEGH ,如此下去,…,已知正方形ABCD 的面积1s 为1,按上述方法所作的正方形的面积依次为2s ,3s …n s (n 为正整数),那么第8个正方形的面积8s = .三.解答题(本大题共5小题,每小题6分,共30分)11.已知二次函数215222y x x =+-, 12.先化简,后求值:()2111211x x x ⎛⎫+÷-- ⎪--⎝⎭, 求其顶点坐标及它与y 轴的交点坐标.其中x =13.如图,平行四边形ABCD 中,以A 为圆心,AB 为半径的圆分别交AD 、BC 于F 、G,•延长B A 交圆于E.求证:EF=FG .14.四张质地相同的卡片如图所示. 将卡片洗匀后,背面朝上放置在桌面上.(1)求随机抽取一张卡片,恰好得到数字2的概率; (2)小贝和小晶想用以上四张卡片做游戏,游戏规则 见信息图.你认为这个游戏公平吗?请用列表法或画 树状图法说明理由,若认为不公平,请你修改规则, 使游戏变得公平.2362成绩(分)15.△ABC 在平面直角坐标系中的位置如图所示. (1)作出△ABC 关于y 轴对称的△A 1B 1C 1,并写出△A 1B 1C 1各顶点的坐标;(2)将△ABC 向右平移6个单位,作出平移后的△A 2B 2C 2,并写出△A 2B 2C 2各顶点的坐标;(3)观察△A 1B 1C 1和△A 2B 2C 2,它们是否关于某直线对称?若是,请在图上画出这条对称轴.四.解答题(本大题共4小题,每小题7分,共28分)16.某市七年级有15000名学生参加安全应急预案知识竞赛活动,为了了解本次知识竞赛的成绩分布情况,从中抽取了400名学生的得分(得分取正整数,满分100分)进行统计:频 率 分 布 表请你根据不完整的频率分布表,解答下列问题: (1)补全频率分布表和频数分布直方图;(2)若将得分转化为等级,规定得分低于59.5分评为“D ”,59.5~69.5分评为“C ”,69.5~89.5分评为“B ”,89.5~100.5分评为“A ”,这次15000名学生中约有多少人评为“D ”?(3)以(2)的等级为标准,如果随机抽取一名参赛学生的成绩等级,则这名学生的成绩评为“A ”、17.如图,线段AB 与⊙O 相切于点C ,连结OA ,OB , OB 交⊙O 于点D ,已知6OA OB ==,AB = (1)求⊙O 的半径;(2)求图中阴影部分的面积.18.如图,在平面直角坐标系中,函数ky x=(0x >,常数0k >)的图象经过点(12)A ,,()B m n ,,(1m >),过点B 作y 轴的垂线,垂足为C .若ABC △的面积为2,求点B 的坐标.19.课外实践活动中,数学老师带领学生测量学校旗杆的高度.如图,在A 处用测角仪(离地高度为1.5米)测得旗杆顶端的仰角为15,朝旗杆方向前进23米到B 处,再次测得旗杆顶端的仰角为30,求旗杆EG 的高度.23米C OABD五.解答题(本大题共3小题,每小题9分,共27分)20.(1)观察与发现小明将三角形纸片ABC(AB>AC),沿过点A的直线折叠,便得AC落在AB边上,折痕为AD,展开纸片(如图①),再次折叠该三角形纸片,使点A与点D重合,折痕为EF,展开纸片后得到△AEF(如图②),小明认为△AEF为等腰三角形,你同意吗?请说明理由.(2)实践与运用将矩形纸片ABCD沿过点B的直线折叠,使点A落在BC边上的点F处,折痕为BE(如图③),再沿过点E的直线折叠,使点D落在BE上的点D′处,折痕为EG(如图④),再展开纸片(如图⑤),求图中∠α的大小.21.2009年4月7日,国务院公布了《医药卫生体制改革近期重点实施方案(2009~2011年》,某市政府决定2009年投入6000万元用于改善医疗卫生服务,比2008年增加了1250万元.投入资金的服务对象包括“需方”(患者等)和“供方”(医疗卫生机构等),预计2009年投入“需方”的资金将比2008年提高30%,投入“供方”的资金将比2008年提高20%.(1)该市政府2008年投入改善医疗卫生服务的资金是多少万元?(2)该市政府2009年投入“需方”和“供方”的资金各多少万元?(3)该市政府预计2011年将有7260万元投入改善医疗卫生服务,若从2009~2011年每年的资金投入按相同的增长率递增,求2009~2011年的年增长率.22.如图,在梯形ABCD 中,A D ∥BC,BC=4,点M 是AD 的中点,MBC △是等边三角形. (1)求证:梯形ABCD 是等腰梯形;(2)动点P 、Q 分别在线段BC 和MC 上运动,且60MPQ =︒∠保持不变.设PC x MQ y ==,,求y 与x 的函数关系式;(3)在(2)中当y 取最小值时,判断PQC △的形状,并说明理由.ADCBP MQ60°。
2012年广东省中考数学模拟试卷(七)一.选择题(本大题共5小题,每小题3分,共15分)在每小题给出的四个选项中,只有一个是正确的,请将正确选项的字母写在答题卷相应的答题位置上.C3.(3分)(2009•金华)一个几何体及它的主视图和俯视图如图所示,那么它的左视图正确的是().C D.4.(3分)玉树地震后,各界爱心如潮,4月20日搜索“玉树捐款”获得约7945000条结果,其中7945000用科学记二、填空题(4×5=20分)6.(4分)(2011•昭通)分解因式:3a2﹣27=_________.7.(4分)(2007•义乌市)如图,在△ABC中,点D、E分别是边AB、AC的中点,已知DE=6cm,则BC=_________ cm.8.(4分)(2009•湛江)一件衬衣标价是132元,若以9折降价出售,仍可获利10%,则这件衬衣的进价是_________元.9.(4分)(2011•南漳县模拟)为了测量一个圆铁环的半径,某同学用了如下方法,将铁环平放在水平桌面上,用有一个角为30°的直角三角板和刻度尺按如图所示的方法得到相关数据,进而求出铁环半径,若测得PA=5cm,则铁环的半径是_________cm.10.(4分)(2009•金华)“赵爽弦图”是由四个全等的直角三角形与一个小正方形拼成的一个大正方形.如果小正方形的面积为4,大正方形的面积为100,直角三角形中较小的锐角为α,则tanα的值等于_________.三、解答题(本大题5小题,每小题6分,共30分)11.(6分)(2009•张家界)计算:.12.(6分)(2009•兰州)如图,要在一块形状为直角三角形(∠C为直角)的铁皮上裁出一个半圆形的铁皮,需先在这块铁皮上画出一个半圆,使它的圆心在线段AC上,且与AB、BC都相切.请你用直尺和圆规画出来(要求用尺规作图,保留作图痕迹,不要求写作法).13.(6分)如图,在▱ABCD的各边AB、BC、CD、DA上,分别取点K、L、M、N,使AK=CM、BL=DN,则四边形KLMN为平行四边形吗?说明理由.14.(6分)(2009•庆阳)如图1,一扇窗户打开后用窗钩AB可将其固定.(1)这里所运用的几何原理是()(A)三角形的稳定性(B)两点之间线段最短;(C)两点确定一条直线(D)垂线段最短;(2)图2是图1中窗子开到一定位置时的平面图,若∠AOB=45°,∠OAB=30°,OA=60cm,求点B到OA边的距离.(≈1.7,结果精确到整数)15.(6分)(2011•鼎湖区模拟)如图所示,⊙O的直径AB为10cm,弦AC为6cm,∠ACB的平分线交⊙O于D,求BC,AD,BD的长.四.解答题(本大题4小题,每小题7分,共28分)16.(7分)某商场为了吸引顾客,设计了一个摸球获奖的箱子,箱子中共有20个球,其中红球2个,兰球3个,黄球5个,白球10个,并规定购买100元的商品,就有一次摸球的机会,摸到红、兰、黄、白球的(一次只能摸一个),顾客就可以分别得到80元、30元、10元、0元购物卷,凭购物卷仍然可以在商场购买,如果顾客不愿意摸球,那么可以直接获得购物卷10元.(1)每摸一次球所获购物卷金额的平均值是多少?(2)你若在此商场购买100元的货物,两种方式中你应选择哪种方式?为什么?17.(7分)(2010•海门市二模)某地有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?18.(7分)(2013•武侯区一模)已知二次函数y=x2﹣kx+k﹣5(1)求证:无论k取何实数,此二次函数的图象与x轴都有两个交点;(2)若此二次函数图象的对称轴为x=1,求它的解析式.19.(7分)如图,过点P(2,)作x轴的平行线交y轴于点A,交双曲线(x>0)于点N,作PM⊥AN交双曲线(x>0)于点M,连接AM.已知PN=4.(1)求k的值;(2)设直线MN解析式为y=ax+b,求不等式≥ax+b的解集.五.解答题(本大题3小题,每小题9分,共27分)20.(9分)(2012•陵县二模)在我们学习过的数学教科书中,有一个数学活动,其具体操作过程是:第一步:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开(如图1);第二步:再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN(如图2).请解答以下问题:(1)如图2,若延长MN交BC于P,△BMP是什么三角形?请证明你的结论;(2)在图2中,若AB=a,BC=b,a、b满足什么关系,才能在矩形纸片ABCD上剪出符合(1)中结论的三角形纸片BMP?21.(9分)(2009•黑河)某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.(1)今年三月份甲种电脑每台售价多少元?(2)为了增加收入,电脑公司决定再经销乙种型号电脑,已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?(3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a 元,要使(2)中所有方案获利相同,a值应是多少此时,哪种方案对公司更有利?22.(9分)(2009•湘潭)如图,在平面直角坐标系中,四边形OABC为矩形,OA=3,OC=4,P为直线AB上一动点,将直线OP绕点P逆时针方向旋转90°交直线BC于点Q.(1)当点P在线段AB上运动(不与A,B重合)时,求证:OA•BQ=AP•BP;(2)在(1)成立的条件下,设点P的横坐标为m,线段CQ的长度为l,求出l关于m的函数解析式,并判断l 是否存在最小值?若存在,请求出最小值;若不存在,请说明理由;(3)直线AB上是否存在点P,使△POQ为等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.2012年广东省中考数学模拟试卷(七)参考答案与试题解析一.选择题(本大题共5小题,每小题3分,共15分)在每小题给出的四个选项中,只有一个是正确的,请将正确选项的字母写在答题卷相应的答题位置上.C3.(3分)(2009•金华)一个几何体及它的主视图和俯视图如图所示,那么它的左视图正确的是().C D.4.(3分)玉树地震后,各界爱心如潮,4月20日搜索“玉树捐款”获得约7945000条结果,其中7945000用科学记二、填空题(4×5=20分)6.(4分)(2011•昭通)分解因式:3a2﹣27=3(a+3)(a﹣3).7.(4分)(2007•义乌市)如图,在△ABC中,点D、E分别是边AB、AC的中点,已知DE=6cm,则BC=12 cm.8.(4分)(2009•湛江)一件衬衣标价是132元,若以9折降价出售,仍可获利10%,则这件衬衣的进价是108元.9.(4分)(2011•南漳县模拟)为了测量一个圆铁环的半径,某同学用了如下方法,将铁环平放在水平桌面上,用有一个角为30°的直角三角板和刻度尺按如图所示的方法得到相关数据,进而求出铁环半径,若测得PA=5cm,则铁环的半径是5cm.=510.(4分)(2009•金华)“赵爽弦图”是由四个全等的直角三角形与一个小正方形拼成的一个大正方形.如果小正方形的面积为4,大正方形的面积为100,直角三角形中较小的锐角为α,则tanα的值等于.8=三、解答题(本大题5小题,每小题6分,共30分)11.(6分)(2009•张家界)计算:.12.(6分)(2009•兰州)如图,要在一块形状为直角三角形(∠C为直角)的铁皮上裁出一个半圆形的铁皮,需先在这块铁皮上画出一个半圆,使它的圆心在线段AC上,且与AB、BC都相切.请你用直尺和圆规画出来(要求用尺规作图,保留作图痕迹,不要求写作法).13.(6分)如图,在▱ABCD的各边AB、BC、CD、DA上,分别取点K、L、M、N,使AK=CM、BL=DN,则四边形KLMN为平行四边形吗?说明理由.14.(6分)(2009•庆阳)如图1,一扇窗户打开后用窗钩AB可将其固定.(1)这里所运用的几何原理是()(A)三角形的稳定性(B)两点之间线段最短;(C)两点确定一条直线(D)垂线段最短;(2)图2是图1中窗子开到一定位置时的平面图,若∠AOB=45°,∠OAB=30°,OA=60cm,求点B到OA边的距离.(≈1.7,结果精确到整数)x=3015.(6分)(2011•鼎湖区模拟)如图所示,⊙O的直径AB为10cm,弦AC为6cm,∠ACB的平分线交⊙O于D,求BC,AD,BD的长.=5(四.解答题(本大题4小题,每小题7分,共28分)16.(7分)某商场为了吸引顾客,设计了一个摸球获奖的箱子,箱子中共有20个球,其中红球2个,兰球3个,黄球5个,白球10个,并规定购买100元的商品,就有一次摸球的机会,摸到红、兰、黄、白球的(一次只能摸一个),顾客就可以分别得到80元、30元、10元、0元购物卷,凭购物卷仍然可以在商场购买,如果顾客不愿意摸球,那么可以直接获得购物卷10元.(1)每摸一次球所获购物卷金额的平均值是多少?(2)你若在此商场购买100元的货物,两种方式中你应选择哪种方式?为什么?,,,×××=1517.(7分)(2010•海门市二模)某地有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?18.(7分)(2013•武侯区一模)已知二次函数y=x2﹣kx+k﹣5(1)求证:无论k取何实数,此二次函数的图象与x轴都有两个交点;(2)若此二次函数图象的对称轴为x=1,求它的解析式.,19.(7分)如图,过点P(2,)作x轴的平行线交y轴于点A,交双曲线(x>0)于点N,作PM⊥AN交双曲线(x>0)于点M,连接AM.已知PN=4.(1)求k的值;(2)设直线MN解析式为y=ax+b,求不等式≥ax+b的解集.))代入y=,))∴由图象知,不等式五.解答题(本大题3小题,每小题9分,共27分)20.(9分)(2012•陵县二模)在我们学习过的数学教科书中,有一个数学活动,其具体操作过程是:第一步:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开(如图1);第二步:再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN(如图2).请解答以下问题:(1)如图2,若延长MN交BC于P,△BMP是什么三角形?请证明你的结论;(2)在图2中,若AB=a,BC=b,a、b满足什么关系,才能在矩形纸片ABCD上剪出符合(1)中结论的三角形纸片BMP?BP=.b21.(9分)(2009•黑河)某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.(1)今年三月份甲种电脑每台售价多少元?(2)为了增加收入,电脑公司决定再经销乙种型号电脑,已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?(3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a 元,要使(2)中所有方案获利相同,a值应是多少此时,哪种方案对公司更有利?22.(9分)(2009•湘潭)如图,在平面直角坐标系中,四边形OABC为矩形,OA=3,OC=4,P为直线AB上一动点,将直线OP绕点P逆时针方向旋转90°交直线BC于点Q.(1)当点P在线段AB上运动(不与A,B重合)时,求证:OA•BQ=AP•BP;(2)在(1)成立的条件下,设点P的横坐标为m,线段CQ的长度为l,求出l关于m的函数解析式,并判断l 是否存在最小值?若存在,请求出最小值;若不存在,请说明理由;(3)直线AB上是否存在点P,使△POQ为等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.有最小值;,则,有最小值.。
2012年广东省中考全真模拟试题(四)数学试卷学校:__________班别:__________姓名:__________分数:____________说明:全卷共4页,考试用时100分钟,满分120分.一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的. 1. 下列各式中与2是同类二次根式是()ABCD2.已知点(,3)A a -是点(2,)B b -关于原点O 的对称点,则a +b 的值为( )A 、6B 、5-C 、5D 、6±3.下列汽车标志中,是中心对称图形的是( )A.B.C D4.用配方法解一元二次方程2430x x -+=时可配方得( )A.2(2)7x -= B.2(2)1x -= C.2(2)1x += D.2(2)2x +=5.如图,O ⊙是ABC △的外接圆,已知50ABO ∠=°,则ACB ∠的大小为( ) A .40°B .30°C .45°D .50°二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填在答题卡相应的位置上.6的平方根是 .7.方程x (x -1)=2(x -1)的解为 .8.如图2,⊙O 的直径为10,圆心O 到弦AB 的距离OM 的长为3,则弦AB的长是 。
9.已知点P 到⊙O 的最近距离是3cm 、最远距离是7cm ,则此圆的半径是 。
(第5题)图210.如图,PA 、PB 分别切⊙O 于A 、B ,PA=10cm ,C 是劣弧AB 是的点(不与点A 、B 重合),过点C 的切线分别交PA 、PB 于点E 、F 。
则△PEF 的周长为 .三、解答题(一)(本大题5小题,每小题6分,共30分) 11.计算:20100(1)|(2-+-12.解方程: x(x-2)+x-2=013.如图:在平面直角坐标系中,网格中每一个小 正方形的边长为1个单位长度;已知△ABC① 将△ABC 向x 轴正方向平移5个单位得△A 1B 1C 1, ② 再以O 为旋转中心,将△A 1B 1C 1旋转180°得△A 2B 2C 2画出平移和旋转后的图形,并标明对应字母.14.求值:()x x x x x 224422+÷+++,其中x =2.15.关于x 的一元二次方程230x x k --=有两个不相等的实数根.(1)求k 的取值范围. (2)请选择一个k 的负整数值,并求出方程的根.16. 2010年5月中央召开了新疆工作座谈会,为实现新疆跨越式发展和长治久安,作出了重要战略决策部署,为此我市抓住机遇,加快发展,决定今年投入5亿元用于城市基础设施维护和建设,以后逐年增加,计划到2010年当年用于城市基础设施维护与建设资金达到8.45亿元。
九年级数学试题卷卷 Ⅰ说明:本卷共有1大题,10小题,共40分.请用2B 铅笔在答题纸上将你认为正确的选项对应的小方框涂黑、涂满.一、选择题(本题有10小题,每题4分,共40分) 1.下列各选项中,最小的实数是( )A .-3B .0C .5-D .32.如图,数轴上点A ,B ,C ,D 表示的数中,绝对值相等的两个点是( ) A .点A 和点C B .点B 和点CC .点A 和点D D .点B 和点D3.下列关于“0”的说法中,正确的是( ) A .0是最小的正整数 B .0没有相反数 C .0没有倒数 D .0没有平方根4.某校九年级(1)班8名女生的体重(单位:kg )为:35、36、38、40、41、42、42、45,则这组数据的众数为( )A.38B.39C.40D. 42 5.由左图所示的地板砖各两块所铺成的下列图案中,既是轴对称图形,又是中心对称图形的是( )6.袋中有形状、大小相同的10个红球和5个白球,闭上眼睛从袋中随机取出一个球,取出的球是白球的概率为( )A .12B .31 C.41 D.517.在函数①21y x =-+ ②221y x =- ③1y x-=④y x =-中,经过点(1,-1)的函数解析式的个数是( )A .4B .3C .2D . 1 8.如图,以点P 为圆心,以x 轴交于A ,B 两点,点A 的坐标为(2,0),点B 的坐标为(6,0),则圆心P 的坐标为( )A .(4,B .(4,2)C .(4,4)D .(2, ) 9.关于x 的不等式22≤+-a x 的解集如图所示,那么a 的值是( ) A .-4B .-2C .0D .210.某种型号的变速自行车的主动轴上有三个齿轮,齿数分别是48,36,24;后轴上有四个齿轮,齿数分别是36,24,16,12.则这种变速车共有多少档不同的车速?( ) A .4 B .8 C .12 D .16DA B C A .B .C .D .卷 Ⅱ二、填空题 (本题有6小题,每题5分,共30分) 11.已知∠A =70º,则∠A 的余角是 度. 12.分式方程121x x =+的解是x =_______.13.如图,⊙O 的直径是AB ,CD 是⊙O 的弦,且∠D =70°,则∠ABC的度数是______. 14.如图,A B C △中,A B A C >,D E ,两点分别在边A C A B ,上,且D E 与B C 不平行.请填上一个..你认为合适的条件: ,使A D E A B C △∽△.(不再添加其他的字母和线段)15.如图,在反比例函数xy 6=(0x >)的图象上,有点1P 横.坐标..依次为1,2,3,4,···,n .分别过这些点作x 轴与y 轴的垂线,图中所构成的阴影部分的面积分别为123S S S ,,,···,n S ,则10321S S S S ++++ 的值为 . 16.如图,在半圆O 中,直径AE=10,四边形ABCD 是平行四边形,且顶点A 、B 、C 在半圆上,点D 在直径AE 上,连接CE ,若AD=8,则CE 长为 . 三、解答题 (本题有8小题,共80分)17.(本题8分)(1)计算:01)4sin 60+-(2)从以下的三个整式中任意选择两个进行减法运算,并将结果因式分解。
2012年中考模拟试卷 数学卷考生须知:1.本科目试卷分试题卷和答题卷两部分.满分120分,考试时间100分钟.2.答题前,必须在答题卷的密封区内填写某某与某某号.3.所有答案都必须做在答题卷标定的位置上,务必注意试题序号和答题序号相对应.4.考试结束后,只需上交答题卷.一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卷中相应的格子内.注意可以用多种不同的方法来选取正确答案.1.(原创)已知x=-2是方程2x-3a=2的根,那么a 的值是( )A.a=2B.a=-2C.a=23 D.a=23- 2.(原创)已知点M(1-a ,a+3)在第二象限,则a 的取值X 围是( )A.a>-2B. -2<a<1C. a<-2D. a>13.(原创)如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中ABC △相似的是 ( )4.(原创)若每人每天浪费水,那么100万人每天浪费的水,用科学记数法表示为( )A. L 7102.3⨯ B. L 6102.3⨯ C. L 5102.3⨯ D. L 4102.3⨯5.(原创)已知2343221x y k x y k +=⎧⎨+=+⎩,,且10x y -<-<,则k 的取值X 围为( )A .112k -<<-B .102k <<C .01k <<D .112k <<6.(原创)已知圆锥的底面半径为6cm ,高为8cm ,则圆锥的侧面积为( )A.236cm π B.248cm π C.260cm π D. 280cm π7.(原创)如图所示实数a b ,在数轴上的位置,以下四个命题中是假命题的是( )A.320a ab -<a b =+C.11a b a<- D.22a b < 8.(根据2009年某某某某中考第9题改编)如图,⊙P 内含于⊙O ,⊙O 的弦AB 切⊙P 于点C ,且OP AB //.若阴影部分的面积为π9,则弦AB 的长为( ) A .3B .4C .6D .99.(原创)∵1sin 302=,1sin 2102=-,∴(第8题)A .B .C .D .A BCsin 210sin(18030)sin 30=+=-;∵2sin 452=,2sin 2252=-,∴sin 225sin(18045)sin 45=+=-,由此猜想、推理知:一般地当α为锐角时有sin(180)sin αα+=-,由此可知:sin 240=( )A .12-B .22- C .32-.3-10.(根据2009年某某某某中考第16题改编)如图,两个反比例函数x k y 1=和xky 2=(其中1k >2k >0)在第一象限内的图象依次是1C 和2C ,设点P 在1C 上,PC ⊥x 轴于点C ,交2C 于点A ,PD ⊥y 轴于点D ,交于2C 点B ,下列说法正确的是( ) ①ODB ∆与OCA ∆的面积相等;②四边形PAOB 的面积等于12k k -;③PA 与PB 始终相等;④当点A 是PC 的三等分点时,点B 一定是PD 三等分点。
2012年中考模拟试卷数 学 试 题注意事项:1.本试卷共6页.全卷满分150分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(下列各题给出的四个选项中,只有一个是正确的.每小题3分,满分24分) 1. 21-是A .2的相反数B .21 的相反数 C .2-的相反数 D .21-的相反数2.花果山风景区一年接待旅游者约876000人,这个数可以用科学记数法表示为A .0.876×106 B. 876×103 C. 8.76×106 D. 8.76×105 3.下列运算中,计算正确的是A .3x 2+2x 2=5x 4B .(-x 2)3=-x 6C .(2x 2y )2=2x 4y 2D .(x +y 2)2=x 2+y44.体育课上,体育委员记录了6位同学在25秒内连续垫排球的情况,6位同学连续垫球的个数分别为30、27、32、30、28、34,则这组数据的众数和极差分别是 A .33,7B .32,4C .30,4D .30,75.如右图所示的几何体是由一些小立方块搭成的,则这个几何体的左视图是6.已知23x =,那么在数轴上与实数x 对应的点可能是A .1PB .4PC .2P 或3PD . 1P 或4P7.如图,已知□ABCD ,∠A =45°,AD =4,以AD 为直径的半圆O 与BC 相切于点B ,则图中第5题ABDC阴影部分的面积为A .42B .π+2C .4D .228.如图,在55⨯的正方形网格中,以AB 为边画直角△ABC ,使点C 在格点上,满足这样条件的点C 的个数A .6B .7C .8D .9二、填空(每小题3分,共24分)9.写出一个小于0的无理数______▲_______. 10.函数y =-1-x x 中自变量x 的取值范围_______▲________.11.分解因式:2441a a -+= _______▲______.12.已知等腰梯形的面积为24cm 2,中位线长为6cm ,则等腰梯形的高为____▲_____cm . 13.如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=35°,那么∠2是 ▲ °.14. 已知实数m 是关于x 的方程2x 2-3x -1=0的一根,则代数式4m 2-6m -2值为___▲__. 15.如图,△ABC 的三个顶点都在5×5的网格(每个小正方形的边长均为1个单位长度)的格点上,将△ABC 绕点B 顺时针旋转到△A ’BC ’的位置,则点A 经过的路径长为 ▲ .(结果保留π).16.某中学在校内安放了几个圆柱形饮水桶的木制支架(如图①),若不计木条的厚度,其俯视图如图②所示,已知AD 垂直平分BC ,AD=BC=40cm ,则圆柱形饮水桶的底面半径的最大值是 ▲ cm .第8题第13题第16题CA第7题三、解答题:(本大题共有12小题,共102分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(本题满分6分)计算:121(2)3-⎛⎫-- ⎪⎝⎭-0(2-18.(本题满分6分)先化简211()111a a a a -÷-+-,再选取一个使原式有意义的a 的值代入求值.19.(本题满分6分)解方程:2250x x +-= 20.(本题满分6分)如图,四边形ABCD 是正方形,点E 在BC 上,DF ⊥AE ,垂足为F ,请你在AE 上确定一点G ,使△ABG ≌△DAF ,请你写出两种确定点G 的方案,并就其中一种方案的具体作法证明△ABG ≌△DAF .方案一:作法: ; 方案二:(1)作法: .(2) 证明:21.(本题满分6分)某手机专营店代理销售A 、B 两种型号手机.手机的进价、售价如下表:用36000元购进 A 、B 两种型号的手机,全部售完后获利6300元,求购进A 、B 两种 型号手机的数量。
2012年广东省中考数学试卷一、选择题(本大题共5小题,每小题3分,共15分)在每个小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)﹣5的绝对值是()A.5B.﹣5C.D.﹣2.(3分)地球半径约为6400000米,用科学记数法表示为()A.0.64×107B.6.4×106C.64×105D.640×1043.(3分)数据8、8、6、5、6、1、6的众数是()A.1B.5C.6D.84.(3分)如图所示的几何体的主视图是()A.B.C.D.5.(3分)已知三角形两边的长分别是4和10,则此三角形第三边的长可能是()A.5B.6C.11D.16二、填空题(每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上.6.(4分)分解因式:2x2﹣10x=.7.(4分)不等式3x﹣9>0的解集是.8.(4分)如图,A、B、C是⊙O上的三个点,∠ABC=25°,则∠AOC的度数是.9.(4分)若x,y为实数,且满足|x﹣3|+=0,则()2012的值是.10.(4分)如图,在▱ABCD中,AD=2,AB=4,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是(结果保留π).三、解答题(一)(每小题6分,共30分)11.(6分)计算:﹣2sin45°﹣(1+)0+2﹣1.12.(6分)先化简,再求值:(x+3)(x﹣3)﹣x(x﹣2),其中x=4.13.(6分)解方程组:.14.(6分)如图,在△ABC中,AB=AC,∠ABC=72°.(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.15.(6分)已知:如图,在四边形ABCD中,AB∥CD,对角线AC、BD相交于点O,BO =DO.求证:四边形ABCD是平行四边形.四、解答题(二)(本大题共4小题,每小题7分,共28分)16.(7分)据媒体报道,我国2009年公民出境旅游总人数约5000万人次,2011年公民出境旅游总人数约7200万人次,若2010年、2011年公民出境旅游总人数逐年递增,请解答下列问题:(1)求这两年我国公民出境旅游总人数的年平均增长率;(2)如果2012年仍保持相同的年平均增长率,请你预测2012年我国公民出境旅游总人数约多少万人次?17.(7分)如图,直线y=2x﹣6与反比例函数y=的图象交于点A(4,2),与x 轴交于点B.(1)求k的值及点B的坐标;(2)在x轴上是否存在点C,使得AC=AB?若存在,求出点C的坐标;若不存在,请说明理由.18.(7分)如图,小山岗的斜坡AC的坡度是tanα=,在与山脚C距离200米的D处,测得山顶A的仰角为26.6°,求小山岗的高AB(结果取整数:参考数据:sin26.6°=0.45,cos26.6°=0.89,tan26.6°=0.50).19.(7分)观察下列等式:第1个等式:a1==×(1﹣);第2个等式:a2==×(﹣);第3个等式:a3==×(﹣);第4个等式:a4==×(﹣);…请解答下列问题:(1)按以上规律列出第5个等式:a5=;(2)用含有n的代数式表示第n个等式:a n==(n为正整数);(3)求a1+a2+a3+a4+…+a100的值.五、解答题(三)(本大题共3小题,每小题9分,共27分)20.(9分)有三张正面分别写有数字﹣2,﹣1,1的卡片,它们的背面完全相同,将这三张卡片北背面朝上洗匀后随机抽取一张,以其正面的数字作为x的值,放回卡片洗匀,再从三张卡片中随机抽取一张,以其正面的数字作为y的值,两次结果记为(x,y).(1)用树状图或列表法表示(x,y)所有可能出现的结果;(2)求使分式+有意义的(x,y)出现的概率;(3)化简分式+,并求使分式的值为整数的(x,y)出现的概率.21.(9分)如图,在矩形纸片ABCD中,AB=6,BC=8.把△BCD沿对角线BD折叠,使点C落在C′处,BC′交AD于点G;E、F分别是C′D和BD上的点,线段EF交AD 于点H,把△FDE沿EF折叠,使点D落在D′处,点D′恰好与点A重合.(1)求证:△ABG≌△C′DG;(2)求tan∠ABG的值;(3)求EF的长.22.(9分)如图,抛物线y=x2﹣x﹣9与x轴交于A、B两点,与y轴交于点C,连接BC、AC.(1)求AB和OC的长;(2)点E从点A出发,沿x轴向点B运动(点E与点A、B不重合),过点E作直线l平行BC,交AC于点D.设AE的长为m,△ADE的面积为s,求s关于m的函数关系式,并写出自变量m的取值范围;(3)在(2)的条件下,连接CE,求△CDE面积的最大值;此时,求出以点E为圆心,与BC相切的圆的面积(结果保留π).2012年广东省中考数学试卷参考答案与试题解析一、选择题(本大题共5小题,每小题3分,共15分)在每个小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)﹣5的绝对值是()A.5B.﹣5C.D.﹣【考点】15:绝对值.【分析】根据绝对值的性质求解.【解答】解:根据负数的绝对值等于它的相反数,得|﹣5|=5.故选A.【点评】此题主要考查的是绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3分)地球半径约为6400000米,用科学记数法表示为()A.0.64×107B.6.4×106C.64×105D.640×104【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的形式为a×10n,其中1≤a<10,n为整数.【解答】解:6400000=6.4×106.故选:B.【点评】此题考查用科学记数法表示较大的数,其规律为1≤|a|<10,n为比原数的整数位数小1的正整数.3.(3分)数据8、8、6、5、6、1、6的众数是()A.1B.5C.6D.8【考点】W5:众数.【分析】众数指一组数据中出现次数最多的数据,根据众数的定义即可求解.【解答】解:6出现的次数最多,故众数是6.故选:C.【点评】本题主要考查了众数的概念,注意众数是指一组数据中出现次数最多的数据,它反映了一组数据的多数水平,一组数据的众数可能不是唯一的,比较简单.4.(3分)如图所示的几何体的主视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【专题】1:常规题型.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:几何体的主视图是:故选:A.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.5.(3分)已知三角形两边的长分别是4和10,则此三角形第三边的长可能是()A.5B.6C.11D.16【考点】K6:三角形三边关系.【专题】2B:探究型.【分析】设此三角形第三边的长为x,根据三角形的三边关系求出x的取值范围,找出符合条件的x的值即可.【解答】解:设此三角形第三边的长为x,则10﹣4<x<10+4,即6<x<14,四个选项中只有11符合条件.故选:C.【点评】本题考查的是三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边.二、填空题(每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上.6.(4分)分解因式:2x2﹣10x=2x(x﹣5).【考点】53:因式分解﹣提公因式法.【分析】首先确定公因式是2x,然后提公因式即可.【解答】解:原式=2x(x﹣5).故答案是:2x(x﹣5).【点评】本题考查了提公因式法,正确确定公因式是关键.7.(4分)不等式3x﹣9>0的解集是x>3.【考点】C6:解一元一次不等式.【分析】先移项,再将x的系数化为1即可.【解答】解:移项得,3x>9,系数化为1得,x>3.故答案为:x>3.【点评】本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.8.(4分)如图,A、B、C是⊙O上的三个点,∠ABC=25°,则∠AOC的度数是50°.【考点】M5:圆周角定理.【专题】11:计算题.【分析】根据同弧所对的圆心角等于所对圆周角的2倍,由已知圆周角的度数,即可求出所求圆心角的度数.【解答】解:∵圆心角∠AOC与圆周角∠ABC都对,∴∠AOC=2∠ABC,又∠ABC=25°,则∠AOC=50°.故答案为:50°.【点评】此题考查了圆周角定理的运用,熟练掌握圆周角定理是解本题的关键.9.(4分)若x,y为实数,且满足|x﹣3|+=0,则()2012的值是1.【考点】16:非负数的性质:绝对值;23:非负数的性质:算术平方根.【分析】根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可【解答】解:根据题意得:,解得:.则()2012=()2012=1.故答案是:1.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.10.(4分)如图,在▱ABCD中,AD=2,AB=4,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是3﹣π(结果保留π).【考点】L5:平行四边形的性质;MO:扇形面积的计算.【专题】16:压轴题.【分析】过D点作DF⊥AB于点F.可求▱ABCD和△BCE的高,观察图形可知阴影部分的面积=▱ABCD的面积﹣扇形ADE的面积﹣△BCE的面积,计算即可求解.【解答】解:过D点作DF⊥AB于点F.∵AD=2,AB=4,∠A=30°,∴DF=AD•sin30°=1,EB=AB﹣AE=2,∴阴影部分的面积:4×1﹣﹣2×1÷2=4﹣π﹣1=3﹣π.故答案为:3﹣π.【点评】考查了平行四边形的性质,扇形面积的计算,本题的关键是理解阴影部分的面积=▱ABCD的面积﹣扇形ADE的面积﹣△BCE的面积.三、解答题(一)(每小题6分,共30分)11.(6分)计算:﹣2sin45°﹣(1+)0+2﹣1.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】本题涉及零指数幂、负指数幂、特殊角的三角函数值3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=﹣2×﹣1+=﹣.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、特殊角的三角函数值、绝对值等考点的运算.12.(6分)先化简,再求值:(x+3)(x﹣3)﹣x(x﹣2),其中x=4.【考点】4J:整式的混合运算—化简求值.【专题】2B:探究型.【分析】先把整式进行化简,再把x=4代入进行计算即可.【解答】解:原式=x2﹣9﹣x2+2x=2x﹣9,当x=4时,原式=2×4﹣9=﹣1.【点评】本题考查的是整式的混合运算﹣化简求值,在有乘方、乘除的混合运算中,要按照先乘方后乘除的顺序运算,其运算顺序和有理数的混合运算顺序相似.13.(6分)解方程组:.【考点】98:解二元一次方程组.【分析】先用加减消元法求出x的值,再用代入法求出y的值即可.【解答】解:①+②得,4x=20,解得x=5,把x=5代入①得,5﹣y=4,解得y=1,故此方程组的解为:.【点评】本题考查的是解二元一次方程组,熟知解二元一次不等式组的加减消元法和代入消元法是解答此题的关键.14.(6分)如图,在△ABC中,AB=AC,∠ABC=72°.(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.【考点】KH:等腰三角形的性质;N2:作图—基本作图.【专题】2B:探究型.【分析】(1)根据角平分线的作法利用直尺和圆规作出∠ABC的平分线即可;(2)先根据等腰三角形的性质及三角形内角和定理求出∠A的度数,再由角平分线的定义得出∠ABD的度数,再根据三角形外角的性质得出∠BDC的度数即可.【解答】解:(1)①一点B为圆心,以任意长长为半径画弧,分别交AB、BC于点E、F;②分别以点E、F为圆心,以大于EF为半径画圆,两圆相交于点G,连接BG角AC于点D即可.(2)∵在△ABC中,AB=AC,∠ABC=72°,∴∠A=180°﹣2∠ABC=180°﹣144°=36°,∵BD是∠ABC的平分线,∴∠ABD=∠ABC=×72°=36°,∵∠BDC是△ABD的外角,∴∠BDC=∠A+∠ABD=36°+36°=72°.【点评】本题考查的是基本作图及等腰三角形的性质,熟知角平分线的作法是解答此题的关键.15.(6分)已知:如图,在四边形ABCD中,AB∥CD,对角线AC、BD相交于点O,BO =DO.求证:四边形ABCD是平行四边形.【考点】KD:全等三角形的判定与性质;L6:平行四边形的判定.【专题】14:证明题;16:压轴题.【分析】先根据AB∥CD可知∠ABO=∠CDO,再由BO=DO,∠AOB=∠DOC即可得出△ABO≌△CDO,故可得出AB=CD,进而可得出结论.【解答】证明:∵AB∥CD,∴∠ABO=∠CDO,在△ABO与△CDO中,∵,∴△ABO≌△CDO(ASA),∴AB=CD,∴四边形ABCD是平行四边形.【点评】本题考查的是平行四边形的判定、全等三角形的判定与性质,熟知平行四边形的判定定理是解答此题的关键.四、解答题(二)(本大题共4小题,每小题7分,共28分)16.(7分)据媒体报道,我国2009年公民出境旅游总人数约5000万人次,2011年公民出境旅游总人数约7200万人次,若2010年、2011年公民出境旅游总人数逐年递增,请解答下列问题:(1)求这两年我国公民出境旅游总人数的年平均增长率;(2)如果2012年仍保持相同的年平均增长率,请你预测2012年我国公民出境旅游总人数约多少万人次?【考点】AD:一元二次方程的应用.【专题】123:增长率问题.【分析】(1)设年平均增长率为x.根据题意2010年公民出境旅游总人数为5000(1+x)万人次,2011年公民出境旅游总人数5000(1+x)2 万人次.根据题意得方程求解;(2)2012年我国公民出境旅游总人数约7200(1+x)万人次.【解答】解:(1)设这两年我国公民出境旅游总人数的年平均增长率为x.根据题意得:5000(1+x)2 =7200,解得x1 =0.2=20%,x2 =﹣2.2 (不合题意,舍去).答:这两年我国公民出境旅游总人数的年平均增长率为20%.(2)如果2012年仍保持相同的年平均增长率,则2012年我国公民出境旅游总人数为7200(1+x)=7200×(1+20%)=8640(万人次).答:预测2012年我国公民出境旅游总人数约8640万人次.【点评】此题考查一元二次方程的应用,根据题意寻找相等关系列方程是关键,难度不大.17.(7分)如图,直线y=2x﹣6与反比例函数y=的图象交于点A(4,2),与x 轴交于点B.(1)求k的值及点B的坐标;(2)在x轴上是否存在点C,使得AC=AB?若存在,求出点C的坐标;若不存在,请说明理由.【考点】GB:反比例函数综合题.【专题】31:数形结合.【分析】(1)先把(4,2)代入反比例函数解析式,易求k,再把y=0代入一次函数解析式可求B点坐标;(2)假设存在,然后设C点坐标是(a,0),然后利用两点之间的公式可得=,借此无理方程,易得a=3或a=5,其中a=3和B点重合,舍去,故C点坐标可求.【解答】解:(1)把(4,2)代入反比例函数y=,得k=8,把y=0代入y=2x﹣6中,可得x=3,故k=8;B点坐标是(3,0);(2)假设存在,设C点坐标是(a,0),∵AB=AC,∴=,即(4﹣a)2+4=5,解得a=5或a=3(此点与B重合,舍去)故点C的坐标是(5,0).【点评】本题考查了反比函数的知识,解题的关键是理解点与函数的关系,并能灵活使用两点之间的距离公式.18.(7分)如图,小山岗的斜坡AC的坡度是tanα=,在与山脚C距离200米的D处,测得山顶A的仰角为26.6°,求小山岗的高AB(结果取整数:参考数据:sin26.6°=0.45,cos26.6°=0.89,tan26.6°=0.50).【考点】T9:解直角三角形的应用﹣坡度坡角问题;TA:解直角三角形的应用﹣仰角俯角问题.【分析】首先在直角三角形ABC中根据坡角的正切值用AB表示出BC,然后在直角三角形DBA中用BA表示出BD,根据BD与BC之间的关系列出方程求解即可.【解答】解:∵在直角三角形ABC中,=tanα=,∴BC=∵在直角三角形ADB中,∴=tan26.6°=0.50即:BD=2AB∵BD﹣BC=CD=200∴2AB﹣AB=200解得:AB=300米,答:小山岗的高度为300米.【点评】本题考查了解直角三角形的应用,解题的关键是从实际问题中整理出直角三角形并求解.19.(7分)观察下列等式:第1个等式:a1==×(1﹣);第2个等式:a2==×(﹣);第3个等式:a3==×(﹣);第4个等式:a4==×(﹣);…请解答下列问题:(1)按以上规律列出第5个等式:a5==;(2)用含有n的代数式表示第n个等式:a n==(n为正整数);(3)求a1+a2+a3+a4+…+a100的值.【考点】37:规律型:数字的变化类.【分析】(1)(2)观察知,找第一个等号后面的式子规律是关键:分子不变,为1;分母是两个连续奇数的乘积,它们与式子序号之间的关系为序号的2倍减1和序号的2倍加1.(3)运用变化规律计算.【解答】解:根据观察知答案分别为:(1);;(2);;(3)a1+a2+a3+a4+…+a100=×(1﹣)+×(﹣)+×(﹣)+×(﹣)+…+×=(1﹣+﹣+﹣+﹣+…+﹣)=(1﹣)=×=.【点评】此题考查寻找数字的规律及运用规律计算.寻找规律大致可分为2个步骤:不变的和变化的;变化的部分与序号的关系.五、解答题(三)(本大题共3小题,每小题9分,共27分)20.(9分)有三张正面分别写有数字﹣2,﹣1,1的卡片,它们的背面完全相同,将这三张卡片北背面朝上洗匀后随机抽取一张,以其正面的数字作为x的值,放回卡片洗匀,再从三张卡片中随机抽取一张,以其正面的数字作为y的值,两次结果记为(x,y).(1)用树状图或列表法表示(x,y)所有可能出现的结果;(2)求使分式+有意义的(x,y)出现的概率;(3)化简分式+,并求使分式的值为整数的(x,y)出现的概率.【考点】62:分式有意义的条件;6D:分式的化简求值;X6:列表法与树状图法.【分析】(1)根据题意列出图表,即可表示(x,y)所有可能出现的结果;(2)根据(1)中的树状图求出使分式+有意义的情况,再除以所有情况数即可;(3)先化简,再找出使分式的值为整数的(x,y)的情况,再除以所有情况数即可.【解答】解:(1)用列表法表示(x,y)所有可能出现的结果如下:﹣2﹣11﹣2(﹣2,﹣2)(﹣1,﹣2)(1,﹣2)﹣1(﹣2,﹣1)(﹣1,﹣1)(1,﹣1)1(﹣2,1)(﹣1,1)(1,1)(2)∵使分式+有意义的(x,y)有(﹣1,﹣2)、(1,﹣2)、(﹣2,﹣1)、(﹣2,1)4种情况,∴使分式+有意义的(x,y)出现的概率是,(3)∵+=(x≠±y),使分式的值为整数的(x,y)有(1,﹣2)、(﹣2,1)2种情况,∴使分式的值为整数的(x,y)出现的概率是.【点评】此题考查了树状图法与列表法求概率.此题难度不大,解题的关键是根据题意画出树状图或列出表格,注意树状图法与列表法可以不重不漏地表示出所有等可能的结果,注意用到的知识点为:概率=所求情况数与总情况数之比.21.(9分)如图,在矩形纸片ABCD中,AB=6,BC=8.把△BCD沿对角线BD折叠,使点C落在C′处,BC′交AD于点G;E、F分别是C′D和BD上的点,线段EF交AD 于点H,把△FDE沿EF折叠,使点D落在D′处,点D′恰好与点A重合.(1)求证:△ABG≌△C′DG;(2)求tan∠ABG的值;(3)求EF的长.【考点】KD:全等三角形的判定与性质;LB:矩形的性质;PB:翻折变换(折叠问题);T7:解直角三角形.【专题】16:压轴题;2B:探究型.【分析】(1)根据翻折变换的性质可知∠C=∠BAG=90°,C′D=AB=CD,∠AGB=∠DGC′,故可得出结论;(2)由(1)可知GD=GB,故AG+GB=AD,设AG=x,则GB=8﹣x,在Rt△ABG中利用勾股定理即可求出AG的长,进而得出tan∠ABG的值;(3)由△AEF是△DEF翻折而成可知EF垂直平分AD,故HD=AD=4,再根据tan∠ABG即可得出EH的长,同理可得HF是△ABD的中位线,故可得出HF的长,由EF=EH+HF即可得出结论.【解答】(1)证明:∵△BDC′由△BDC翻折而成,∴∠C=∠BAG=90°,C′D=AB=CD,∠AGB=∠DGC′,∴∠ABG=∠ADE,在△ABG与△C′DG中,∵,∴△ABG≌△C′DG(AAS);(2)解:∵由(1)可知△ABG≌△C′DG,∴GD=GB,∴AG+GB=AD,设AG=x,则GB=8﹣x,在Rt△ABG中,∵AB2+AG2=BG2,即62+x2=(8﹣x)2,解得x=,∴tan∠ABG===;(3)解:∵△AEF是△DEF翻折而成,∴EF垂直平分AD,∴HD=AD=4,∴tan∠ABG=tan∠ADE=,∴EH=HD×=4×=,∵EF垂直平分AD,AB⊥AD,∴HF是△ABD的中位线,∴HF=AB=×6=3,∴EF=EH+HF=+3=.【点评】本题考查的是翻折变换、全等三角形的判定与性质、矩形的性质及解直角三角形,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.22.(9分)如图,抛物线y=x2﹣x﹣9与x轴交于A、B两点,与y轴交于点C,连接BC、AC.(1)求AB和OC的长;(2)点E从点A出发,沿x轴向点B运动(点E与点A、B不重合),过点E作直线l平行BC,交AC于点D.设AE的长为m,△ADE的面积为s,求s关于m的函数关系式,并写出自变量m的取值范围;(3)在(2)的条件下,连接CE,求△CDE面积的最大值;此时,求出以点E为圆心,与BC相切的圆的面积(结果保留π).【考点】HF:二次函数综合题.【专题】16:压轴题.【分析】(1)已知抛物线的解析式,当x=0,可确定C点坐标;当y=0时,可确定A、B 点的坐标,进而确定AB、OC的长.(2)直线l∥BC,可得出△AED、△ABC相似,它们的面积比等于相似比的平方,由此得到关于s、m的函数关系式;根据题干条件:点E与点A、B不重合,可确定m的取值范围.(3)①首先用m列出△AEC的面积表达式,△AEC、△AED的面积差即为△CDE的面积,由此可得关于S△CDE、m的函数关系式,根据函数的性质可得到S△CDE的最大面积以及此时m的值;②过E做BC的垂线EM,这个垂线段的长即为与BC相切的⊙E的半径,可根据相似三角形△BEF、△BCO得到的相关比例线段求得该半径的值,由此得解.【解答】解:(1)已知:抛物线y=x2﹣x﹣9;当x=0时,y=﹣9,则:C(0,﹣9);当y=0时,x2﹣x﹣9=0,得:x1=﹣3,x2=6,则:A(﹣3,0)、B(6,0);∴AB=9,OC=9.(2)∵ED∥BC,∴△AED∽△ABC,∴=()2,即:=()2,得:s=m2(0<m<9).(3)解法一:∵S△ACE=AE•OC=m×9=m,∴S△CDE=S△ACE﹣S△ADE=m﹣m2=﹣(m﹣)2+.∵0<m<9,∴当m=时,S△CDE取得最大值,最大值为.此时,BE=AB﹣AE=9﹣=.记⊙E与BC相切于点M,连接EM,则EM⊥BC,设⊙E的半径为r.在Rt△BOC中,BC===3.∵∠OBC=∠MBE,∠COB=∠EMB=90°.∴△BOC∽△BME,∴=,∴=,∴r==.∴所求⊙E的面积为:π()2=π.解法二:∵S△AEC=AE•OC=m×9=m,∴S△CDE=S△AEC﹣S△ADE=m﹣m2=﹣(m﹣)2+.∵0<m<9,∴当m=时,S△CDE取得最大值,最大值为.此时,BE=AB﹣AE=9﹣=.∴S△EBC=S△ABC=.如图2,记⊙E与BC相切于点M,连接EM,则EM⊥BC,设⊙E的半径为r.在Rt△BOC中,BC==.∵S△EBC=BC•EM,∴×r=,∴r==.∴所求⊙E的面积为:π()2=π.【点评】该题主要考查了二次函数的性质、相似三角形的性质、图形面积的求法等综合知识.在解题时,要多留意图形之间的关系,有些时候将所求问题进行时候转化可以大大的降低解题的难度.。
2024年广东省惠州市中考模拟数学试题一、单选题1.《九章算术》是中国古代第一部数学专著,成书于公元一世纪左右.书中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上5℃记作5+℃,则10-℃表示气温为( )A .零下10℃B .零下15℃C .零上15℃D .零上10℃ 2.下列手机屏幕上常见的图形中,是轴对称图形的是( )A .B .C .D . 3.2023年全国粮食总产量约为13908亿斤,13908亿用科学记数法表示为( ) A .121.390810⨯ B .111.390810⨯ C .101.390810⨯ D .1113.90810⨯ 4.如图,平行四边形ABCD 的对角线,AC BD 相交于点O ,下列说法正确的是( )A .ABD CBD ∠=∠B .2BAD ABC ∠=∠ C .AB BC =D .OB OD = 5.下列运算不正确的是( )A 3=-B .2=C .23236a a a ⋅=D .01=6.不等式组33032x x -≤⎧⎨+>⎩的解集在数轴上表示正确的是( ) A . B .C .D .7.月亮门是中国古典园林、住宅中常见的圆弧形洞门(如图1),因圆形如月而得名.月亮门因其寓意美好且形态优美,被广泛使用.图2是小智同学家中的月亮门示意图,经测量,水平跨径AB 为1.8米,水平木条BD 和铅锤木条CD 长都为0.3米,点C 恰好落在O e 上,则此月亮门的半径为( )A .1.8米B .1.6米C .1.5米D .1.4米8.如图,四边形ABCD 是O e 的内接四边形,=60B ∠︒,40ACD ∠=︒.若O e 的半径为5,则»DC的长为( )A .13π3B .10π9C .πD .12π 9.两千多年前,古希腊数学家欧多克索斯发现了黄金分割,即:如图,点P 是线段AB 上一点(AP >BP ),若满足BP AP AP AB=,则称点P 是AB 的黄金分割点.黄金分割在日常生活中处处可见,例如:主持人在舞台上主持节目时,站在黄金分割点上,观众看上去感觉最好.若舞台长20米,主持人从舞台一侧进入,设他至少走x 米时恰好站在舞台的黄金分割点上,则x 满足的方程是( )A .(20﹣x )2=20xB .x 2=20(20﹣x )C .x (20﹣x )=202D .以上都不对 10.如图,在四边形ABCD 中,AD CB ∥,对角线AC 、BD 交于点O ,且120AOB ∠=︒.若4A C B D +=,则AD BC +的最小值为( )A .16B .4C .9D .2二、填空题11.因式分解:228x -+=.12x 的取值范围是. 13.方程31512x x=+的解为. 14.在平面直角坐标系xOy 中,若函数()0k y k x =≠的图象经过点()3,2A -和(),2B m -,则m 的值为.15.如图,在矩形ABCD 中,AD =3,将矩形ABCD 绕点A 逆时针旋转,得到矩形AEFG ,点B 的对应点E 落在CD 上,且DE =EF ,则AB 的长为.三、解答题16.(1)计算:0(π1)4sin603-+︒-.(2)先化简,再求值:211111x x x x ⎛⎫+÷ ⎪+--⎝⎭,其中x 是满足条件2x ≤的合适的非负整数. 17.如图,B ,E ,C ,D 四点在同一直线上,,AC EF 相交于点,,,180G AB EF AB DE D CGF =∠+∠=︒∥,求证:AC DF =.18.小亮同学将一辆自行车水平放在地面上.如示意图,车把头下方A 处与坐垫下方B 处的连线平行于地面水平线,C 处为齿盘的中轴,测得50cm AC =,41BAC ∠=︒,60ABC ∠=︒(1)求AB 的长度(结果保留整数);(2)若点C 到地面的距离CD 为30cm ,坐垫中轴E 与点B 的距离BE 为6cm ,根据小亮同学身高比例,坐垫E 到地面的距离为66cm 至70cm 之间时,骑乘该自行车最舒适,请你通过计算判断出小亮同学骑乘该自行车是否能达到最佳舒适度.(参考数据:sin 410.66︒≈,cos410.75︒≈,tan 410.87︒≈ 1.73≈)19.“端午节”期间,某超市销售甲、乙两款粽子,甲、乙两款粽子的进价分别是每袋35元,45元,这个超市用4300元购进甲、乙两款粽子共100袋(1)购进甲、乙两款粽子各是多少袋?(2)市场调查发现:乙款粽子每天的销售量m (袋)与销售单价n (元)满足如下关系:()10565105m n n =-+≤≤,设乙款粽子每天的销售利润是w 元,当乙款粽子的销售单价是多少元时,乙款粽子的销售利润最大?最大利润是多少元?20.如图在平面直角坐标系xOy 中,直线:2AB y x =-与反比例函数k y x=的图象交于A B 、两点,与x 轴相交于点C ,已知点,A B 的坐标分别为()3,n n 和(),3m -.(1)求反比例函数的解析式;(2)点P为反比例函数kyx=图象的任意一点,若3POC AOCS S=△△,求点P的坐标.21.为加强法制和安全教育,某学校印发了上级主管部门的“法治和安全等知识”学习材料.经过一段时间的学习,同学们都表示有了提高,为了解具体情况,学校开展了一次全校性竞赛活动,王老师抽取了这次竞赛中部分同学的成绩,并绘制了下面不完整的统计图表.请根据所给的信息解答下列问题:(1)王老师抽取了_______名学生的参赛成绩;(2)将条形统计图补充完整;(3)若该校有1600名学生,请估计竞赛成绩在良好以上(80x≥)的学生有多少人?(4)在本次竞赛中,学校发现六(1)班、七(4)班的成绩不理想,要求这两个班加强学习一段时间后,再由电脑随机从A,B,C,D四套试卷中给每班派发一套试卷进行测试,请用列表或画树状图的方法求出两个班同时选中同一套试卷的概率.22.如图,四边形ABCD内接于圆O,∠BAD=90°,AC为直径,过点A作圆O的切线交CB的延长线于点E,过AC的三等分点F(靠近点C)作CE的平行线交AB于点G,连结CG .(1)求证:AB =CD ;(2)求证:CD 2=BE •BC ;(3)当CGBE =92时,求CD 的长.23.如图1,抛物线223y ax ax a =--+的顶点为B ,与y 轴交于点A ,其对称轴与x 轴交于点E ,点D 是抛物线对称轴左侧一动点,以AB 和AD 为边作Y ABCD ,连结DE .已知抛物线经过点()2,3-.(1)求该抛物线的函数表达式.(2)若C 、D 、E 三点在同一直线上,记Y ABCD 的面积为S ,求证:4S =.(3)连结BD ,若30EBD ∠=︒,(如图2),将B D E V 沿DE 边翻折,得到FDE V ,试探究:在y 轴上是否存在点P ,使60BPF ∠=︒?若存在,请直接写出点P 的坐标;若不存在,请说明理由。
2012年中考模拟试卷数学卷数学考生须知:1.本试卷满分120分, 考试时间100分钟.2.答题前, 在答题纸上写某某和某某号.3.必须在答题纸的对应答题位置上答题,写在其他地方无效. 答题方式详见答题纸上的说明.4.考试结束后, 试题卷和答题纸一并上交.试题卷一. 仔细选一选 (本题有10个小题, 每小题3分, 共30分)下面每小题给出的四个选项中, 只有一个是正确的. 注意可以用多种不同的方法来选取正确答案.1.(2010某某某某)下列各图是选自历届世博会会徽中的图案,其中是中心对称图形的是2.(原创)2010年5月1日至10月31日某某世博会参观者7308万人,7308万人用科学计数发表示为()人×106×107 C×106 ×1083.(原创)在227, ,9,0.1 010 010 001,14,38,sin60°中,有理数的个数是()A.1. B.2 C.3 D.44.(某某某某)小军将一个直角三角板(如图1)绕它的一条直角边所在的直线旋转一周形成一个几何体,将这个几何体的侧面展开得到的大致图形是( )A. B. C. D.1图(A) (B) (C) (D)5.(原创)下列命题:①如果一个角的两边与另一个角的两边分别平行,那么这两个角相等.②有两边和其中一边的对角对应相等的两个三角形全等;③方程1312112-=+--x x x 的解是0=x ;④两圆的半径分别是3和4,圆心距为d ,若两圆有公共点,则.71<<d ⑤若00a b >>,,则0a b +>; 其中真命题的个数有( )6.(原创)在平面直角坐标系中,形如)(2n m ,的点(其中n m 、为整数),称为标准点,那么抛物线922+-=x x y 上有这样的标准点( )个. A .2个 B.4个 C.6个 D.无数个7.(改编)“祝福”、“祝福奥运”是每个中国人良好的心愿.亮亮、兵兵和军军三个同学都有一套外形完全相同,背面写着“祝福”、“”、“奥运”字样的三X 卡片.他们分别从自己的一套卡片中随机抽取一X ,抽取得三X 卡片中含有“祝福”“”“奥运”的概率是( ) A.127 B.19 C.29 D.138.(原创)将一X 纸第一次翻折,折痕为AB (如图1),第二次翻折,折痕为PQ (如图2),第三次翻折使PA 与PQ 重合,折痕为PC (如图3),第四次翻折使PB 与PA 重合,折痕为PD (如图4).此时,如果将纸复原到图1的形状,则CPD ∠的大小是( )A .120B .90C .60D .459.(2010 某某某某)如图,在ABC △中,2AB AC ==,20BAC ∠=.动点P Q ,分别在直线BC 上运动,且始终保持100PAQ ∠=.设BP x =,CQ y =,则y 与x 之间的函数关系用图象大致可以表示为 ( )10.(2010·某某)已知:如图,在正方形ABCD 外取一点E ,连结AE 、BE 、DE .过点A 作AE 的垂线交DE 于点P .若AE =AP =1,PB = 5.下列结论:①△APD ≌△AEB ;②点B 到直线AE 的距离为2;③EB ⊥ED ;④S △APD +S △APB =1+6;⑤S 正方形ABCD=4+ 6.其中正确结论的序号是( )A .①③④B .①②⑤C .③④⑤D .①③⑤二. 认真填一填 (本题有6个小题, 每小题4分, 共24分)要注意认真看清题目的条件和要填写的内容, 尽量完整地填写答案. 11.(原创)因式分解:2ax 2-4ax +2a = ▲ .12.(原创)某小组16名同学的身高(厘米)平均数是164,中位数是158,众数是162。
2012届广东省惠州市中考模拟数学试题一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.3的倒数是( ) A.3-B.3C.13D.13-2.2008年10月9日上海证券的成交额:358.75亿元,用科学计数法这天成交额的是( ) A .8358.7510⨯元 B .935.87510⨯元 C .103.587510⨯元 D .110.3587510⨯米 3.下列多项式中,能用提公因式法分解因式的是( )A .2x x -B .2x y +C .22x y -D .22x y +4.函数2y ax b y ax bx c =+=++和在同一直角坐标系内的图象大致是 ( )5.四张完全相同的卡片上,分别画有圆、矩形、等边三角形、等腰梯形,现从中随 机抽取一张,卡片上画的恰好是中心对称图形的机会是( ) A .41 B .21 C .43 D .1二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上.6.实数a 、b 在数轴上的位置如图1所示,则a b (,,)>=<;图17.函数12y x =-的自变量的取值范围是_________; 8.一个几何体的三视图如图所示,这个几何体是 ;9.2008年5月9日,奥运火炬在美丽的惠州传递,208名火炬手参加了火炬传递,其中8位火炬手所跑的路程(单位:米)如下:60,70,100,60,80,70,90,100,则这组数据的中位数是 ;10.如图,在△ABC 中,BC =4,以点A 为圆心,2为半径的⊙A 与BC 相切于点D ,交AB 于E ,交AC 于F ,点P 是⊙A 上一点,且∠EPF =40°,则图中阴影部分的面积是 .三、解答题(一)(本大题5小题,每小题6分,共30分) 11.(本题满分6分)计算 :2008(1)2tan 60cot 60-++.12.(本题满分6分))如图,AB ∥CD , AC ⊥BC ,∠BAC =65°,求∠BCD 的度数.13.(本题满分6分)如图,正方形格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.ΔABO 的三个顶点A ,B ,O 都在格点上.(1)画出ΔABO 绕点O 逆时针旋转900后得到的三角形ΔA B O '';正视图 左视图 俯视图DC(2)根据所画的图找出A '点和B '点的坐标.14.(本题满分6分)、阅读理解:我们把dcb a 称作二阶行列式,规定他的运算法则为bc ad d cba -=.如243525432-=⨯-⨯=.如果有2301xx->,求x 的解集.15.(本题满分6分)如图1,一块三角形模具的阴影部分已破损.只要从残留的模具片中度量出哪些边、角,就可以不带残留的模具片到店铺加工一块与原来的模具ABC 的形状和大小完全相同的模具A B C '''?请简要说明理由.四、解答题(二)(本大题4小题,每小题7分,共28分) 16.(本题满分7分)先化简,再求值:223(2)()()a b ab b b a b a b --÷-+-,其中112a b ==-,.图117.(本题满分7分)2008年5月12日14时28分在我国四川省汶川地区发生了里氏8.0级强烈地震,灾情牵动全国人民的心,“一方有难、八方支援”.惠州某工厂某厂计划加工1000顶帐篷支援灾区人民,在加工了200顶帐篷后,由于救灾需要工作效率提高到原来的2倍,结果提前4天完成了任务.求原来每天加工多少顶帐篷?18.(本题满分7分)如图:在平面直角坐标系中,有A (0,1),B (1-,0),C (1,0)三点坐标.(1)若点D 与A B C ,,三点构成平行四边形,请写出所有符合条件的点D 的坐标; (2)选择(1)中符合条件的一点D ,求直线BD 的解析式.19.(本题满分7分)今年不仅是民间所谓的“金鼠年”,又恰逢2008年奥运会,不少准妈妈想借机生个“奥运宝宝”.据不完全统计,今年3月份在南京三家大医院出生的宝宝总数如图3所示,其中每家医院出生的男宝宝的百分比如图4所示. x(1)求在这三家大医院3月份出生的总人数中男宝宝的百分比;(2)3月份南京共有约5000名“奥运宝宝”出生,根据上面的计算结果,估计3月份南京共有多少名男宝宝出生?五、解答题(三)(本大题3小题,每小题9分,共27分)20.(本题满分9分)阅读下列内容后,解答下列各题:几个不等于0的数相乘,积的符号由负因数的个数决定.例如:考查代数式(1)(2)--的值与0的大小x x当1x-<,20x-<,(1)(2)0x<时,10∴-->x x当12x-<,(1)(2)0x->,20x<<时,10∴--<x x当2x->,(1)(2)0x>时,10x->,20∴-->x x综上:当12<<时,(1)(2)0x--<x x当1x>时,(1)(2)0x<或2-->x x(1) 填写下表:(用“+”或“-”填入空格处)2x <- 21x -<<- 13x -<< 34x << 4x >2x + -++ + + 1x + --+ + + 3x -- - - + + 4x -----+(2)(1)(3)(4)x x x x ++--(2)由上表可知,当x 满足 时,(2)(1)(3)(4)0x x x x ++--<; (3)运用你发现的规律,直接写出当x 满足 时,(7)(8)(9)0x x x -+-<21.(本题满分9分)如图甲,MN 是ABCD 外的一条直线,AA BB CC DD ''''、、、都垂直于MN, A B C D ''''、、、为垂足.对角线AC 与BD 相交于O 点,O '是B D ''的中点. (1)求证OO '是梯形AA C C ''的中位线. (2)求证:AA CC BB DD ''''+=+.(3)若直线MN 向上移动,使点C 在直线一侧,A 、B 、D 在直线另一侧(如图乙),则垂线段AA BB CC DD ''''、、、之间存在什么关系?写出你的猜想并证明.+甲乙NC22.(本题满分9分)为了加强视力保护意识,小明想在长为3.2米,宽为4.3米的书房里挂一张测试距离为5米的视力表.在一次课题学习课上,小明向全班同学征集“解决空间过小,如何放置视力表问题”的方案,其中甲、乙、丙三位同学设计方案新颖,构思巧妙.(1)甲生的方案:如图1,将视力表挂在墙ABEF 和墙ADGF 的夹角处,被测试人站立在对角线AC 上,问:甲生的设计方案是否可行?请说明理由.(2)乙生的方案:如图2,将视力表挂在墙CDGH 上,在墙ABEF 上挂一面足够大的平面镜,根据平面镜成像原理可计算得到:测试线应画在距离墙ABEF 米处. (3)丙生的方案:如图3,根据测试距离为5m 的大视力表制作一个测试距 为3m 的小视力表.如果大视力表中“E ”的长是3.5cm ,那么小视力表中相应“E ”的长是多少cm ?参考答案一、选择题(每小题3分)HH(图1)(图2) (图3)(第22题)3.5㎝ACF3mB5mD1.C ;2.C ;3.A ;4.C ;5.B. 二、填空题(每小题4分)6.<;7.2x ≠;8.圆柱;9.75; 10.849π-. 三、解答题(一)(每小题6分)11.解: 原式=121+------------------------------4分=分 12.解:,65AC BC BAC ⊥∠= ------------------------------1分906525ABC ∴∠=-=------------------------------3分//AB CD --------------------------------------------------5分25BCD ABC ∴∠=∠=------------------------------6分13.解:(1)如图所示分(2) A ’(-2,2), B ’------------------------------6分14.解:由题意得2(3)0x x -->------------------------------------------------------------3分230x x -+>------------------------------------------------------------4(第13题)分33x >------------------------------------------------------------5分 1x >------------------------------------------------------------6分15.解:量出,B C ∠∠及BC 长. ------------------------------3分 ,,B B C C BC B C ''''∠=∠∠=∠=------------------------------5分ABC A B C '''∴≅------------------------------------------------------------6分四、解答题(二)16.解:原式=22222a a b a b ---+ =2a当12a =时 原式=1212-⨯=- 17.设原来每天加工x 顶帐篷 2001000200100042x x x-++= 解得100x =.经检验100x =是原方程的根,符合题意.答: 原来每天加工100顶帐篷. 18.(1)D 的坐标有(2,1);(-2,1);(0,-1).(2)选D(0,-1),设BD 的解析式为:y kx b =+,由题意得 01k b b =-+⎧⎨-=⎩ 解得11k b =-⎧⎨=-⎩1y x ∴=--19.解:(1)男宝宝的平均百分比:53%100%300055%30055%70052%2000=⨯⨯+⨯+⨯答:这三家大医院3月份出生的男宝宝的平均百分比为53%------5分 (2)5000×53%=2650(人)答:估计3月份出生的男宝宝有2650名------------------------------10分 20.(1)+ - + - + (2) 21x -<<-或34x << (3) 87x -<<或9x <-21.(1).证明:O 是BD 中点, O '是B D ''的中点 ,BB MN DD MN ''⊥⊥ OO '∴是梯形BB D D''的中位线----------------------------------------------------2分////////OO BB AA CC DD '''''∴又O 是BD 中点, ////OO AA CC '''∴OO '是梯形A A''的中位线----------------------------------------------------3分 (2).由(1)得:-----5分 即(3).AA BB CC DD ''''=++. -------6分在AA '上点E,使AE=CC ',过点E 作EF//MN 交AC 于F.则易证得:AEF CC G '≅11(),()22OO AA CC OO BB DD ''''''=+=+11()()22AA CC BB DD ''''∴+=+AA CC BB DD ''''+=+AF GC ∴=∴O 是FG 的中点.过O 作OH//MN 交AA '于H,则OH 是中位线12HA EA '∴=---------------------7分 由作图易得OO HA ''=2EA OO ''∴=即2AA CC OO '''-=---------------------8分2BB DD OO '''+=∴AA BB CC DD ''''=++---------------------9分22. 解:(1)甲生的设计方案可行.------------------------------1分根据勾股定理,得222223.24.328.73A C A D C D =+=+=. ∴5=.-----------------------3分 ∴甲生的设计方案可行.------------------------------4分(2)1.8米.----------------------------------------------------6分(3)∵FD ∥BC∴△A D F ∽△ABC .------------------------------7分 ∴FD AD BC AB=. ∴33.55F D =. ∴2.1F D =(cm ).------------------------------9分 答:小视力表中相应2.1cm。
2012年广东省中考全真模拟试题(2)数学试卷学校:__________班别:__________姓名:__________分数:____________一、选择题(本题共5小题,每小题3分,共15分)在每小题给出的四个选项中,只有一个是正确的,请将所选选项的字母填在答卷相应题号下的方框里。
1.今年参加我市初中毕业生学业考试的考生总数为45730人,这个数据用科学记数法表示为( ) A.50.457310⨯ B.44.57310⨯C.44.57310-⨯D.34.57310⨯2.仔细观察图1所示的两个物体,则它的俯视图是( )3轴对称图形的是()4.如图1,晚上小亮在路灯下散步,在小亮由A 处走 到B 处这一过程中,他在地上的影子( ) A.逐渐变短 B.逐渐变长 C.先变短后变长 D.先变长后变短5.圆心距为6的两圆相外切,则以这两个圆的半径为根的一元二次方程是( ) A .26100x x -+= B .2610x x-+= C .2560x x -+=D .2690x x ++=二、填空题(本题共5小题,每小题4分,共20分)请将答案填在答卷相应题号的横线上 6.计算32[()]x -= .7.如图2,在ABC △中,E F ,分别是AB AC ,的中点,若6cm EF =,则BC = cm . 8.函数y =x 的取值范围是 .9.近视眼镜的度数y (度)与镜片焦距x (米)成反比例,已知400度近视眼镜镜片的焦正面 图1 A. B. C. D.A. B. C. D.距为0.25米,则眼镜度数y 与镜片焦距x 之间的函数关系式为 .10.小明与父母从广州乘火车回梅州参观叶帅纪念馆,他们买到的火车票是同一排相邻的三个座位,那么小明恰好坐在父母中间的概率是 .三、解答题。
(本大题共5大题,每小题6分,共30分)请将答案写在答卷相应题号的位置上。
11.101231)2-⎛⎫⨯+-+ ⎪⎝⎭.12.在市区内,我市乘坐出租车的价格y (元)与路程x (km )的函数关系图象如图6所示.(1)请你根据图象写出两条信息;(2)小明从学校出发乘坐出租车回家用了13元,求学校离小明家的路程.13.计算:2311(1)x x x x x x x --⎛⎫+- ⎪+-⎝⎭.14.甲、乙两位同学本学年11次数学单元测验成绩(整数)的统计如图5所示: (1)分别求他们的平均分;(2)请你从中挑选一人参加数学“学用杯”竞赛,并说明你挑选的理由.测验次数图6图715如图7,已知⊙O 是△ABC 的外接圆,CD 是AB 边上的高, AE 是⊙O 的直径. 求证:AC ·BC =AE ·CD .四、解答题(本大题共4小题,每小题7分,共28分)将答案写在答卷相应题号的位置上。
B .A .C .D .广东省惠州市2012年中考仿真试卷2012.3.20一、选择题(本大题共5小题,每小题3分,共15分) 1. 21--的值是 ( ) A .21B .21-C .2-D .22.下列各式运算正确的是 ( ) A .33x x x =⋅ B .43x x x =+ C .23x x x =÷ D .23x x x =-3. 下列各图是选择自历届世博会会徽中的图案,其中是中心对称图形的是( )4. 已知ABC △的三边长分别为5,13,12,则ABC △的面积为( ) A .30B .60C .78D .不能确定5. 如图是一个正方体纸盒的表面展开图,在其中的三个正方形a 、b 、c 内分别填入适当的数,使得折成正方体后相对的面上的两个数满足下面条件: a 面上的数与它对面的数互为倒数; b 面上的数等于它对面上的数的绝对值;c 面上的数与它对面的数互为相反数,则a+b+c 的值是 ( ) A 、212+- B 、212-- C 、2 D 、2-二、填空题(本大题共5小题,每小题4分,共20分)6.生物学家发现一种超级细菌病毒的长度约为0.0000043mm ,这个长度用科学记数法表示为 7.已知二元一次方程组为⎩⎨⎧=+=+8272y x y x ,则=+y x 。
8.在某校举行的“艺术节”的文艺演出比赛中,九位评委给其中一个表演节目现场打出的分数如下:9.3,8.9,9.3,9.1,8.9,8.8,9.3,9.5,9.3,则这组数据的众数是 ,中位数是 .2- bc38-22 a9.刘谦的魔术表演风靡全国,小明也学起了刘谦发明了一个“魔术盒”,当任意实数对(b ,a )进入其中时,会得到一个新的实数:a 2+b -1,例如把(3,-2)放入其中,就会得到32+(-2)-1=6.现将实数对(-2,-3)放入其中,得到实数是 . 10.如下图是一组有规律的图案,第1个 图案由4个基础图形组成,第2个图案由7个基础图形组成,……,第n(n 是正整数)个图案中由 个基础图形组成.三、解答题(本大题共5小题,每小题6分,共30分) 11.计算:14230tan 3231--︒+---12.解不等式组33213(1)8x x x x-⎧+⎪⎨⎪--<-⎩≥,并把它的解集在数轴上表示出来.13.把一副普通扑克牌中的4张:黑桃5,红心6,梅花7,方块8,洗匀后正面朝下放在桌面上。
2012年初中毕业考试数学模拟试卷九年级数学半期考试试卷(本试卷满分150分,考试时间120分钟)学校__________班级__________姓名__________总分__________一、选择题(本题有lO小题。
每小题4分。
共40分.每小题只有一个选项是正确的。
不选、多选、错选,均不给分)1.计算:2+(-3)的结果是( )A.-l B.1 C.-5 D.52.在下列几何体中,主视图是圆的是( )A B C D3.2011年11月份,区环境检测中心的关于“关心菜篮子”某一周空气质量报告中某项污染指数的数据如表所示,这组数据的众数是()A. 20B. 21C. 22D. 244.反比例函数y=kx的图象经过点(-1,2),k的值是( )A.-12B.12C.-2D.25. 如图.将正方形纸片ABCD折叠,使边AB、CB均落在对角线BD上,得折痕BE、BF,则∠EBF的大小为( )A.15° B. 30° C. 45° D. 60°6.九年级(1)班共50名同学,右图是该班体育模拟测试成绩的频数分布直方图(满分为30分,成绩均为整检测时间周一周二周三周四周五周六周日污染指数21 22 21 24 20 22 21O yx 11AOyx11Oyx11Oyx11B数).若将不低于29分的成绩评为优秀,则该班此次成绩优秀的同学人数占全班人数的百分比是( ) A 、20% B 、44% C 、58% D 、72%7.如图,已知在Rt △ABC 中,∠BAC =90°,AB =3,BC =5,若把Rt △ABC 绕直线AC 旋转一周,则所得圆锥的侧面积等于( ) A .6π B .9π C .12πD .15π8.下列四个函数图象中,当x >0时,y 随x 的增大而增大的是( )9.如图是一张简易活动餐桌,现测得OA=OB=30cm ,OC=OD=50cm ,现要求桌面离地面的高度为40cm ,那么两条桌腿的张角∠COD 的大小应为( )A .100°B .120°C .135°D .150°10.四个全等的直角三角形围成一个大正方形,中间空出的部分是一个小正方形,这样就组成了一个“赵爽弦图”(如图).如果小正方形面积为4,大正方形面积为74,直角三角形中较小的锐角为θ,那么tan θ的值是( )A .27B .57C .7437D .57474二、填空题(本题有6小题。
数 学一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.3的倒数是( ) A.3-B.3C.13D.13-2.2008年10月9日上海证券的成交额:358.75亿元,用科学计数法这天成交额的是( ) A .8358.7510⨯元 B .935.87510⨯元 C .103.587510⨯元 D .110.3587510⨯米 3.下列多项式中,能用提公因式法分解因式的是( )A .2x x -B .2x y +C .22x y -D .22x y +4.函数2y ax b y ax bx c =+=++和在同一直角坐标系内的图象大致是 ( )5.四张完全相同的卡片上,分别画有圆、矩形、等边三角形、等腰梯形,现从中随 机抽取一张,卡片上画的恰好是中心对称图形的机会是( )A .41 B .21 C .43D .1 二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上.6.实数a 、b 在数轴上的位置如图1所示,则a b (,,)>=<;7.函数12y x =-的自变量的取值范围是_________; 8.一个几何体的三视图如图所示,这个几何体是 ;图1正视图 左视图 俯视图9.2008年5月9日,奥运火炬在美丽的惠州传递,208名火炬手参加了火炬传递,其中8位火炬手所跑的路程(单位:米)如下:60,70,100,60,80,70,90,100,则这组数据的中位数是 ;10.如图,在△ABC 中,BC =4,以点A 为圆心,2为半径的⊙A 与BC 相切于点D ,交AB 于E ,交AC 于F ,点P 是⊙A 上一点,且∠EPF =40°,则图中阴影部分的面积是 .三、解答题(一)(本大题5小题,每小题6分,共30分) 11.(本题满分6分)计算:2008(1)2tan 60cot 60-+ .12.(本题满分6分))如图,AB ∥CD , AC ⊥BC ,∠BAC =65°,求∠BCD 的度数.13.(本题满分6分)如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.ΔABO 的三个顶点A ,B ,O 都在格点上.(1)画出ΔABO 绕点O 逆时针旋转900后得到的三角形ΔA B O ''; (2)根据所画的图找出A '点和B '点的坐标.14.(本题满分6分)、阅读理解:我们把dc ba 称作二阶行列式,规定他的运算法则为bc ad dc ba -=. 如243525432-=⨯-⨯=. DC如果有2301xx->,求x 的解集.15.(本题满分6分)如图1,一块三角形模具的阴影部分已破损.只要从残留的模具片中度量出哪些边、角,就可以不带残留的模具片到店铺加工一块与原来的模具ABC 的形状和大小完全相同的模具A B C '''?请简要说明理由.四、解答题(二)(本大题4小题,每小题7分,共28分) 16.(本题满分7分)先化简,再求值:223(2)()()a b ab b b a b a b --÷-+-,其中112a b ==-,.17.(本题满分7分)2008年5月12日14时28分在我国四川省汶川地区发生了里氏8.0级强烈地震,灾情牵动全国人民的心,“一方有难、八方支援”.惠州某工厂某厂计划加工1000顶帐篷支援灾区人民,在加工了200顶帐篷后,由于救灾需要工作效率提高到原来的2倍,结果提前4天完成了任务.求原来每天加工多少顶帐篷?18.(本题满分7分)如图:在平面直角坐标系中,有A (0,1),B (1-,0),C (1,0)三点坐标.(1)若点D 与A B C ,,三点构成平行四边形,请写出所有符合条件的点D 的坐标;图1(2)选择(1)中符合条件的一点D ,求直线BD 的解析式.19.(本题满分7分)今年不仅是民间所谓的“金鼠年”,又恰逢2008年奥运会,不少准妈妈想借机生个“奥运宝宝”.据不完全统计,今年3月份在南京三家大医院出生的宝宝总数如图3所示,其中每家医院出生的男宝宝的百分比如图4所示.(1)求在这三家大医院3月份出生的总人数中男宝宝的百分比;(2)3月份南京共有约5000名“奥运宝宝”出生,根据上面的计算结果,估计3月份南京共有多少名男宝宝出生?五、解答题(三)(本大题3小题,每小题9分,共27分) 20.(本题满分9分)阅读下列内容后,解答下列各题:几个不等于0的数相乘,积的符号由负因数的个数决定.图3 图4x例如:考查代数式(1)(2)x x --的值与0的大小 当1x <时,10x -<,20x -<,(1)(2)0x x ∴--> 当12x <<时,10x ->,20x -<,(1)(2)0x x ∴--< 当2x >时,10x ->,20x ->,(1)(2)0x x ∴--> 综上:当12x <<时,(1)(2)0x x --< 当1x <或2x >时,(1)(2)0x x --> (1) 填写下表:(用“+”或“-”填入空格处)2x <- 21x -<<- 13x -<< 34x << 4x >2x + - ++ + + 1x + - - ++ + 3x - - - - ++ 4x -----+(2)(1)(3)(4)x x x x ++--(2)由上表可知,当x 满足 时,(2)(1)(3)(4)0x x x x ++--<; (3)运用你发现的规律,直接写出当x 满足 时,(7)(8)(9)0x x x -+-<21.(本题满分9分)如图甲,MN 是ABCD 外的一条直线,AA BB CC DD ''''、、、都垂直于MN, A B C D ''''、、、为垂足.对角线AC 与BD 相交于O 点,O '是B D ''的中点. (1)求证OO '是梯形AA C C ''的中位线. (2)求证:AA CC BB DD ''''+=+.(3)若直线MN 向上移动,使点C 在直线一侧,A 、B 、D 在直线另一侧(如图乙),则垂线段AA BB CC DD ''''、、、之间存在什么关系?写出你的猜想并证明.+甲乙NC22.(本题满分9分)为了加强视力保护意识,小明想在长为3.2米,宽为4.3米的书房里挂一张测试距离为5米的视力表.在一次课题学习课上,小明向全班同学征集“解决空间过小,如何放置视力表问题”的方案,其中甲、乙、丙三位同学设计方案新颖,构思巧妙.(1)甲生的方案:如图1,将视力表挂在墙ABEF 和墙ADGF 的夹角处,被测试人站立在对角线AC 上,问:甲生的设计方案是否可行?请说明理由.(2)乙生的方案:如图2,将视力表挂在墙CDGH 上,在墙ABEF 上挂一面足够大的平面镜,根据平面镜成像原理可计算得到:测试线应画在距离墙ABEF 米处. (3)丙生的方案:如图3,根据测试距离为5m 的大视力表制作一个测试距 为3m 的小视力表.如果大视力表中“E ”的长是 3.5cm ,那么小视力表中相应“E ”的长是多少cm ?HH(图1)(图2) (图3)(第22题)3.5㎝ACF3mB5mD惠州中考模拟题数学参考答案一、选择题(每小题3分) 1.C ; 2.C ; 3.A ; 4.C ; 5.B. 二、填空题(每小题4分)6.<;7.2x ≠;8.圆柱;9.75; 10.849π-. 三、解答题(一)(每小题6分)11.解: 原式=121++------------------------------4分=分 12.解:,65AC BC BAC ⊥∠= ------------------------------1分 906525ABC ∴∠=-=------------------------------3分 //AB CD --------------------------------------------------5分 25BCD ABC ∴∠=∠=------------------------------6分13.解:(1)如图所示------------------------------4分(2) A ’(-2,2), B ’(-4,0) ------------------------------6分14.解:由题意得2(3)0x x -->------------------------------------------------------------3分 230x x -+>------------------------------------------------------------4分33x >------------------------------------------------------------5分 1x >------------------------------------------------------------6分 15.解:量出,B C ∠∠及BC 长. ------------------------------3分,,B B C C BC B C ''''∠=∠∠=∠= ------------------------------5分ABC A B C '''∴≅ ------------------------------------------------------------6分 四、解答题(二)(第13题)16.解:原式=22222a a b a b ---+ =2a当12a =时 原式=1212-⨯=-17.设原来每天加工x 顶帐篷2001000200100042x x x-++= 解得100x =.经检验100x =是原方程的根,符合题意.答: 原来每天加工100顶帐篷. 18.(1)D 的坐标有(2,1);(-2,1);(0,-1).(2)选D(0,-1),设BD 的解析式为:y kx b =+,由题意得01k b b =-+⎧⎨-=⎩ 解得11k b =-⎧⎨=-⎩ 1y x ∴=--19.解:(1)男宝宝的平均百分比:53%100%300055%30055%70052%2000=⨯⨯+⨯+⨯答:这三家大医院3月份出生的男宝宝的平均百分比为53%------5分 (2)5000×53%=2650(人)答:估计3月份出生的男宝宝有2650名------------------------------10分 20.(1)+ - + - +(2) 21x -<<-或34x << (3) 87x -<<或9x <-21.(1).证明:O 是BD 中点, O '是B D ''的中点 ,BB MN DD MN ''⊥⊥OO '∴是梯形BB D D ''的中位线----------------------------------------------------2分 ////////OO BB AA CC DD '''''∴又 O 是BD 中点, ////OO AA CC '''∴OO '是梯形AA C C ''的中位线----------------------------------------------------3分 (2).由(1)得:-----5分 即11(),()22OO AA CC OO BB DD ''''''=+=+11()()22AA CC BB DD ''''∴+=+AA CC BB DD ''''+=+(3).AA BB CC DD ''''=++. -------6分在AA '上点E,使AE=CC ',过点E 作EF//MN 交AC 于F.则易证得:AEF CC G '≅ AF GC ∴=∴O 是FG 的中点.过O 作OH//MN 交AA '于H,则OH 是中位线12HA EA '∴=---------------------7分 由作图易得OO HA ''= 2EA OO ''∴=即2AA CC OO '''-=---------------------8分 2BB DD OO '''+=∴AA BB CC DD ''''=++---------------------9分22. 解:(1)甲生的设计方案可行.------------------------------1分根据勾股定理,得222223.24.328.73A C A D C D =+=+=.∴5.-----------------------3分 ∴甲生的设计方案可行.------------------------------4分(2)1.8米.----------------------------------------------------6分 (3)∵FD ∥BC∴△A D F ∽△ABC .------------------------------7分∴FD ADBC AB =. ∴33.55F D =. ∴2.1F D =(cm ).------------------------------9分 答:小视力表中相应2.1cm。