2020 年普通高等学校招生全国统一考试(三卷)理科数学
- 格式:docx
- 大小:53.78 KB
- 文档页数:3
2020年普通高等学校招生全国统一考试理科数学注意事项:1.答题前,考生务必将自己的姓名、考生号、座位号填写在答题卡上.本试卷满分150分.2.作答时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题目:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合U ={−2,−1,0,1,2,3},A ={−1,0,1},B ={1,2},则()U A B ð()A.{−2,3}B.{−2,2,3}C.{−2,−1,0,3}D.{−2,−1,0,2,3}【答案】A 【解析】【分析】首先进行并集运算,然后计算补集即可.【详解】由题意可得: 1,0,1,2A B ,则 U 2,3A B ð.故选:A.【点睛】本题主要考查并集、补集的定义与应用,属于基础题.2.若α为第四象限角,则()A.cos2α>0 B.cos2α<0C.sin2α>0D.sin2α<0【答案】D 【解析】【分析】由题意结合二倍角公式确定所给的选项是否正确即可.【详解】当6时,cos 2cos 03,选项B 错误;当3时,2cos 2cos 03,选项A 错误;由 在第四象限可得:sin 0,cos 0 ,则sin 22sin cos 0 ,选项C 错误,选项D 正确;故选:D.【点睛】本题主要考查三角函数的符号,二倍角公式,特殊角的三角函数值等知识,意在考查学生的转化能力和计算求解能力.3.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者()A.10名B.18名C.24名D.32名【答案】B 【解析】【分析】算出第二天订单数,除以志愿者每天能完成的订单配货数即可.【详解】由题意,第二天新增订单数为50016001200900 ,故需要志愿者9001850名.故选:B【点晴】本题主要考查函数模型的简单应用,属于基础题.4.北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)()A.3699块B.3474块C.3402块D.3339块【答案】C 【解析】【分析】第n 环天石心块数为n a ,第一层共有n 环,则{}n a 是以9为首项,9为公差的等差数列,设n S 为{}n a 的前n 项和,由题意可得322729n n n n S S S S ,解方程即可得到n ,进一步得到3n S .【详解】设第n 环天石心块数为n a ,第一层共有n 环,则{}n a 是以9为首项,9为公差的等差数列,9(1)99n a n n ,设n S 为{}n a 的前n 项和,则第一层、第二层、第三层的块数分别为232,,n n n n n S S S S S ,因为下层比中层多729块,所以322729n n n n S S S S ,即3(927)2(918)2(918)(99)7292222n n n n n n n n 即29729n ,解得9n ,所以32727(9927)34022n S S .故选:C【点晴】本题主要考查等差数列前n 项和有关的计算问题,考查学生数学运算能力,是一道容易题.5.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y 的距离为()A.55B.255C.355D.455【答案】B 【解析】【分析】由题意可知圆心在第一象限,设圆心的坐标为 ,,0a a a ,可得圆的半径为a ,写出圆的标准方程,利用点 2,1在圆上,求得实数a 的值,利用点到直线的距离公式可求出圆心到直线230x y 的距离.【详解】由于圆上的点 2,1在第一象限,若圆心不在第一象限,则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必第一象限,设圆心的坐标为,a a ,则圆的半径为a ,圆的标准方程为 222x a y a a .由题意可得 22221a a a ,可得2650a a ,解得1a 或5a ,所以圆心的坐标为 1,1或 5,5,圆心到直线230x y 距离均为22555d;所以,圆心到直线230x y 的距离为255.故选:B.【点睛】本题考查圆心到直线距离的计算,求出圆的方程是解题的关键,考查计算能力,属于中等题.6.数列{}n a 中,12a ,m n m n a a a ,若155121022k k k a a a ,则k ()A.2B.3C.4D.5【答案】C 【解析】分析】取1m ,可得出数列 n a 是等比数列,求得数列 n a 的通项公式,利用等比数列求和公式可得出关于k 的等式,由k N 可求得k 的值.【详解】在等式m n m n a a a 中,令1m ,可得112n n n a a a a ,12n na a,所以,数列 n a 是以2为首项,以2为公比的等比数列,则1222n n n a ,1011011105101210122122212211212k k k k k k a a a a,1522k ,则15k ,解得4k .故选:C.【点睛】本题考查利用等比数列求和求参数的值,解答的关键就是求出数列的通项公式,考查计算能力,属于中等题.7.如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为()A.EB.FC.GD.H【答案】A 【解析】【分析】根据三视图,画出多面体立体图形,即可求得M 点在侧视图中对应的点.【详解】根据三视图,画出多面体立体图形,图中标出了根据三视图M 点所在位置,可知在侧视图中所对应的点为E 故选:A【点睛】本题主要考查了根据三视图判断点的位置,解题关键是掌握三视图的基础知识和根据三视图能还原立体图形的方法,考查了分析能力和空间想象,属于基础题.8.设O 为坐标原点,直线x a 与双曲线2222:1(0,0)x y C a b a b的两条渐近线分别交于,D E 两点,若ODE 的面积为8,则C 的焦距的最小值为()A.4B.8C.16D.32【答案】B 【解析】【分析】因为2222:1(0,0)x y C a b a b ,可得双曲线的渐近线方程是b y x a,与直线x a 联立方程求得D ,E 两点坐标,即可求得||ED ,根据ODE 的面积为8,可得ab 值,根据2222c a b ,结合均值不等式,即可求得答案.【详解】∵2222:1(0,0)x y C a b a b双曲线的渐近线方程是by x a∵直线x a 与双曲线2222:1(0,0)x y C a b a b的两条渐近线分别交于D ,E 两点不妨设D 为在第一象限,E 在第四象限联立x ab y x a,解得x a y b故(,)D a b 联立x ab y x a,解得x a y b故(,)E a b ||2ED bODE 面积为:1282ODE S a b ab△∵双曲线2222:1(0,0)x y C a b a b其焦距为2222222168c a b ab 当且仅当22a b 取等号C 的焦距的最小值:8故选:B.【点睛】本题主要考查了求双曲线焦距的最值问题,解题关键是掌握双曲线渐近线的定义和均值不等式求最值方法,在使用均值不等式求最值时,要检验等号是否成立,考查了分析能力和计算能力,属于中档题.9.设函数()ln |21|ln |21|f x x x ,则f (x )()A.是偶函数,且在1(,)2 单调递增B.是奇函数,且在11(,)22单调递减C.是偶函数,且在1(,)2单调递增D.是奇函数,且在1(,)2单调递减【答案】D 【解析】【分析】根据奇偶性的定义可判断出 f x 为奇函数,排除AC ;当11,22x时,利用函数单调性的性质可判断出 f x 单调递增,排除B ;当1,2x时,利用复合函数单调性可判断出 f x 单调递减,从而得到结果.【详解】由 ln 21ln 21f x x x 得 f x 定义域为12x x,关于坐标原点对称,又 ln 12ln 21ln 21ln 21f x x x x x f x ,f x 为定义域上的奇函数,可排除AC ;当11,22x时, ln 21ln 12f x x x , ln 21y x Q 在11,22 上单调递增, ln 12y x 在11,22上单调递减,f x 在11,22上单调递增,排除B ;当1,2x时, 212ln 21ln 12ln ln 12121x f x x x x x,2121x∵在1,2上单调递减, ln f 在定义域内单调递增,根据复合函数单调性可知: f x 在1,2上单调递减,D 正确.故选:D.【点睛】本题考查函数奇偶性和单调性的判断;判断奇偶性的方法是在定义域关于原点对称的前提下,根据 f x 与 f x 的关系得到结论;判断单调性的关键是能够根据自变量的范围化简函数,根据单调性的性质和复合函数“同增异减”性得到结论.10.已知△ABC 是面积为934的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为()A.3B.32C.1D.32【答案】C【解析】【分析】根据球O 的表面积和ABC 的面积可求得球O 的半径R 和ABC 外接圆半径r ,由球的性质可知所求距离22d R r.【详解】设球O 的半径为R ,则2416R ,解得:2R .设ABC 外接圆半径为r ,边长为a ,ABC ∵ 是面积为934的等边三角形,21393224a ,解得:3a ,22229933434a r a ,球心O 到平面ABC 的距离22431d R r .故选:C.【点睛】本题考查球的相关问题的求解,涉及到球的表面积公式和三角形面积公式的应用;解题关键是明确球的性质,即球心和三角形外接圆圆心的连线必垂直于三角形所在平面.11.若2233x y x y ,则()A.ln(1)0y x B.ln(1)0y x C.ln ||0x y D.ln ||0x y 【答案】A 【解析】【分析】将不等式变为2323x x y y ,根据 23t tf t 的单调性知x y ,以此去判断各个选项中真数与1的大小关系,进而得到结果.【详解】由2233x y x y 得:2323x x y y ,令 23ttf t ,2x y ∵为R 上的增函数,3x y 为R 上的减函数, f t 为R 上的增函数,x y ,0y x Q ,11y x , ln 10y x ,则A 正确,B 错误;x y Q 与1的大小不确定,故CD 无法确定.故选:A.【点睛】本题考查对数式的大小的判断问题,解题关键是能够通过构造函数的方式,利用函数的单调性得到,x y 的大小关系,考查了转化与化归的数学思想.12.0-1周期序列在通信技术中有着重要应用.若序列12n a a a 满足{0,1}(1,2,)i a i ,且存在正整数m ,使得(1,2,)i m i a a i 成立,则称其为0-1周期序列,并称满足(1,2,)i m i a a i 的最小正整数m 为这个序列的周期.对于周期为m 的0-1序列12n a a a ,11()(1,2,,1)mi i k i C k a a k m m 是描述其性质的重要指标,下列周期为5的0-1序列中,满足1()(1,2,3,4)5C k k 的序列是()A 11010 B.11011C.10001D.11001【答案】C 【解析】【详解】由i m i a a 知,序列i a 的周期为m ,由已知,5m ,511(),1,2,3,45i i k i C k a a k 对于选项A ,511223344556111111(1)()(10000)55555i i i C a a a a a a a a a a a a52132435465711112(2)()(01010)5555i i i C a a a a a a a a a a a a ,不满足;对于选项B ,51122334455611113(1)()(10011)5555i i i C a a a a a a a a a a a a ,不满足;对于选项D ,51122334455611112(1)()(10001)5555i i i C a a a a a a a a a a a a ,不满足;故选:C【点晴】本题考查数列的新定义问题,涉及到周期数列,考查学生对新定义的理解能力以及数学运算能力,是一道中档题.二、填空题目:本题共4小题,每小题5分,共20分.13.已知单位向量a ,b 的夹角为45°,ka –b 与a 垂直,则k =__________.【答案】22【解析】【分析】首先求得向量的数量积,然后结合向量垂直的充分必要条件即可求得实数k 的值.【详解】由题意可得:211cos 452a b ,由向量垂直的充分必要条件可得:0k a b a,即:2202k a a b k ,解得:22k .故答案为:22.【点睛】本题主要考查平面向量的数量积定义与运算法则,向量垂直的充分必要条件等知识,意在考查学生的转化能力和计算求解能力.14.4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有__________种.【答案】36【解析】【分析】根据题意,采用捆绑法,先取2名同学看作一组,现在可看成是3组同学分配到3个小区,即可求得答案.【详解】∵4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学先取2名同学看作一组,选法有:246C 现在可看成是3组同学分配到3个小区,分法有:336A根据分步乘法原理,可得不同的安排方法6636 种故答案为:36.【点睛】本题主要考查了计数原理的实际应用,解题关键是掌握分步乘法原理和捆绑法的使用,考查了分析能力和计算能力,属于中档题.15.设复数1z ,2z 满足12||=||=2z z ,123i z z ,则12||z z =__________.【答案】23【解析】【分析】令12cos 2sin z i ,22cos 2sin z i ,根据复数的相等可求得1cos cos sin sin 2,代入复数模长的公式中即可得到结果.【详解】122z z ∵,可设12cos 2sin z i ,22cos 2sin z i , 122cos cos 2sin sin 3z z i i ,2cos cos 32sin sin 1,两式平方作和得: 422cos cos 2sin sin 4 ,化简得:1cos cos sin sin 2122cos cos 2sin sin z z i224cos cos 4sin sin 88cos cos sin sin 8423 故答案为:23.【点睛】本题考查复数模长的求解,涉及到复数相等的应用;关键是能够采用假设的方式,将问题转化为三角函数的运算问题.16.设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内.p 2:过空间中任意三点有且仅有一个平面.p 3:若空间两条直线不相交,则这两条直线平行.p 4:若直线l 平面α,直线m ⊥平面α,则m ⊥l .则下述命题中所有真命题的序号是__________.①14p p ②12p p ③23p p ④34p p 【答案】①③④【解析】【分析】利用两交线直线确定一个平面可判断命题1p 的真假;利用三点共线可判断命题2p 的真假;利用异面直线可判断命题3p 的真假,利用线面垂直的定义可判断命题4p 的真假.再利用复合命题的真假可得出结论.【详解】对于命题1p ,可设1l 与2l 相交,这两条直线确定的平面为 ;若3l 与1l 相交,则交点A 在平面 内,同理,3l 与2l 的交点B 也在平面 内,所以,AB ,即3l ,命题1p 为真命题;对于命题2p ,若三点共线,则过这三个点的平面有无数个,命题2p 为假命题;对于命题3p ,空间中两条直线相交、平行或异面,命题3p 为假命题;对于命题4p ,若直线m 平面 ,则m 垂直于平面 内所有直线,∵直线l 平面 , 直线m 直线l ,命题4p 为真命题.综上可知,14p p 为真命题,12p p 为假命题,23p p 为真命题,34p p 为真命题.故答案为:①③④.【点睛】本题考查复合命题的真假,同时也考查了空间中线面关系有关命题真假的判断,考查推理能力,属于中等题.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.ABC 中,sin 2A -sin 2B -sin 2C =sin B sin C.(1)求A ;(2)若BC =3,求ABC 周长的最大值.【答案】(1)23;(2)323 .【解析】【分析】(1)利用正弦定理角化边,配凑出cos A 的形式,进而求得A ;(2)利用余弦定理可得到 29AC AB AC AB ,利用基本不等式可求得AC AB 的最大值,进而得到结果.【详解】(1)由正弦定理可得:222BC AC AB AC AB ,2221cos 22AC AB BC A AC AB , 0,A ∵,23A .(2)由余弦定理得:222222cos 9BC AC AB AC AB A AC AB AC AB ,即 29AC AB AC AB .22AC AB AC AB∵(当且仅当AC AB 时取等号), 22223924AC AB AC AB AC AB AC AB AC AB ,解得:23AC AB (当且仅当AC AB 时取等号),ABC 周长323L AC AB BC ,ABC 周长的最大值为323 .【点睛】本题考查解三角形的相关知识,涉及到正弦定理角化边的应用、余弦定理的应用、三角形周长最大值的求解问题;求解周长最大值的关键是能够在余弦定理构造的等式中,结合基本不等式构造不等关系求得最值.18.某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160i i x ,2011200i i y,2021)80i i x x (,2021)9000i i y y (,201))800i i i x y x y ((.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i =1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数r =12211))))ni i i i i n n i i x y x x y y y x((((,2=1.414.【答案】(1)12000;(2)0.94;(3)详见解析【解析】【分析】(1)利用野生动物数量的估计值等于样区野生动物平均数乘以地块数,代入数据即可;(2)利用公式20120202211()()()()ii i i i i i x x y y r x x y y 计算即可;(3)各地块间植物覆盖面积差异较大,为提高样本数据的代表性,应采用分层抽样.【详解】(1)样区野生动物平均数为201111200602020i i y ,地块数为200,该地区这种野生动物的估计值为2006012000(2)样本(,)i i x y 的相关系数为20120202211()()800220.943809000()()i i i i i i i x x y y r x x y y (3)由于各地块间植物覆盖面积差异较大,为提高样本数据的代表性,应采用分层抽样先将植物覆盖面积按优中差分成三层,在各层内按比例抽取样本,在每层内用简单随机抽样法抽取样本即可.【点晴】本题主要考查平均数的估计值、相关系数的计算以及抽样方法的选取,考查学生数学运算能力,是一道容易题.19.已知椭圆C 1:22221x y a b(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.【答案】(1)12;(2)221:13627x y C ,22:12C y x .【解析】【分析】(1)求出AB 、CD ,利用43CD AB可得出关于a 、c 的齐次等式,可解得椭圆1C 的离心率的值;(2)由(1)可得出1C 的方程为2222143x y c c,联立曲线1C 与2C 的方程,求出点M 的坐标,利用抛物线的定义结合5MF 可求得c 的值,进而可得出1C 与2C 的标准方程.【详解】(1) ,0F c ∵,AB x 轴且与椭圆1C 相交于A 、B 两点,则直线AB 的方程为x c ,联立22222221x c x y a b a b c,解得2x c b y a ,则22b AB a,抛物线2C 的方程为24y cx ,联立24x c y cx,解得2x c y c ,4CD c ,43CD AB ∵,即2843b c a,223b ac ,即222320c ac a ,即22320e e ,01e Q ,解得12e ,因此,椭圆1C 的离心率为12;(2)由(1)知2a c ,3b c ,椭圆1C 的方程为2222143x y c c,联立222224143y cx x y c c,消去y 并整理得22316120x cx c ,解得23x c 或6x c (舍去),由抛物线的定义可得25533c MF c c ,解得3c .因此,曲线1C 的标准方程为2213627x y ,曲线2C 的标准方程为212y x .【点睛】本题考查椭圆离心率的求解,同时也考查了利用抛物线的定义求抛物线和椭圆的标准方程,考查计算能力,属于中等题.20.如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点,过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1∥MN ,且平面A 1AMN ⊥EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO ∥平面EB 1C 1F ,且AO =AB ,求直线B 1E 与平面A 1AMN 所成角的正弦值.【答案】(1)证明见解析;(2)1010.【解析】【分析】(1)由,M N 分别为BC ,11B C 的中点,1//MN CC ,根据条件可得11//AA BB ,可证1MN AA //,要证平面11EB C F 平面1A AMN ,只需证明EF 平面1A AMN 即可;(2)连接NP ,先求证四边形ONPA 是平行四边形,根据几何关系求得EP ,在11B C 截取1B Q EP ,由(1)BC ⊥平面1A AMN ,可得QPN 为1B E 与平面1A AMN 所成角,即可求得答案.【详解】(1)∵,M N 分别为BC ,11B C 的中点,1//MN BB 又11//AA BB 1//MN AA 在ABC 中,M 为BC 中点,则BC AM又∵侧面11BB C C 为矩形,1BC BB 1//MN BB ∵MN BC由MN AM M ,,MN AM 平面1A AMNBC ⊥平面1A AMN又∵11//B C BC ,且11B C 平面ABC ,BC 平面ABC ,11//B C 平面ABC又∵11B C 平面11EB C F ,且平面11EB C F 平面ABC EF 11//B C EF//EF BC又BC ∵平面1A AMNEF 平面1A AMNEF ∵平面11EB C F平面11EB C F 平面1A AMN(2)连接NP∵//AO 平面11EB C F ,平面AONP 平面11EB C F NP //AO NP根据三棱柱上下底面平行,其面1A NMA 平面ABC AM ,面1A NMA 平面1111A B C A N //ON AP故:四边形ONPA 是平行四边形设ABC 边长是6m (0m )可得:ON AP ,6NP AO AB m∵O 为111A B C △的中心,且111A B C △边长为6m 16sin 6033ON m 故:3ON AP m∵//EF BC AP EP AM BM3333EP 解得:EP m在11B C 截取1B Q EP m ,故2QN m∵1B Q EP 且1//B Q EP四边形1B QPE 是平行四边形,1//B E PQ由(1)11B C 平面1A AMN故QPN 为1B E 与平面1A AMN 所成角在Rt QPN △,根据勾股定理可得: 222226210PQ QN PN m m m 210sin 10210QN m QPN PQ m 直线1B E 与平面1A AMN 所成角的正弦值:1010.【点睛】本题主要考查了证明线线平行和面面垂直,及其线面角,解题关键是掌握面面垂直转为求证线面垂直的证法和线面角的定义,考查了分析能力和空间想象能力,属于难题.21.已知函数f (x )=sin 2x sin2x .(1)讨论f (x )在区间(0,π)的单调性;(2)证明:33()8f x ;(3)设n ∈N *,证明:sin 2x sin 22x sin 24x …sin 22n x ≤34nn .【答案】(1)当0,3x时, '0,f x f x 单调递增,当2,33x 时, '0,f x f x 单调递减,当2,3x时, '0,f x f x 单调递增.(2)证明见解析;(3)证明见解析.【解析】【分析】(1)首先求得导函数的解析式,然后由导函数的零点确定其在各个区间上的符号,最后确定原函数的单调性即可;(2)首先确定函数的周期性,然后结合(1)中的结论确定函数在一个周期内的最大值和最小值即可证得题中的不等式;(3)对所给的不等式左侧进行恒等变形可得2222123sin sin sin 2sin 2sin 4sin 2sin 2sin 2n n n f x x x x x x x x x ,然后结合(2)的结论和三角函数的有界性进行放缩即可证得题中的不等式.【详解】(1)由函数的解析式可得: 32sin cos f x x x ,则: 224'23sin cos sin f x x x x2222sin 3cos sin x x x 222sin 4cos 1x x 22sin 2cos 12cos 1x x x ,'0f x 在 0,x 上的根为:122,33x x,当0,3x时, '0,f x f x 单调递增,当2,33x时, '0,f x f x 单调递减,当2,3x时, '0,f x f x 单调递增.(2)注意到 22sinsin 2sin sin 2f x x x x x f x ,故函数 f x 是周期为 的函数,结合(1)的结论,计算可得: 00f f ,233333228f ,2233333228f ,据此可得: max 338f x, min 338f x ,即 338f x .(3)结合(2)的结论有:2222sin sin 2sin 4sin 2n x x x x 233333sin sin 2sin 4sin 2n x x x x2222123sin sin sin 2sin 2sin 4sin 2sin 2sin 2n n n x x x x x x x x 232333333sin sin 2888n x x 23338n 34n .【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.(二)选考题:共10分.请考生在第22、23题中任选一题作答.并用2B 铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分.如果多做,则按所做的第一题计分.[选修4—4:坐标系与参数方程]22.已知曲线C 1,C 2的参数方程分别为C 1:224cos 4sin x y ,(θ为参数),C 2:1,1x t t y t t(t 为参数).(1)将C 1,C 2的参数方程化为普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.设C 1,C 2的交点为P ,求圆心在极轴上,且经过极点和P 的圆的极坐标方程.【答案】(1)1:4C x y ;222:4C x y ;(2)17cos 5.【解析】【分析】(1)分别消去参数 和t 即可得到所求普通方程;(2)两方程联立求得点P ,求得所求圆的直角坐标方程后,根据直角坐标与极坐标的互化即可得到所求极坐标方程.【详解】(1)由22cos sin 1 得1C 的普通方程为:4x y ;由11x t t y t t 得:2222221212x t t y t t,两式作差可得2C 的普通方程为:224x y .(2)由2244x y x y 得:5232x y ,即53,22P ;设所求圆圆心的直角坐标为 ,0a ,其中0a ,则22253022a a,解得:1710a , 所求圆的半径1710r , 所求圆的直角坐标方程为:22217171010x y ,即22175x y x , 所求圆的极坐标方程为17cos 5.【点睛】本题考查极坐标与参数方程的综合应用问题,涉及到参数方程化普通方程、直角坐标方程化极坐标方程等知识,属于常考题型.[选修4—5:不等式选讲]23.已知函数2()|21|f x x a x a .(1)当2a 时,求不等式()4f x 的解集;(2)若()4f x ,求a 的取值范围.【答案】(1)32x x或112x;(2) ,13, .【解析】【分析】(1)分别在3x 、34x 和4x 三种情况下解不等式求得结果;(2)利用绝对值三角不等式可得到 21f x a ,由此构造不等式求得结果.【详解】(1)当2a 时, 43f x x x .当3x 时, 43724f x x x x ,解得:32x ≤;当34x 时, 4314f x x x ,无解;当4x 时, 43274f x x x x ,解得:112x;综上所述: 4f x 的解集为32x x或112x .(2) 22222121211f x x a x a x ax a a a a (当且仅当221a x a 时取等号), 214a ,解得:1a 或3a ,a 的取值范围为 ,13, .【点睛】本题考查绝对值不等式的求解、利用绝对值三角不等式求解最值的问题,属于常考题型.祝福语祝你马到成功,万事顺意!。
2020年普通高等学校招生全国统一考试(新课标Ⅲ卷)理科综合生物能力测试一、选择题:本题共6小题,每小题6分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.关于真核生物的遗传信息及其传递的叙述,错误的是A.遗传信息可以从DNA流向RNA,也可以从RNA流向蛋白质B.细胞中以DNA的一条单链为模板转录出的RNA均可编码多肽C.细胞中DNA分子的碱基总数与所有基因的碱基数之和不相等D.染色体DNA分子中的一条单链可以转录出不同的RNA分子2.取燕麦胚芽鞘切段,随机分成三组,第1组置于一定浓度的蔗糖(Suc)溶液中(蔗糖能进入胚芽鞘细胞),第2组置于适宜浓度的生长素(IAA)溶液中,第3组置于IAA+ Suc溶液中,一定时间内测定胚芽鞘长度的变化,结果如图所示。
用KCI代替蔗糖进行上述实验可以得到相同的结果。
下列说法不合理的是A.KCI可进入胚芽鞘细胞中调节细胞的渗透压B.胚芽鞘伸长生长过程中,件随细胞对水分的吸收C.本实验中Suc是作为能源物质来提高IAA作用效果的D.IAA促进胚芽鞘伸长的效果可因加入Suc或KC1而提高3.细胞内有些tRNA分子的反密码子中含有稀有碱基次黄嘌呤(I),含有I的反密码子在与mRNA中的密码子互补配对时,存在如图所示的配对方式(Gly表示甘氨酸)。
下列说法错误的是A.一种反密码子可以识别不同的密码子B.密码子与反密码子的碱基之间通过氢键结合C.tRNA 分子由两条链组成,mRNA分子由单链组成D.mRNA中的碱基改变不一定造成所编码氨基酸的改变4.下列有关人体免疫调节的叙述,合理的是A.若病原体不具有细胞结构,就不会使人体产生抗体B.病原体裂解后再注射到人体,就不会使人体产生抗体C.病原体表面若不存在蛋白质分子,就不会使人体产生抗体D.病原体经吞噬细胞处理后暴露出的抗原可使人体产生抗体5.新冠病毒是一种RNA病毒。
新冠肺炎疫情给人们的生活带来了巨大影响。
2020年普通高等学校招生考试数学模拟测试一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合A={0,1,2,3},B={2,3,4,5},则A ∪B= A.{1,2,3,4,5}B.{0,1,4,5}C.{2,3}D.{0,1,2,3,4,5}2.i 是虚数单位,z=2—i,则|z|=B.23.已知向量a =(1,2),b =(-1,λ),若a ∥b ,则实数λ等于 A.-1B.1C.-2D.24.设命题p:∀x ∈R ,x 2>0,则p ⌝为A.∀x ∈R ,x 2≤0B.∀x ∈R ,x 2>0C.∃x ∈R ,x 2>0D.∃x ∈R ,x 2≤05.51(1)x-展开式中含x -2的系数是 A.15B.-15C.10D.-106.若双曲线22221(0,x y a b a b -=>>)的左、右焦点分别为F 1、F 2,离心率为53,点P(b,0),为则12||||PF PF =A.6B.8C.9D.107.图为祖冲之之子祖暅“开立圆术”中设计的立体模型.祖暅提出“祖氏原理”,他将牟合方盖的体积化成立方体与一个相当于四棱锥的体积之差,从而求出牟合方盖的体积等于32(3d d 为球的直径),并得到球的体积为16V d π=,这种算法比外国人早了一千多年,人们还用过一些类似的公式,根据π=3.1415926…,判断下列公式中最精确的一个是A.d ≈3B .d ≈√2V 3C.d≈√300157V3D .d≈√158V 38.已知23cos cos ,2sin sin 2αβαβ-=+=则cos(a+β)等于 A.12B.12-C.14D.14-二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.第18届国际篮联篮球世界杯(世界男子篮球锦标赛更名为篮球世界杯后的第二届世界杯)于2019年8月31日至9月15日在中国的北京广州、南京、上海、武汉、深圳、佛山、东莞八座城市举行.中国队12名球员在第一场和第二场得分的茎叶图如图所示,则下列说法正确的是A.第一场得分的中位数为52 B.第二场得分的平均数为193C.第一场得分的极差大于第二场得分的极差D.第一场与第二场得分的众数相等10.已知正方体的外接球与内切球上各有一个动点M 、N,若线段MN 1,则 A.正方体的外接球的表面积为12π B.正方体的内切球的体积为43πC.正方体的边长为2D.线段MN 的最大值为11.已知圆M 与直线x 十y +2=0相切于点A(0,-2),圆M 被x 轴所截得的弦长为2,则下列 结论正确的是A.圆M 的圆心在定直线x-y-2=0上B.圆M 的面积的最大值为50πC.圆M 的半径的最小值为1D.满足条件的所有圆M 的半径之积为1012.若存在m,使得f(x)≥m 对任意x ∈D 恒成立,则函数f(x)在D 上有下界,其中m 为函数f(x)的一个下界;若存在M,使得f(x)≤M 对任意x ∈D 恒成立,则函数f(x)在D 上有上界,其中M 为函数f(x)的一个上界.如果一个函数既有上界又有下界,那么称该函数有界.下列说法正确的是A.1不是函数1()(0)f x x x x=+>的一个下界 B.函数f(x)=x l nx 有下界,无上界C.函数2()xe f x x=有上界有,上无界下,界无下界D.函数2sin ()1xf x x =+有界 三、填空题:本题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上. 13.设f(x)是定义在R 上的函数,若g(x)=f(x)+x 是偶函数,且g(-2)=-4,则f(2)=___. 14.已知函数f(x)=sin(ωx+φ)(ω>0),点2(,0)3π和7(,0)6π是函数f(x)图象上相邻的两个对称中心,则ω=___.15.已知F 1,F 2分别为椭圆的221168x y +=左、右焦点,M 是椭圆上的一点,且在y 轴的左侧,过点F 2作∠F 1MF2的角平分线的垂线,垂足为N,若|ON|=2(О为坐标原点),则|MF 2|-|MF 1|=___,|OM|=__.(本题第一空2分,第二空3分)16.在正三棱柱ABC-A 1B 1C 1中,AB =1=2,E,F 分别为AB 1,A 1C 1的中点,平面α过点C 1,且平面α∥平面A 1B 1C ,平面α∩平面A 1B 1C 1=l ,则异面直线EF 与l 所成角的余弦值为__·四、解答题:本题共6小题,共70分。
2020年普通高等学校招生全国统一考试理科综合能力测试注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
可能用到的相对原子质量:H 1 C 12 N 14 O 16 Mg 24 S 32 Fe 56 Cu64一、选择题:本题共13个小题,每小题6分。
共78分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.关于真核生物的遗传信息及其传递的叙述,错误的是A.遗传信息可以从DNA流向RNA,也可以从RNA流向蛋白质B.细胞中以DNA的一条单链为模板转录出的RNA均可编码多肽C.细胞中DNA分子的碱基总数与所有基因的碱基数之和不相等D.染色体DNA分子中的一条单链可以转录出不同的 RNA分子2.取燕麦胚芽鞘切段,随机分成三组,第1组置于一定浓度的蔗糖(Suc)溶液中(蔗糖能进入胚芽鞘细胞),第2组置于适宜浓度的生长素(IAA)溶液中,第3组置于IAA+ Suc溶液中,一定时间内测定胚芽鞘长度的变化,结果如图所示。
用KCI代替蔗糖进行上述实验可以得到相同的结果。
下列说法不合理的是A.KCI可进入胚芽鞘细胞中调节细胞的渗透压B.胚芽鞘伸长生长过程中,件随细胞对水分的吸收C.本实验中Suc是作为能源物质来提高IAA作用效果的D.IAA促进胚芽鞘伸长的效果可因加入Suc或KC1而提高3.细胞内有些tRNA分子的反密码子中含有稀有碱基次黄嘌呤(I),含有I的反密码子在与mRNA中的密码子互补配对时,存在如图所示的配对方式(Gly表示甘氨酸)。
下列说法错误的是A.一种反密码子可以识别不同的密码子B.密码子与反密码子的碱基之间通过氢键结合C.tRNA 分子由两条链组成,mRNA分子由单链组成D.mRNA中的碱基改变不一定造成所编码氨基酸的改变4.下列有关人体免疫调节的叙述,合理的是A.若病原体不具有细胞结构,就不会使人体产生抗体B.病原体裂解后再注射到人体,就不会使人体产生抗体C.病原体表面若不存在蛋白质分子,就不会使人体产生抗体D.病原体经吞噬细胞处理后暴露出的抗原可使人体产生抗体5.新冠病毒是一种RNA病毒。
绝密★启用前2020年普通高等学校招生全国统一考试(湖南卷)数学(理工农医类)本试卷包括选择题、填空题和解答题三部分,共5页,时量120分钟,满分150分。
一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数()()1z i i i =+g 为虚数单位在复平面上对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限 【答案】 B【解析】 z = i ·(1+i) = i – 1,所以对应点(-1,1).选B 选B2.某学校有男、女学生各500名.为了解男女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是 A .抽签法 B .随机数法 C .系统抽样法 D .分层抽样法 【答案】 D 【解析】 因为抽样的目的与男女性别有关,所以采用分层抽样法能够反映男女人数的比例。
选D3.在锐角中ABC ∆,角,A B 所对的边长分别为,a b .若2sin ,a B A =则角等于 A .12π B .6π C .4π D .3π 【答案】 D【解析】 3=A 223=sinA sinB 3 = sinB 2sinA :得b 3=2asinB 由ππ⇒<⇒⋅⋅A , 选D4.若变量,x y 满足约束条件211y xx y y ≤⎧⎪+≤⎨⎪≥-⎩,2x y +则的最大值是A .5-2B .0C .53D .52【答案】 C【解析】 区域为三角形,直线u = x + 2y 经过三角形顶点最大时,35)32,31(=u 选C5.函数()2ln f x x =的图像与函数()245g x x x =-+的图像的交点个数为 A .3 B .2 C .1 D .0 【答案】 B【解析】 二次函数()245g x x x =-+的图像开口向上,在x 轴上方,对称轴为x=2,g(2) = 1; f(2) =2ln2=ln4>1.所以g(2) < f(2), 从图像上可知交点个数为2 选B6. 已知,a b 是单位向量,0a b =g .若向量c 满足1,c a b c --=则的取值范围是A .2-1,2+1⎡⎤⎣⎦, B .2-1,2+2⎡⎤⎣⎦, C .1,2+1⎡⎤⎣⎦,D .1,2+2⎡⎤⎣⎦, 【答案】 A 【解析】向量之差的向量与即一个模为单位c 2.1|c -)b a (||b a -c |,2|b a |向量,是b ,a =+=-=+∴Θ的模为1,可以在单位圆中解得12||1-2+≤≤c 。
北京市2020-2024年普通高等学校招生全国统一考试真题汇编数学目录北京市2020年普通高等学校招生全国统一考试数学北京市2021年普通高等学校招生全国统一考试数学北京市2022年普通高等学校招生全国统一考试数学北京市2023年普通高等学校招生全国统一考试数学北京市2024年普通高等学校招生全国统一考试数学参考答案说明:本套资源为北京市2020-2024年普通高等学校招生全国统一考试数学试卷的汇编,即北京市2020-2024年数学高考真题的汇编,含2020年,2021年,2022年,2023年,2024年数学高考真题各一套,共五套,附有参考答案,可供北京市高三学生总复习时参考。
北京市2020年普通高等学校招生全国统一考试数学第一部分(选择题共40分)一、选择题:10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{1,0,1,2}A =-,{|03}B x x =<<,则A B = ().A.{1,0,1}- B.{0,1}C.{1,1,2}- D.{1,2}2.在复平面内,复数z 对应的点的坐标是(1,2),则i z ⋅=().A.12i+ B.2i-+ C.12i- D.2i--3.在52)-的展开式中,2x 的系数为().A.5-B.5C.10- D.104.某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为().A.6B.6+C.12+D.12+5.已知半径为1的圆经过点(3,4),则其圆心到原点的距离的最小值为().A.4B.5C.6D.76.已知函数()21x f x x =--,则不等式()0f x >的解集是().A.(1,1)-B.(,1)(1,)-∞-+∞C.(0,1)D.(,0)(1,)-∞⋃+∞7.设抛物线的顶点为O ,焦点为F ,准线为l .P 是抛物线上异于O 的一点,过P 作PQ l ⊥于Q ,则线段FQ 的垂直平分线().A.经过点OB.经过点PC.平行于直线OPD.垂直于直线OP8.在等差数列{}n a 中,19a =-,31a =-.记12(1,2,)n n T a a a n ==……,则数列{}n T ().A.有最大项,有最小项B.有最大项,无最小项C.无最大项,有最小项D.无最大项,无最小项9.已知,R αβ∈,则“存在k Z ∈使得(1)k k απβ=+-”是“sin sin αβ=”的().A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件10.2020年3月14日是全球首个国际圆周率日(πDay ).历史上,求圆周率π的方法有多种,与中国传统数学中的“割圆术”相似.数学家阿尔·卡西的方法是:当正整数n 充分大时,计算单位圆的内接正6n 边形的周长和外切正6n 边形(各边均与圆相切的正6n 边形)的周长,将它们的算术平均数作为2π的近似值.按照阿尔·卡西的方法,π的近似值的表达式是().A.30303sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭ B.30306sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭C.60603sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭D.60606sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭第二部分(非选择题共110分)二、填空题:共5小题,每小题5分,共25分.11.函数1()ln 1f x x x =++的定义域是____________.12.已知双曲线22:163x y C -=,则C 的右焦点的坐标为_________;C 的焦点到其渐近线的距离是_________.13.已知正方形ABCD 的边长为2,点P 满足1()2AP AB AC =+ ,则||PD =_________;PB PD ⋅=_________.14.若函数()sin()cos f x x x ϕ=++的最大值为2,则常数ϕ的一个取值为________.15.为满足人民对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业要限期整改、设企业的污水摔放量W 与时间t 的关系为()W f t =,用()()f b f a b a---的大小评价在[,]a b 这段时间内企业污水治理能力的强弱,已知整改期内,甲、乙两企业的污水排放量与时间的关系如下图所示.给出下列四个结论:①在[]12,t t 这段时间内,甲企业的污水治理能力比乙企业强;②在2t 时刻,甲企业的污水治理能力比乙企业强;③在3t 时刻,甲、乙两企业的污水排放都已达标;④甲企业在[][][]112230,,,,,t t t t t 这三段时间中,在[]10,t 的污水治理能力最强.其中所有正确结论的序号是____________________.三、解答题:共6小题,共85分,解答应写出文字说明,演算步骤或证明过程.16.如图,在正方体1111ABCD A B C D -中,E 为1BB 的中点.(Ⅰ)求证:1//BC 平面1AD E ;(Ⅱ)求直线1AA 与平面1AD E 所成角的正弦值.17.在ABC 中,11a b +=,再从条件①、条件②这两个条件中选择一个作为已知,求:(Ⅰ)a 的值:(Ⅱ)sin C 和ABC 的面积.条件①:17,cos 7c A ==-;条件②:19cos ,cos 816A B ==.注:如果选择条件①和条件②分别解答,按第一个解答计分.18.某校为举办甲、乙两项不同活动,分别设计了相应的活动方案:方案一、方案二.为了解该校学生对活动方案是否支持,对学生进行简单随机抽样,获得数据如下表:男生女生支持不支持支持不支持方案一200人400人300人100人方案二350人250人150人250人假设所有学生对活动方案是否支持相互独立.(Ⅰ)分别估计该校男生支持方案一的概率、该校女生支持方案一的概率;(Ⅱ)从该校全体男生中随机抽取2人,全体女生中随机抽取1人,估计这3人中恰有2人支持方案一的概率;(Ⅲ)将该校学生支持方案的概率估计值记为0p ,假设该校年级有500名男生和300名女生,除一年级外其他年级学生支持方案二的概率估计值记为1p ,试比较0p 与1p 的大小.(结论不要求证明)19.已知函数2()12f x x =-.(Ⅰ)求曲线()y f x =的斜率等于2-的切线方程;(Ⅱ)设曲线()y f x =在点(,())t f t 处的切线与坐标轴围成的三角形的面积为()S t ,求()S t 的最小值.20.已知椭圆2222:1x y C a b+=过点(2,1)A --,且2a b =.(Ⅰ)求椭圆C 的方程:(Ⅱ)过点(4,0)B -的直线l 交椭圆C 于点,M N ,直线,MA NA 分别交直线4x =-于点,P Q .求||||PB BQ 的值.21.已知{}n a 是无穷数列,给出两个性质:①对于{}n a 中任意两项,()i j a a i j >,在{}n a 中都存在一项m a ,使2i m ja a a =;②对于{}n a 中任意项(3)n a n ,在{}n a 中都存在两项,()k l a a k l >.使得2k n la a a =.(Ⅰ)若(1,2,)n a n n == ,判断数列{}n a 是否满足性质①,说明理由;(Ⅱ)若12(1,2,)n n a n -== ,判断数列{}n a 是否同时满足性质①和性质②,说明理由;(Ⅲ)若{}n a 是递增数列,且同时满足性质①和性质②,证明:{}n a 为等比数列.北京市2021年普通高等学校招生全国统一考试数学第一部分(选择题共40分)一、选择题:共10小题,每小题4分,共40分,在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{}|11A x x =-<<,{}|02B x x =≤≤,则A B = ()A.()1,2- B.(1,2]- C.[0,1) D.[0,1]2.在复平面内,复数z 满足(1)2i z -=,则z =()A.2i +B.2i -C.1i -D.1i +3.已知()f x 是定义在上[0,1]的函数,那么“函数()f x 在[0,1]上单调递增”是“函数()f x 在[0,1]上的最大值为(1)f ”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.某四面体的三视图如图所示,该四面体的表面积为()A.332+ B.4C.3D.25.双曲线2222:1x y C a b -=过点,且离心率为2,则该双曲线的标准方程为()A.2213x y -= B.2213y x -=C.2213x -=D.2213y -=6.{}n a 和{}n b 是两个等差数列,其中()15kka kb ≤≤为常值,1288a =,596=a ,1192b =,则3b =()A.64B.128C.256D.5127.函数()cos cos 2f x x x =-,试判断函数的奇偶性及最大值()A.奇函数,最大值为2 B.偶函数,最大值为2C.奇函数,最大值为98D.偶函数,最大值为988.定义:24小时内降水在平地上积水厚度(mm )来判断降雨程度.其中小雨(10mm <),中雨(10mm 25mm -),大雨(25mm 50mm -),暴雨(50mm 100mm -),小明用一个圆锥形容器接了24小时的雨水,如图,则这天降雨属于哪个等级()A.小雨B.中雨C.大雨D.暴雨9.已知圆22:4C x y +=,直线:l y kx m =+,当k 变化时,l 截得圆C 弦长的最小值为2,则m =()A.2±B.C.D.10.数列{}n a 是递增的整数数列,且13a ≥,12100n a a a ++⋅⋅⋅+=,则n 的最大值为()A.9B.10C.11D.12第二部分(非选择题共110分)二、填空题:5小题,每小题5分,共25分.11.341(x x-展开式中常数项为__________.12.已知抛物线2:4C y x =,焦点为F ,点M 为抛物线C 上的点,且6FM =,则M 的横坐标是_______;作MN x ⊥轴于N ,则FMN S = _______.13.(2,1)a = ,(2,1)b =-,(0,1)c = ,则()a b c +⋅= _______;a b ⋅=_______.14.若点(cos ,sin )P θθ与点(cos(),sin())66Q ππθθ++关于y 轴对称,写出一个符合题意的θ=___.15.已知函数()lg 2f x x kx =--,给出下列四个结论:①若0k =,则()f x 有两个零点;②0k ∃<,使得()f x 有一个零点;③0k ∃<,使得()f x 有三个零点;④0k ∃>,使得()f x 有三个零点.以上正确结论得序号是_______.三、解答题:共6小题,共85分,解答应写出文字说明,演算步骤或证明过程.16.已知在ABC 中,2cos c b B =,23C π=.(1)求B 的大小;(2)在下列三个条件中选择一个作为已知,使ABC 存在且唯一确定,并求出BC 边上的中线的长度.①c =;②周长为4+;③面积为4ABC S ∆=;17.已知正方体1111ABCD A B C D -,点E 为11A D 中点,直线11B C 交平面CDE 于点F.(1)证明:点F 为11B C 的中点;(2)若点M 为棱11A B 上一点,且二面角M CF E --的余弦值为53,求111A M A B 的值.18.为加快新冠肺炎检测效率,某检测机构采取“k 合1检测法”,即将k 个人的拭子样本合并检测,若为阴性,则可以确定所有样本都是阴性的;若为阳性,则还需要对本组的每个人再做检测.现有100人,已知其中2人感染病毒.(1)①若采用“10合1检测法”,且两名患者在同一组,求总检测次数;②已知10人分成一组,分10组,两名感染患者在同一组的概率为111,定义随机变量X 为总检测次数,求检测次数X 的分布列和数学期望E (X );(2)若采用“5合1检测法”,检测次数Y 的期望为E (Y ),试比较E (X )和E (Y )的大小(直接写出结果).19.已知函数()232xf x x a-=+.(1)若0a =,求()y f x =在()()1,1f 处切线方程;(2)若函数()f x 在1x =-处取得极值,求()f x 的单调区间,以及最大值和最小值.20.已知椭圆2222:1(0)x y E a b a b +=>>过点(0,2)A -,以四个顶点围成的四边形面积为(1)求椭圆E 的标准方程;(2)过点P (0,-3)的直线l 斜率为k ,交椭圆E 于不同的两点B ,C ,直线AB ,AC 交y =-3于点M 、N ,直线AC 交y =-3于点N ,若|PM |+|PN |≤15,求k 的取值范围.21.定义p R 数列{}n a :对实数p ,满足:①10a p +≥,20a p +=;②414,n n n N a a *-∀∈<;③{},1m n m n m n a a a p a a p +∈+++++,,m n N *∈.(1)对于前4项2,-2,0,1的数列,可以是2R 数列吗?说明理由;(2)若{}n a 是0R 数列,求5a 的值;(3)是否存在p ,使得存在p R 数列{}n a ,对10,n n N S S *∀∈≥?若存在,求出所有这样的p ;若不存在,说明理由.北京市2022年普通高等学校招生全国统一考试数学第一部分(选择题共40分)一、选择题:共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知全集{33}U x x =-<<,集合{21}A x x =-<≤,则U A =ð()A.(2,1]-B.(3,2)[1,3)--C.[2,1)- D.(3,2](1,3)-- 2.若复数z 满足i 34i z ⋅=-,则z =()A.1B.5C.7D.253.若直线210x y +-=是圆22()1x a y -+=的一条对称轴,则=a ()A.12B.12-C.1D.1-4.已知函数1()12xf x =+,则对任意实数x ,有()A.()()0f x f x -+= B.()()0f x f x --=C.()()1f x f x -+= D.1()()3f x f x --=5.已知函数22()cos sin f x x x =-,则()A.()f x 在,26ππ⎛⎫-- ⎪⎝⎭上单调递减 B.()f x 在,412ππ⎛⎫-⎪⎝⎭上单调递增C.()f x 在0,3π⎛⎫⎪⎝⎭上单调递减D.()f x 在7,412ππ⎛⎫⎪⎝⎭上单调递增6.设{}n a 是公差不为0的无穷等差数列,则“{}n a 为递增数列”是“存在正整数0N ,当0n N >时,0n a >”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.在北京冬奥会上,国家速滑馆“冰丝带”使用高效环保的二氧化碳跨临界直冷制冰技术,为实现绿色冬奥作出了贡献.如图描述了一定条件下二氧化碳所处的状态与T 和lg P 的关系,其中T 表示温度,单位是K ;P 表示压强,单位是bar .下列结论中正确的是()A.当220T =,1026P =时,二氧化碳处于液态B.当270T =,128P =时,二氧化碳处于气态C.当300T =,9987P =时,二氧化碳处于超临界状态D.当360T =,729P =时,二氧化碳处于超临界状态8.若443243210(21)x a x a x a x a x a -=++++,则024a a a ++=()A.40B.41C.40-D.41-9.已知正三棱锥P ABC -的六条棱长均为6,S 是ABC 及其内部的点构成的集合.设集合{}5T Q S PQ =∈≤,则T 表示的区域的面积为()A.34π B.πC.2πD.3π10.在ABC 中,3,4,90AC BC C ==∠=︒.P 为ABC 所在平面内的动点,且1PC =,则PA PB ⋅的取值范围是()A.[5,3]- B.[3,5]- C.[6,4]- D.[4,6]-第二部分(非选择题共110分)二、填空题:共5小题,每小题5分,共25分.11.函数1()1f x x x=+-的定义域是_________.12.已知双曲线221x y m +=的渐近线方程为33y x =±,则m =__________.13.若函数()sin 3cos f x A x x =-的一个零点为3π,则A =________;12f π⎛⎫= ⎪⎝⎭________.14.设函数()()21,,2,.ax x a f x x x a -+<⎧⎪=⎨-≥⎪⎩若()f x 存在最小值,则a 的一个取值为________;a 的最大值为___________.15.己知数列{}n a 各项均为正数,其前n 项和n S 满足9(1,2,)n n a S n ⋅== .给出下列四个结论:①{}n a 的第2项小于3;②{}n a 为等比数列;③{}n a 为递减数列;④{}n a 中存在小于1100的项.其中所有正确结论的序号是__________.三、解答题:共6小愿,共85分.解答应写出文字说明,演算步骤或证明过程.16.在ABC中,sin 2C C =.(1)求C ∠;(2)若6b =,且ABC的面积为ABC 的周长.17.如图,在三棱柱111ABC A B C -中,侧面11BCC B 为正方形,平面11BCC B ⊥平面11ABB A ,2AB BC ==,M ,N 分别为11A B ,AC的中点.(1)求证:MN ∥平面11BCC B ;(2)再从条件①、条件②这两个条件中选择一个作为已知,求直线AB 与平面BMN 所成角的正弦值.条件①:AB MN ⊥;条件②:BM MN =.注:如果选择条件①和条件②分别解答,按第一个解答计分.18.在校运动会上,只有甲、乙、丙三名同学参加铅球比赛,比赛成绩达到950m .以上(含950m .)的同学将获得优秀奖.为预测获得优秀奖的人数及冠军得主,收集了甲、乙、丙以往的比赛成绩,并整理得到如下数据(单位:m ):甲:9.80,9.70,9.55,9.54,9.48,9.42,9.40,935,9.30,9.25;乙:9.78,9.56,9.51,9.36,9.32,9.23;丙:9.85,9.65,9.20,9.16.假设用频率估计概率,且甲、乙、丙的比赛成绩相互独立.(1)估计甲在校运动会铅球比赛中获得优秀奖的概率;(2)设X 是甲、乙、丙在校运动会铅球比赛中获得优秀奖的总人数,估计X 的数学期望E (X );(3)在校运动会铅球比赛中,甲、乙、丙谁获得冠军的概率估计值最大?(结论不要求证明)19.已知椭圆:2222:1(0)x y E a b a b+=>>的一个顶点为(0,1)A ,焦距为(1)求椭圆E 的方程;(2)过点(2,1)P -作斜率为k 的直线与椭圆E 交于不同的两点B ,C ,直线AB ,AC 分别与x 轴交于点M ,N ,当||2MN =时,求k 的值.20.已知函数()e ln(1)x f x x =+.(1)求曲线()y f x =在点(0,(0))f 处的切线方程;(2)设()()g x f x '=,讨论函数()g x 在[0,)+∞上的单调性;(3)证明:对任意的,(0,)s t ∈+∞,有()()()f s t f s f t +>+.21.已知12:,,,k Q a a a 为有穷整数数列.给定正整数m ,若对任意的{1,2,,}n m ∈ ,在Q 中存在12,,,,(0)i i i i j a a a a j +++≥ ,使得12i i i i j a a a a n +++++++= ,则称Q 为m -连续可表数列.(1)判断:2,1,4Q 是否为5-连续可表数列?是否为6-连续可表数列?说明理由;(2)若12:,,,k Q a a a 为8-连续可表数列,求证:k 的最小值为4;(3)若12:,,,k Q a a a 为20-连续可表数列,且1220k a a a +++< ,求证:7k ≥.北京市2023年普通高等学校招生全国统一考试数学一、选择题:本题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{20},{10}M x x N x x =+≥=-<∣∣,则M N ⋂=()A.{21}xx -≤<∣ B.{21}xx -<≤∣C.{2}x x ≥-∣D.{1}xx <∣2.在复平面内,复数z 对应的点的坐标是(-,则z 的共轭复数z =()A.1+B.1-C.1-+D.1-3.已知向量a b ,满足(2,3),(2,1)a b a b +=-=- ,则22||||a b -= ()A.2- B.1- C.0 D.14.下列函数中,在区间(0,)+∞上单调递增的是()A.()ln f x x =- B.1()2xf x =C.1()f x x=-D.|1|()3x f x -=5.512x x ⎛⎫- ⎪⎝⎭的展开式中x 的系数为().A.80- B.40- C.40 D.806.已知抛物线2:8C y x =的焦点为F ,点M 在C 上.若M 到直线3x =-的距离为5,则||MF =()A.7B.6C.5D.47.在ABC 中,()(sin sin )(sin sin )a c A C b A B +-=-,则C ∠=()A.π6B.π3C.2π3D.5π68.若0xy ≠,则“0x y +=”是“2y xx y+=-”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件9.坡屋顶是我国传统建筑造型之一,蕴含着丰富的数学元素.安装灯带可以勾勒出建筑轮廓,展现造型之美.如图,某坡屋顶可视为一个五面体,其中两个面是全等的等腰梯形,两个面是全等的等腰三角形.若25m,10m AB BC AD ===,且等腰梯形所在的平面、等腰三角形所在的平面与平面ABCD 的夹角的正切值均为5,则该五面体的所有棱长之和为()A.102mB.112mC.117mD.125m10.已知数列{}n a 满足()31166(1,2,3,)4n n a a n +=-+= ,则()A.当13a =时,{}n a 为递减数列,且存在常数0M ≤,使得n a M >恒成立B.当15a =时,{}n a 为递增数列,且存在常数6M ≤,使得n a M <恒成立C.当17a =时,{}n a 为递减数列,且存在常数6M >,使得n a M >恒成立D.当19a =时,{}n a 为递增数列,且存在常数0M >,使得n a M <恒成立二、填空题:本题共5小题,每小题5分,共25分.11.已知函数2()4log xf x x =+,则12f ⎛⎫=⎪⎝⎭____________.12.已知双曲线C 的焦点为(2,0)-和(2,0)2,则C 的方程为____________.13.已知命题:p 若,αβ为第一象限角,且αβ>,则tan tan αβ>.能说明p 为假命题的一组,αβ的值为α=__________,β=_________.14.我国度量衡的发展有着悠久的历史,战国时期就已经出现了类似于砝码的、用来测量物体质量的“环权”.已知9枚环权的质量(单位:铢)从小到大构成项数为9的数列{}n a ,该数列的前3项成等差数列,后7项成等比数列,且1591,12,192a a a ===,则7a =___________;数列{}n a 所有项的和为____________.15.设0a >,函数222,,(),,1,.x x a f x a x a x a x x a +<-⎧=--≤≤>⎪⎩,给出下列四个结论:①()f x 在区间(1,)a -+∞上单调递减;②当1a ≥时,()f x 存在最大值;③设()()()()()()111222,,,M x f x xa N x f x x a ≤>,则||1MN >;④设()()()()()()333444,,,P x f x xa Q x f x x a <-≥-.若||PQ 存在最小值,则a 的取值范围是10,2⎛⎤ ⎥⎝⎦.其中所有正确结论的序号是____________.三、解答题:本题共6小题,共85分.解答应写出文字说明、证明过程或演算步骤.16.如图,在三棱锥-P ABC 中,PA ⊥平面ABC ,1PA AB BC PC ====,(1)求证:BC ⊥平面PAB ;(2)求二面角A PC B --的大小.17.设函数π()sin cos cos sin 0,||2f x x x ωϕωϕωϕ⎛⎫=+><⎪⎝⎭.(1)若(0)2f =-,求ϕ的值.(2)已知()f x 在区间π2π,33-⎡⎤⎢⎥⎣⎦上单调递增,2π13f ⎛⎫= ⎪⎝⎭,再从条件①、条件②、条件③这三个条件中选择一个作为已知,使函数()f x 存在,求,ωϕ的值.条件①:π3f ⎛⎫=⎪⎝⎭;条件②:π13f ⎛⎫-=- ⎪⎝⎭;条件③:()f x 在区间ππ,23⎡⎤--⎢⎥⎣⎦上单调递减.注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.18.为研究某种农产品价格变化的规律,收集得到了该农产品连续40天的价格变化数据,如下表所示.在描述价格变化时,用“+”表示“上涨”,即当天价格比前一天价格高;用“-”表示“下跌”,即当天价格比前一天价格低;用“0”表示“不变”,即当天价格与前一天价格相同.时段价格变化第1天到第20天-++0---++0+0--+-+00+第21天到第40天++---++++---+-+用频率估计概率.(1)试估计该农产品价格“上涨”的概率;(2)假设该农产品每天的价格变化是相互独立的.在未来的日子里任取4天,试估计该农产品价格在这4天中2天“上涨”、1天“下跌”、1天“不变”的概率;(3)假设该农产品每天的价格变化只受前一天价格变化的影响.判断第41天该农产品价格“上涨”“下跌”和“不变”的概率估计值哪个最大.(结论不要求证明)19.已知椭圆2222:1(0)x y E a b a b +=>>的离心率为53,A 、C 分别是E 的上、下顶点,B ,D 分别是E 的左、右顶点,||4AC =.(1)求E 的方程;(2)设P 为第一象限内E 上的动点,直线PD 与直线BC 交于点M ,直线PA 与直线2y =-交于点N .求证://MN CD .20.设函数3()e ax b f x x x +=-,曲线()y f x =在点(1,(1))f 处的切线方程为1y x =-+.(1)求,a b 的值;(2)设函数()()g x f x '=,求()g x 的单调区间;(3)求()f x 的极值点个数.21.已知数列{}{},n n a b 的项数均为m (2)m >,且,{1,2,,},n n a b m ∈ {}{},n n a b 的前n 项和分别为,n n A B ,并规定000A B ==.对于{}0,1,2,,k m ∈ ,定义{}max ,{0,1,2,,}k i k r i B A i m =≤∈∣ ,其中,max M 表示数集M 中最大的数.(1)若1231232,1,3,1,3,3a a a b b b ======,求0123,,,r r r r 的值;(2)若11a b ≥,且112,1,2,,1,j j j r r r j m +-≤+=- ,求n r ;(3)证明:存在{},,,0,1,2,,p q s t m ∈ ,满足,,p q s t >>使得t p s q A B A B +=+.北京市2024年普通高等学校招生全国统一考试数学第一部分(选择题共40分)一、选择题:共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{|41}M x x =-<≤,{|13}N x x =-<<,则M N ⋃=()A.{}43x x -<< B.{}11x x -<≤C.{}0,1,2 D.{}14x x -<<2.已知i 1iz=-,则z =().A.1i- B.i- C.1i-- D.13.求圆22260x y x y +-+=的圆心到20x y -+=的距离()A. B.2C. D.4.(4x -的二项展开式中3x 的系数为()A.15B.6C.4- D.13-5.已知向量a ,b ,则“()()·0a b a b +-= ”是“a b = 或a b =- ”的()条件.A.必要而不充分条件B.充分而不必要条件C.充分且必要条件D.既不充分也不必要条件6.已知()()sin 0f x x ωω=>,()11f x =-,()21f x =,12min π||2x x -=,则ω=()A.1B.2C.3D.47.记水的质量为1ln S d n-=,并且d 越大,水质量越好.若S 不变,且1 2.1d =,2 2.2d =,则1n 与2n 的关系为()A.12n n <B.12n n >C.若1S <,则12n n <;若1S >,则12n n >;D.若1S <,则12n n >;若1S >,则12n n <;8.已知以边长为4的正方形为底面的四棱锥,四条侧棱分别为4,4,,,则该四棱锥的高为()A.2B.2C. D.9.已知()11,x y ,()22,x y 是函数2x y =图象上不同的两点,则下列正确的是()A.12122log 22y y x x ++> B.12122log 22y y x x ++<C.12212log 2y y x x +>+ D.12212log 2y y x x +<+10.若集合(){}2,|(),01,12x y y x t xx t x =+-≤≤≤≤表示的图形中,两点间最大距离为d 、面积为S ,则()A.3d =,1S <B.3d =,1S >C.d =,1S < D.d =,1S >第二部分(非选择题共110分)二、填空题:共5小题,每小题5分,共25分.11.已知抛物线216y x =,则焦点坐标为________.12.已知ππ,63α⎡⎤∈⎢⎥⎣⎦,且α与β的终边关于原点对称,则cos β的最大值为________.13.已知双曲线2214x y -=,则过()3,0且和双曲线只有一个交点的直线的斜率为________.14.已知三个圆柱的体积为公比为10的等比数列.第一个圆柱的直径为65mm ,第二、三个圆柱的直径为325mm ,第三个圆柱的高为230mm ,求前两个圆柱的高度分别为________.15.已知{}|k k M k a b ==,n a ,n b 不为常数列且各项均不相同,下列正确的是______.①n a ,n b 均为等差数列,则M 中最多一个元素;②n a ,n b 均为等比数列,则M 中最多三个元素;③n a 为等差数列,n b 为等比数列,则M 中最多三个元素;④n a 单调递增,n b 单调递减,则M 中最多一个元素.三、解答题:共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.在△ABC 中,7a =,A 为钝角,3sin 2cos 7B b B =.(1)求A ∠;(2)从条件①、条件②和条件③这三个条件中选择一个作为已知,求△ABC 的面积.①7b =;②13cos 14B =;③sin c A =注:如果选择条件①、条件②和条件③分别解答,按第一个解答计分.17.已知四棱锥P -ABCD ,//AD BC ,1AB BC ==,3AD =,2DE PE ==,E 是AD 上一点,PE AD ⊥.(1)若F 是PE 中点,证明://BF 平面PCD .(2)若AB ⊥平面PED ,求平面PAB 与平面PCD 夹角的余弦值.18.已知某险种的保费为0.4万元,前3次出险每次赔付0.8万元,第4次赔付0.6万元赔偿次数01234单数800100603010在总体中抽样100单,以频率估计概率:(1)求随机抽取一单,赔偿不少于2次的概率;(2)(i )毛利润是保费与赔偿金额之差.设毛利润为X ,估计X 的数学期望;(ⅱ)若未赔偿过的保单下一保险期的保费下降4%,已赔偿过的增加20%.估计保单下一保险期毛利润的数学期望.19.已知椭圆方程C :()222210x y a b a b+=>>,焦点和短轴端点构成边长为2的正方形,过()0,t (t >的直线l 与椭圆交于A ,B ,()0,1C ,连接AC 交椭圆于D .(1)求椭圆方程和离心率;(2)若直线BD 的斜率为0,求t .20.已知()()ln 1f x x k x =++在()()(),0t f t t >处切线为l .(1)若切线l 的斜率1k =-,求()f x 单调区间;(2)证明:切线l 不经过()0,0;(3)已知1k =,()(),A t f t ,()()0,C f t ,()0,0O ,其中0t >,切线l 与y 轴交于点B时.当215ACO ABO S S =△△,符合条件的A 的个数为?(参考数据:1.09ln31.10<<,1.60ln51.61<<,1.94ln71.95<<)21.设集合(){}{}{}{}(){},,,1,2,3,4,5,6,7,8,2M i j s t i j s t i j s t =∈∈∈∈+++.对于给定有穷数列{}():18n A a n ≤≤,及序列12:,,...,s ωωωΩ,(),,,k k k k k i j s t M ω=∈,定义变换T :将数列A 的第1111,,,i j s t 项加1,得到数列()1T A ;将数列()1T A 的第2222,,,i j s t 列加1,得到数列()21T T A …;重复上述操作,得到数列()21...s T T T A ,记为()A Ω.若1357a a a a +++为偶数,证明:“存在序列Ω,使得()A Ω为常数列”的充要条件为“12345678a a a a a a a a +=+=+=+”.参考答案北京市2020年普通高等学校招生全国统一考试数学参考答案一、选择题【答案】1.D 【解析】【详解】{1,0,1,2}(0,3){1,2}A B =-=I I ,故选:D.【答案】2.B 【解析】【详解】由题意得12z i =+,2iz i ∴=-.故选:B.【答案】3.C 【解析】【详解】)52-展开式的通项公式为:()()55215522r rrrr r r T CC x--+=-=-,令522r -=可得:1r =,则2x 的系数为:()()11522510C -=-⨯=-.故选:C.【答案】4.D 【解析】【详解】由题意可得,三棱柱的上下底面为边长为2的等边三角形,侧面为三个边长为2的正方形,则其表面积为:()1322222sin 60122S ⎛⎫=⨯⨯+⨯⨯⨯⨯︒=+ ⎪⎝⎭.故选:D.【答案】5.A 【解析】【详解】设圆心(),C x y ,则1=,化简得()()22341x y -+-=,所以圆心C 的轨迹是以(3,4)M 为圆心,1为半径的圆,所以||1||OC OM +≥22345=+=,所以||514OC ≥-=,当且仅当C 在线段OM 上时取得等号,故选:A.【答案】6.D 【解析】【详解】因为()21xf x x =--,所以()0f x >等价于21x x >+,在同一直角坐标系中作出2x y =和1y x =+的图象如图:两函数图象的交点坐标为(0,1),(1,2),不等式21x x >+的解为0x <或1x >.所以不等式()0f x >的解集为:()(),01,-∞⋃+∞.故选:D.【答案】7.B 【解析】【详解】如图所示:.因为线段FQ 的垂直平分线上的点到,F Q 的距离相等,又点P 在抛物线上,根据定义可知,PQ PF =,所以线段FQ 的垂直平分线经过点P .故选:B.【答案】8.B 【解析】【详解】由题意可知,等差数列的公差511925151a a d --+===--,则其通项公式为:()()11912211n a a n d n n =+-=-+-⨯=-,注意到123456701a a a a a a a <<<<<<=<< ,且由50T <可知()06,i T i i N <≥∈,由()117,ii i T a i i N T -=>≥∈可知数列{}n T 不存在最小项,由于1234569,7,5,3,1,1a a a a a a =-=-=-=-=-=,故数列{}n T 中的正项只有有限项:263T =,46315945T =⨯=.故数列{}n T 中存在最大项,且最大项为4T .故选:B.【答案】9.C 【解析】【详解】(1)当存在k Z ∈使得(1)k k απβ=+-时,若k 为偶数,则()sin sin sin k απββ=+=;若k 为奇数,则()()()sin sin sin 1sin sin k k απβππβπββ=-=-+-=-=⎡⎤⎣⎦;(2)当sin sin αβ=时,2m αβπ=+或2m αβππ+=+,m Z ∈,即()()12kk k m απβ=+-=或()()121kk k m απβ=+-=+,亦即存在k Z ∈使得(1)k k απβ=+-.所以,“存在k Z ∈使得(1)k k απβ=+-”是“sin sin αβ=”的充要条件.故选:C.【答案】10.A 【解析】【详解】单位圆内接正6n 边形的每条边所对应的圆周角为360606n n︒︒=⨯,每条边长为302sinn︒,所以,单位圆的内接正6n 边形的周长为3012sin n n︒,单位圆的外切正6n 边形的每条边长为302tann ︒,其周长为3012tan n n︒,303012sin12tan 303026sin tan 2n n n n n n n π︒︒+︒︒⎛⎫∴==+ ⎪⎝⎭,则30303sin tan n n n π︒︒⎛⎫=+ ⎪⎝⎭.故选:A.二、填空题【答案】11.(0,)+∞【解析】【详解】由题意得010x x >⎧⎨+≠⎩,0x ∴>故答案为:(0,)+∞【答案】12.()3,0【解析】【详解】在双曲线C中,a =,b =,则3c ==,则双曲线C 的右焦点坐标为()3,0,双曲线C 的渐近线方程为22y x =±,即0x ±=,所以,双曲线C=.故答案为:()3,0.【答案】;1-【解析】【详解】以点A 为坐标原点,AB 、AD 所在直线分别为x 、y 轴建立如下图所示的平面直角坐标系,则点()0,0A 、()2,0B 、()2,2C 、()0,2D ,()()()()1112,02,22,1222AP AB AC =+=+= ,则点()2,1P ,()2,1PD ∴=-,()0,1PB =- ,因此,PD == ()021(1)1PB PD ⋅=⨯-+⨯-=-.;1-.【答案】14.2π(2,2k k Z ππ+∈均可)【解析】【详解】因为()()()cos sin sin 1cos f x x x x ϕϕθ=++=+,2=,解得sin 1ϕ=,故可取2ϕπ=.故答案为:2π(2,2k k Z ππ+∈均可).【答案】15.①②③【解析】【详解】()()f b f a b a---表示区间端点连线斜率的负数,在[]12,t t 这段时间内,甲的斜率比乙的小,所以甲的斜率的相反数比乙的大,因此甲企业的污水治理能力比乙企业强;①正确;甲企业在[][][]112230,,,,,t t t t t 这三段时间中,甲企业在[]12,t t 这段时间内,甲的斜率最小,其相反数最大,即在[]12,t t 的污水治理能力最强.④错误;在2t 时刻,甲切线的斜率比乙的小,所以甲切线的斜率的相反数比乙的大,甲企业的污水治理能力比乙企业强;②正确;在3t 时刻,甲、乙两企业的污水排放量都在污水打标排放量以下,所以都已达标;③正确;故答案为:①②③三、解答题【答案】16.(Ⅰ)如下图所示:在正方体1111ABCD A B C D -中,11//AB A B 且11AB A B =,1111//A B C D 且1111A B C D =,11//AB C D ∴且11AB C D =,所以,四边形11ABC D 为平行四边形,则11//BC AD ,1BC ⊄ 平面1AD E ,1AD ⊂平面1AD E ,1//BC ∴平面1AD E ;(Ⅱ)以点A 为坐标原点,AD 、AB 、1AA 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系A xyz -,设正方体1111ABCD A B C D -的棱长为2,则()0,0,0A 、()10,0,2A 、()12,0,2D 、()0,2,1E ,()12,0,2AD =,()0,2,1AE = ,设平面1AD E 的法向量为(),,n x y z = ,由100n AD n AE ⎧⋅=⎨⋅=⎩ ,得22020x z y z +=⎧⎨+=⎩,令2z =-,则2x =,1y =,则()2,1,2n =-.11142cos ,323n AA n AA n AA ⋅<>==-=-⨯⋅.因此,直线1AA 与平面1AD E 所成角的正弦值为23.【答案】17.选择条件①(Ⅰ)17,cos 7c A ==- ,11a b +=22222212cos (11)72(11)7()7a b c bc A a a a =+-∴=-+--⋅⋅- 8a ∴=(Ⅱ)213cos (0,)sin 1cos 77A A A A π=-∈∴=-=,由正弦定理得:873sin sin sin sin 2437a c C A C C===113sin (118)83222S ba C ==-⨯⨯=选择条件②(Ⅰ)19cos ,cos ,(0,)816A B A B π==∈,3757sin 816A B ∴===由正弦定理得:6sin sin 3757816a b a A B ==(Ⅱ)3795717sin sin()sin cos sin cos 8161684C A B A B B A =+=+=⨯+⨯=117157sin (116)62244S ba C ==-⨯⨯=【答案】18.(Ⅰ)该校男生支持方案一的概率为2001200+4003=,该校女生支持方案一的概率为3003300+1004=;(Ⅱ)3人中恰有2人支持方案一分两种情况,(1)仅有两个男生支持方案一,(2)仅有一个男生支持方案一,一个女生支持方案一,所以3人中恰有2人支持方案一概率为:2121311313()(1()(13433436C -+-=;(Ⅲ)01p p <【答案】19.(Ⅰ)因为()212f x x =-,所以()2f x x '=-,设切点为()00,12x x -,则022x -=-,即01x =,所以切点为()1,11,由点斜式可得切线方程为:()1121y x -=--,即2130x y +-=.(Ⅱ)显然0t ≠,因为()y f x =在点()2,12t t-处的切线方程为:()()2122y t t x t --=--,令0x =,得212y t =+,令0y =,得2122t x t +=,所以()S t =()221121222||t t t +⨯+⋅,不妨设0t >(0t <时,结果一样),则()423241441144(24)44t t S t t t t t++==++,所以()S t '=4222211443(848)(324)44t t t t t +-+-=222223(4)(12)3(2)(2)(12)44t t t t t t t-+-++==,由()0S t '>,得2t >,由()0S t '<,得02t <<,所以()S t 在()0,2上递减,在()2,+∞上递增,所以2t =时,()S t 取得极小值,也是最小值为()16162328S ⨯==.【答案】20.(Ⅰ)设椭圆方程为:()222210x y a b a b +=>>,由题意可得:224112ab a b⎧+=⎪⎨⎪=⎩,解得:2282a b ⎧=⎨=⎩,故椭圆方程为:22182x y +=.(Ⅱ)设()11,M x y ,()22,N x y ,直线MN 的方程为:()4y k x =+,与椭圆方程22182x y +=联立可得:()222448x k x ++=,即:()()222241326480k x k x k +++-=,则:2212122232648,4141k k x x x x k k --+==++.直线MA 的方程为:()111122y y x x ++=++,令4x =-可得:()()()1111111141214122122222P k x k x y x y x x x x ++-++++=-⨯-=-⨯-=++++,同理可得:()()222142Q k x y x -++=+.很明显0P Q y y <,且:PQPB y PQy =,注意到:()()()()()()()()122112121242424421212222P Q x x x x x x y y k k x x x x +++++⎛⎫+++=-++=-+⨯⎪++++⎝⎭,而:()()()()()122112124242238x x x x x x x x +++++=+++⎡⎤⎣⎦2222648322384141k k k k ⎡⎤⎛⎫--=+⨯+⎢⎥ ⎪++⎝⎭⎣⎦()()()22226483328412041k k k k -+⨯-++=⨯=+,故0,P Q P Q y y y y +==-.从而1PQPB y PQy ==.【答案】21.【详解】(Ⅰ){}2323292,3,2n a a a a Z a ===∉∴Q 不具有性质①;(Ⅱ){}22*(2)1*2,,,2,2i j i i i j n j ja a i j N i j i j N a a a a ---∀∈>=-∈∴=∴Q 具有性质①;{}2*(2)11,3,1,2,22,k l n k n n la n N n k n l a n a a ---∀∈≥∃=-=-===∴Q 具有性质②;(Ⅲ)【解法一】首先,证明数列中的项数同号,不妨设恒为正数:显然()0*n a n N ≠∉,假设数列中存在负项,设{}0max |0n N n a =<,第一种情况:若01N =,即01230a a a a <<<<< ,由①可知:存在1m ,满足12210m a a a =<,存在2m ,满足22310m a a a =<,由01N =可知223211a a a a =,从而23a a =,与数列的单调性矛盾,假设不成立.第二种情况:若02N ≥,由①知存在实数m ,满足0210Nm a a a =<,由0N 的定义可知:0m N ≤,另一方面,000221NNm N N a a a a a a =>=,由数列的单调性可知:0m N >,这与0N 的定义矛盾,假设不成立.同理可证得数列中的项数恒为负数.综上可得,数列中的项数同号.其次,证明2231a a a =:利用性质②:取3n =,此时()23k la a k l a =>,由数列的单调性可知0k l a a >>,而3kk k la a a a a =⋅>,故3k <,此时必有2,1k l ==,即2231a a a =,最后,用数学归纳法证明数列为等比数列:假设数列{}n a 的前()3k k ≥项成等比数列,不妨设()111s s a a q s k -=≤≤,其中10,1a q >>,(10,01a q <<<的情况类似)由①可得:存在整数m ,满足211k k m k k a a a q a a -==>,且11k m k a a q a +=≥(*)由②得:存在s t >,满足:21s sk ss t ta a a a a a a +==⋅>,由数列的单调性可知:1t s k <≤+,由()111s s a a qs k -=≤≤可得:2211111s t k s k k ta a a q a a q a ---+==>=(**)由(**)和(*)式可得:211111ks t k a q a q a q ---≥>,结合数列的单调性有:211k s t k ≥-->-,注意到,,s t k 均为整数,故21k s t =--,。
2020年普通高等学校招生全国统一考试理科综合能力测试注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
可能用到的相对原子质量:H 1 C12N14O16 Na 23 Mg 24 Al 27 S 32 Cr 52 Zn 65 I 127 一、选择题:本题共13个小题,每小题6分,共78分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.下列研究工作中由我国科学家完成的是A.以豌豆为材料发现性状遗传规律的实验B.用小球藻发现光合作用暗反应途径的实验C.证明DNA是遗传物质的肺炎双球菌转化实验D.首例具有生物活性的结晶牛胰岛素的人工合成2.下列关于细胞的结构和生命活动的叙述,错误的是A.成熟个体中的细胞增殖过程不需要消耗能量B.细胞的核膜、内质网膜和细胞膜中都含有磷元素C.两个相邻细胞的细胞膜接触可实现细胞间的信息传递D.哺乳动物造血干细胞分化为成熟红细胞的过程不可逆3.神经细胞处于静息状态时,细胞内外K+和Na+的分布特征是A.细胞外K+和Na+浓度均高于细胞内B.细胞外K+和Na+浓度均低于细胞内C.细胞外K+浓度高于细胞内,Na+相反D.细胞外K+浓度低于细胞内,Na+相反4.关于某二倍体哺乳动物细胞有丝分裂和减数分裂的叙述,错误的是A.有丝分裂后期与减数第二次分裂后期都发生染色单体分离B.有丝分裂中期与减数第一次分裂中期都发生同源染色体联会C.一次有丝分裂与一次减数分裂过程中染色体的复制次数相同D.有丝分裂中期和减数第二次分裂中期染色体都排列在赤道板上5.下列关于生物体中细胞呼吸的叙述,错误的是A.植物在黑暗中可进行有氧呼吸也可进行无氧呼吸B.食物链上传递的能量有一部分通过细胞呼吸散失C.有氧呼吸和无氧呼吸的产物分别是葡萄糖和乳酸D.植物光合作用和呼吸作用过程中都可以合成ATP6.某同学运用黑光灯诱捕的方法对农田中具有趋光性的昆虫进行调查,下列叙述错误的是A.趋光性昆虫是该农田生态系统的消费者B.黑光灯传递给趋光性昆虫的信息属于化学信息C.黑光灯诱捕的方法可用于调查某种趋光性昆虫的种群密度D.黑光灯诱捕的方法可用于探究该农田趋光性昆虫的物种数目7.化学与生活密切相关。
2020年高考理科数学试题解析(课标Ⅰ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页,第Ⅱ卷3至4页。
全卷满分150分。
考试时间120分钟。
注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页,第Ⅱ卷3至5页。
2. 答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。
3. 全部答案在答题卡上完成,答在本试题上无效。
4. 考试结束,将本试题和答题卡一并交回。
第Ⅰ卷一、 选择题共12小题。
每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
1、已知集合A={x |x 2-2x >0},B={x |-5<x <5},则 ( ) A 、A∩B=∅ B 、A ∪B=R C 、B ⊆A D 、A ⊆B【命题意图】本题主要考查一元二次不等式解法、集合运算及集合间关系,是容易题. 【解析】A=(-∞,0)∪(2,+∞), ∴A ∪B=R,故选B.2、若复数z 满足 (3-4i)z =|4+3i |,则z 的虚部为 ( ) A 、-4(B )-45(C )4(D )45【命题意图】本题主要考查复数的概念、运算及复数模的计算,是容易题.【解析】由题知z =|43|34i i +-=4)(34)(34)i i i +-+=3455i +,故z 的虚部为45,故选D.3、为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是 ( )A 、简单随机抽样B 、按性别分层抽样C 、按学段分层抽样D 、系统抽样 【命题意图】本题主要考查分层抽样方法,是容易题.【解析】因该地区小学、初中、高中三个学段学生的视力情况有较大差异,故最合理的抽样方法是按学段分层抽样,故选C.4、已知双曲线C :22221x y a b-=(0,0a b >>C 的渐近线方程为A .14y x =±B .13y x =±C .12y x =± D .y x =±【命题意图】本题主要考查双曲线的几何性质,是简单题.【解析】由题知,2c a =,即54=22c a =222a b a +,∴22b a =14,∴b a =12±,∴C 的渐近线方程为12y x =±,故选C . 5、运行如下程序框图,如果输入的[1,3]t ∈-,则输出s 属于A .[-3,4]B .[-5,2]C .[-4,3]D .[-2,5]【命题意图】本题主要考查程序框图及分段函数值域求法,是简单题.【解析】有题意知,当[1,1)t ∈-时,3s t =[3,3)∈-,当[1,3]t ∈时,24s t t =-[3,4]∈, ∴输出s 属于[-3,4],故选A .6、如图,有一个水平放置的透明无盖的正方体容器,容器高8cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm ,如果不计容器的厚度,则球的体积为 ( )A 、500π3cm 3B 、866π3cm 3C 、1372π3cm 3D 、2048π3cm 3【命题意图】本题主要考查球的截面圆性质、球的体积公式,是容易题.【解析】设球的半径为R ,则由题知球被正方体上面截得圆的半径为4,球心到截面圆的距离为R-2,则222(2)4R R =-+,解得R=5,∴球的体积为3453π⨯=500π33cm ,故选A. 7、设等差数列{a n }的前n 项和为S n ,1m S -=-2,m S =0,1m S +=3,则m = ( ) A 、3 B 、4 C 、5 D 、6【命题意图】本题主要考查等差数列的前n 项和公式及通项公式,考查方程思想,是容易题. 【解析】有题意知m S =1()2m m a a +=0,∴1a =-m a =-(m S -1m S -)=-2, 1m a += 1m S +-m S =3,∴公差d =1m a +-m a =1,∴3=1m a +=-2m +,∴m =5,故选C.8、某几何体的三视图如图所示,则该几何体的体积为 A .168π+ B .88π+ C .1616π+ D .816π+【命题意图】本题主要考查简单组合体的三视图及简单组合体体积公式,是中档题.【解析】由三视图知,该几何体为放到的半个圆柱底面半径为2高为4,上边放一个长为4宽为2高为2长方体,故其体积为21244222π⨯⨯+⨯⨯ =168π+,故选A . 9、设m 为正整数,2()mx y +展开式的二项式系数的最大值为a ,21()m x y ++展开式的二项式系数的最大值为b ,若13a =7b ,则m = ( ) A 、5 B 、6 C 、7 D 、8【命题意图】本题主要考查二项式系数最大值及组合数公式,考查方程思想,是容易题. 【解析】由题知a =2mm C ,b =121m m C ++,∴132mm C =7121m m C ++,即13(2)!!!m m m ⨯=7(21)!(1)!!m m m ⨯++, 解得m =6,故选B.10、已知椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交椭圆于A 、B 两点。
绝密★启用前2020年普通高等学校招生全国统一考试课标1理科数学2020年全国1高考数学与2020全国1高考数学难度方面相对持平,在选择题和填空题方面难度有所提升,解答题方面难度有所减缓.在保持稳定的基础上,进行适度创新,尤其是选择填空压轴题.试卷内容上体现新课程理念,贴近中学数学教学,坚持对基础性的考查,同时加大了综合性、应用性和创新性的考查,如理科第2、3、10、11、12、16、19题,文科第2、4、9、12、19题.1.体现新课标理念,重视对传统核心考点考查的同时,增加了对数学文化的考查,如理科第2题,文科第4题以中国古代的太极图为背景,考查几何概型.2.关注通性通法.试卷淡化了特殊的技巧,全面考查通性通法,体现了以知识为载体,以方法为依托,以能力考查为目的的命题要求.3.考查了数学思想、数学能力、数学的科学与人文价值,体现了知识与能力并重、科学与人文兼顾的精神.如理科第6、10、13、15题,文科第5、12、13、16题对数形结合思想的考查;理科第11,文科第9题对函数与方程思想的考查;理科第12、16题对数学的科学与人文价值的考查.4.体现了创新性,如理科第19题,文科第19题立意新、情景新、设问新,增强了学生数学应用意识和创新能力.命题趋势:(1)函数与导数知识:以函数性质为基础,考查函数与不等式综合知识,如理科第5题,;以基本初等函数为背景考查构造新函数解决比较大小问题,如理科第11题;对含参单调性以及零点问题的考查,如理科21题,比较常规.(2)三角函数与解三角形知识:对三角函数图像与性质的考查,如理科第9题;;对解三角形问题的考查,如理科第17题.重视对基础知识与运算能力的考查.(3)数列知识:对数列性质的考查,如理科第4题;突出了数列与现实生活的联系,考查学生分析问题的能力,如理科第12题,难点较大.整体考查比较平稳,没有出现偏、怪的数列相关考点.(4)立体几何知识:对立体几何图形的认识与考查,如理科第7题,试题难度不大,比较常规;对简单几何体的体积知识的考查,如理科第16题,用到函数知识进行解决,体现了综合性,难度较大,立体几何解答题的考查较常规,如理科对二面角的考查.(5)解析几何知识:对圆锥曲线综合知识的考查,如理科第15题,难度偏大;解答题考查较为常规,考查直线与圆锥曲线的位置关系,难度中等,重视对学生运算能力的考查.【试卷解析】一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x |x <1},B ={x |31x <},则 A .{|0}A B x x =<I B .A B =R U C .{|1}A B x x =>UD .A B =∅I【答案】A2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14 B .π8 C .12D .π4【答案】B 【解析】试题分析:设正方形边长为a ,则圆的半径为2a ,则正方形的面积为2a ,圆的面积为24a π.由图形的对称性可知,太极图中黑白部分面积相等,即各占圆面积的一半.由几何概型概率的计算公式得,此点取自黑色部分的概率是221248a a ππ⋅=,选B. 秒杀解析:由题意可知,此点取自黑色部分的概率即为黑色部分面积占整个面积的比例,由图可知其概率1142p <<,故选B.【考点】几何概型【名师点睛】对于几何概型的计算,首先确定事件类型为几何概型并确定其几何区域(长度、面积、体积或时间),其次计算基本事件区域的几何度量和事件A 区域的几何度量,最后计算()P A . 3.设有下面四个命题1p :若复数z 满足1z ∈R ,则z ∈R ;2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数12,z z 满足12z z ∈R ,则12z z =;4p :若复数z ∈R ,则z ∈R .其中的真命题为 A.13,p pB .14,p pC .23,p pD .24,p p【答案】B4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为A .1B .2C .4D .8【答案】C 【解析】试题分析:设公差为d ,45111342724a a a d a d a d +=+++=+=,611656615482S a d a d ⨯=+=+=,联立112724,61548a d a d +=⎧⎨+=⎩解得4d =,故选C.秒杀解析:因为166346()3()482a a S a a +==+=,即3416a a +=,则4534()()24168a a a a +-+=-=,即5328a a d -==,解得4d =,故选C. 【考点】等差数列的基本量求解【名师点睛】求解等差数列基本量问题时,要多多使用等差数列的性质,如{}n a 为等差数列,若m n p q +=+,则m n p q a a a a +=+.5.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是 A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]【答案】D6.621(1)(1)x x++展开式中2x 的系数为 A .15B .20C .30D .35【答案】C 【解析】试题分析:因为6662211(1)(1)1(1)(1)x x x x x++=⋅++⋅+,则6(1)x +展开式中含2x 的项为2226115C x x ⋅=,621(1)x x⋅+展开式中含2x 的项为44262115C x x x ⋅=,故2x 前系数为151530+=,选C. 【考点】二项式定理【名师点睛】对于两个二项式乘积的问题,第一个二项式中的每项乘以第二个二项式的每项,分析好2x 的项共有几项,进行加和.这类问题的易错点主要是未能分析清楚构成这一项的具体情况,尤其是两个二项式展开式中的r 不同.7.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A.10 B.12 C.14 D.16【答案】B8.右面程序框图是为了求出满足3n−2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入A.A>1 000和n=n+1B.A>1 000和n=n+2C.A≤1 000和n=n+1D.A≤1 000和n=n+2【答案】D9.已知曲线C1:y=cos x,C2:y=sin (2x+2π3),则下面结论正确的是A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C2 【答案】D 【解析】试题分析:因为12,C C 函数名不同,所以先将2C 利用诱导公式转化成与1C 相同的函数名,则222:sin(2)cos(2)cos(2)3326C y x x x ππππ=+=+-=+,则由1C 上各点的横坐标缩短到原来的12倍变为sin 2y x =,再将曲线向左平移12π个单位得到2C ,故选D. 【考点】三角函数图像变换.【名师点睛】对于三角函数图像变换问题,首先要将不同名函数转换成同名函数,利用诱导公式,需要重点记住sin cos(),cos sin()22ππαααα=-=+;另外,在进行图像变换时,提倡先平移后伸缩,而先伸缩后平移在考试中经常出现,无论哪种变换,记住每一个变换总是对变量x 而言.10.已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为 A .16B .14C .12D .10【答案】A2222||sin cos()2p pDE παα==-,所以22222211||||4()cos sin cos sin p p AB DE αααα+=+=+ 2222222211sin cos 4()(cos sin )4(2)4(22)16cos sin cos sin αααααααα=++=++≥⋅+=11.设x 、y 、z 为正数,且235x y z ==,则A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z【答案】D12.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是 A .440B .330C .220D .110【答案】A【解析】试题分析:由题意得,数列如下:11,1,2,1,2,4,1,2,4,,2k -LL L则该数列的前(1)122k k k ++++=L 项和为 1(1)1(12)(122)222k k k k S k ++⎛⎫=+++++++=-- ⎪⎝⎭L L 要使(1)1002k k +>,有14k ≥,此时122k k ++<,所以2k +是之后的等比数列11,2,,2k +L 的部分和,即1212221t t k -+=+++=-L ,所以2314tk =-≥,则5t ≥,此时52329k =-=, 对应满足的最小条件为293054402N ⨯=+=,故选A. 【考点】等差数列、等比数列的求和.【名师点睛】本题非常巧妙的将实际问题和数列融合在一起,首先需要读懂题目所表达的具体含义,以及观察所给定数列的特征,进而判断出该数列的通项和求和.另外,本题的难点在于数列里面套数列,第一个数列的和又作为下一个数列的通项,而且最后几项并不能放在一个数列中,需要进行判断. 二、填空题:本题共4小题,每小题5分,共20分.13.已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则| a +2 b |= . 【答案】2314.设x,y满足约束条件2121x yx yx y+≤⎧⎪+≥-⎨⎪-≤⎩,则32z x y=-的最小值为.【答案】5-15.已知双曲线C:22221x ya b-=(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C 的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为________.23【考点】双曲线的简单性质.【名师点睛】双曲线渐近线是其独有的性质,所以有关渐近线问题受到出题者的青睐.做好这一类问题要抓住以下重点:①求解渐近线,直接把双曲线后面的1换成0即可;②双曲线的焦点到渐近线的距离是b;③双曲线的顶点到渐近线的距离是abc.16.如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为_______.【答案】415【考点】简单几何体的体积【名师点睛】对于三棱锥最值问题,肯定需要用到函数的思想进行解决,本题解决的关键是设好未知量,利用图形特征表示出三棱锥体积.当体积中的变量最高次是2次时可以利用二次函数的性质进行解决,当变量是高次时需要用到求导得方式进行解决.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(12分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为23sin a A(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长.【考点】三角函数及其变换.【名师点睛】在处理解三角形问题时,要注意抓住题目所给的条件,当题设中给定三角形的面积,可以使用面积公式建立等式,再将所有边的关系转化为角的关系,有时需将角的关系转化为边的关系;解三角形问题常见的一种考题是“已知一条边的长度和它所对的角,求面积或周长的取值范围”或者“已知一条边的长度和它所对的角,再有另外一个条件,求面积或周长的值”,这类问题通法思路是:全部转化为角的关系,建立函数关系式,如sin()y A x b ωϕ=++,从而求出范围,或利用余弦定理以及基本不等式求范围;求具体的值直接利用余弦定理和给定条件即可. 18.(12分)如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠=o .(1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,90APD ∠=o ,求二面角A -PB -C 的余弦值.则3cos ,||||3⋅==-<>n m n m n m , 所以二面角A PB C --的余弦值为33-. 【考点】面面垂直的证明,二面角平面角的求解【名师点睛】高考对空间向量与立体几何的考查主要体现在以下几个方面:①求异面直线所成的角,关键是转化为两直线的方向向量的夹角;②求直线与平面所成的角,关键是转化直线的方向向量和平面的法向量的夹角;③求二面角,关键是转化为两平面的法向量的夹角.建立空间直角坐标系和表示出所需点的坐标是解题的关键. 19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm ).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布2(,)N μσ.(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(3,3)μσμσ-+之外的零件数,求(1)P X ≥及X 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(3,3)μσμσ-+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性; (ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:9.95 10.12 9.969.96 10.01 9.92 9.98 10.04 10.269.9110.1310.029.2210.0410.059.95经计算得16119.9716i i x x ===∑,161622221111()(16)0.2121616i ii i s x x x x ===-=-≈∑∑,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.用样本平均数x 作为μ的估计值ˆμ,用样本标准差s 作为σ的估计值ˆσ,利用估计值判断是否需对当天的生产过程进行检查?剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据,用剩下的数据估计μ和σ(精确到0.01). 附:若随机变量Z 服从正态分布2(,)N μσ,则(33)0.997 4P Z μσμσ-<<+=,160.997 40.959 2=,0.0080.09≈.试题解析:(1)抽取的一个零件的尺寸在(3,3)μσμσ-+之内的概率为0.9974,从而零件的尺寸在(3,3)μσμσ-+之外的概率为0.0026,故~(16,0.0026)X B .因此(1)1(0)10.99740.0408P X P X ≥=-==-=.X 的数学期望为160.00260.0416EX =⨯=.20.(12分)已知椭圆C :2222=1x y a b+(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1,32),P 4(1,32)中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.(2)设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2,如果l 与x 轴垂直,设l :x =t ,由题设知0t ≠,且||2t <,可得A ,B 的坐标分别为(t ,24t -,(t ,24t -). 则221242421t t k k ---++==-,得2t =,不符合题设. 从而可设l :y kx m =+(1m ≠).将y kx m =+代入2214x y +=得222(41)8440k x kmx m +++-=由题设可知22=16(41)0k m ∆-+>.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2841kmk -+,x 1x 2=224441m k -+.而12121211y y k k x x --+=+121211kx m kx m x x +-+-=+ 1212122(1)()kx x m x x x x +-+=.由题设121k k +=-,故1212(21)(1)()0k x x m x x ++-+=.即222448(21)(1)04141m kmk m k k --+⋅+-⋅=++.解得12m k +=-. 当且仅当1m >-时,0∆>,欲使l :12m y x m +=-+,即11(2)2m y x ++=--, 所以l 过定点(2,1-)【考点】椭圆的标准方程,直线与圆锥曲线的位置关系.【名师点睛】椭圆的对称性是椭圆的一个重要性质,判断点是否在椭圆上,可以通过这一方法进行判断;证明直线过定点的关键是设出直线方程,通过一定关系转化,找出两个参数之间的关系式,从而可以判断过定点情况.另外,在设直线方程之前,若题设中为告知,则一定要讨论直线斜率不存在和存在情况,接着通法是联立方程组,求判别式、韦达定理,根据题设关系进行化简. 21.(12分)已知函数2()(2)x xf x ae a e x =+--.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22.[选修4―4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x a t t y t =+⎧⎨=-⎩(为参数). (1)若a =−1,求C 与l 的交点坐标;(2)若C 上的点到l 17 a.【解析】试题分析:(1)先将曲线C 和直线l 化成普通方程,然后联立求出交点坐标;(2)直线l 的普通方程为440x y a +--=,设C 上的点(3cos ,sin )θθ,l 的距离为17d =.对a 进行讨23.[选修4—5:不等式选讲](10分)已知函数f (x )=–x 2+ax +4,g (x )=│x +1│+│x –1│.(1)当a =1时,求不等式f (x )≥g (x )的解集;(2)若不等式f (x )≥g (x )的解集包含[–1,1],求a 的取值范围.【解析】试题分析:(1)将1a =代入,不等式()()f x g x ≥等价于2|1||1|40x x x x -+++--≤,对x 按1x <-,11x -≤≤,1x >讨论,得出最值的解集;(2)当[1,1]x ∈-时,()2g x =.若()()f x g x ≥的解集包含[1,1]-,。
绝密★启用前2020年普通高等学校招生全国统一考试课标1理科数学2020年全国1高考数学与2020全国1高考数学难度方面相对持平,在选择题和填空题方面难度有所提升,解答题方面难度有所减缓.在保持稳定的基础上,进行适度创新,尤其是选择填空压轴题.试卷内容上体现新课程理念,贴近中学数学教学,坚持对基础性的考查,同时加大了综合性、应用性和创新性的考查,如理科第2、3、10、11、12、16、19题,文科第2、4、9、12、19题.1.体现新课标理念,重视对传统核心考点考查的同时,增加了对数学文化的考查,如理科第2题,文科第4题以中国古代的太极图为背景,考查几何概型.2.关注通性通法.试卷淡化了特殊的技巧,全面考查通性通法,体现了以知识为载体,以方法为依托,以能力考查为目的的命题要求.3.考查了数学思想、数学能力、数学的科学与人文价值,体现了知识与能力并重、科学与人文兼顾的精神.如理科第6、10、13、15题,文科第5、12、13、16题对数形结合思想的考查;理科第11,文科第9题对函数与方程思想的考查;理科第12、16题对数学的科学与人文价值的考查.4.体现了创新性,如理科第19题,文科第19题立意新、情景新、设问新,增强了学生数学应用意识和创新能力.命题趋势:(1)函数与导数知识:以函数性质为基础,考查函数与不等式综合知识,如理科第5题,;以基本初等函数为背景考查构造新函数解决比较大小问题,如理科第11题;对含参单调性以及零点问题的考查,如理科21题,比较常规.(2)三角函数与解三角形知识:对三角函数图像与性质的考查,如理科第9题;;对解三角形问题的考查,如理科第17题.重视对基础知识与运算能力的考查.(3)数列知识:对数列性质的考查,如理科第4题;突出了数列与现实生活的联系,考查学生分析问题的能力,如理科第12题,难点较大.整体考查比较平稳,没有出现偏、怪的数列相关考点.(4)立体几何知识:对立体几何图形的认识与考查,如理科第7题,试题难度不大,比较常规;对简单几何体的体积知识的考查,如理科第16题,用到函数知识进行解决,体现了综合性,难度较大,立体几何解答题的考查较常规,如理科对二面角的考查.(5)解析几何知识:对圆锥曲线综合知识的考查,如理科第15题,难度偏大;解答题考查较为常规,考查直线与圆锥曲线的位置关系,难度中等,重视对学生运算能力的考查.【试卷解析】一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x |x <1},B ={x |31x <},则 A .{|0}A B x x =<I B .A B =R U C .{|1}A B x x =>UD .A B =∅I【答案】A2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14 B .π8 C .12D .π4【答案】B 【解析】试题分析:设正方形边长为a ,则圆的半径为2a ,则正方形的面积为2a ,圆的面积为24a π.由图形的对称性可知,太极图中黑白部分面积相等,即各占圆面积的一半.由几何概型概率的计算公式得,此点取自黑色部分的概率是221248a a ππ⋅=,选B. 秒杀解析:由题意可知,此点取自黑色部分的概率即为黑色部分面积占整个面积的比例,由图可知其概率1142p <<,故选B.【考点】几何概型【名师点睛】对于几何概型的计算,首先确定事件类型为几何概型并确定其几何区域(长度、面积、体积或时间),其次计算基本事件区域的几何度量和事件A 区域的几何度量,最后计算()P A . 3.设有下面四个命题1p :若复数z 满足1z ∈R ,则z ∈R ;2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数12,z z 满足12z z ∈R ,则12z z =;4p :若复数z ∈R ,则z ∈R .其中的真命题为 A.13,p pB .14,p pC .23,p pD .24,p p【答案】B4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为A .1B .2C .4D .8【答案】C 【解析】试题分析:设公差为d ,45111342724a a a d a d a d +=+++=+=,611656615482S a d a d ⨯=+=+=,联立112724,61548a d a d +=⎧⎨+=⎩解得4d =,故选C.秒杀解析:因为166346()3()482a a S a a +==+=,即3416a a +=,则4534()()24168a a a a +-+=-=,即5328a a d -==,解得4d =,故选C. 【考点】等差数列的基本量求解【名师点睛】求解等差数列基本量问题时,要多多使用等差数列的性质,如{}n a 为等差数列,若m n p q +=+,则m n p q a a a a +=+.5.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是 A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]【答案】D6.621(1)(1)x x++展开式中2x 的系数为 A .15B .20C .30D .35【答案】C 【解析】试题分析:因为6662211(1)(1)1(1)(1)x x x x x++=⋅++⋅+,则6(1)x +展开式中含2x 的项为2226115C x x ⋅=,621(1)x x⋅+展开式中含2x 的项为44262115C x x x ⋅=,故2x 前系数为151530+=,选C. 【考点】二项式定理【名师点睛】对于两个二项式乘积的问题,第一个二项式中的每项乘以第二个二项式的每项,分析好2x 的项共有几项,进行加和.这类问题的易错点主要是未能分析清楚构成这一项的具体情况,尤其是两个二项式展开式中的r 不同.7.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A.10 B.12 C.14 D.16【答案】B8.右面程序框图是为了求出满足3n−2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入A.A>1 000和n=n+1B.A>1 000和n=n+2C.A≤1 000和n=n+1D.A≤1 000和n=n+2【答案】D9.已知曲线C1:y=cos x,C2:y=sin (2x+2π3),则下面结论正确的是A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C2 【答案】D 【解析】试题分析:因为12,C C 函数名不同,所以先将2C 利用诱导公式转化成与1C 相同的函数名,则222:sin(2)cos(2)cos(2)3326C y x x x ππππ=+=+-=+,则由1C 上各点的横坐标缩短到原来的12倍变为sin 2y x =,再将曲线向左平移12π个单位得到2C ,故选D. 【考点】三角函数图像变换.【名师点睛】对于三角函数图像变换问题,首先要将不同名函数转换成同名函数,利用诱导公式,需要重点记住sin cos(),cos sin()22ππαααα=-=+;另外,在进行图像变换时,提倡先平移后伸缩,而先伸缩后平移在考试中经常出现,无论哪种变换,记住每一个变换总是对变量x 而言.10.已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为 A .16B .14C .12D .10【答案】A2222||sin cos()2p pDE παα==-,所以22222211||||4()cos sin cos sin p p AB DE αααα+=+=+ 2222222211sin cos 4()(cos sin )4(2)4(22)16cos sin cos sin αααααααα=++=++≥⋅+=11.设x 、y 、z 为正数,且235x y z ==,则A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z【答案】D12.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是 A .440B .330C .220D .110【答案】A【解析】试题分析:由题意得,数列如下:11,1,2,1,2,4,1,2,4,,2k -LL L则该数列的前(1)122k k k ++++=L 项和为 1(1)1(12)(122)222k k k k S k ++⎛⎫=+++++++=-- ⎪⎝⎭L L 要使(1)1002k k +>,有14k ≥,此时122k k ++<,所以2k +是之后的等比数列11,2,,2k +L 的部分和,即1212221t t k -+=+++=-L ,所以2314tk =-≥,则5t ≥,此时52329k =-=, 对应满足的最小条件为293054402N ⨯=+=,故选A. 【考点】等差数列、等比数列的求和.【名师点睛】本题非常巧妙的将实际问题和数列融合在一起,首先需要读懂题目所表达的具体含义,以及观察所给定数列的特征,进而判断出该数列的通项和求和.另外,本题的难点在于数列里面套数列,第一个数列的和又作为下一个数列的通项,而且最后几项并不能放在一个数列中,需要进行判断. 二、填空题:本题共4小题,每小题5分,共20分.13.已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则| a +2 b |= . 【答案】2314.设x,y满足约束条件2121x yx yx y+≤⎧⎪+≥-⎨⎪-≤⎩,则32z x y=-的最小值为.【答案】5-15.已知双曲线C:22221x ya b-=(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C 的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为________.23【考点】双曲线的简单性质.【名师点睛】双曲线渐近线是其独有的性质,所以有关渐近线问题受到出题者的青睐.做好这一类问题要抓住以下重点:①求解渐近线,直接把双曲线后面的1换成0即可;②双曲线的焦点到渐近线的距离是b;③双曲线的顶点到渐近线的距离是abc.16.如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为_______.【答案】415【考点】简单几何体的体积【名师点睛】对于三棱锥最值问题,肯定需要用到函数的思想进行解决,本题解决的关键是设好未知量,利用图形特征表示出三棱锥体积.当体积中的变量最高次是2次时可以利用二次函数的性质进行解决,当变量是高次时需要用到求导得方式进行解决.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(12分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为23sin a A(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长.【考点】三角函数及其变换.【名师点睛】在处理解三角形问题时,要注意抓住题目所给的条件,当题设中给定三角形的面积,可以使用面积公式建立等式,再将所有边的关系转化为角的关系,有时需将角的关系转化为边的关系;解三角形问题常见的一种考题是“已知一条边的长度和它所对的角,求面积或周长的取值范围”或者“已知一条边的长度和它所对的角,再有另外一个条件,求面积或周长的值”,这类问题通法思路是:全部转化为角的关系,建立函数关系式,如sin()y A x b ωϕ=++,从而求出范围,或利用余弦定理以及基本不等式求范围;求具体的值直接利用余弦定理和给定条件即可. 18.(12分)如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠=o .(1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,90APD ∠=o ,求二面角A -PB -C 的余弦值.则3cos ,||||3⋅==-<>n m n m n m , 所以二面角A PB C --的余弦值为33-. 【考点】面面垂直的证明,二面角平面角的求解【名师点睛】高考对空间向量与立体几何的考查主要体现在以下几个方面:①求异面直线所成的角,关键是转化为两直线的方向向量的夹角;②求直线与平面所成的角,关键是转化直线的方向向量和平面的法向量的夹角;③求二面角,关键是转化为两平面的法向量的夹角.建立空间直角坐标系和表示出所需点的坐标是解题的关键. 19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm ).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布2(,)N μσ.(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(3,3)μσμσ-+之外的零件数,求(1)P X ≥及X 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(3,3)μσμσ-+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性; (ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:9.95 10.12 9.969.96 10.01 9.92 9.98 10.04 10.269.9110.1310.029.2210.0410.059.95经计算得16119.9716i i x x ===∑,161622221111()(16)0.2121616i ii i s x x x x ===-=-≈∑∑,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.用样本平均数x 作为μ的估计值ˆμ,用样本标准差s 作为σ的估计值ˆσ,利用估计值判断是否需对当天的生产过程进行检查?剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据,用剩下的数据估计μ和σ(精确到0.01). 附:若随机变量Z 服从正态分布2(,)N μσ,则(33)0.997 4P Z μσμσ-<<+=,160.997 40.959 2=,0.0080.09≈.试题解析:(1)抽取的一个零件的尺寸在(3,3)μσμσ-+之内的概率为0.9974,从而零件的尺寸在(3,3)μσμσ-+之外的概率为0.0026,故~(16,0.0026)X B .因此(1)1(0)10.99740.0408P X P X ≥=-==-=.X 的数学期望为160.00260.0416EX =⨯=.20.(12分)已知椭圆C :2222=1x y a b+(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1,32),P 4(1,32)中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.(2)设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2,如果l 与x 轴垂直,设l :x =t ,由题设知0t ≠,且||2t <,可得A ,B 的坐标分别为(t ,24t -,(t ,24t -). 则221242421t t k k ---++==-,得2t =,不符合题设. 从而可设l :y kx m =+(1m ≠).将y kx m =+代入2214x y +=得222(41)8440k x kmx m +++-=由题设可知22=16(41)0k m ∆-+>.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2841kmk -+,x 1x 2=224441m k -+.而12121211y y k k x x --+=+121211kx m kx m x x +-+-=+ 1212122(1)()kx x m x x x x +-+=.由题设121k k +=-,故1212(21)(1)()0k x x m x x ++-+=.即222448(21)(1)04141m kmk m k k --+⋅+-⋅=++.解得12m k +=-. 当且仅当1m >-时,0∆>,欲使l :12m y x m +=-+,即11(2)2m y x ++=--, 所以l 过定点(2,1-)【考点】椭圆的标准方程,直线与圆锥曲线的位置关系.【名师点睛】椭圆的对称性是椭圆的一个重要性质,判断点是否在椭圆上,可以通过这一方法进行判断;证明直线过定点的关键是设出直线方程,通过一定关系转化,找出两个参数之间的关系式,从而可以判断过定点情况.另外,在设直线方程之前,若题设中为告知,则一定要讨论直线斜率不存在和存在情况,接着通法是联立方程组,求判别式、韦达定理,根据题设关系进行化简. 21.(12分)已知函数2()(2)x xf x ae a e x =+--.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22.[选修4―4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x a t t y t =+⎧⎨=-⎩(为参数). (1)若a =−1,求C 与l 的交点坐标;(2)若C 上的点到l 17 a.【解析】试题分析:(1)先将曲线C 和直线l 化成普通方程,然后联立求出交点坐标;(2)直线l 的普通方程为440x y a +--=,设C 上的点(3cos ,sin )θθ,l 的距离为17d =.对a 进行讨23.[选修4—5:不等式选讲](10分)已知函数f (x )=–x 2+ax +4,g (x )=│x +1│+│x –1│.(1)当a =1时,求不等式f (x )≥g (x )的解集;(2)若不等式f (x )≥g (x )的解集包含[–1,1],求a 的取值范围.【解析】试题分析:(1)将1a =代入,不等式()()f x g x ≥等价于2|1||1|40x x x x -+++--≤,对x 按1x <-,11x -≤≤,1x >讨论,得出最值的解集;(2)当[1,1]x ∈-时,()2g x =.若()()f x g x ≥的解集包含[1,1]-,。
2020年全国卷(3)理科数学2020年普通高等学校招生全国统一考试全国卷(Ⅲ)理科数学适用地区:云南、贵州、四川、广西、西藏等一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合$A={(x,y)|x,y\in N^*,y\geq x}$,$B={(x,y)|x+y=8}$,则$A\cap B$中元素的个数为A.2 B.3 C.4 D.62.复数的虚部是$\dfrac{1-3i}{1331}$,则实部是A.$-\dfrac{3}{1331}$ B.$-\dfrac{1}{1331}$ C.$\dfrac{1}{1331}$ D.$\dfrac{3}{1331}$3.在一组样本中,1,2,3,4出现的频率分别为$p_1$,$p_2$,$p_3$,$p_4$,且$\sum\limits_{i=1}^4 p_i=1$,则下面四种情形中,对应样本的标准差最大的一组是A.$p_1=p_4=0.1$,$p_2=p_3=0.4$ B.$p_1=p_4=0.4$,$p_2=p_3=0.1$ C.$p_1=p_4=0.2$,$p_2=p_3=0.3$ D.$p_1=p_4=0.3$,$p_2=p_3=0.2$4.Logistic模型是常用数学模型之一,可应用于流行病学领域。
有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数$I(t)$($t$的单位:天)的Logistic模型$I(t)=\dfrac{K}{1+e^{-0.23(t-53)}}$,其中$K$为最大确诊病例数,当$I(t^*)=0.95K$时,标志着已初步遏制疫情,则$t^*$约为($\ln19\approx3$)A.60 B.63 C.66 D.695.设$O$为坐标原点,直线$x=2$与抛物$C:y^2=2px$($p>0$)交于$D$,$E$两点,若$OD\perp OE$,则$C$的焦点坐标为A.$(1,0)$ B.$(2,0)$ C.$\left(-\dfrac{1}{2},0\right)$ D.$\left(-1,0\right)$6.已知向量$\vec{a},\vec{b}$满足$|\vec{a}|=5,|\vec{b}|=6,\vec{a}\cdot\vec{b}=-6$,则$\cos\angle(\vec{a},\vec{a}+\vec{b})=$A.$-\dfrac{31}{119}$ B.$-\dfrac{35}{101}$ C.$\dfrac{35}{101}$ D.$\dfrac{31}{119}$7.已知$\triangle ABC$中,$AB=2$,$AC=4$,$BC=3$,则$\cos B=$A.$\dfrac{11}{12}$ B.$\dfrac{9}{32}$ C.$\dfrac{1}{2 }$ D.$\dfrac{3}{8}$8.右图为某几何体的三视图,则该几何体的表面积为A.$6+4\sqrt{2}$ B.$4+4\sqrt{2}$ C.$6+2\sqrt{3}$ D.$4+2\sqrt{3}$9.已知$2\tan\theta-\tan(\theta+\dfrac{\pi}{4})=7$,则$\tan\theta=$A.$-2$ B.$-1$ C.$1$ D.$2$11.该市空气质量等级为1,2,3,4的概率分别为P1,P2,P3,P4.2.求一天中到该公园锻炼的平均人次的估计值,即(400*P1+400*P2+800*P3+1200*P4)/4.3.完成2*2列联表,判断一天中到公园锻炼的人次与该市当天的空气质量是否有关,使用公式计算P值,若P值小于0.05,则有95%的把握认为有关。
理科数学试题弟 贞(共5 fi )A.4 500 元D.6 0∞ 元绝密★总用祁 2020年普通高竽学校招生全国统一考试•联考理科数学本试卷共5页,23小题(含选再题),淄分150分,野试用时⑵ 分钟. 注爲事项:∣∙答卷前•考牛务必将自己的姓名芳牛号、考场号和座付号填写金答题卡上•用2R 铅笔将试卷 类型(R )填涂在答题卡相应位買上,将条形码横贴在答题卡右上角“条形码粘贴处”. 2. 作答选择题时.选出毎小题答案后.用2R 铅笔在答题卡匕对应题冃选项的答案信息点涂 然;如需改动,用橡皮擦于净后,在选涂具他答案.答案不能答在试卷上.3. 卄选择題必须用黑色字迹的钢笔或签字笔作答,容案必须写在答题卡各题忖指定区域内 相应位置上;如需改动,先划掉原来的答案•然后再写上新答案;不准使用铅笔和涂改液. 不按以上要求作答无效・4. 选考题的作答:先把所选题目的题号在答题卡匕指定的位置用2B 铅笔涂黑。
答案写在 答题R L 对应的答题区域内•写在试卷、茸稿纸和答题R I.的非答题区域均无效C5. 為试结束后,请将本试卷和答题K 一并上交氏 一、选择题:本题共12小题,毎小題5分,共60分.在甜小题给岀的四个选项中,只育一项是符合题目要求的•I.设集合A = MX 2-2r-3<0,r∈∕V},则集合A 的真子集有 A.5个B.6个C∙7个D∙8个2.已知混虚数单位,则化简(; ^y O20的结果为AJB.TCTD 」3.若干年囲,某教师刚退休的月退休金为4 0∞元,月诅休金各种用途占比统计图如下面的条形 图孩教师退休后加强了体育綏炼,冃的月追休金的各种用途占比统计图如下面的折线图•巳 知H 前的月就页费比刚退休时少IOO 兀,则H 肚该教帅的月退休金为试卷类型:BB.5 000 JLC.5 500 元理科数学试题第2页(共5币)A∙9两G 266πrc∙W ■两250 T274•将包話甲上■丙在内的X 人平均分成两组参加“文明交通乜愿若活动,其中一组指挥交通, 一组分发宣传资料,则甲Z 至少一人参加指挥交通且甲、丙不在同一组的概率为 A,⅜ 75•已知她物线y 2 =4x 的焦点为八过点F 和抛物线上一点M(3∙2√J)的直线I 交抛物线丁另一 点 /V,则IpFl : I/VMI 等于 A.1 : 2B.1 : 3C.1 : 4D.1 : 436. 在所有棱长都相竽的首三棱柱ABC-A I B l C I 中,0,E 分别为棱CC I I AC 的中点•则首线仙与 平面H x UE 所成角的余弦值为C √30G √∏0TV √70F ⅛C∙^⅞^D∙^ΠΓ^>07. 已知点A(4,3) •点B 为不尊式组y-yWO 所表示平面K 域上的任意一点,则IAB I 的最小x+2y-6≤0值为 A.5B.—C.√58. 给出下列说法:① 定义在[a 9b ]卜的偶函数/(x) = √-(α+4)z+Λ的賢大值为20; ② 絕■绘∙ la 冲“"的充分不必要条件;4③ 命 Ir 3x φe (0,+» )竝+丄 M2”的否定形式 Jft “ ∀xe(0,+oo) ,x+-<2∖X其中正确说法的个数为 A.0B.lC.2D.39. B⅛log m 3>0,α=m k ∙?,b =m ,β∙? I C- Irf a5 ,JM a,b r c 间的大小关系为 A.α<∂<cB.b<a<cC.c<a<bD.6<c<α10. 元代数学家朱世杰在《算学启蒙〉中提及如下问题:今有银-秤-斤十两(1秤=15斤,1斤=16丙),令甲、乙、丙从上作折半羞分Z,问:各得几何?其奁思是:现有银一秤一斤十两,现 将银分给甲、乙、丙三人,他们三人毎一个人所得是前一个人所得的一半•若银的数量不变, 按此法将银依次分给7个人•则得银最少的-•个人得银 c ∙7A V z 30A nr理科数学试題第3页(共5页)12. 已知/(”)为奇函数,g(%)为偶函数,且/(%)怙d)=b β3(3W),不等式3g(*)∙√μHM 对 恒成立,则/的晟大值为 A 」B.3-2 log 32C.2D.ylog j 2-I 二、填空题:本题共4小题,每小题5分,共20分. 13.已知向星"(2厂√5)J=(1.2√5),则/在。
2020年普通高等学校招生全国统一考试·全国Ⅲ卷理科数学答案解析一、选择题 1.【答案】C【解析】采用列举法列举出A B 中元素的即可.由题意,A B 中的元素满足8y x x y ⎧⎨+=⎩≥,且x ,*y ∈N ,由82x y x +=≥,得4x ≤,所以满足8x y +=的有()17,,()26,,()35,,()44,,故A B 中元素的个数为4.故选:C .【考点】集合的交集运算,交集定义的理解 2.【答案】D【解析】利用复数的除法运算求出z 即可.因为()()113131313131010i z i i i i +===+--+,所以复数113z i=-的虚部为310.故选:D . 【考点】复数的除法运算,复数的虚部的定义 3.【答案】B【解析】计算出四个选项中对应数据的平均数和方差,由此可得出标准差最大的一组. 对于A 选项,该组数据的平均数为()()140.1230.4 2.5A x =+⨯++⨯=,方差为()()()()222221 2.50.12 2.50.43 2.50.44 2.50.10.65A s =-⨯+-⨯+-⨯+-⨯=;对于B 选项,该组数据的平均数为()()140.4230.1 2.5B x =+⨯++⨯=,方差为()()()()222221 2.50.42 2.50.13 2.50.14 2.50.4 1.85B s =-⨯+-⨯+-⨯+-⨯=;对于C 选项,该组数据的平均数为()()140.2230.3 2.5C x =+⨯++⨯=,方差为()()()()222221 2.50.22 2.50.33 2.50.34 2.50.2 1.05C s =-⨯+-⨯+-⨯+-⨯=;对于D 选项,该组数据的平均数为()()140.3230.2 2.5D x =+⨯++⨯=,方差为()()()()222221 2.50.32 2.50.23 2.50.24 2.50.3 1.45D s =-⨯+-⨯+-⨯+-⨯=.因此,B 选项这一组的标准差最大.故选:B . 【考点】标准差的大小比较,方差公式的应用 4.【答案】C【解析】将t t *=代入函数()()0.23531t K I t e --=+结合()0.95I t K *=求得t *即可得解.()()0.23531t K I t e --=+,所以()()0.23530.951t KI t K e**--==+,则()*0.235319t e -=,所以,()0.2353ln193t *-=≈,解得353660.23t *+≈≈.故选:C .【考点】对数的运算,指数与对数的互化 5.【答案】B【解析】根据题中所给的条件OD OE ⊥,结合抛物线的对称性,可知4DOx EOx π∠=∠=,从而可以确定出点D 的坐标,代入方程求得p 的值,进而求得其焦点坐标,得到结果.因为直线2x =与抛物线()220y px p =>交于E ,D 两点,且OD OE ⊥,根据抛物线的对称性可以确定4DOx EOx π∠=∠=,所以()22D ,,代入抛物线方程44p =,求得1p =,所以其焦点坐标为102⎛⎫⎪⎝⎭,,故选:B .【考点】圆锥曲线,直线与抛物线的交点,抛物线的对称性,点在抛物线上的条件,抛物线的焦点坐标 6.【答案】D【解析】计算出()a ab ⋅+、a b +的值,利用平面向量数量积可计算出cos a a b +,的值.5a =,6b =,6a b ⋅=-,()225619a a b a a b ∴⋅+=+⋅=-=.()2222257a b a ba ab b +=+=+⋅+=-,因此,()1919cos 5735a a ba ab a a b⋅++===⨯⋅+,.故选:D . 【考点】平面向量夹角余弦值的计算,平面向量数量积的计算,向量模的计算 7.【答案】A【解析】根据已知条件结合余弦定理求得AB ,再根据222cos 2AB BC AC B AB BC+-=⋅,即可求得答案.在ABC △中,2cos 3C =,4AC =,3BC =.根据余弦定理:2222cos AB AC BC AC BC C =+-⋅⋅,2224322433AB =+-⨯⨯⨯,可得29AB =,即3AB =.由22299161cos 22339AB BC AC B AB BC +-+-===⋅⨯⨯,故1cos 9B =.故选:A . 【考点】余弦定理解三角形8.【答案】C【解析】根据三视图特征,在正方体中截取出符合题意的立体图形,求出每个面的面积,即可求得其表面积.根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222ABC ADC CDB S S S ===⨯⨯=△△△,根据勾股定理可得:AB AD DB ===ADB ∴△是边长为,根据三角形面积公式可得:(211sin 6022ADBS AB AD =⋅⋅==△∴该几何体的表面积是:632=⨯++ 故选:C .【考点】根据三视图求立体图形的表面积,根据三视图画出立体图形 9.【答案】D【解析】利用两角和的正切公式,结合换元法,解一元二次方程,即可得出答案.2tan tan 74πθθ⎛⎫-+= ⎪⎝⎭,tan 12tan 71tan θθθ+∴-=-,令tan t θ=,1t ≠,则1271tt t+-=-,整理得2440t t -+=,解得2t =,即tan 2θ=.故选:D .【考点】利用两角和的正切公式化简求值 10.【答案】D【解析】根据导数的几何意义设出直线l 的方程,再由直线与圆相切的性质,即可得出答案.设直线l 在曲线y =(0x,则00x >,函数y导数为y '=,则直线l 的斜率k =,设直线l 的方程为)0y x x =-,即00xx -+=,由于直线l 与圆2215x y +=相切,则=,两边平方并整理得2005410x x --=,解得01x=,015x =-(舍),则直线l 的方程为210x y -+=,即1122y x =+.故选:D .【考点】导数的几何意义的应用,直线与圆的位置的应用 11.【答案】A【解析】根据双曲线的定义,三角形面积公式,勾股定理,结合离心率公式,即可得出答案.5ca=,c ∴,根据双曲线的定义可得122PF PF a -=,1212142PF F PF S PF =⋅=△,即128PF PF ⋅=, 12F P F P ⊥,()222122PF PF c ∴+=,()22121224PF PF PF PF c ∴-+⋅=,即22540a a -+=,解得1a =,故选:A .【考点】双曲线的性质以及定义的应用,勾股定理,三角形面积公式的应用 12.【答案】A【解析】由题意可得a 、b 、()01c ∈,,利用作商法以及基本不等式可得出a 、b 的大小关系,由8log 5b =,得85b =,结合5458<可得出45b <,由13log 8c =,得138c =,结合45138<,可得出45c >,综合可得出a 、b 、c 的大小关系.由题意可知a 、b 、()01c ∈,, ()222528log 3lg3lg81lg3lg8lg3lg8lg 241log 5lg5lg522lg5lg 25lg5a b ⎛⎫⎛⎫++⎛⎫==⋅⋅==⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭<<,a b ∴<;由8log 5b =,得85b =,由5458<,得5488b <,54b ∴<,可得45b <;由13log 8c =,得138c =,由45138<,得451313c <,54c ∴>,可得45c >.综上所述,a b c <<.故选:A .【考点】对数式的大小比较,基本不等式、对数式与指数式的互化,指数函数单调性的应用 二、填空题 13.【答案】7【解析】作出可行域,利用截距的几何意义解决.不等式组所表示的可行域如图.因为32z x y =+,所以322x z y =-+,易知截距2z 越大,则z 越大,平移直线32x y =-,当322x zy =-+经过A 点时截距最大,此时z 最大,由21y x x =⎧⎨=⎩,得12x y =⎧⎨=⎩,()12A ,,所以max 31227z =⨯+⨯=.故答案为:7.【考点】简单线性规划的应用,求线性目标函数的最大值 14.【答案】240【解析】写出622x x ⎛⎫+ ⎪⎝⎭二项式展开通项,即可求得常数项.622x x ⎛⎫+ ⎪⎝⎭其二项式展开通项:()()()621221236661222rrr r r r r r r r r C xC x C x x T x ---+-⎛⎫⋅⋅⋅⋅=⋅⎭= ⎝=⎪,当1230r -=,解得4r =,622x x ⎛⎫∴+ ⎪⎝⎭的展开式中常数项是:664422161516240C C ⋅=⋅=⨯=.故答案为:240.【考点】二项式定理,利用通项公式求二项展开式中的指定项15. 【解析】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.将原问题转化为求解圆锥内切球的问题,然后结合截面确定其半径即可确定体积的值.易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示,其中2BC =,3AB AC ==,且点M 为BC 边上的中点,设内切圆的圆心为O ,由于AM ==122S =⨯⨯=△ABC r ,则:()11113322222ABC AOB BOC AOC S S S S AB r BC r AC r r =++=⨯⨯+⨯⨯+⨯⨯=⨯++⨯=△△△△r,其体积:343V r π=.. 16.【答案】②③【解析】利用特殊值法可判断命题①的正误;利用函数奇偶性的定义可判断命题②的正误;利用对称性的定义可判断命题③的正误;取0x π-<<可判断命题④的正误.综合可得出结论.对于命题①,152622f π⎛⎫=+= ⎪⎝⎭,152622fπ⎛⎫-=--=- ⎪⎝⎭,则66f f ππ⎛⎫⎛⎫-≠ ⎪ ⎪⎝⎭⎝⎭,所以,函数()f x 的图象不关于y 轴对称,命题①错误;对于命题②,函数()f x 的定义域为{}x x k k π≠∈Z ,,定义域关于原点对称,()()()()111sin sin sin sin sin sin f x x x x f x x x x ⎛⎫-=-+=--=-+=- ⎪-⎝⎭,所以,函数()f x 的图象关于原点对称,命题②正确;对于命题③,11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫-=-+=+⎪ ⎪⎛⎫⎝⎭⎝⎭- ⎪⎝⎭, 11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫+=++=+⎪ ⎪⎛⎫⎝⎭⎝⎭+ ⎪⎝⎭,则22f x f x ππ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,所以,函数()f x 的图象关于直线2x π=对称,命题③正确;对于命题④,当0x π-<<时,sin 0x <,()1sin 02sin f x x x=+<<,命题④错误.故答案为:②③.【考点】正弦型函数的奇偶性、对称性,最值的求解 三、解答题17.【答案】(1)25a =,37a =,21n a n =+,当1n =时,13a =成立;假设n k =时,21k a k =+成立.那么1n k =+时,()()134321423211k k a a k k k k k +=-=+-=+=++也成立.则对任意的*n ∈N ,都有21n a n =+成立.(2)()12122n n S n +=-⋅+【解析】(1)利用递推公式得出2a ,3a ,猜想得出{}n a 的通项公式,利用数学归纳法证明即可.由题意可得2134945a a =-=-=,32381587a a =-=-=,由数列{}n a 的前三项可猜想数列{}n a 是以3为首项,2为公差的等差数列,即21n a n =+,证明如下:当1n =时,13a =成立;假设n k =时,21k a k =+成立.那么1n k =+时,()()134321423211k k a a k k k k k +=-=+-=+=++也成立.则对任意的*n ∈N ,都有21n a n =+成立;(2)由错位相减法求解即可.由(1)可知,()2212n nn a n ⋅=+⋅,()()231325272212212n n n S n n -=⨯+⨯+⨯++-⋅++⋅,①()()23412325272212212n n n S n n +=⨯+⨯+⨯++-⋅++⋅,②,由-①②得:()()()()()21231112126222221262212122212n n n n n n S n n n -+++--=+⨯+++-+⋅=+⨯-+⋅=⋅⨯---,即()12122n n S n +=-⋅+.【考点】求等差数列的通项公式,利用错位相减法求数列的和18.【答案】(1)该市一天的空气质量等级分别为1、2、3、4的概率分别为0.43、0.27、0.21、0.09 (2)350(3()221003383722 5.820 3.84155457030K ⨯⨯-⨯=⨯⨯⨯≈>,因此,有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.【解析】(1)根据频数分布表可计算出该市一天的空气质量等级分别为1、2、3、4的概率.由频数分布表可知,该市一天的空气质量等级为1的概率为216250.43100++=,等级为2的概率为510120.27100++=,等级为3的概率为6780.21100++=,等级为4的概率为7200.09100++=. (2)利用每组的中点值乘以频数,相加后除以100可得结果.由频数分布表可知,一天中到该公园锻炼的人次的平均数为100203003550045350100⨯+⨯+⨯=.(3)根据表格中的数据完善22⨯列联表,计算出2K 的观测值,再结合临界值表可得结论.22⨯列联表如下:()221003383722 5.820 3.84155457030K ⨯⨯-⨯=⨯⨯⨯≈>,因此,有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.【考点】利用频数分布表计算频率和平均数,独立性检验的应用19.【答案】(1)在棱1CC 上取点G ,使得112C G CG =,连接DG 、FG 、1C E 、1C F ,长方体1111ABCD A B C D -中,AD BC ∥且AD BC =,11BB CC ∥且11BB CC =,112C G CG=12BF FB =,112233CG CC BB BF ∴===且CG BF =,所以,四边形BCGF 平行四边形,则AF DG∥且AF DG =,同理可证四边形1DEC G 为平行四边形,1C E DG ∴∥且1C E DG =,1C E AF ∴∥且1C E AF =,则四边形1AEC F 为平行四边形,因此,点1C 在平面AEF 内.(2)7【解析】(1)连接1C E 、1C F ,证明出四边形1AEC F 为平行四边形,进而可证得点1C 在平面AEF 内.在棱1CC 上取点G ,使得112C G CG =,连接DG 、FG 、1C E 、1C F ,长方体1111ABCD A B C D -中,AD BC ∥且AD BC =,11BB CC ∥且11BB CC =,112C G CG=12BF FB =,112233CG CC BB BF ∴===且CG BF =,所以,四边形BCGF 平行四边形,则AF DG∥且AF DG =,同理可证四边形1DEC G 为平行四边形,1C E DG ∴∥且1C E DG =,1C E AF ∴∥且1C E AF =,则四边形1AEC F 为平行四边形,因此,点1C 在平面AEF 内;(2)以点1C 为坐标原点,11C D 、11C B 、1C C 所在直线分别为x 、y 、z 轴建立空间直角坐标系1C xyz -,利用空间向量法可计算出二面角1A EF A --的余弦值,进而可求得二面角1A EF A --的正弦值.以点1C 为坐标原点,11C D 、11C B 、1C C 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系1C xyz -,则()213A ,,、()1210A ,,、()202E ,,、()011F ,,,()011AE =--,,,()202AF =--,,,()1012A E =-,,,()1201A F =-,,,设平面AEF 的法向量为()111m x y z =,,,由00m AE m AF ⎧⋅⎪⎨⋅=⎪⎩=,得11110220y z x z --=⎧⎨--=⎩取11z =-,得111x y ==,则()111m =-,,,设平面1A EF 的法向量为()222n x y z =,,,由1100n A E n A F ⎧⋅=⎪⎨⋅=⎪⎩,得22222020y z x z -+=⎧⎨-+=⎩,取22z =,得21x =,24y =,则()142n =,,,3cos 3m n m n m n⋅===⨯⋅,,设二面角1A EF A--的平面角为θ,则cos θ=,sinθ∴==.因此,二面角1A EF A --.【考点】点在平面的证明,利用空间向量法求解二面角20.【答案】(1)221612525x y +=(2)52【解析】(1)因为()222:10525x y C m m+=<<,可得5a =,b m =,根据离心率公式,结合已知,即可求得答案.()222:10525x y C m m +=<<,5a∴=,b m =,根据离心率4c e a ====, 解得54m =或54m =-(舍),C ∴的方程为:22214255x y ⎛⎫ ⎪⎝⎭+=,即221612525x y +=. (2)点P 在C 上,点Q 在直线6x =上,且BP BQ =,BP BQ ⊥,过点P 作x 轴垂线,交点为M ,设6x =与x 轴交点为N ,可得PMB BNQ ≅△△,可求得P 点坐标,求出直线AQ 的直线方程,根据点到直线距离公式和两点距离公式,即可求得APQ △的面积.点P 在C 上,点Q 在直线6x =上,且BP BQ =,BP BQ ⊥,过点P 作x 轴垂线,交点为M ,设6x =与x 轴交点为N .根据题意画出图形,如图BP BQ =,BP BQ ⊥,90PMB QNB ∠=∠=,又90PBM QBN ∠+∠=,90BQN QBN ∠+∠=,PBM BQN ∴∠=∠,根据三角形全等条件“AAS ”,可得:PMB BNQ ≅△△,221612525x y +=, ()50B ∴,,651PM BN ∴==-=,设P 点为()P P x y ,,可得P 点纵坐标为1P y =,将其代入221612525x y +=,可得:21612525P x +=,解得:3P x =或3P x =-,P ∴点为()31,或()31-,, ①当P 点为()31,时,故532MB =-=,PMB BNQ ≅△△,2MB NQ ∴==,可得:Q 点为()62,,画 出图象,如图()50A -,,()62Q ,,可求得直线AQ 的直线方程为:211100x y -+=,根据点到直线距离公式可得P 到直线AQ 的距离为:d ===,根据两点间距离公式可得:AQ =,APQ ∴△面积为:1522⨯=;②当P 点为()31-,时,故5+38MB ==,PMB BNQ ≅△△,8MB NQ ∴==,可得:Q 点为()68,,画出图象,如图()50A -,,()68Q ,,可求得直线AQ 的直线方程为:811400x y -+=,根据点到直线距离公式可得P到直线AQ 的距离为:d ===AQ ==APQ ∴△面积为:1522=,综上所述,APQ △面积为:52. 【考点】椭圆标准方程,三角形面积,椭圆的离心率定义,数形结合求三角形面积 21.【答案】(1)34b =-(2)由(1)可得()334f x x x c =-+,()231133422f x x x x ⎛⎫⎛⎫'=-=+- ⎪⎪⎝⎭⎝⎭,令()0f x '>,得12x >或12x -<;令()0f x '<,得1122x -<<,所以()f x 在1122⎛⎫- ⎪⎝⎭,上单调递减,在12⎛⎫-∞- ⎪⎝⎭,,12⎛⎫+∞ ⎪⎝⎭,上单调递增,且()114f c -=-,1124f c ⎛⎫-=+ ⎪⎝⎭,1124f c ⎛⎫=- ⎪⎝⎭,()114f c =+,若()f x 所有零点中存在一个绝对值大于1的零点0x ,则()10f ->或()10f <,即14c >或14c -<.当14c >时,()1104f c -=->,11024f c ⎛⎫-=+ ⎪⎝⎭>,11024f c ⎛⎫=- ⎪⎝⎭>,()1104f c =+>,又()()32464341160f c c c c c c -=-++=-<,由零点存在性定理知()f x 在()41c --,上存在唯一一个零点0x ,即()f x 在()1-∞-,上存在唯一一个零点,在()1-+∞,上不存在零点,此时()f x 不存在绝对值不大于1的零点,与题设矛盾;当14c -<时,()1104f c -=-<,11024f c ⎛⎫-=+ ⎪⎝⎭<,11024f c ⎛⎫=- ⎪⎝⎭<,()1104f c =+<,又()()32464341160f c c c c c c -=++=->,由零点存在性定理知()f x 在()14c -,上存在唯一一个零点0x ',即()f x 在()1+∞,上存在唯一一个零点,在()1-∞,上不存在零点,此时()f x 不存在绝对值不大于1的零点,与题设矛盾;综上,()f x 所有零点的绝对值都不大于1.【解析】(1)利用导数的几何意义得到102f ⎛⎫'= ⎪⎝⎭,解方程即可.因为()23f x x b '=+,由题意,102f ⎛⎫'= ⎪⎝⎭,即21302b ⎛⎫⨯+= ⎪⎝⎭,则34b =-; (2)由(1)可得()231132422f x x x x ⎛⎫⎛⎫'=-=+- ⎪⎪⎝⎭⎝⎭,易知()f x 在1122⎛⎫- ⎪⎝⎭,上单调递减,在12⎛⎫-∞- ⎪⎝⎭,,12⎛⎫+∞ ⎪⎝⎭,上单调递增,且()114f c -=-,1124f c ⎛⎫-=+ ⎪⎝⎭,1124f c ⎛⎫=- ⎪⎝⎭,()114f c =+,采用反证法,推出矛盾即可.由(1)可得()334f x x x c =-+,()231133422f x x x x ⎛⎫⎛⎫'=-=+- ⎪⎪⎝⎭⎝⎭,令()0f x '>,得12x >或12x -<;令()0f x '<,得1122x -<<,所以()f x 在1122⎛⎫- ⎪⎝⎭,上单调递减,在12⎛⎫-∞- ⎪⎝⎭,,12⎛⎫+∞ ⎪⎝⎭,上单调递增,且()114f c -=-,1124f c ⎛⎫-=+ ⎪⎝⎭,1124f c ⎛⎫=- ⎪⎝⎭,()114f c =+,若()f x 所有零点中存在一个绝对值大于1的零点0x ,则()10f ->或()10f <,即14c >或14c -<.当14c >时,()1104f c -=->,11024f c ⎛⎫-=+ ⎪⎝⎭>,11024f c ⎛⎫=- ⎪⎝⎭>,()1104f c =+>,又()()32464341160f c c c c c c -=-++=-<,由零点存在性定理知()f x 在()41c --,上存在唯一一个零点0x ,即()f x 在()1-∞-,上存在唯一一个零点,在()1-+∞,上不存在零点,此时()f x 不存在绝对值不大于1的零点,与题设矛盾;当14c -<时,()1104f c -=-<,11024f c ⎛⎫-=+ ⎪⎝⎭<,11024f c ⎛⎫=- ⎪⎝⎭<,()1104f c =+<,又()()32464341160f c c c c c c -=++=->,由零点存在性定理知()f x 在()14c -,上存在唯一一个零点0x ',即()f x 在()1+∞,上存在唯一一个零点,在()1-∞,上不存在零点,此时()f x 不存在绝对值不大于1的零点,与题设矛盾;综上,()f x 所有零点的绝对值都不大于1. 【考点】利用导数研究函数的零点,导数的几何意义,反证法22.【答案】(1)(2)3cos sin 120ρθρθ-+=【解析】(1)由参数方程得出A ,B 的坐标,最后由两点间距离公式,即可得出AB 的值.令0x =,则220t t +-=,解得2t =-或1t =(舍),则26412y =++=,即()012A ,.令0y =,则2320t t -+=,解得2t =或1t =(舍),则2244x =--=-,即()40B -,.AB ∴=(2)由A ,B 的坐标得出直线AB 的直角坐标方程,再化为极坐标方程即可.由(1)可知()120304AB k -==--,则直线AB 的方程为()34y x =+,即3120x y -+=.由cos x ρθ=,sin y ρθ=可得,直线AB 的极坐标方程为3cos sin 120ρθρθ-+=.【考点】利用参数方程求点的坐标,直角坐标方程化极坐标方程 23.【答案】(1)()22222220a b c a b c ab ac bc ++=+++++=,()22212ab bc ca a b c ∴++=-++. a ,b ,c 均不为0,则2220a b c ++>,()222120ab bc ca a b c ∴++=-++<. (2)不妨设{}max a b c a =,,,由0a b c ++=,1abc =可知,0a >,0b <,0c <,a b c =--,1a bc=,()222322224b c b c bc bc bc a a a bc bc bc ++++∴=⋅===≥.当且仅当b c =时,取等号,a ∴ {}3max 4a b c ,,.【解析】(1)由()22222220a b c a b c ab ac bc ++=+++++=结合不等式的性质,即可得出证明.()22222220a b c a b c ab ac bc ++=+++++=,()22212ab bc ca a b c ∴++=-++.a ,b ,c 均不为0,则2220a b c ++>,()222120ab bc ca a b c ∴++=-++<. (2)不妨设{}max a b c a =,,,由题意得出0a >,b ,0c <,由()222322b c b c bca aa bcbc+++=⋅==,结合基本不等式,即可得出证明.不妨设{}max a b c a =,,,由0a b c ++=,1abc =可知,0a >,0b <,0c <,a b c =--,1a bc=,()222322224b c b c bc bc bc a a a bc bc bc ++++∴=⋅===≥.当且仅当b c =时,取等号,a ∴{}3max 4a b c ,,.【考点】不等式的基本性质,基本不等式的应用2020年普通高等学校招生全国统一考试·全国Ⅲ卷理科数学答案解析一、选择题 1.【答案】C【解析】采用列举法列举出A B 中元素的即可.由题意,A B 中的元素满足8y x x y ⎧⎨+=⎩≥,且x ,*y ∈N ,由82x y x +=≥,得4x ≤,所以满足8x y +=的有()17,,()26,,()35,,()44,,故A B 中元素的个数为4.故选:C .【考点】集合的交集运算,交集定义的理解 2.【答案】D【解析】利用复数的除法运算求出z 即可.因为()()113131313131010i z i i i i +===+--+,所以复数113z i=-的虚部为310.故选:D . 【考点】复数的除法运算,复数的虚部的定义 3.【答案】B【解析】计算出四个选项中对应数据的平均数和方差,由此可得出标准差最大的一组. 对于A 选项,该组数据的平均数为()()140.1230.4 2.5A x =+⨯++⨯=,方差为()()()()222221 2.50.12 2.50.43 2.50.44 2.50.10.65A s =-⨯+-⨯+-⨯+-⨯=;对于B 选项,该组数据的平均数为()()140.4230.1 2.5B x =+⨯++⨯=,方差为()()()()222221 2.50.42 2.50.13 2.50.14 2.50.4 1.85B s =-⨯+-⨯+-⨯+-⨯=;对于C 选项,该组数据的平均数为()()140.2230.3 2.5C x =+⨯++⨯=,方差为()()()()222221 2.50.22 2.50.33 2.50.34 2.50.2 1.05C s =-⨯+-⨯+-⨯+-⨯=;对于D 选项,该组数据的平均数为()()140.3230.2 2.5D x =+⨯++⨯=,方差为()()()()222221 2.50.32 2.50.23 2.50.24 2.50.3 1.45D s =-⨯+-⨯+-⨯+-⨯=.因此,B 选项这一组的标准差最大.故选:B . 【考点】标准差的大小比较,方差公式的应用 4.【答案】C【解析】将t t *=代入函数()()0.23531t K I t e --=+结合()0.95I t K *=求得t *即可得解.()()0.23531t K I t e --=+,所以()()0.23530.951t KI t K e**--==+,则()*0.235319t e -=,所以,()0.2353ln193t *-=≈,解得353660.23t *+≈≈.故选:C .【考点】对数的运算,指数与对数的互化 5.【答案】B【解析】根据题中所给的条件OD OE ⊥,结合抛物线的对称性,可知4DOx EOx π∠=∠=,从而可以确定出点D 的坐标,代入方程求得p 的值,进而求得其焦点坐标,得到结果.因为直线2x =与抛物线()220y px p =>交于E ,D 两点,且OD OE ⊥,根据抛物线的对称性可以确定4DOx EOx π∠=∠=,所以()22D ,,代入抛物线方程44p =,求得1p =,所以其焦点坐标为102⎛⎫⎪⎝⎭,,故选:B .【考点】圆锥曲线,直线与抛物线的交点,抛物线的对称性,点在抛物线上的条件,抛物线的焦点坐标 6.【答案】D【解析】计算出()a ab ⋅+、a b +的值,利用平面向量数量积可计算出cos a a b +,的值.5a =,6b =,6a b ⋅=-,()225619a a b a a b ∴⋅+=+⋅=-=.()2222257a b a ba ab b +=+=+⋅+=-,因此,()1919cos 5735a a ba ab a a b⋅++===⨯⋅+,.故选:D . 【考点】平面向量夹角余弦值的计算,平面向量数量积的计算,向量模的计算 7.【答案】A【解析】根据已知条件结合余弦定理求得AB ,再根据222cos 2AB BC AC B AB BC+-=⋅,即可求得答案.在ABC △中,2cos 3C =,4AC =,3BC =.根据余弦定理:2222cos AB AC BC AC BC C =+-⋅⋅,2224322433AB =+-⨯⨯⨯,可得29AB =,即3AB =.由22299161cos 22339AB BC AC B AB BC +-+-===⋅⨯⨯,故1cos 9B =.故选:A . 【考点】余弦定理解三角形8.【答案】C【解析】根据三视图特征,在正方体中截取出符合题意的立体图形,求出每个面的面积,即可求得其表面积.根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222ABC ADC CDB S S S ===⨯⨯=△△△,根据勾股定理可得:AB AD DB ===ADB ∴△是边长为,根据三角形面积公式可得:(211sin 6022ADBS AB AD =⋅⋅==△∴该几何体的表面积是:632=⨯++ 故选:C .【考点】根据三视图求立体图形的表面积,根据三视图画出立体图形 9.【答案】D【解析】利用两角和的正切公式,结合换元法,解一元二次方程,即可得出答案.2tan tan 74πθθ⎛⎫-+= ⎪⎝⎭,tan 12tan 71tan θθθ+∴-=-,令tan t θ=,1t ≠,则1271tt t+-=-,整理得2440t t -+=,解得2t =,即tan 2θ=.故选:D .【考点】利用两角和的正切公式化简求值 10.【答案】D【解析】根据导数的几何意义设出直线l 的方程,再由直线与圆相切的性质,即可得出答案.设直线l 在曲线y =(0x,则00x >,函数y =导数为y '=l 的斜率k =,设直线l 的方程为)0y x x =-,即00xx -+=,由于直线l 与圆2215x y +=相切,则=,两边平方并整理得2005410x x --=,解得01x=,015x =-(舍),则直线l 的方程为210x y -+=,即1122y x =+.故选:D .【考点】导数的几何意义的应用,直线与圆的位置的应用 11.【答案】A【解析】根据双曲线的定义,三角形面积公式,勾股定理,结合离心率公式,即可得出答案.5ca=,c ∴,根据双曲线的定义可得122PF PF a -=,1212142PF F PF S PF =⋅=△,即128PF PF ⋅=, 12F P F P ⊥,()222122PF PF c ∴+=,()22121224PF PF PF PF c ∴-+⋅=,即22540a a -+=,解得1a =,故选:A .【考点】双曲线的性质以及定义的应用,勾股定理,三角形面积公式的应用 12.【答案】A【解析】由题意可得a 、b 、()01c ∈,,利用作商法以及基本不等式可得出a 、b 的大小关系,由8log 5b =,得85b =,结合5458<可得出45b <,由13log 8c =,得138c =,结合45138<,可得出45c >,综合可得出a 、b 、c 的大小关系.由题意可知a 、b 、()01c ∈,, ()222528log 3lg3lg81lg3lg8lg3lg8lg 241log 5lg5lg522lg5lg 25lg5a b ⎛⎫⎛⎫++⎛⎫==⋅⋅==⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭<<,a b ∴<;由8log 5b =,得85b =,由5458<,得5488b <,54b ∴<,可得45b <;由13log 8c =,得138c =,由45138<,得451313c <,54c ∴>,可得45c >.综上所述,a b c <<.故选:A .【考点】对数式的大小比较,基本不等式、对数式与指数式的互化,指数函数单调性的应用 二、填空题 13.【答案】7【解析】作出可行域,利用截距的几何意义解决.不等式组所表示的可行域如图.因为32z x y =+,所以322x z y =-+,易知截距2z 越大,则z 越大,平移直线32x y =-,当322x zy =-+经过A 点时截距最大,此时z 最大,由21y x x =⎧⎨=⎩,得12x y =⎧⎨=⎩,()12A ,,所以max 31227z =⨯+⨯=.故答案为:7.【考点】简单线性规划的应用,求线性目标函数的最大值 14.【答案】240【解析】写出622x x ⎛⎫+ ⎪⎝⎭二项式展开通项,即可求得常数项.622x x ⎛⎫+ ⎪⎝⎭其二项式展开通项:()()()621221236661222rrr r r r r r r r r C xC x C x x T x ---+-⎛⎫⋅⋅⋅⋅=⋅⎭= ⎝=⎪,当1230r -=,解得4r =,622x x ⎛⎫∴+ ⎪⎝⎭的展开式中常数项是:664422161516240C C ⋅=⋅=⨯=.故答案为:240.【考点】二项式定理,利用通项公式求二项展开式中的指定项15. 【解析】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.将原问题转化为求解圆锥内切球的问题,然后结合截面确定其半径即可确定体积的值.易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示,其中2BC =,3AB AC ==,且点M 为BC 边上的中点,设内切圆的圆心为O ,由于AM ==122S =⨯⨯=△ABC r ,则:()11113322222ABC AOB BOC AOC S S S S AB r BC r AC r r =++=⨯⨯+⨯⨯+⨯⨯=⨯++⨯=△△△△r,其体积:343V r π=.. 16.【答案】②③【解析】利用特殊值法可判断命题①的正误;利用函数奇偶性的定义可判断命题②的正误;利用对称性的定义可判断命题③的正误;取0x π-<<可判断命题④的正误.综合可得出结论.对于命题①,152622f π⎛⎫=+= ⎪⎝⎭,152622fπ⎛⎫-=--=- ⎪⎝⎭,则66f f ππ⎛⎫⎛⎫-≠ ⎪ ⎪⎝⎭⎝⎭,所以,函数()f x 的图象不关于y 轴对称,命题①错误;对于命题②,函数()f x 的定义域为{}x x k k π≠∈Z ,,定义域关于原点对称,()()()()111sin sin sin sin sin sin f x x x x f x x x x ⎛⎫-=-+=--=-+=- ⎪-⎝⎭,所以,函数()f x 的图象关于原点对称,命题②正确;对于命题③,11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫-=-+=+⎪ ⎪⎛⎫⎝⎭⎝⎭- ⎪⎝⎭, 11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫+=++=+⎪ ⎪⎛⎫⎝⎭⎝⎭+ ⎪⎝⎭,则22f x f x ππ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,所以,函数()f x 的图象关于直线2x π=对称,命题③正确;对于命题④,当0x π-<<时,sin 0x <,()1sin 02sin f x x x=+<<,命题④错误.故答案为:②③.【考点】正弦型函数的奇偶性、对称性,最值的求解 三、解答题17.【答案】(1)25a =,37a =,21n a n =+,当1n =时,13a =成立;假设n k =时,21k a k =+成立.那么1n k =+时,()()134321423211k k a a k k k k k +=-=+-=+=++也成立.则对任意的*n ∈N ,都有21n a n =+成立.(2)()12122n n S n +=-⋅+【解析】(1)利用递推公式得出2a ,3a ,猜想得出{}n a 的通项公式,利用数学归纳法证明即可.由题意可得2134945a a =-=-=,32381587a a =-=-=,由数列{}n a 的前三项可猜想数列{}n a 是以3为首项,2为公差的等差数列,即21n a n =+,证明如下:当1n =时,13a =成立;假设n k =时,21k a k =+成立.那么1n k =+时,()()134321423211k k a a k k k k k +=-=+-=+=++也成立.则对任意的*n ∈N ,都有21n a n =+成立;(2)由错位相减法求解即可.由(1)可知,()2212n nn a n ⋅=+⋅,()()231325272212212n n n S n n -=⨯+⨯+⨯++-⋅++⋅,①()()23412325272212212n n n S n n +=⨯+⨯+⨯++-⋅++⋅,②,由-①②得:()()()()()21231112126222221262212122212n n n n n n S n n n -+++--=+⨯+++-+⋅=+⨯-+⋅=⋅⨯---,即()12122n n S n +=-⋅+.【考点】求等差数列的通项公式,利用错位相减法求数列的和18.【答案】(1)该市一天的空气质量等级分别为1、2、3、4的概率分别为0.43、0.27、0.21、0.09 (2)350(3()221003383722 5.820 3.84155457030K ⨯⨯-⨯=⨯⨯⨯≈>,因此,有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.【解析】(1)根据频数分布表可计算出该市一天的空气质量等级分别为1、2、3、4的概率.由频数分布表可知,该市一天的空气质量等级为1的概率为216250.43100++=,等级为2的概率为510120.27100++=,等级为3的概率为6780.21100++=,等级为4的概率为7200.09100++=. (2)利用每组的中点值乘以频数,相加后除以100可得结果.由频数分布表可知,一天中到该公园锻炼的人次的平均数为100203003550045350100⨯+⨯+⨯=.(3)根据表格中的数据完善22⨯列联表,计算出2K 的观测值,再结合临界值表可得结论.22⨯列联表如下:()221003383722 5.820 3.84155457030K ⨯⨯-⨯=⨯⨯⨯≈>,因此,有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.【考点】利用频数分布表计算频率和平均数,独立性检验的应用19.【答案】(1)在棱1CC 上取点G ,使得112C G CG =,连接DG 、FG 、1C E 、1C F ,长方体1111ABCD A B C D -中,AD BC ∥且AD BC =,11BB CC ∥且11BB CC =,112C G CG=12BF FB =,112233CG CC BB BF ∴===且CG BF =,所以,四边形BCGF 平行四边形,则AF DG∥且AF DG =,同理可证四边形1DEC G 为平行四边形,1C E DG ∴∥且1C E DG =,1C E AF ∴∥且1C E AF =,则四边形1AEC F 为平行四边形,因此,点1C 在平面AEF 内.(2)7【解析】(1)连接1C E 、1C F ,证明出四边形1AEC F 为平行四边形,进而可证得点1C 在平面AEF 内.在棱1CC 上取点G ,使得112C G CG =,连接DG 、FG 、1C E 、1C F ,长方体1111ABCD A B C D -中,AD BC ∥且AD BC =,11BB CC ∥且11BB CC =,112C G CG=12BF FB =,112233CG CC BB BF ∴===且CG BF =,所以,四边形BCGF 平行四边形,则AF DG∥且AF DG =,同理可证四边形1DEC G 为平行四边形,1C E DG ∴∥且1C E DG =,1C E AF ∴∥且1C E AF =,则四边形1AEC F 为平行四边形,因此,点1C 在平面AEF 内;(2)以点1C 为坐标原点,11C D 、11C B 、1C C 所在直线分别为x 、y 、z 轴建立空间直角坐标系1C xyz -,利用空间向量法可计算出二面角1A EF A --的余弦值,进而可求得二面角1A EF A --的正弦值.以点1C 为坐标原点,11C D 、11C B 、1C C 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系1C xyz -,则()213A ,,、()1210A ,,、()202E ,,、()011F ,,,()011AE =--,,,()202AF =--,,,()1012A E =-,,,()1201A F =-,,,设平面AEF 的法向量为()111m x y z =,,,由00m AE m AF ⎧⋅⎪⎨⋅=⎪⎩=,得11110220y z x z --=⎧⎨--=⎩取11z =-,得111x y ==,则()111m =-,,,设平面1A EF 的法向量为()222n x y z =,,,由1100n A E n A F ⎧⋅=⎪⎨⋅=⎪⎩,得22222020y z x z -+=⎧⎨-+=⎩,取22z =,得21x =,24y =,则()142n =,,,3cos 3m n m n m n⋅===⨯⋅,,设二面角1A EF A--的平面角为θ,则cos θ=,sinθ∴==.因此,二面角1A EF A --.【考点】点在平面的证明,利用空间向量法求解二面角20.【答案】(1)221612525x y +=(2)52【解析】(1)因为()222:10525x y C m m+=<<,可得5a =,b m =,根据离心率公式,结合已知,即可求得答案.()222:10525x y C m m +=<<,5a∴=,b m =,根据离心率4c e a ====, 解得54m =或54m =-(舍),C ∴的方程为:22214255x y ⎛⎫ ⎪⎝⎭+=,即221612525x y +=. (2)点P 在C 上,点Q 在直线6x =上,且BP BQ =,BP BQ ⊥,过点P 作x 轴垂线,交点为M ,设6x =与x 轴交点为N ,可得PMB BNQ ≅△△,可求得P 点坐标,求出直线AQ 的直线方程,根据点到直线距离公式和两点距离公式,即可求得APQ △的面积.点P 在C 上,点Q 在直线6x =上,且BP BQ =,BP BQ ⊥,过点P 作x 轴垂线,交点为M ,设6x =与x 轴交点为N .根据题意画出图形,如图BP BQ =,BP BQ ⊥,90PMB QNB ∠=∠=,又90PBM QBN ∠+∠=,90BQN QBN ∠+∠=,PBM BQN ∴∠=∠,根据三角形全等条件“AAS ”,可得:PMB BNQ ≅△△,221612525x y +=, ()50B ∴,,651PM BN ∴==-=,设P 点为()P P x y ,,可得P 点纵坐标为1P y =,将其代入221612525x y +=,可得:21612525P x +=,解得:3P x =或3P x =-,P ∴点为()31,或()31-,, ①当P 点为()31,时,故532MB =-=,PMB BNQ ≅△△,2MB NQ ∴==,可得:Q 点为()62,,画 出图象,如图()50A -,,()62Q ,,可求得直线AQ 的直线方程为:211100x y -+=,根据点到直线距离公式可得P 到直线AQ 的距离为:d ===,根据两点间距离公式可得:AQ =,APQ ∴△面积为:1522⨯=;②当P 点为()31-,时,故5+38MB ==,PMB BNQ ≅△△,8MB NQ ∴==,可得:Q 点为()68,,画出图象,如图()50A -,,()68Q ,,可求得直线AQ 的直线方程为:811400x y -+=,根据点到直线距离公式可得P到直线AQ 的距离为:d ===AQ ==APQ ∴△面积为:1522=,综上所述,APQ △面积为:52. 【考点】椭圆标准方程,三角形面积,椭圆的离心率定义,数形结合求三角形面积 21.【答案】(1)34b =-(2)由(1)可得()334f x x x c =-+,()231133422f x x x x ⎛⎫⎛⎫'=-=+- ⎪⎪⎝⎭⎝⎭,令()0f x '>,得12x >或12x -<;令()0f x '<,得1122x -<<,所以()f x 在1122⎛⎫- ⎪⎝⎭,上单调递减,在12⎛⎫-∞- ⎪⎝⎭,,12⎛⎫+∞ ⎪⎝⎭,上单调递增,且()114f c -=-,1124f c ⎛⎫-=+ ⎪⎝⎭,1124f c ⎛⎫=- ⎪⎝⎭,()114f c =+,若()f x 所有零点中存在一个绝对值大于1的零点0x ,则()10f ->或()10f <,即14c >或14c -<.当14c >时,()1104f c -=->,11024f c ⎛⎫-=+ ⎪⎝⎭>,11024f c ⎛⎫=- ⎪⎝⎭>,()1104f c =+>,又()()32464341160f c c c c c c -=-++=-<,由零点存在性定理知()f x 在()41c --,上存在唯一一个零点0x ,即()f x 在()1-∞-,上存在唯一一个零点,在()1-+∞,上不存在零点,此时()f x 不存在绝对值不大于1的零点,与题设矛盾;当14c -<时,()1104f c -=-<,11024f c ⎛⎫-=+ ⎪⎝⎭<,11024f c ⎛⎫=- ⎪⎝⎭<,()1104f c =+<,又()()32464341160f c c c c c c -=++=->,由零点存在性定理知()f x 在()14c -,上存在唯一一个零点0x ',即()f x 在()1+∞,上存在唯一一个零点,在()1-∞,上不存在零点,此时()f x 不存在绝对值不大于1的零点,与题设矛盾;综上,()f x 所有零点的绝对值都不大于1.【解析】(1)利用导数的几何意义得到102f ⎛⎫'= ⎪⎝⎭,解方程即可.因为()23f x x b '=+,由题意,102f ⎛⎫'= ⎪⎝⎭,即21302b ⎛⎫⨯+= ⎪⎝⎭,则34b =-; (2)由(1)可得()231132422f x x x x ⎛⎫⎛⎫'=-=+- ⎪⎪⎝⎭⎝⎭,易知()f x 在1122⎛⎫- ⎪⎝⎭,上单调递减,在12⎛⎫-∞- ⎪⎝⎭,,12⎛⎫+∞ ⎪⎝⎭,上单调递增,且()114f c -=-,1124f c ⎛⎫-=+ ⎪⎝⎭,1124f c ⎛⎫=- ⎪⎝⎭,()114f c =+,采用反证法,推出矛盾即可.由(1)可得()334f x x x c =-+,()231133422f x x x x ⎛⎫⎛⎫'=-=+- ⎪⎪⎝⎭⎝⎭,令()0f x '>,得12x >或12x -<;令()0f x '<,得1122x -<<,所以()f x 在1122⎛⎫- ⎪⎝⎭,上单调递减,在12⎛⎫-∞- ⎪⎝⎭,,12⎛⎫+∞ ⎪⎝⎭,上单调递增,且()114f c -=-,1124f c ⎛⎫-=+ ⎪⎝⎭,1124f c ⎛⎫=- ⎪⎝⎭,()114f c =+,若()f x 所有零点中存在一个绝对值大于1的零点0x ,则()10f ->或()10f <,即14c >或14c -<.当14c >时,()1104f c -=->,11024f c ⎛⎫-=+ ⎪⎝⎭>,11024f c ⎛⎫=- ⎪⎝⎭>,()1104f c =+>,又()()32464341160f c c c c c c -=-++=-<,由零点存在性定理知()f x 在()41c --,上存在唯一一个零点0x ,即()f x 在()1-∞-,上存在唯一一个零点,在()1-+∞,上不存在零点,此时()f x 不存在绝对值不大于1的零点,与题设矛盾;当14c -<时,()1104f c -=-<,11024f c ⎛⎫-=+ ⎪⎝⎭<,11024f c ⎛⎫=- ⎪⎝⎭<,()1104f c =+<,又()()32464341160f c c c c c c -=++=->,由零点存在性定理知()f x 在()14c -,上存在唯一一个零点0x ',即()f x 在()1+∞,上存在唯一一个零点,在()1-∞,上不存在零点,此时()f x 不存在绝对值不大于1的零点,与题设矛盾;综上,()f x 所有零点的绝对值都不大于1. 【考点】利用导数研究函数的零点,导数的几何意义,反证法22.【答案】(1)(2)3cos sin 120ρθρθ-+=【解析】(1)由参数方程得出A ,B 的坐标,最后由两点间距离公式,即可得出AB 的值.令0x =,则220t t +-=,解得2t =-或1t =(舍),则26412y =++=,即()012A ,.令0y =,则2320t t -+=,解得2t =或1t =(舍),则2244x =--=-,即()40B -,.AB ∴=(2)由A ,B 的坐标得出直线AB 的直角坐标方程,再化为极坐标方程即可.由(1)可知()120304AB k -==--,则直线AB 的方程为()34y x =+,即3120x y -+=.由cos x ρθ=,sin y ρθ=可得,直线AB 的极坐标方程为3cos sin 120ρθρθ-+=.【考点】利用参数方程求点的坐标,直角坐标方程化极坐标方程 23.【答案】(1)()22222220a b c a b c ab ac bc ++=+++++=,()22212ab bc ca a b c ∴++=-++. a ,b ,c 均不为0,则2220a b c ++>,()222120ab bc ca a b c ∴++=-++<. (2)不妨设{}max a b c a =,,,由0a b c ++=,1abc =可知,0a >,0b <,0c <,a b c =--,1a bc=,()222322224b c b c bc bc bc a a a bc bc bc ++++∴=⋅===≥.当且仅当b c =时,取等号,a ∴ {}3max 4a b c ,,.【解析】(1)由()22222220a b c a b c ab ac bc ++=+++++=结合不等式的性质,即可得出证明.()22222220a b c a b c ab ac bc ++=+++++=,()22212ab bc ca a b c ∴++=-++.a ,b ,c 均不为0,则2220a b c ++>,()222120ab bc ca a b c ∴++=-++<. (2)不妨设{}max a b c a =,,,由题意得出0a >,b ,0c <,由()222322b c b c bca aa bcbc+++=⋅==,结合基本不等式,即可得出证明.不妨设{}max a b c a =,,,由0a b c ++=,1abc =可知,0a >,0b <,0c <,a b c =--,1a bc=,()222322224b c b c bc bc bc a a a bc bc bc ++++∴=⋅===≥.当且仅当b c =时,取等号,a ∴{}3max 4a b c ,,.【考点】不等式的基本性质,基本不等式的应用。
x ⎨ ⎩
绝密★启用前
2020 年普通高等学校招生全国统一考试(三卷)
理科数学
一、选择题:本题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是符合题目要
求的.
1. 已知集合
A = {(x , y ) x , y ∈ N *
, y ≥ x }, B = {(x , y ) x + y = 8},则 A B 中元素的个数为(
)
A .2
B .3
C .4
D .6
A . 6 + 4
B . 4 + 4
C . 6 + 2
D . 4 + 2 1 2. 复数
的虚部是(
) 9. 已知 2 tan θ- tan(θ+
π
= 7 ,则tan θ= (
) A. - 1- 3i 3
B. - 1
1 3
C.
D .
A. - 2
4
B. -1
C.1
D . 2
10 10
10
10
4
10. 若直线l 与曲线 y =
和圆
x 2 + y 2 = 1
都相切,则l 的方程为( ) 5 3.在一组样本数据中,1,2,3,4 出现的频率分别为 p 1 , p 2 , p 3 , p 4 ,且
∑ p i
= 1 ,则下面四种情形中, i =1
对应样本的标准差最大的一组是
( )
A. y = 2x +1
B. y = 2x + 1
2
x 2 y 2
C. y =
1
x +1
2
D. y =
1
x + 1 2 2
A . p 1 = p 4 = 0.1, p 2 = p 3 = 0.4
B . p 1 = p 4 = 0.4, p 2 = p 3
= 0.1 11.设双曲线 C : - a 2 b 2 = 1(a > 0, b > 0) 的左、右焦点分别为 F 1 , F 2 ,离心率为 .P 是 C 上一点,且
C . p 1 = p 4 = 0.2, p 2 = p 3 = 0.3
D . p 1 = p 4 = 0.3, p 2 = p 3 = 0.2
F 1P ⊥ F 2 P .若∆PF 1F 2 的面积为 4,则 a = (
)
A .1
B .2
C .4
D .8
4.
Logistic 模型是常用数学模型之一,可应用于流行病学领域。
有学者根据公布数据建立了某地区新冠肺炎 K
12.已知55 < 84 ,134 < 85
,设 a = log 3, b = log 5, c = l og 8 则( )
累计确诊病例数 I (t ) ( t 的单位:天)的 Logisic 模型: I (t ) = 1+ e
-0.23(t -53) ,其中 K 为最大确诊病例数。
当 A. a < b < c
5 B. b < a < c 8 13
C. b < c < a
D. c < a < b
I (t = ) *0.95K 时,标志着已初步遏制疫情,则t *
约为( ln19 ≈ 3)( )
A .60
B .63
C .66
D .69
5. 设 O 为坐标原点,直线 x =2 与抛物线C : y 2
=2 px ( p >0) 交于 D ,E 两点,若OD ⊥OE ,则 C 的焦点
坐标为( )
二、填空题:本题共 4 小题,每小题 5 分,共 20 分.
⎧x + y ≥ 0
13.
若 x , y 满足约束条件⎪
2x - y ≥ 0 .则 z = 3x + 2 y 的最大值为
.
⎪x ≤ 1 1 A . ( ,0)
4
1
B . ( ,0)
2
C . (1,0)
D . (2,0)
14.
(x 2 + 2
)6 的展开式中常数项是 x
(用数字作答).
6.已知向量 a , b 满 a = 5, b = 6, a ⋅b = -6 ,则cos < a , a + b >= ( )
15. 已知圆维的底面半径为 1,母线长为 3,则该圆谁内半径最大的球的体积为 .
A . -
13
B . -
19
17 19 C .
D .
16. 关于函数 f (x ) = sin x +
1
有如下四个命题:
35
35 35 35
sin x
7. 在∆ABC 中, cos C =
2
, AC = 4, BC = 3 ,则cos B = (
)
3
① f (x ) 的图像关于 y 轴对称,0 ② f (x ) 的图像关于原点对称
③ f (x ) 的图像关于直线 x = π
对称。
1 1 A . B . 9
3
1 2 C . D .
2
3
2
④ f (x ) 的最小值为 2. 8. 右图为某几何体的三视图,则该几何体的表面积是(
)
其中所有真命题的序号是
.
2
2
3
3
5 )
三、解答题:本题共6 小题,共70 分.解答应写出文字说明、证明过程或演算步骤.
17.(12分)设数列{a n}满a1=3,a n+1=3a n-4n.(1)计算a2,a3,猜想{a n}的通项公式并加以证明;(2)求数列{2n⋅a}的前n项和S.附:K 2=
n(ad -bc)2
(a +b)(c +d )(a +c)(b +d
n n
18.(12分)某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数
19.(12分)如图,在长方体ABCD-A B C D中,点E,F分别在棱DD,BB上,且2DE=ED,BF=2FB.
(1)证明:点C1 在平面AEF 内:
1 1 1 1 1 1 1 1
(1)分别估计该市一天的空气质量等级为1,2,3,4 的概率;
(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表):
(3)若某天的空气质量等级为1 或2.则称这天“空气质量好”:若某天的空气质量等级为3 或4,则称这天“空气质量不好”。
根据所给数据,完成下面的2 ⨯ 2 列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?(2)若AB=2,AD=1,AA1 = 3 ,求二面角A -EF -A1 的正弦值.
锻炼人次
空气质量等级
[0,200] (200,400] (400,600] 1(优)216 25
2(良)510 12 3(轻度污染)678
4(中度污染)720
人次≤ 400 人次> 400 空气质量好
空气质量不好P(K 2 ≥k ) 0.050 0.010 0.001 k 3.841 6.635 10.828
⎩ 2
x
20.(12 分)已知椭圆 + y
25 m = 1(0 < m < 5) 的离心率为
,A ,B 分别为 C 的左、右顶点。
4
(二)、选考题:共 10 分.请考生从 22、23 题中任选一题做答,如果多做,则按所做的第一题计分.
(1) 求 C 的方程:
(2) 若点 P 在 C 上,点 Q 在直线 x = 6 上,且 BP = BQ , BP ⊥ BQ ,求△APQ 的面积。
2
. 【极坐标与参数方程】(10 分)
⎧⎪x = 2 - t - t 2
22.
在直角坐标系 xOy 中,曲线 C 的参数方程为 ⎨⎪ y = 2 - 3t + t
2
( t 为参数,且t ≠ 1),C 与坐标轴交于 A , B 两点.
(1) 求 AB ;
(2) 以坐标原点为极点, x 轴正半轴为极轴建立极坐标系,求直线 AB 的极坐标方程.
21.(12 分)函数 f (x ) = x 3
(1) 求 b :
+ bx + c ,曲线 y = f (x ) 在点( 1 2 , f ( 1
)) 处的切线与 y 轴垂直
2
(2) 若 f (x ) 有一个绝对值不大于 1 的零点,证明 f (x ) 所有零点的绝对值都不大于 1.
23. 【选修 4-5:不等式选讲】(10 分)
设 a , b , c ∈ R , a + b + c = 0, acb = 1.
(1) 证明: ab + bc + ca < 0 ; (2) 用max
{a , b , c }表示 a , b , c 的最大值,证明: max {a , b , c }≥ 3 4 .
15 2。