新课标数学必修1知识点总结
- 格式:doc
- 大小:50.00 KB
- 文档页数:7
高中数学必修1知识点第一章集合与函数概念1.1集合1.1.1集合的含义与表示1、集合的含义2、集合中元素的三个特性:⑴确定性⑵互异性⑶无序性3、集合的表示列举法描述法4、常用数集及其记法:整数集Z有理数集Q实数集R 非负整数集(即自然数集)N 正整数集N*或N+5、属于(∈)6、集合的分类⑴有限集⑵无限集⑶空集(Φ): 不含任何元素的集合1、子集(包含关系)反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊈B(或B⊉A)⑴A与B是同一集合(相等关系)⑵A是B的一部分(真子集)⑶空集是任何集合的子集,空集是任何非空集合的真子集Venn图A B2、集合A(A为非空集合)中有n个元素,则A的子集个数为2n,A的真子集个数为2n-1。
3、注意⑴任何一个集合是它本身的子集A⊆A⑵如果 A⊆B,B⊆C,那么A⊆C⑶如果A⊆B同时 B⊇A那么A=B1、并集A∪B (A∪A = A,A∪φ= A , A∪B = B∪A)A B2、交集A∩B (A∩A = A,A∩φ= φ, A∩B = B∩A)A B3、全集U4、补集5、性质⑴C U(C U A)=A ⑵(C U A)∩A=Φ⑶(C U A)∪A=U ⑷(C U A)∩(C U B)=C U(A∪B) ⑸(C U A)∪(C U B)=C U(A∩B)1.2.1函数的概念1、函数的概念(构成函数的三要素:定义域、对应关系和值域)⑴多对一自变量A(定义域)函数值B(值域)a db ec⑵一对一a db ec f2、定义域3、值域4、区间5、注意⑴没有指明函数y=f(x)的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合。
函数的定义域、值域要写成集合或区间的形式)⑵相同函数的判断方法:①定义域一致②表达式相同 (两点必须同时具备)⑶函数值域中的每一个数都有定义域中的一个或多个自变量与其对应(没有剩余)本节重难点1、求定义域(1)分母不为零(2)偶次根式的被开方数非负(3)对数函数真数部分大于0(4)指数、对数函数的底数大于0且不等于1 (5)y=tanx中x≠kπ+π/2(y=cotx中x≠kπ)(6)X0=1,x≠02、求值域(先考虑其定义域)1.2.2函数的表示法1、解析法2、图象法(列表—描点—连线)(1)函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等判断一个图形是否是函数图象的依据:作垂直于x轴的直线与曲线至多有一个交点。
高中数学必修1知识点总结新课标人教B版一、数学象征符号我们学习数学时,要记住重要的数学象征符号,以便更好地理解和掌握它们,并解决相关数学问题。
(1)随机事件:①A是一个样本空间,用大写英文字母P表示概率;②π和Ω分别表示正确和错误的事件,用P(π)或P(Ω)表示;③μ和ν分别表示两个不相交的集合,用P(μ∪ν)表示;④表示一个事件可能出现的次数,用n(E)表示。
(2)代数:①表示根号的符号是√;②用x ∈ R表示x是实数;③用a ≡ b (mod n)表示a与b之差是n的倍数;④表示变量的符号是x,y,z,表示系数的符号是a,b,c。
(3)几何:①表示直线的符号是l,ll表示平行线;②表示圆的符号是O,r表示半径;③AB、PQ表示两条线段,AC、AB+BC表示两条线;④三角形A、B、C表示其中一定有AB+BC=AC;⑤a.b.c表示直线ab,bc的重合点c;⑥△ABC表示三角形ABC;⑦AB CD表示平面四边形;⑧AB⊥CD表示AB垂直于CD;⑨AB∥CD表示AB与CD平行。
二、根据不同的数学概念,可分几类(1)集合集合是一系列特定元素的统一组合,可以是实物或抽象在数学中,集合有非空集、空集、有限集和无限集等分类。
(2)函数函数是一种数学模型,用来描述若干输入(自变量)与输出(因变量)之间的关系,常见的函数类型有均匀函数、指数函数、正弦函数等。
(3)概率概率是一个随机事件发生的可能性的量化,用P(E)表示一个离散的概率,用P(x)表示连续变量的概率密度函数。
(4)统计统计是衡量某一现象的变化的一种数学方法,它的核心是对数据进行抽样、分类、计算,从而得到某一特定情况下的概率结果。
(5)代数代数是一种原则,用来将字母和数字组合起来,来表示简单或复杂的数学运算,该原则分为基本代数、平方根、分式和一元二次方程。
(6)几何几何是一种形式,主要研究物体的外观,比如线、园、面等形状。
主要研究直线、圆、四边形和三角形等,以及它们的性质和关系。
第1讲 §1.1.1 集合的含义与表示¤学习目标:通过实例,了解集合的含义,体会元素与集合的“属于”关系;能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;掌握集合的表示方法、常用数集及其记法、集合元素的三个特征.¤知识要点:1. 把一些元素组成的总体叫作集合(set ),其元素具有三个特征,即确定性、互异性、无序性.2. 集合的表示方法有两种:列举法,即把集合的元素一一列举出来,并用花括号“{ }”括起来,基本形式为123{,,,,}n a a a a ⋅⋅⋅,适用于有限集或元素间存在规律的无限集. 描述法,即用集合所含元素的共同特征来表示,基本形式为{|()x A P x ∈},既要关注代表元素x ,也要把握其属性()P x ,适用于无限集.3. 通常用大写拉丁字母,,,A B C ⋅⋅⋅表示集合. 要记住一些常见数集的表示,如自然数集N ,正整数集*N 或N +,整数集Z ,有理数集Q ,实数集R .4. 元素与集合之间的关系是属于(belong to )与不属于(not belong to ),分别用符号∈、∉表示,例如3N ∈,2N -∉. ¤例题精讲:【例1】试分别用列举法和描述法表示下列集合:(1)由方程2(23)0x x x --=的所有实数根组成的集合;(2)大于2且小于7的整数.解:(1)用描述法表示为:2{|(23)0}x R x x x ∈--=;用列举法表示为{0,1,3}-. (2)用描述法表示为:{|27}x Z x ∈<<;用列举法表示为{3,4,5,6}.【例2】用适当的符号填空:已知{|32,}A x x k k Z ==+∈,{|61,}B x x m m Z ==-∈,则有: 17 A ; -5 A ; 17 B .解:由3217k +=,解得5k Z =∈,所以17A ∈;由325k +=-,解得73k Z =∉,所以5A -∉; 由6117m -=,解得3m Z =∈,所以17B ∈.【例3】试选择适当的方法表示下列集合:(教材P 6 练习题2, P 13 A 组题4)(1)一次函数3y x =+与26y x =-+的图象的交点组成的集合; (2)二次函数24y x =-的函数值组成的集合;(3)反比例函数2y x=的自变量的值组成的集合. 解:(1)3{(,)|}{(1,4)}26y x x y y x =+⎧=⎨=-+⎩.(2)2{|4}{|4}y y x y y =-=≥-.(3)2{|}{|0}x y x x x ==≠. 点评:以上代表元素,分别是点、函数值、自变量. 在解题中不能把点的坐标混淆为{1,4},也注意对比(2)与(3)中的两个集合,自变量的范围和函数值的范围,有着本质上不同,分析时一定要细心.*【例4】已知集合2{|1}2x aA a x +==-有唯一实数解,试用列举法表示集合A . 解:化方程212x ax +=-为:2(2)0x x a --+=.应分以下三种情况:分析:Δ=b 平方-4ac=1-4*1*[-(a+2)]得a=-9/4 aacb x 24-b -2.12±=212-b==a x ⑴方程有等根且不是2±:由 △=0,得94a =-,此时的解为12x =,合. ⑵方程有一解为2,而另一解不是2-:将2x =代入得2a =-,此时另一解12x =-,合. ⑶方程有一解为2-,而另一解不是2:将2x =-代入得2a =,此时另一解为21x =+,合.综上可知,9{,2,2}4A =--.点评:运用分类讨论思想方法,研究出根的情况,从而列举法表示. 注意分式方程易造成增根的现象.第1练 §1.1.1 集合的含义与表示※基础达标1.以下元素的全体不能够构成集合的是( B ).A. 中国古代四大发明B. 地球上的小河流C. 方程210x -=的实数解D. 周长为10cm 的三角形 2.方程组{23211x y x y -=+=的解集是( C ).解得x=5,y=1.应先x 后yA . {}51, B. {}15, C.(){}51, D. (){}15, 3.给出下列关系:①12R ∈; ②2Q ∈;③ *3N ∈;④0Z ∈. 其中正确的个数是( C ). A. 1 B. 2 C. 3 D. 44.有下列说法:(1)0与{0}表示同一个集合;(2)由1,2,3组成的集合可表示为{1,2,3}或{3,2,1};(3)方程2(1)(2)0x x --=的所有解的集合可表示为{1,1,2};(4)集合{45}x x <<是有限集. 其中正确的说法是( C ).A. 只有(1)和(4)B. 只有(2)和(3)C. 只有(2)D. 以上四种说法都不对5.下列各组中的两个集合M 和N, 表示同一集合的是( D ).A. {}M π=, {3.14159}N =B. {2,3}M =, {(2,3)}N =C. {|11,}M x x x N =-<≤∈, {1}N =D. {1,3,}M π=, {,1,|3|}N π=- 6.已知实数2a =,集合{|13}B x x =-<<,则a 与B 的关系是 . a B ∈ 7.已知x R ∈,则集合2{3,,2}x x x -中元素x 所应满足的条件为 . 0,1,3x ≠- ※能力提高8.试选择适当的方法表示下列集合:(1)二次函数223y x x =-+的函数值组成的集合; (2)函数232y x =-的自变量的值组成的集合. 答案:(1){|2}y y ≥;(2){|2}x x ≠±9.已知集合4{|}3A x N Z x =∈∈-,试用列举法表示集合A . 答案:{1,2,4,5,7} 提示:分31,2,4x -=±±±等情况.※探究创新10.给出下列集合:①{(x ,y )|x ≠1,y ≠1,x ≠2,y ≠-3}; ②{{12(,)13x x x y y y ⎧⎫≠≠⎨⎬≠≠-⎩⎭且 ③{{12(,)13x x x y y y ⎧⎫≠≠⎨⎬≠≠-⎩⎭或 ; ④{(x ,y )|[(x -1)2+(y -1)2]·[(x -2)2+(y +3)2]≠0}. 其中不能表示“在直角坐标系xOy 平面内,除去点(1,1),(2,-3)之外的所有点的集合”的序号有 . 答案:④ 提示:集合①与②是等价的,它们均表示除去了四条直线外的所有的点;集合③表示整个坐标平面;集合④不能表示点(1,1)、(2,-3),集合④能表示所指定的集合.A BB A A B A B A . B .C .D .第2讲 §1.1.2 集合间的基本关系¤学习目标:理解集合之间包含与相等的含义,能识别给定集合的子集;在具体情境中,了解全集与空集的含义;能利用Venn 图表达集合间的关系.¤知识要点:1. 一般地,对于两个集合A 、B ,如果集合A 中的任意一个元素都是集合B 中的元素,则说两个集合有包含关系,其中集合A 是集合B 的子集(subset ),记作A B ⊆(或B A ⊇),读作“A 含于B ”(或“B 包含A ”).2. 如果集合A 是集合B 的子集(A B ⊆),且集合B 是集合A 的子集(B A ⊇),即集合A 与集合B 的元素是一样的,因此集合A 与集合B 相等,记作A B =.3. 如果集合A B ⊆,但存在元素x B ∈,且x A ∉,则称集合A 是集合B 的真子集(proper subset ),记作A ≠⊂B (或B ≠⊃A ). 4. 不含任何元素的集合叫作空集(empty set ),记作∅,并规定空集是任何集合的子集. 5. 性质:A A ⊆;若A B ⊆,B C ⊆,则A C ⊆;若A B A = ,则A B ⊆;若A B A = ,则B A ⊆. ¤例题精讲:【例1】用适当的符号填空:(1){菱形} {平行四边形}; {等腰三角形} {等边三角形}.(2)∅ 2{|20}x R x ∈+=; 0 {0};∅ {0}; N {0}. 解:(1),;(2)=, ∈,,.【例2】设集合1,,}22{|,{|n n x n n A x x B x =∈=+∈==Z}Z ,则下列图形能表示A 与B 关系的是( ).解:简单列举两个集合的一些元素,3113{,1,,0,,1,,}2222A =⋅⋅⋅---⋅⋅⋅,3113{,,,,,}2222B =⋅⋅⋅--⋅⋅⋅,易知B ≠⊂A ,故答案选A .另解:由21,}2{|n x n B x +=∈=Z ,易知B ≠⊂A ,故答案选A .【例3】若集合{}{}2|60,|10M x x x N x ax =+-==-=,且N M ⊆,求实数a 的值.解:由26023x x x +-=⇒=-或,因此,{}2,3M =-.(i )若0a =时,得N =∅,此时,N M ⊆; (ii )若0a ≠时,得1{}N a =. 若N M ⊆,满足1123a a ==-或,解得1123a a ==-或. 故所求实数a 的值为0或12或13-. 点评:在考察“A B ⊆”这一关系时,不要忘记“∅” ,因为A =∅时存在A B ⊆. 从而需要分情况讨论. 题中讨论的主线是依据待定的元素进行.【例4】已知集合A ={a ,a +b ,a +2b },B ={a ,ax ,ax 2}. 若A =B ,求实数x 的值.解:若22a b axa b ax+=⎧⎨+=⎩⇒a +ax 2-2ax =0, 所以a (x -1)2=0,即a =0或x =1. 当a =0时,集合B 中的元素均为0,故舍去;当x =1时,集合B 中的元素均相同,故舍去.若22a b ax a b ax⎧+=⎨+=⎩⇒2ax 2-ax -a =0.因为a ≠0,所以2x 2-x -1=0, 即(x -1)(2x +1)=0. 又x ≠1,所以只有12x =-. 经检验,此时A =B 成立. 综上所述12x =-. 点评:抓住集合相等的定义,分情况进行讨论. 融入方程组思想,结合元素的互异性确定集合.第2练 §1.1.2 集合间的基本关系※基础达标1.已知集合{}{}3,,6,A x x k k Z B x x k k Z ==∈==∈, 则A 与B 之间最适合的关系是( D ). A.A B ⊆ B.A B ⊇ C. A ≠⊂B D. A ≠⊃B2.设集合{}|12M x x =-≤<,{}|0N x x k =-≤,若M N ⊆,则k 的取值范围是( D ). A .2k ≤ B .1k ≥- C .1k >- D .2k ≥ 3.若2{,0,1}{,,0}a a b -=,则20072007a b +的值为( A ). A. 0 B. 1 C. 1- D. 24.已知集合M ={x |x =2k +14,k ∈Z }, N ={x |x =4k +12, k ∈Z }. 若x 0∈M ,则x 0与N 的关系是( A ). A. x 0∈N B. x 0∉N C. x 0∈N 或x 0∉N D.不能确定5.已知集合P ={x |x 2=1},集合Q ={x |ax =1},若Q ⊆P ,那么a 的值是( D ).A. 1B. -1C. 1或-1D. 0,1或-1 6.已知集合{},,,A a b c =,则集合A 的真子集的个数是 . 7个7.当2{1,,}{0,,}ba a ab a=+时,a =_________,b =_________.-1,0※能力提高8.已知A ={2,3},M ={2,5,235a a -+},N ={1,3, 2610a a -+},A ⊆M ,且A ⊆N ,求实数a 的值. 答案:2a =. 提示:联合2352a a -+=及26102a a -+=求解9.已知集合{}25A x x =-≤≤,{}121B x m x m =+≤≤-.若B A ⊆,求实数m 的取值范围.答案:3m ≤(注意区间端点及B =φ)※探究创新10.集合S ={0,1,2,3,4,5},A 是S 的一个子集,当x ∈A 时,若有x -1∉A 且x +1∉A ,则称x 为A 的一个“孤立元素”,写出S 中所有无“孤立元素”的4元子集.解:依题意可知,“孤立元素x ”是没有与x 相邻的,非“孤立元素x ”是指在集合中有与x 相邻的元素.因此所求问题的集合可分成如下两类:(1)4个元素连续的,有3个:{0,1,2,3},{1,2,3,4},{2,3,4,5};(2)4个元素分两组,每组两个连续的,也有3个:{0,1,3,4},{1,2,4,5},{0,1,4,5}.第3讲 §1.1.3 集合的基本运算(一)¤学习目标:理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;理解在给定集合中一个子集的补集的含义,会求给定子集的补集;能使用Venn 图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.¤知识要点:集合的基本运算有三种,即交、并、补,学习时先理解概念,并掌握符号等,再结合解题的训练,而达到掌握的层次. 下面以表格的形式归纳三种基本运算如下.并集 交集 补集概念由所有属于集合A 或属于集合B 的元素所组成的集合,称为集合A 与B 的并集(union set ) 由属于集合A 且属于集合B 的元素所组成的集合,称为集合A 与B 的交集(intersection set ) 对于集合A,由全集U 中不属于集合A 的所有元素组成的集合,称为集合A 相对于全集U 的补集(complementary set ) 记号A B (读作“A 并B ”) A B (读作“A 交B ”) U A ð(读作“A 的补集”) 符号 {|,}A B x x A x B =∈∈ 或 {|,}A B x x A x B =∈∈ 且{|,}U A x x U x A =∈∉且ð图形表示¤例题精讲:【例1】设集合,{|15},{|39},,()U U R A x x B x x A B A B ==-≤≤=<< 求ð. 解:在数轴上表示出集合A 、B ,如右图所示: {|35}A B x x =<≤ ,(){|1,9}U C A B x x x =<-≥ 或,【例2】设{|||6}A x Z x =∈≤,{}{}1,2,3,3,4,5,6B C ==,求: (1)()A B C ; (2)()A A B C ð. 解:{}6,5,4,3,2,1,0,1,2,3,4,5,6A =------ . (1)又{}3B C = ,∴()A B C = {}3;(2)又{}1,2,3,4,5,6B C = ,得{}()6,5,4,3,2,1,0A C B C =------ . ∴ ()A A C B C {}6,5,4,3,2,1,0=------.【例3】已知集合{|24}A x x =-<<,{|}B x x m =≤,且A B A = ,求实数m 的取值范围. 解:由A B A = ,可得A B ⊆.在数轴上表示集合A 与集合B ,如右图所示: 由图形可知,4m ≥.点评:研究不等式所表示的集合问题,常常由集合之间的关系,得到各端点之间的关系,特别要注意是否含端点的问题.【例4】已知全集*{|10,}U x x x N =<∈且,{2,4,5,8}A =,{1,3,5,8}B =,求()U C A B ,()U C A B ,()()U U C A C B ,()()U U C A C B ,并比较它们的关系.解:由{1,2,3,4,5,8}A B = ,则(){6,7,9}U C A B = . 由{5,8}A B = ,则(){1,2,3,4,6,7,9}U C A B = 由{1,3,6,7,9}U C A =,{2,4,6,7,9}U C B =,UA-2 4 m x B A A BB A-1359x则()(){6,7,9}U U C A C B = ,()(){1,2,3,4,6,7,9}U U C A C B = .由计算结果可以知道,()()()U U U C A C B C A B = ,()()()U U U C A C B C A B = .另解:作出Venn 图,如右图所示,由图形可以直接观察出来结果.点评:可用Venn 图研究()()()U U U C A C B C A B = 与()()()U U U C A C B C A B = ,在理解的基础记住此结论,有助于今后迅速解决一些集合问题.第3练 §1.1.3 集合的基本运算(一)※基础达标1.已知全集{}1,2,3,4,5,6,7U =,{}2,4,5A =,则=A C U ( C ).A. ∅B. {}2,4,6C. {}1,3,6,7D. {}1,3,5,7 2.若{|02},{|12}A x x B x x =<<=≤<,则A B = ( D ).A. {|2}x x <B. {|1}x x ≥C. {|12}x x ≤<D. {|02}x x << 3.右图中阴影部分表示的集合是( A ).A. B C A UB. A C B UC.()B A C U D. ()B A C U4.若{}{}0,1,2,3,|3,A B x x a a A ===∈,则A B = ( C ). A. {}1,2 B. {}0,1 C. {}0,3 D. {}35.设集合{|12}M x x =-≤<,{|0}N x x k =-≤,若M N φ≠ ,则k 的取值范围是( B ). A .2k ≤ B .1k ≥- C .1k -> D .12k -<≤6.设全集*{|8}U x N x =∈<,{1,3,5,7}A =,{2,4,5}B =,则()U C A B = . {6}7.已知集合{(,)|2},{(,)|4}M x y x y N x y x y =+==-=,那么集合M N = . {(3,1)}- ※能力提高8.设全集*{|010,}U x x x N =<<∈,若{3}A B = ,{}7,5,1=B C A U ,()(){}9=B C A C U U ,求集合A 、B . 答案:A ={1,3,5,7},B ={2,3,4,6,8}. 提示:由Venn 图可知.9.设U R =,{|24}A x x =-≤<,{|8237}B x x x =-≥-,求()B A C U、()()B C A C U U .答案:{|4}x x ≥, {|4}x x ≥※探究创新10.设集合{|(4)()0,}A x x x a a R =--=∈,{|(1)(4)0}B x x x =--=.(1)求A B ,A B ;(2)若A B ⊆,求实数a 的值;(3)若5a =,则A B 的真子集共有 个, 集合P 满足条件()A B ≠⊂P ≠⊂()A B ,写出所有可能的集合P . 解:(1){1,4}B =.当4a =时,{4}A =,则{1,4}A B = ,{4}A B = ;当1a =时,{1,4}A =,则{1,4}A B = ,{1,4}A B = ;当1a ≠且4a ≠时,{4,}A a =,则{1,4,}A B a = ,{4}A B = .(2)若A B ⊆,由上易知4a =或1a =.(3)当5a =时,{1,5}A =,{1,4,5}A B = ,其真子集有7个. {4}A B = ,则满足{4}{1,4,5}P 刎的集合P 有:{1,4},{4,5}.第4讲 §1.1.3 集合的基本运算(二)¤学习目标:掌握集合、交集、并集、补集的有关性质,运行性质解决一些简单的问题;掌握集合运算中的一些数学思想方法.¤知识要点:1. 含两个集合的Venn 图有四个区域,分别对应着这两个集合运算的结果. 我们需通过Venn 图理解和掌握各区域的集合运算表示,解决一类可用列举法表示的集合运算. 通过图形,我们还可以发现一些集合性质:()()()U U U C A B C A C B = ,()()()U U U C A B C A C B = .2. 集合元素个数公式:()()()()n A B n A n B n A B =+- .3. 在研究集合问题时,常常用到分类讨论思想、数形结合思想等. 也常由新的定义考查创新思维. ¤例题精讲:【例1】设集合{}{}24,21,,9,5,1A a a B a a =--=--,若{}9A B = ,求实数a 的值. 解:由于{}{}24,21,,9,5,1A a a B a a =--=--,且{}9A B = ,则有:当219 a -=时,解得5a =,此时={4, 9, 25}={9, 0, 4}A B -,-,不合题意,故舍去; 当29a =时,解得33a =或-.3 ={4,5,9} ={9,2,2}a A B =时,-,--,不合题意,故舍去; 3={4, 7 9}={9, 8, 4}a A B =-,--,,-,合题意. 所以,3a =-.【例2】设集合{|(3)()0,}A x x x a a R =--=∈,{|(4)(1)0}B x x x =--=,求A B , A B .(教材P 14 B 组题2) 解:{1,4}B =.当3a =时,{3}A =,则{1,3,4}A B = ,A B =∅ ; 当1a =时,{1,3}A =,则{1,3,4}A B = ,{1}A B = ;当4a =时,{3,4}A =,则{1,3,4}A B = ,{4}A B = ;当3a ≠且1a ≠且4a ≠时,{3,}A a =,则{1,3,4,}A B a = ,A B =∅ .点评:集合A 含有参数a ,需要对参数a 进行分情况讨论. 罗列参数a 的各种情况时,需依据集合的性质和影响运算结果的可能而进行分析,不多不少是分类的原则.【例3】设集合A ={x |240x x +=}, B ={x |222(1)10x a x a +++-=,a R ∈},若A B =B ,求实数a 的值. 解:先化简集合A ={4,0}-. 由A B =B ,则B ⊆A ,可知集合B 可为∅,或为{0},或{-4},或{4,0}-.(i )若B =∅,则224(1)4(1)0a a ∆=+--<,解得a <1-; (ii )若0∈B ,代入得2a 1-=0⇒a =1或a =1-, 当a =1时,B =A ,符合题意;当a =1-时,B ={0}⊆A ,也符合题意.(iii )若-4∈B ,代入得2870a a -+=⇒a =7或a =1, 当a =1时,已经讨论,符合题意;当a =7时,B ={-12,-4},不符合题意. 综上可得,a =1或a ≤1-.点评:此题考查分类讨论的思想,以及集合间的关系的应用. 通过深刻理解集合表示法的转换,及集合之间的关系,可以把相关问题化归为解方程的问题,这是数学中的化归思想,是重要数学思想方法.解该题时,特别容易出现的错误是遗漏了A =B 和B =∅的情形,从而造成错误.这需要在解题过程中要全方位、多角度审视问题.【例4】对集合A 与B ,若定义{|,}A B x x A x B -=∈∉且,当集合*{|8,}A x x x N =≤∈,集合{|(2)(5)(6)0}B x x x x x =---=时,有A B -= . (由教材P 12 补集定义“集合A 相对于全集U 的补集为{|,}U C A x x x A =∈∉ 且”而拓展)解:根据题意可知,{1,2,3,4,5,6,7,8}A =,{0,2,5,6}B =由定义{|,}A B x x A x B -=∈∉且,则 {1,3,4,7,8}A B -=.点评:运用新定义解题是学习能力的发展,也是一种创新思维的训练,关键是理解定义的实质性内涵,这里新定义的含义是从A 中排除B 的元素. 如果再给定全集U ,则A B -也相当于()U A C B .第4练 §1.1.3 集合的基本运算(二)※基础达标1.已知集合A = {}1,2,4, B ={}8x x 是的正约数, 则A 与B 的关系是( B ).A. A = BB. A ≠⊂B C. A ≠⊃B D. A ∪B =∅2.已知,,a b c 为非零实数, 代数式||||||||a b c abc a b c abc +++的值所组成的集合为M , 则下列判断正确的是( D ). A. 0M ∉ B. 4M -∉ C. 2M ∈ D. 4M ∈3.(08年湖南卷.文1)已知{}2,3,4,5,6,7U =,{}3,4,5,7M =,{}2,4,5,6N =,则( B ).A .{}4,6M N = B.M N U = C .()u C N M U = D. ()u C M N N =4.定义集合A 、B 的一种运算:1212{,,}A B x x x x x A x B *==+∈∈其中,若{1,2,3}A =,{1,2}B =,则A B *中的所有元素数字之和为( B ).A .9 B. 14 C. 18 D. 215.设全集U 是实数集R ,{}2|4M x x =>与{}|31N x x x =≥<或都是U 的子集(如右图所示),则阴影部分所表示的集合为( A ).A. {}|21x x -≤<B. {}|22x x -≤≤C. {}|12x x <≤D. {}|2x x <6.已知集合{11}A x x =-≤≤,{}B x x a =>,且满足A B φ= ,则实数a 的取值范围是 . 1a ≥7.经统计知,某村有电话的家庭有35家,有农用三轮车的家庭有65家,既有电话又有农用三轮车的家庭有20家,则电话和农用三轮车至少有一种的家庭数为 . 80 提示:结合文氏图,易知()()()()n A B n A n B n A B =+- ,则65352080+-=※能力提高8.已知集合2{|0}A x x px q =++=, 2{|20}B x x px q =--=,且{1}A B =- ,求A B . 答案:{2,1,4}A B =--9.已知集合U =2{2,3,23}a a +-,A ={|a +1|,2},U C A ={a +3},求实数a 的值. 答案:2a = 提示:由集合元素的特征列方程组而解.※探究创新10.(1)给定集合A 、B ,定义A ※B ={x |x =m -n ,m ∈A ,n ∈B }.若A ={4,5,6},B ={1,2,3},则集合A ※B 中的所有元素之和为 ( )A .15B .14C .29D .-14(2)设全集为U ,集合A 、B 是U 的子集,定义集合A 、B 的运算:A *B ={x |x ∈A ,或x ∈B ,且x ∉A ∩B },则(A *B )*A 等于( )A .AB .BC .()U A B ð∩D .()U A B ð∪(3)已知集合A ={x |2x n ≠且3x n ≠,n ∈N ,x ∈N *,x ≤100},试求出集合A 的元素之和. 答案:(1)A ※B ={3,4,5,2,1},3+4+5+2+1=15.答案选A .(2)先将A *B 化简即得 A *B ={x |x ∈A ∪B ,且x ∉A ∩B }=()A B A B ð∪∩.∴(A *B )*A ={x |x ∈(A *B )∪A ,且x ∉(A *B )∩A }={x |x ∈A ∪B ,且x ∉()A A B ð∩}=B . (3)S =(1+2+3+…+100)-(6+12+18+…+96)=5050-816=4234第5讲 §1.2.1 函数的概念¤学习目标:通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域.¤知识要点:1. 设A 、B 是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数y 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数(function ),记作y =()f x ,x A ∈.其中,x 叫自变量,x 的取值范围A 叫作定义域(domain ),与x 的值对应的y 值叫函数值,函数值的集合{()|}f x x A ∈叫值域(range ).2. 设a 、b 是两个实数,且a <b ,则:{x |a ≤x ≤b }=[a ,b ] 叫闭区间; {x |a <x <b }=(a ,b ) 叫开区间; {x |a ≤x <b }=[,)a b , {x |a <x ≤b }=(,]a b ,都叫半开半闭区间.符号:“∞”读“无穷大”;“-∞”读“负无穷大”;“+∞”读“正无穷大”. 则{|}(,)x x a a >=+∞,{|}[,)x x a a ≥=+∞,{|}(,)x x b b <=-∞,{|}(,]x x b b ≤=-∞,(,)R =-∞+∞.3. 决定函数的三个要素是定义域、值域和对应法则. 当且仅当函数定义域、对应法则分别相同时,函数才是同一函数. ¤例题精讲:【例1】求下列函数的定义域: (1)121y x =+-;(2)3312x y x -=--.解:(1)由210x +-≠,解得1x ≠-且3x ≠-, 所以原函数定义域为(,3)(3,1)(1,)-∞----+∞ .(2)由330120x x -≥⎧⎪⎨--≠⎪⎩,解得3x ≥且9x ≠,所以原函数定义域为[3,9)(9,)+∞ .【例2】求下列函数的定义域与值域:(1)3254x y x+=-; (2)22y x x =-++. 解:(1)要使函数有意义,则540x -≠,解得54x ≠. 所以原函数的定义域是5{|}4x x ≠.32112813(45)233233305445445445444x x x y x x x x ++-+==⨯=⨯=-+≠-+=-----,所以值域为3{|}4y y ≠-.(2)22192()24y x x x =-++=--+. 所以原函数的定义域是R ,值域是9(,]4-∞.【例3】已知函数1()1xf x x-=+. 求:(1)(2)f 的值; (2)()f x 的表达式解:(1)由121x x -=+,解得13x =-,所以1(2)3f =-.(2)设11x t x -=+,解得11t x t -=+,所以1()1t f t t -=+,即1()1xf x x-=+. 点评:此题解法中突出了换元法的思想. 这类问题的函数式没有直接给出,称为抽象函数的研究,常常需要结合换元法、特值代入、方程思想等.【例4】已知函数22(),1x f x x R x =∈+. (1)求1()()f x f x +的值;(2)计算:111(1)(2)(3)(4)()()()234f f f f f f f ++++++.解:(1)由2222222221111()()1111111x x x x f x f x x x x x x ++=+=+==+++++.(2)原式11117(1)((2)())((3)())((4)())323422f f f f f f f =++++++=+=点评:对规律的发现,能使我们实施巧算. 正确探索出前一问的结论,是解答后一问的关键.第5练 §1.2.1 函数的概念※基础达标1.下列各组函数中,表示同一函数的是( C ). A. 1,xy y x==B. 211,1y x x y x =-+=-C. 33,y x y x ==D. 2||,()y x y x == 2.函数21232xy x x -=--的定义域为( D ).A. (,1]-∞B. (,2]-∞C. 11(,)(,1]22-∞--D. 11(,)(,1]22-∞--3.集合{}22M x x =-≤≤,{}02N y y =≤≤,给出下列四个图形,其中能表示以M 为定义域,N 为值域的函数关系的是( B ).4.下列四个图象中,不是函数图象的是( B ).5.已知函数()f x 的定义域为[1,2)-,则(1)f x -的定义域为( C ). A .[1,2)- B .[0,2)- C .[0,3)- D .[2,1)-6.已知()f x =2x +x +1,则(2)f =______;f [(2)f ]=______.3+2, 57 7.已知2(21)2f x x x +=-,则(3)f = . -1 ※能力提高8.(1)求函数21x y x -=-的定义域; (2)求函数2113x y x+=-的定义域与值域. 答案:(1)(,1)(1,2]-∞ ;(2)定义域1{|}3x x ≠,值域2{|}3y y ≠-.9.已知2()f x ax bx c =++,(0)0f =,且(1)()1f x f x x +=++,试求()f x 的表达式.答案:211()22f x x x =+x y 0-2 2x y 0 -2 22 xy 0 -2 22 xy 0 -2 2 2A. B. C . D.x Oy x x xy y yOO OA. B. C. D.11※探究创新10.已知函数()f x ,()g x 同时满足:()()()()()g x y g x g y f x f y -=+;(1)1f -=-,(0)0f =,(1)1f =,求(0),(1),(2)g g g的值.解:令x y =得22()()(0)f x g y g +=. 再令0x =,即得(0)0,1g =. 若(0)0g =,令1x y ==时,得(1)0f =不合题意,故(0)1g =;(0)(11)(1)(1)(1)(1)g g g g f f =-=+,即21(1)1g =+,所以(1)g =;那么(1)(01)(0g gg g f f -=-=+=,(2)[1(1)](1)(1)(1)(1)1g g g g f f =--=-+-=-.第6讲 §1.2.2 函数的表示法¤学习目标:在实际情境中,会根据不同的需要选择恰当的方法(图象法、列表法、解析法)表示函数;通过具体实例,了解简单的分段函数,并能简单应用;了解映射的概念.¤知识要点:1. 函数有三种表示方法:解析法(用数学表达式表示两个变量之间的对应关系,优点:简明,给自变量可求函数值);图象法(用图象表示两个变量的对应关系,优点:直观形象,反应变化趋势);列表法(列出表格表示两个变量之间的对应关系,优点:不需计算就可看出函数值).2. 分段函数的表示法与意义(一个函数,不同范围的x ,对应法则不同).3. 一般地,设A 、B 是两个非空的集合,如果按某一个确定的对应法则f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应:f A B →为从集合A 到集合B 的一个映射(mapping ).记作“:f A B →”. 判别一个对应是否映射的关键:A 中任意,B 中唯一;对应法则f .¤例题精讲:【例1】如图,有一块边长为a 的正方形铁皮,将其四个角各截去一个边长为x 的小正方形,然后折成一个无盖的盒子,写出体积V 以x 为自变量的函数式是_____,这个函数的定义域为_______.解:盒子的高为x ,长、宽为2a x -,所以体积为V =2(2)x a x -.又由20a x >-,解得2a x <. 所以,体积V 以x 为自变量的函数式是2(2)V x a x =-,定义域为{|0}2a x x <<.【例2】已知f (x )=333322x x x x-⎧++⎪⎨+⎪⎩ (,1)(1,)x x ∈-∞∈+∞,求f [f (0)]的值.解:∵ 0(,1)∈-∞, ∴ f (0)=32.又 ∵ 32>1,∴ f (32)=(32)3+(32)-3=2+12=52,即f [f (0)]=52.【例3】画出下列函数的图象:(1)|2|y x =-; (教材P 26 练习题3) (2)|1||24|y x x =-++.解:(1)由绝对值的概念,有2,2|2|2,2x x y x x x -≥⎧=-=⎨-<⎩.所以,函数|2|y x =-的图象如右图所示.(2)33,1|1||24|5,2133,2x x y x x x x x x +>⎧⎪=-++=+-≤≤⎨⎪--<-⎩,所以,函数|1||24|y x x =-++的图象如右图所示.点评:含有绝对值的函数式,可以采用分零点讨论去绝对值的方法,将函数式化为分段函数,然后根据定义域的分段情况,选择相应的解析式作出函数图象.【例4】函数()[]f x x =的函数值表示不超过x 的最大整数,例如[ 3.5]4-=-,[2.1]2=,当( 2.5,3]x ∈-时,写出()f x 的解析式,并作出函数的图象.12解:3, 2.522,211,10()0,011,122,233,3x x x f x x x x x --<<-⎧⎪--≤<-⎪--≤<⎪=≤<⎨⎪≤<⎪≤<⎪=⎩. 函数图象如右:点评:解题关键是理解符号[]m 的概念,抓住分段函数的对应函数式.第6练 §1.2.2 函数的表示法※基础达标1.函数f (x )= 2(1)xx x ⎧⎨+⎩,0,0x x ≥< ,则(2)f -=( B ).A. 1 B .2 C. 3 D. 42.某同学从家里到学校,为了不迟到,先跑,跑累了再走余下的路,设在途中花的时间为t ,离开家里的路程为d ,下面图形中,能反映该同学的行程的是( C ).3.已知函数()f x 满足()()()f ab f a f b =+,且(2)f p =,(3)f q =,那么(12)f 等于( B ).A . p q + B. 2p q + C. 2p q + D. 2p q +4.设集合A ={x |0≤x ≤6},B ={y |0≤y ≤2},从A 到B 的对应法则f 不是映射的是( A ).A. f :x →y =12x B. f :x →y =13x C. f :x →y =14x D. f :x →y =16x5.拟定从甲地到乙地通话m 分钟的话费由[]3.71,(04)() 1.06(0.52),(4)m f m m m <≤⎧⎪=⎨+>⎪⎩给出,其中[]m 是不超过m 的最大整数,如:[]3.743=,从甲地到乙地通话5.2分钟的话费是( C ).A. 3.71B. 4.24C. 4.77D. 7.956.已知函数(),mf x x x=+且此函数图象过点(1,5),实数m 的值为 .4 7.24,02(),(2)2,2x x f x f x x ⎧-≤≤==⎨>⎩已知函数则 0 ;若00()8,f x x ==则 4 .※能力提高8.画出下列函数的图象:(1)22||3y x x =-++; (2)2|23|y x x =-++.9.设二次函数()f x 满足(2)(2)f x f x +=-且()f x =0的两实根平方和为10,图象过点(0,3),求()f x 的解析式答案:2()43f x x x =-+※探究创新10.(1)设集合{,,}A a b c =,{0,1}B =. 试问:从A 到B 的映射共有几个?(2)集合A 有元素m 个,集合B 有元素n 个,试问:从A 到B 的映射共有几个?解:(1)按映射定义,可以允许多对一,从而依次按三对一、二对一、一对一的情况作出映射图示,共有8种.(2)依据从A 到B 的映射定义,集合A 的每一个元素都对应着B 中的一个元素,有n 种可能,所以,共有映射m n 个.O d t O d tO d t Od t A. B. C. D.13第7讲 §1.3.1 函数的单调性¤学习目标:通过已学过的函数特别是二次函数,理解函数的单调性及其几何意义;学会运用函数图像理解和研究函数的性质. 理解增区间、减区间等概念,掌握增(减)函数的证明和判别.¤知识要点:1. 增函数:设函数y =f (x )的定义域为I ,如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2),那么就说f (x )在区间D 上是增函数(increasing function ). 仿照增函数的定义可定义减函数.2. 如果函数f (x )在某个区间D 上是增函数或减函数,就说f (x )在这一区间上具有(严格的)单调性,区间D 叫f(x )的单调区间. 在单调区间上,增函数的图象是从左向右是上升的(如右图1),减函数的图象从左向右是下降的(如右图2). 由此,可以直观观察函数图象上升与下降的变化趋势,得到函数的单调区间及单调性.3. 判断单调性的步骤:设x 1、x 2∈给定区间,且x 1<x 2;→计算f (x 1)-f (x 2) →判断符号→下结论.¤例题精讲:【例1】试用函数单调性的定义判断函数2()1xf x x =-在区间(0,1)上的单调性. 解:任取12,x x ∈(0,1),且12x x <. 则1221121212222()()()11(1)(1)x x x x f x f x x x x x --=-=----. 由于1201x x <<<,110x -<,210x -<,210x x ->,故12()()0f x f x ->,即12()()f x f x >.所以,函数2()1xf x x =-在(0,1)上是减函数. 【例2】求二次函数2()(0)f x ax bx c a =++<的单调区间及单调性. 解:设任意12,x x R ∈,且12x x <. 则22121122()()()()f x f x ax bx c ax bx c -=++-++221212()()a x x b x x =-+-1212()[()]x x a x x b =-++.若0a <,当122b x x a <≤-时,有120x x -<,12b x x a+<-,即12()0a x x b ++>,从而12()()0f x f x -<,即12()()f x f x <,所以()f x 在(,]2b a -∞-上单调递增. 同理可得()f x 在[,)2ba-+∞上单调递减.【例3】求下列函数的单调区间:(1)|1||24|y x x =-++;(2)22||3y x x =-++.解:(1)33,1|1||24|5,2133,2x x y x x x x x x +>⎧⎪=-++=+-≤≤⎨⎪--<-⎩,其图象如右.由图可知,函数在[2,)-+∞上是增函数,在(,2]-∞-上是减函数.(2)22223,02||323,0x x x y x x x x x ⎧-++≥⎪=-++=⎨--+<⎪⎩,其图象如右.由图可知,函数在(,1]-∞-、[0,1]上是增函数,在[1,0]-、[1,)+∞上是减函数.点评:函数式中含有绝对值,可以采用分零点讨论去绝对值的方法,将函数式化为分段函数.第2小题也可以由偶函数的对称性,先作y 轴右侧的图象,并把y 轴右侧的图象对折到左侧,得到(||)f x 的图象. 由图象研究单调性,关键在于正确作出函数图象.14【例4】已知31()2x f x x +=+,指出()f x 的单调区间. 解:∵ 3(2)55()322x f x x x +--==+++, ∴ 把5()g x x-=的图象沿x 轴方向向左平移2个单位,再沿y 轴向上平移3个单位,得到()f x 的图象,如图所示.由图象得()f x 在(,2)-∞-单调递增,在(2,)-+∞上单调递增.点评:变形后结合平移知识,由平移变换得到一类分式函数的图象. 需知()f x a b ++平移变换规律.第7练 §1.3.1 函数的单调性※基础达标1.函数26y x x =-的减区间是( D ).A . (,2]-∞ B. [2,)+∞ C. [3,)+∞ D. (,3]-∞ 2.在区间(0,2)上是增函数的是(B ).A. y =-x +1B. y =xC. y = x 2-4x +5D. y =2x3.函数()||()(2)f x x g x x x ==-和的递增区间依次是( C ).A. (,0],(,1]-∞-∞B. (,0],[1,)-∞+∞C. [0,),(,1]+∞-∞D. [0,),[1,)+∞+∞ 4.已知()f x 是R 上的增函数,令()(1)3F x f x =-+,则()F x 是R 上的( B ).A .增函数B .减函数C .先减后增D .先增后减5.二次函数2()2f x x ax b =++在区间(-∞,4)上是减函数,你能确定的是( C ). A. 2a ≥ B. 2b ≥ C. 4a ≤- D. 4b ≤-6.函数()f x 的定义域为(,)a b ,且对其内任意实数12,x x 均有:1212()[()()]0x x f x f x -->,则()f x 在(,)a b 上是增函数(填“增函数”或“减函数”或“非单调函数”)7.已知函数f (x )= x 2-2x +2,那么f (1),f (-1),f (3)之间的大小关系为 . (1)(3)(1)f f f <<- ※能力提高8.指出下列函数的单调区间及单调性:(1)3()1x f x x +=-;(2)2|23|y x x =-++ 解:(1)在(,1)-∞、(1,)+∞上都是减函数.(2)先作出函数223y x x =-++的图象,由于绝对值的作用,把x 轴下方的图象沿x 轴对折到x 轴上方,所得图象如右图所示.由图可知,函数在(,1]-∞-、[1,3]上是减函数,在[1,1]-、[3,)+∞上是增函数.9.若2()f x x bx c =++,且(1)0,(3)0f f ==. (1)求b 与c 的值;(2)试证明函数()f x 在区间(2,)+∞上是增函数. 解:(1)4,3b c =-=;(2)略.※探究创新10.已知函数()f x 的定义域为R ,对任意实数m 、n 均有()()()1f m n f m f n +=+-,且1()22f =,又当12x >-时,有()0f x >. (1)求1()2f -的值; (2)求证:()f x 是单调递增函数.解:(1)令0m n ==,则(0)(0)(0)1f f f =+-,∴ (0)1f =.又 111111()[()]()()1222222f f f f -=+-=+--,∴ 1(0)2()12f f =+--,1()(0)102f f -=-=.(2)设12x x <,则210x x ->,211122x x -->-. 又12x >-时有(0)0f >,∴211()02f x x -->.又21()()f x f x -=21112111[()]()()()1()f x x x f x f x x f x f x -+-=-+--=21()1f x x --15212111()()1()022f x x f f x x =-+--=-->,∴ 21()()f x f x >,∴()f x 在R 上为增函数.第8讲 §1.3.1 函数最大(小)值¤学习目标:通过已学过的函数特别是二次函数,理解函数的最大(小)值及其几何意义;学会运用函数图像理解和研究函数的性质. 能利用单调性求函数的最大(小)值.¤知识要点:1. 定义最大值:设函数()y f x =的定义域为I ,如果存在实数M 满足:对于任意的x ∈I ,都有()f x ≤M ;存在x 0∈I ,使得0()f x = M . 那么,称M 是函数()y f x =的最大值(Maximum Value ). 仿照最大值定义,可以给出最小值(Minimum Value )的定义.2. 配方法:研究二次函数2(0)y ax bx c a =++≠的最大(小)值,先配方成224()24b ac b y a x a a-=++后,当0a >时,函数取最小值为244ac b a -;当0a <时,函数取最大值244ac b a-.3. 单调法:一些函数的单调性,比较容易观察出来,或者可以先证明出函数的单调性,再利用函数的单调性求函数的最大值或最小值.4. 图象法:先作出其函数图象后,然后观察图象得到函数的最大值或最小值. ¤例题精讲:【例1】求函数261y x x =++的最大值.解:配方为2613()24y x =++,由2133()244x ++≥,得260813()24x <≤++. 所以函数的最大值为8.【例2】某商人如果将进货单价为8元的商品按每件10元售出时,每天可售出100件. 现在他采用提高售出价,减少进货量的办法增加利润,已知这种商品每件提价1元,其销售量就要减少10件,问他将售出价定为多少元时,才能使每天所赚得的利润最大?并求出最大利润.解:设他将售出价定为x 元,则提高了(10)x -元,减少了10(10)x -件,所赚得的利润为 (8)[10010(10)]y x x =--- .即2210280160010(14)360y x x x =-+-=--+. 当14x =时,max 360y =.所以,他将售出价定为14元时,才能使每天所赚得的利润最大, 最大利润为360元. 【例3】求函数21y x x =+-的最小值.解:此函数的定义域为[)1,+∞,且函数在定义域上是增函数, 所以当1x =时,min 2112y =+-=,函数的最小值为2.点评:形如y ax b cx d =+±+的函数最大值或最小值,可以用单调性法研究,也可以用换元法研究. 【另解】令1x t -=,则0t ≥,21x t =+,所以22115222()48y t t t =++=++,在0t ≥时是增函数,当0t =时,min 2y =,故函数的最小值为2.【例4】求下列函数的最大值和最小值:(1)25332,[,]22y x x x =--∈-; (2)|1||2|y x x =+--. 解:(1)二次函数232yx x =--的对称轴为2bx a=-,即1x =-.16画出函数的图象,由图可知,当1x =-时,max 4y =; 当32x =时,min 94y =-. 所以函数25332,[,]22y x x x =--∈-的最大值为4,最小值为94-.(2) 3 (2)|1||2|2 1 (12)3 (1)x y x x x x x ≥⎧⎪=+--=--<<⎨⎪-≤-⎩.作出函数的图象,由图可知,[3,3]y ∈-. 所以函数的最大值为3, 最小值为-3.点评:二次函数在闭区间上的最大值或最小值,常根据闭区间与对称轴的关系,结合图象进行分析. 含绝对值的函数,常分零点讨论去绝对值,转化为分段函数进行研究. 分段函数的图象注意分段作出.第8练 §1.3.1 函数最大(小)值※基础达标 1.函数42y x =-在区间 []3,6上是减函数,则y 的最小值是( A ). A . 1 B. 3 C. -2 D. 52.函数221y x x =-+的最大值是( B ).A. 8B. 83C. 4D. 433.函数2()2f x x ax a =-+在区间(,1)-∞上有最小值,则a 的取值范围是( A ).A .1a <B .1a ≤C .1a >D . 1a ≥4.某部队练习发射炮弹,炮弹的高度h 与时间t 的函数关系式是()24.914.718h t t t =-++则炮弹在发射几秒后最高呢( C ).A. 1.3秒B. 1.4秒C. 1.5秒 D 1.6秒5. 23()1,[0,]2f x x x x =++∈已知函数的最大(小)值情况为( C ).A. 有最大值34,但无最小值B. 有最小值34,有最大值1C. 有最小值1,有最大值194D. 无最大值,也无最小值6.函数32y x x =--的最大值是 .67.已知3()3xf x x =-,[4,6]x ∈. 则()f x 的最大值与最小值分别为 .12;6※能力提高8.已知函数2()2f x x x =-+.(1)证明()f x 在[1,)+∞上是减函数;(2)当[]2,5x ∈时,求()f x 的最大值和最小值. 答案:(1)略;(2)max min ()0,()15f x f x ==-9.一个星级旅馆有100个标准房,经过一段时间的经营,经理得到一些定价和住房率的数据如右: 欲使每天的的营业额最高,应如何定价?答案:设房价为x 元,则营业额21001(8510)135202x y x x x -=-⨯=-+,当135x =元时,营业额最高.※探究创新10.已知函数2142a y x ax =-+-+在区间[0,1]上的最大值为2,求实数a 的值. 解:令22211()()422442a a a af x x ax x =-+-+=--+-+.房价(元) 住房率(%) 160 55140 65120 75100 85。
新课标高中数学必修1公式大全数学必修1常用公式及结论一、集合1、含义与表示:集合中元素具有确定性、互异性和无序性。
集合可分为有限集和无限集。
集合的表示法有列举法、描述法和图示法。
2、集合间的关系:若对任意x∈A,都有x∈B,则称A 是B的子集,记作A⊆B。
若A是B的子集,且在B中至少存在一个元素不属于A,则A是B的真子集,记作A⊂B。
若A⊆B且B⊆A,则A=B。
3.元素与集合的关系:元素属于集合,记作∈;不属于,记作∉。
空集记作∅。
4、集合的运算:并集由属于集合A或属于集合B的元素组成的集合,记为A∪B。
交集由集合A和集合B中的公共元素组成的集合,记为A∩B。
补集在全集U中,由所有不属于集合A的元素组成的集合,记为A的补集,记为A'。
5.集合{a1,a2.an}的子集个数共有2^n个;真子集有2^n–1个;非空子集有2^n–1个。
6.常用数集:自然数集:N;正整数集:N*;整数集:Z;有理数集:Q;实数集:R。
二、函数的奇偶性1、定义:若对于任意的x,有f(–x) =–f(x),则称函数f(x)为奇函数;若对于任意的x,有f(–x) =f(x),则称函数f(x)为偶函数。
2、性质:奇函数的图象关于原点成中心对称图形;偶函数的图象关于y轴成轴对称图形;如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y轴对称,那么这个函数是偶函数。
三、函数的单调性1、定义:对于定义域为D的函数f(x),若任意的x1.x2∈D,且x1f(x2)时,称函数f(x)是减函数。
2、复合函数的单调性:同增异减。
四、二次函数y=ax2+bx+c(a≠0)的性质1、顶点坐标公式:顶点坐标为(-b/2a。
4ac-b2/4a),对称轴为x=-b/2a,最大(小)值为4a。
2、二次函数的解析式的三种形式:一般式f(x)=ax2+bx+c(a≠0);顶点式f(x)=a(x-h)2+k(a≠0);两根式f(x)=a(x-x1)(x-x2)(a≠0)。
高考最新数学必修必考知识点归纳总结数学没有捷径,就是课前做好预习、做例题、做好相应课后习题,课上依然认真听讲,课后还要认真做数学作业。
下面是作者为大家整理的有关高考数学必修必考知识点归纳总结,期望对你们有帮助!高考数学必修必考知识点归纳总结高考数学必考知识点归纳必修一:1、集合与函数的概念(这部分知识抽象,较难知道)2、基本的初等函数(指数函数、对数函数)3、函数的性质及运用(比较抽象,较难知道)高考数学必考知识点归纳必修二:1、立体几何(1)、证明:垂直(多考核面面垂直)、平行(2)、求解:主要是夹角问题,包括线面角和面面角。
这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。
这部分知识高考占22---27分2、直线方程:高考时不单独命题,易和圆锥曲线结合命题3、圆方程高考数学必考知识点归纳必修三:1、算法初步:高考必考内容,5分(挑选或填空)2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分。
高考数学必考知识点归纳必修四:1、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且常常和其他函数混合起来考核。
2、平面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。
09年理科占到5分,文科占到13分。
高考数学必考知识点归纳必修五:1、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右2、数列:高考必考,17---22分3、不等式:(线性计划,听课时易知道,但做题较复杂,应掌控技能。
高考必考5分)不等式不单独命题,一样和函数结合求最值、解集。
高考数学必考知识点归纳文科选修选修1--1:重点:高考占30分1、逻辑用语:一样不考,若考也是和集合放一块考2、圆锥曲线:3、导数、导数的运用(高考必考)选修1--2:1、统计:2、推理证明:一样不考,若考会是填空题3、复数:(新课标比老课本难的多,高考必考内容)。
高一新课标人教版a版数学必修一高一新课标人教版A版数学必修一涵盖了高中数学的基础内容,为学生进一步学习数学打下坚实的基础。
本册教材主要包含以下几个部分:1. 集合与简易逻辑:介绍了集合的基本概念,包括集合的表示、子集、并集、交集和补集等。
同时,也涉及了简易逻辑,如命题、逻辑连接词、真值表等。
2. 函数的概念与性质:解释了函数的定义、表示方法、函数的单调性、奇偶性等基本性质。
此外,还介绍了函数图像的绘制方法。
3. 指数函数与对数函数:探讨了指数函数和对数函数的定义、性质及其图像。
包括指数运算法则、对数运算法则以及它们在实际问题中的应用。
4. 三角函数:详细讲解了正弦、余弦、正切等三角函数的定义、性质、图像和应用。
包括三角恒等式、三角函数的周期性、极坐标等。
5. 平面向量:介绍了向量的概念、表示方法、向量的加法、减法、数乘以及向量的点积和叉积等。
6. 数列:讨论了数列的概念、分类、通项公式、求和公式等。
包括等差数列和等比数列的性质和计算方法。
7. 不等式:包括不等式的基本性质、解法以及不等式在实际问题中的应用。
8. 立体几何:介绍了空间中的点、直线、平面的位置关系,以及简单几何体的性质和计算。
9. 解析几何:涉及直线和圆的方程,以及它们的交点、切线等几何性质。
10. 概率与统计:介绍了概率的基本概念、事件的分类、概率的计算方法以及统计的基础知识。
本册教材注重培养学生的数学思维和解决问题的能力,通过大量的例题和习题,帮助学生理解和掌握数学概念,提高数学素养。
同时,教材设计了多种教学活动,鼓励学生参与讨论和实践,以增强学习的兴趣和效果。
数学·必修1(人教A版)一、目标解读函数是高中数学的主要内容之一,这是因为函数思想方法灵活多样,逻辑思维性强,许多数学问题都可以从函数的角度来认识、研究.函数知识与数学的其他各分支的巧妙结合容易形成综合性较强的新颖的试题,这样的试题往往成为高考中极具份量的一类解答题,综合考查考生应用函数知识分析问题、解决问题的能力.而在命题的具体设计上,总是具有从易到难、逐步设问的特点,以较隐蔽的方式给出解题思路,在考查函数内容的同时也考查应用函数的思想方法,观察问题、分析问题和解决问题的能力,同时考查学生数形结合的思想和分类讨论的思想的应用能力.函数是中学数学的重要组成部分.它所涉及的内容是升入大学继续学习的基础,因此,函数不仅是中学数学教学的重点,也是高考考查的重点.近年来,函数的分值占30%左右.函数是高中代数的主线.它体系完整,内容丰富,应用广泛.由于它描述的是自然界中量的依存关系,是对问题本身数量的制约关系的一种刻画,所以是对数量关系本质特征的一种揭示,为我们从运动、变化、联系、发展的角度认识问题打开了思路.本章主要研究的是基本初等函数:指数函数、对数函数和幂函数的概念、图象和性质.包括理解分数指数幂的概念,掌握有理指数幂的运算性质,理解对数的概念,掌握对数的运算性质,能运用函数的一般性质和指数函数、对数函数的特征性质解决某些简单的实际问题.指数函数与对数函数都是初等超越函数.在历年的高考题中出现的频率较大.出现在小题时是较基本的考查方式;出现在大题中时,往往与其他知识综合形成开放性问题,加大对开放性问题的考查力度.通过本章的学习达到以下基本目标:①了解指数函数模型的实际背景,体会指数函数是一类重要的函数模型.②理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.③理解指数函数的概念和意义,能画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点.④了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型.⑤能画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点.⑥理解对数的概念及其运算性质,能用换底公式将一般对数转化成自然对数或常用对数.⑦了解指数函数y =a x (a >0,且a ≠1)与对数函数y =log a x (a >0,且a ≠1)互为反函数.⑧了解幂函数的概念,结合函数y =x α(α=1,2,3,12,-1)的图象,了解它们的变化情况.二、主干知识(一)指数与指数幂的运算 1.整数指数幂的概念. (1)正整数指数幂的意义:(2)零指数幂:a 0=1(a ≠0).(3)负整数指数幂: a -n=1a n (a ≠0,n ∈N *).2.整数指数幂的运算性质:①a m ·a n =a m +n ;②(a m )n =a mn ;③(ab )n =a n b n .3.如果x n =a ,那么x 叫做a 的n 次方根,其中n >0,且n ∈N *.(1)当n是奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数.此时a的n次方根用符号na表示.(2)方根的性质:①当n是奇数时,na n=a;②当n是偶数时,na n=|a|=⎩⎪⎨⎪⎧a(a≥0),-a(a<0).4.分数指数幂.(1)正数的分数指数幂的意义:设a>0,m,n∈N*,n>1,规定(2)0的正分数指数幂等于0,0的负分数指数幂没有意义.5.有理指数幂的运算性质:①a r·a s=a r+s(a>0,r,s∈Q);②(a r)s=a rs(a>0,r,s∈Q);③(ab)r=a r b r(a>0,b>0,r∈Q).(二)指数函数及其性质1.函数y=a x(a>0,且a≠1)叫做指数函数,其中x是自变量.2.指数函数y=a x(a>0,且a≠1)的图象和性质(见下表):函数y=a x(a>1)y=a x(0<a<1)图象定义域R R值域x>0时,y>1,x<0时,0<y<1x>0时,0<y<1x<0时,y>1定点过点(0,1)过点(0,1)单调性单调递增单调递减1.如果a x=N(a>0,a≠1),那么数x叫做以a为底N的对数.记作x=log a N,其中a叫做对数的底数,N叫做真数.对数式的书写格式:(1)以10为底的对数叫做常用对数,并把常用对数log10N简记为lg N;(2)以无理数e=2.718 28……为底的对数,叫自然对数,并把自然对数log e N简记为ln N.2.指数与对数的关系:设a>0,且a≠1,则a x=N⇔log a N=x.3.对数的性质.(1)在指数式中N >0,故0和负数没有对数,即式子log a N 中N 必须大于0;(2)设a >0,a ≠1,则有a 0=1,所以log a 1=0,即1的对数为0;(3)设a >0,a ≠1,则有a 1=a ,所以log a a =1,即底数的对数为1.4.对数恒等式.(1)如果把a b =N 中的b 写成log a N 形式,则有(2)如果把x =log a N 中的N 写成a x 形式,则有log a a x =x .5.对数的运算性质.设a >0,a ≠1,M >0,N >0,则有:(1)log a (MN )=log a M +log a N ,简记为:积的对数=对数的和; (2)log a MN =log a M -log a N ,简记为:商的对数=对数的差; (3)log a M n =n log a M (n ∈R).(四)对数函数及其性质1.函数y =log a x (a >0,且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).2.对数函数的图象、性质(见下表):函数y=log a x(a>1)y=log a x(0<a<1)图象定义域R+R+值域R R单调性增函数减函数过定点(1,0)(1,0)(1)当a>1时,若x>1,则log a x>0,若0<x<1,则log a x<0;(2)当0<a<1时,若0<x<1,则log a x>0,若x>1,则log a x <0.3.函数y=a x与y=log a x(a>0,且a≠1)互为反函数,互为反函数的两个函数的图象关于直线y=x对称.(五)幂函数1.形如y=xα(α∈R)的函数叫做幂函数,其中α为常数.只研究α为有理数的情形.3.幂函数的性质.(1)幂函数在(0,+∞)都有定义,并且图象都过点(1,1).(2)当α>0时,幂函数的图象通过原点,并且在区间[0,+∞)上是增函数.特别地,当α>1时,幂函数的图象下凸;当0<α<1时,幂函数的图象上凸.(3)当α<0时,幂函数的图象在区间(0,+∞)上是减函数.在第一象限内,当x从右边趋向原点时,图象在y轴右方无限地逼近y轴正半轴,当x趋于+∞时,图象在x轴上方无限地逼近x轴正半轴.4.图象形状:当α>0(α≠1)时,图象为抛物线型;当α<0时,α=0,1时,图象为直线型.图象为双曲线型;当1.正数的分数指数幂的意义:设a>0,m,n∈N*,n>1,规定:0的正分数指数幂等于0,0的负分数指数幂没有意义.2.有理指数幂的运算性质:①a r·a s=a r+s(a>0,r,s∈Q);②(a r)s=a rs(a>0,r,s∈Q);③(ab)r=a r b r(a>0,b>0,r∈Q).答案:12 011►跟踪训练解析:由平方差公式化简即得答案.答案: -27答案:-6a3.幂函数y =f (x )的图象经过点⎝⎛⎭⎪⎫-2,-18,则满足f (x )=27的x 的值是________.答案:131.设a >0,且a ≠1,则a x =N ⇔log a N =x ;a log a N =N; log a a x =x .指数与对数运算2.设a >0,a ≠1, M >0,N >0 ,则有 (1)log a (MN )=log a M +log a N ,(2)log a MN =log a M -log a N ,(3)log a M n =n log a M (n ∈R).3.设a >0,a ≠1,b >0,b ≠1,则log a x =log b xlog b a .设2a =5b =m ,且1a +1b =2,则m =( ) A.10 B .10 C .20 D .100解析:由2a =5b =m 得a =log 2m ,b =log 5m ,∴1a +1b =log m 2+log m 5=log m 10=2,∴m 2=10,又∵m >0,∴m =10.答案:A►跟踪训练4.已知函数f (x )=log 2(x +1),若f (α)=1,则α=( ) A .0 B .1C .2D .3解析:α+1=2,故α=1,选B. 答案:B5.2log 510+log 50.25=( ) A .0 B .1C .2D .4解析:2log 510+log 50.25=log 5100+log 50.25=log 525=2. 答案:C6.已知函数f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,2x ,x ≤0,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫19=( )A .4 B.14C.-4 D.-147.设g(x)=⎩⎪⎨⎪⎧e x,x≤0,ln x,x>0,则g⎝⎛⎭⎪⎫g⎝⎛⎭⎪⎫12=________.解析:答案:121.指数函数y=a x(a>0,且a≠1)的定义域是R,值域是⎝⎛⎭⎫0,+∞,过定点(0,1).当a>1时,指数函数y=a x是R上的增函数;当0<a<1时,指数函数y=a x是R上的减函数.2.对数函数y=log a x(a>0,且a≠1)的定义域是⎝⎛⎭⎫0,+∞,值域是R,过定点(1,0).指数函数与对数函数的性质当a >1时,对数函数y =log a x 是⎝⎛⎭⎫0,+∞上的增函数;当0<a <1时,对数函数y =log a x 是⎝⎛⎭⎫0,+∞上的减函数.函数y =1log 0.5(4x -3)的定义域为( )A.⎝ ⎛⎭⎪⎫34,1B.⎝ ⎛⎭⎪⎫34,+∞ C .(1,+∞) D.⎝ ⎛⎭⎪⎫34,1∪(1,+∞) 解析:由log 0.5(4x -3)>0且4x -3>0可解得34<x <1,故A 正确.答案:A►跟踪训练8.函数y =2x 的图象大致是( )答案:C9.函数f (x)=lg(x-1)的定义域是()A.(2,+∞)B.(1,+∞)C.[1,+∞) D.[2,+∞)解析:x-1>0,得x>1,选B.答案:B10.函数f(x)=log2(3x+1)的值域为()A.(0,+∞) B.[0,+∞)C.(1,+∞) D.[1,+∞)答案:A研究由基本初等函数的和与差等运算构成的新函数的性质时,必须明确各基本初等函数的相关性质.设函数的集合P=f(x)=log2(x+a)+研究基本初等函数及其组合的性质A.4个B.6个C.8个D.10个解析:当a=0,b=0;a=0,b=1;a=12,b=0; a=12,b=1;a=1,b=-1;a=1,b=1时满足题意,选B.答案:B►跟踪训练11.若函数f(x)=3x+3-x与g(x)=3x-3-x的定义域均为R,则()A.f(x)与g(x)均为偶函数B.f(x)为偶函数,g(x)为奇函数C.f(x)与g(x)均为奇函数D.f(x)为奇函数,g(x)为偶函数解析:f(-x)=3-x+3x=f(x),g(-x)=3-x-3x=-g(x).答案:BA.①②B.②③C.③④D.①④答案:B13.设函数f(x)=x(e x+a e-x)(x∈R)是偶函数,则实数a=________.解析:由条件知,g(x)=e x+a e-x为奇函数,故g(0)=0,得a=-1.答案:-1数学思想方法的应用数形结合的思想方法是根据数量与图形的对应关系,通过数与形的相互转化来解决问题的一种思想方法.转化与化归的思想方法则是将问题不断转化,直到转化为比较容易解决或已经解决的问题.而分类讨论的核心是通过增强条件来分情况逐一研究,使问题易于解决.一、数形结合思想直线y =1与曲线y =x 2-||x +a 有四个交点,则a 的取值范围是 _______ .解析:曲线y =x 2-|x |+a 关于y 轴对称,当x ≥0时,y =x 2-x+a =⎝ ⎛⎭⎪⎫x -122+a -14,结合图象要使直线y =1与曲线y =x 2-|x |+a有四个交点,需⎩⎪⎨⎪⎧a >1,a -14<1,解得1<a <54.故a 的取值范围是⎝ ⎛⎭⎪⎫1,54.答案:⎝ ⎛⎭⎪⎫1,54►跟踪训练14.已知c <0,下列不等式中成立的一个是( )A .c >2cB .c >⎝ ⎛⎭⎪⎫12cC .2c<⎝ ⎛⎭⎪⎫12c D .2c>⎝ ⎛⎭⎪⎫12c解析:在同一直角坐标系下作出y =x ,y =⎝ ⎛⎭⎪⎫12x,y =2x 的图象,显然c <0时,x <2x<⎝ ⎛⎭⎪⎫12x ,即c <0时,c <2c <⎝ ⎛⎭⎪⎫12c.答案:C15.下列函数图象中,正确的是( )答案:C16.已知y =f (x )是偶函数,当x >0时,y =f (x )是减函数,并且f (1)>0>f (2),则方程f (x )=0的实根的个数是_________个.答案:2二、转化与化归的思想设a =333+1334+1,b =334+1335+1,试比较a 、b 的大小.解析:如果比较a -b 与0或ab 与1的大小,即用作差法、作商法来做,较繁杂、不易判断.由于a 、b 两数的结构特点可构造函数f (x )=3x +13x +1+1,则a =f (33),b =f (34),若能判断出此函数的单调性,那么就可简捷地比较出a 、b 的大小.f (x )=3x +13x +1+1=3x +1+33(3x +1+1)=(3x +1+1)+23(3x +1+1) =13+23(3x +1+1). ∵3x +1在R 上递增,∴23(3x +1+1)在R 上递减.∴ f (x )=13+23(3x +1+1)在R 上递减. ∴ f (33)>f (34),即a >b .►跟踪训练17.解方程:(lg 2x )·(lg 3x )=lg 2·lg 3.解析:原方程可化为(lg 2+lg x )(lg 3+lg x )=lg 2·lg 3,即lg 2x +lg 6·lg x =0,解得lg x =0或lg x =-lg 6.∴x =1或x =16, 经检验x =1,x =16都是原方程的解. ∴原方程的解为x 1=1或 x 2=16.18.比较log 0.30.1和log 0.20.1的大小.解析:log 0.30.1=1log 0.10.3>0,log0.20.1=1log0.10.2>0.∵log0.10.3<log0.10.2,∴log0.30.1>log0.20.1.19.某池塘中野生水葫芦的面积与时间的函数关系的图象如下图所示.假设其关系为指数函数,并给出下列说法:①此指数函数的底数为2;②在第5个月时,野生水葫芦的面积就会超过30 m2;③野生水葫芦从4 m2蔓延到12 m2只需1.5个月;④设野生水葫芦蔓延到2 m2,3 m2,6 m2所需的时间分别为t1,t2,t3, 则有t1+t2=t3;⑤野生水葫芦在第1到第3个月之间蔓延的平均速度等于在第2到第4个月之间蔓延的平均速度.其中正确的说法有______________ (填序号).答案:①②④三、分类讨论思想若a>0,且a≠1,p=log a(a3+a+1),q=log a(a2+a+1),则p、q的大小关系为()A.p=qB.p<qC.p>qD.a>1时,p>q;0<a<1时,p<q解析:要比较p、q的大小,只需先比较a3+a+1与a2+a+1的大小,再利用对数函数的单调性.而决定a3+a+1与a2+a+1的大小的a值的分界点为使(a3+a+1)-(a2+a+1)=a2(a-1)=0的a 值:a=1,当a>1时,a3+a+1>a2+a+1,此时log a(a3+a+1)>log a(a2+a+1),即p>q.当0<a<1时,a3+a+1<a2+a+1,此时log a(a3+a+1)>log a(a2+a+1),即p>q.可见,不论a>1还是0<a<1,都有p>q.答案:C ►跟踪训练20.已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,2x ,x ≤0. 若f (a )=12,则a =( ) A .-1 B. 2C .-1或 2D .1或- 2解析:讨论a >0和a ≤0两种情况.答案:C21.已知函数f (x )=log a x 在[2,π]上的最大值比最小值大1,则a 等于( )A.2πB.π2C.2π或π2D .不同于A 、B 、C 答案解析:研究函数的最值需考查函数的单调性,而题中对数函数的增减性与底数a 的取值有关,故应对a 进行分类讨论.(1)当a >1时,f (x )在[2,π]上是增函数,最大值是f (π),最小值是f (2),据题意,f (π)-f (2)=1,即log a π-log a 2=1,∴a =π2. (2)当0<a <1时,f (x )在[2,π]上是减函数,最大值是,最小值是f (π),故f (2)-f (π)=1,即log a 2-log a π=1,∴a =2π. 由(1)(2)知,选C.答案: C22.已知f (x )=1+log x 3,g (x )=2log x 2试比较f (x )和g (x )的大小.解析:f (x )-g (x )=log x 3x 4. (1)当⎩⎪⎨⎪⎧ x >1,3x 4>1⇒x >43,或⎩⎪⎨⎪⎧ 0<x <1,0<3x 4<1⇒0<x <1,即x >43或0<x <1时,f (x )>g (x ). (2)当3x 4=1即x =43时,f (x )=g (x ). (3)当⎩⎪⎨⎪⎧ x >1,0<3x 4<1⇒1<x <43,或⎩⎪⎨⎪⎧ 0<x <1,3x 4>1⇒x ∈∅,即1<x <43时,f (x )<g (x ).综上所述:①当x ∈(0,1)∪⎝ ⎛⎭⎪⎫43,+∞时,f (x )>g (x ); ②当x =43时,f (x )=g (x ); ③当x ∈⎝ ⎛⎭⎪⎫1,43时,f (x )<g (x ).23.已知f (x )=log a (a x -1)(a >0且a ≠1).(1)求定义域;(2)讨论函数的单调区间.解析:(1)由a x -1>0⇒a x >1,当a >1时,函数定义域为(0,+∞),当0<a <1时,函数定义域为(-∞,0).点评:底数含字母a ,要进行分类讨论.。
新课标人教版高中数学(必修1)知识点导学一、集合:1.集合的含义:某些指定的对象集在一起就成为一个集合,每一个对象叫集合的一个元素。
2.元素的三个特性:(1)确定性:对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定集合的元素,(2)互异性:任何一个给定的集合中,任意两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素,(3)无序性:集合中的元素是平等的,没有先后顺序,判断两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样,(4)集合元素的三个特性使集合本身具有了确定性和整体性。
3.集合的表示:①列举法:把集合中的元素一一列举出来,用一个大括号括起来,元素与元素之间用逗号隔开,②描述法:将集合中元素的公共属性描述出来,写在大括号内表示集合的方法,①语言描述法:如:{不是直角三角形的三角形},②数学式子描述法:如:不等式x-3>2的解集是{x ∈R|x-3>2}或{x| x-3>2}。
4.集合的分类:(1)有限集:含有有限个元素的集合,(2)无限集:含有无限个元素的集合,(3)空集:不含任何元素的集合,如:{x|x 2=-5}。
5.集合间的基本关系:(1)包含关系(子集):A ⊆B 有两种可能:①A 是B 的一部分,②A 与B 是同一集合,集合 A 不包含于集合B 或集合B 不包含集合A,记作A ⊆/B 或B ⊇/A,(2)相等关系(若5≥5且5≤5,则5=5),如:A={x|x 2-1=0}与 B={-1,1}相等,对于两个集合A 与B,如果集合A 的任何一个元素都是集合B 的元素,集合B 的任何一个元素都是集合A 的元素,就说集合A 等于集合B,即:A=B,①任何一个集合是它本身的子集,A ⊆A,②真子集:如果A ⊆B 且A ≠B,就说集合A 是 集合B 的真子集,记作A B 或B A,③若A ⊆B 且B ⊆C,则A ⊆C,④若A ⊆B 且B ⊆A,则A=B,(3)不含任何元素的集合叫 空集,记为φ,规定:空集是任何集合的子集,空集是任何非空集合的真子集。
人教版新课标B版高中数学所有目录和知识点必修一第一章集合1.1集合与集合的表示方法1.2集合之间的关系与运算章复习与测试本章小结第二章函数2.1函数2.2一次函数和二次函数2.3函数的应用(i)2.4函数与方程章复习与测试本章小结第三章基本初等函数(i)3.1指数与指数函数3.2对数与对数函数3.3幂函数3.4函数的应用(ii)章复习与测试本章小结第一章算法初步1.1算法与程序框图1.2基本算法语句1.3中国古代数学中的算法案例章复习与测试本章小结第二章统计2.1随机抽样2.2用样本估计总体2.3变量的相关性章复习与测试本章小结第三章概率3.1随机现象3.2古典概型3.3随机数的含义与应用3.4概率的应用章复习与测试本章小结必修二第一章立体几何初步1.1空间几何体1.2点、线、面之间的位置关系章复习与测试第二章平面解析几何初步2.1平面直角坐标系中的基本公式2.2直线方程2.3圆的方程2.4空间直角坐标系章复习与测试必修三必修四第一章基本初等函数(ⅱ)1.1任意角的概念与弧度制1.2任意角的三角函数1.3三角函数的图象与性质章复习与测试第二章平面向量2.1向量的线性运算2.2向量的分解与向量的坐标运算2.3平面向量的数量积2.4向量的应用章复习与测试第三章三角恒等变换3.1和角公式3.2倍角公式和半角公式3.3三角函数的积化和差与和差化.章复习与测试必修五第一章解斜角三角形1.1正弦定理和余弦定理1.2应用举例章复习与测试第二章数列2.1数列2.2等差数列2.3等比数列章复习与测试第三章不等式3.1不等关系与不等式3.2均值不等式3.3一元二次不等式及其解法3.4不等式的实际应用3.5二元一次不等式(组)与简单线.章复习与测试选修二(2-1)第一章常用逻辑用语1.1命题与量词1.2基本逻辑联结词1.3充分条件、必要条件与命题的.章综合第二章圆锥曲线与方程2.1曲线与方程2.2椭圆2.3双曲线2.4抛物线2.5直线与圆锥曲线章综合第三章空间向量与立体几何3.1空间向量及其运算3.2空间向量在立体几何中的应用章综合选修二(2-2)选修4-1几何证明选修4-4坐标系与参数方程选修4-5不等式选讲第一章导数及其应用领域1.1导数1.2导数的运算1.3导数的应用领域1.4定分数与微积分基本定理章备考与测试第二章推理小说与证明2.1合情推理小说与演绎推理2.2直接证明与间接证明2.3数学归纳法章备考与测试第三章数系的扩展与复数3.1数系的扩展与复数的概念3.2复数的运算章备考与测试报读二(2-3)第一章计数原理1.1基本计数原理1.2排序与女团1.3二项式定理章备考与测试第二章概率2.1线性型随机变量及其原产列2.2条件概率与事件的独立性2.3随机变量的数学特征2.4正态分布章备考与测试第三章统计数据案例3.1独立性检验3.2重回分析章备考与测试每章节主要内容:必修课程1子集1.如何区分φ、{φ}、0、{();}?2.子集的运算存有哪些常用性质与结论?3.对应、态射、函数有何关系?必修课程1函数4.求函数解析式有哪些常用方法?5.判断函数单调性有哪些常用方法?6.函数的单调性有哪些应用?7.判断函数奇偶性要注意什么?判断函数奇偶性常用的方法有哪些?8.函数的奇偶性有哪些性质?9.函数一定存在反函数么?什么样的函数存在反函数?10.如何谋二次函数在区间上的最值?11.函数的零点就是函数的图像与x轴的交点吗?它与方程的根有何关系?12.分数指数幂与根式有何关系?13.指数式ab=n与对数式logon中,a,6,n三者之间有何关系?14.指数函数、对数函数存有哪些常见问题?必修课程2直线和圆的方程20.直线的倾斜角和斜率有何关系?21.直线方程的五种形式有哪些限制条件?22.两直线平行、垂直的等价条件是什么?23.什么是直线系?常见的直线系有哪些?有何应用?24.平面解析几何中常用的等距公式存有哪些?25.求圆的方程常用的方法有哪些?26.直线与圆有几种位置关系?如何判断?27.圆与圆存有几种边线关系?如何认定?28.可以写下过两圆交点的圆系方程吗?它有何应用领域?必修课程3算法29.算法有哪些特征?它的描述方法有哪些?30.画程序框图存有什么规则?31.算法有几种基本的逻辑结构?共同点是什么?如何用框图表示?32.基本的算法语句存有哪几种?如何采用?必修3统计――抽样33.直观随机抽样存有什么特点?它存有哪些具体内容的方法?34.系统抽样有什么特点?当总体容量不能被样本容量整除时怎么办?35.分层抽样、直观随机抽样、系统抽样存有什么共同点和不同点?必修课程3统计数据――样本分布36.样本频率分布直方图与总体密度曲线有何关系?37.什么就是众数、中位数、平均数?这些数字特征在充分反映总体时存有哪些优缺点?38.方差和标准差在充分反映总体时存有什么意义?必修3概率39.频率和概率有何关系?40.互斥事件与对立事件有何关系?如何判断互斥事件与对立事件?15.幂函数的图像存有哪几种形式?存有哪些性质?必修2立体几何16.如何证明线线、线面、面面之间的平行和横向?17.四面体中有哪些常见的数量关系和位置关系?18.立体几何中划分与补形存有哪些常用技巧?19.经度、纬度分别指的是什么角?如何求两点间的球面距离?必修2直线和圆的方程20.直线的倾斜角和斜率有何关系?21.直线方程的五种形式存有哪些管制条件?22.两直线平行、横向的等价条件就是什么?23.什么就是直线系则?常用的直线系则存有哪些?有何应用领域?24.平面解析几何中常用的对称公式有哪些?25.求圆的方程常用的方法存有哪些?26.直线与圆存有几种边线关系?如何推论?27.圆与圆有几种位置关系?如何判定?28.会写出过两圆交点的圆系方程吗?它有何应用领域?必修课程3算法29.算法有哪些特征?它的描述方法有哪些?30.画程序框图存有什么规则?31.算法有几种基本的逻辑结构?共同点是什么?如何用框图表示?32.基本的算法语句存有哪几种?如何采用?必修3统计――抽样33.直观随机抽样存有什么特点?它存有哪些具体内容的方法?34.系统抽样有什么特点?当总体容量不能被样本容量整除时怎么办?35.分层抽样、直观随机抽样、系统抽样存有什么共同点和不同点?必修课程3统计数据――样本分布36.样本频率分布直方图与总体密度曲线有何关系?37.什么就是众数、中位数、平均数?这些数字特征在充分反映总体时存有哪些优缺点?38.方差和标准差在反映总体时有什么意义?必修课程3概率39.频率和概率有何关系?40.不相容事件与矛盾事件有何关系?如何推论不相容事件与矛盾事件?……必修4三角函数必修4平面向量必修5解三角形必修5数列必修5不等式报读2-1(报读1-1)直观逻辑报读2-1(报读1-1)圆锥曲线报读2-1空间向量、角度及距离报读2-2导数、微积分定理选修2-2(选修1-2)推理与证明复数选修2-3排列组合、二项式定理、数据分布选修4-1几何证明报读4-4坐标系与参数方程报读4-5不等式选讲。
高中数学必修+选修知识点归纳新课标人教A版一、集合1、 把研究的对象统称为元素,把一些元素组成的总体叫做集合。
集合三要素:确定性、互异性、无序性。
2、 只要构成两个集合的元素是一样的,就称这两个集合相等。
3、 常见集合:正整数集合:*N 或+N ,整数集合:Z ,有理数集合:Q ,实数集合:R .4、集合的表示方法:列举法、描述法.§1.1.2、集合间的基本关系1、 一般地,对于两个集合A 、B ,如果集合A 中任意一个元素都是集合B 中的元素,则称集合A 是集合B 的子集。
记作B A ⊆.2、 如果集合B A ⊆,但存在元素B x ∈,且A x ∉,则称集合A 是集合B 的真子集.记作:A B. 3、 把不含任何元素的集合叫做空集.记作:∅.并规定:空集合是任何集合的子集.4、 如果集合A 中含有n 个元素,则集合A 有n2个子集,21n-个真子集.§1.1.3、集合间的基本运算1、 一般地,由所有属于集合A 或集合B 的元素组成的集合,称为集合A 与B 的并集.记作:B A . 2、 一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集.记作:B A . 3、全集、补集?{|,}U C A x x U x U =∈∉且 §1.2.1、函数的概念1、 设A 、B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有惟一确定的数()x f 和它对应,那么就称B A f →:为集合A 到集合B 的一个函数,记作:()A x x f y ∈=,.2、 一个函数的构成要素为:定义域、对应关系、值域.如果两个函数的定义域相同,并且对应关系完全一致,则称这两个函数相等.§1.2.2、函数的表示法1、 函数的三种表示方法:解析法、图象法、列表法. §1.3.1、单调性与最大(小)值 1、注意函数单调性的证明方法:(1)定义法:设2121],,[x x b a x x <∈、那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数;],[)(0)()(21b a x f x f x f 在⇔>-上是减函数.步骤:取值—作差—变形—定号—判断 格式:解:设[]b a x x ,,21∈且21x x <,则:()()21x f x f -=…(2)导数法:设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数; 若0)(<'x f ,则)(x f 为减函数. §1.3.2、奇偶性1、 一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f =-,那么就称函数()x f 为偶函数.偶函数图象关于y 轴对称.2、 一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f -=-,那么就称函数()x f 为奇函数.奇函数图象关于原点对称. 知识链接:函数与导数1、函数)(x f y =在点0x 处的导数的几何意义: 函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-.2、几种常见函数的导数①'C 0=;②1')(-=n n nxx ;③x x cos )(sin '=; ④x x sin )(cos '-=; ⑤a a a xx ln )('=; ⑥xx e e =')(;⑦a x x a ln 1)(log '=;⑧xx 1)(ln '=3、导数的运算法则 (1)'()u v u v ±=±.(2)'''()uv u v uv =+.(3)'''2()(0)u u v uv v v v-=≠. 4、复合函数求导法则复合函数(())y f g x =的导数和函数(),()y f u u g x ==的导数间的关系为x u x y y u '''=⋅,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.解题步骤:分层—层层求导—作积还原. 5、函数的极值 (1)极值定义:极值是在0x 附近所有的点,都有)(x f <)(0x f ,则)(0x f 是函数)(x f 的极大值;极值是在0x 附近所有的点,都有)(x f >)(0x f ,则)(0x f 是函数)(x f 的极小值. (2)判别方法:①如果在0x 附近的左侧)('x f >0,右侧)('x f <0,那么)(0x f 是极大值;②如果在0x 附近的左侧)('x f <0,右侧)('x f >0,那么)(0x f 是极小值. 6、求函数的最值(1)求()y f x =在(,)a b 内的极值(极大或者极小值)(2)将()y f x =的各极值点与(),()f a f b 比较,其中最大的一个为最大值,最小的一个为极小值。
高一数学必修一知识点总结人教1.知识网络图复数知识点网络图2.复数中的难点(1)复数的向量表示法的运算.对于复数的向量表示有些学生掌握得不好,对向量的运算的几何意义的灵活掌握有一定的困难.对此应认真体会复数向量运算的几何意义,对其灵活地加以证明.(2)复数三角形式的乘方和开方.有部分学生对运算法则知道,但对其灵活地运用有一定的困难,特别是开方运算,应对此认真地加以训练.(3)复数的辐角主值的求法.(4)利用复数的几何意义灵活地解决问题.复数可以用向量表示,同时复数的模和辐角都具有几何意义,对他们的理解和应用有一定难度,应认真加以体会.3.复数中的重点(1)理解好复数的概念,弄清实数、虚数、纯虚数的不同点.(2)熟练掌握复数三种表示法,以及它们间的互化,并能准确地求出复数的模和辐角.复数有代数,向量和三角三种表示法.特别是代数形式和三角形式的互化,以及求复数的模和辐角在解决具体问题时经常用到,是一个重点内容.(3)复数的三种表示法的各种运算,在运算中重视共轭复数以及模的有关性质.复数的运算是复数中的主要内容,掌握复数各种形式的运算,特别是复数运算的几何意义更是重点内容.(4)复数集中一元二次方程和二项方程的解法.数学教学心得如果以上的表述并不具有数学学科的特点的话,那么加上一个定语——让学生用数学的眼光进行数学思考。
比如,百货店的促销信息,人们不仅会关注哪个折扣低,还会关注标价的高低。
美国统计学家戴维穆尔的《统计学的世界》一书中有幅漫画,画的是一个人误以为平均水深就是每一个地方都是这样的水深而溺水死亡,从侧面反映了数学常识在现实生活中的作用。
数学地思考,是数学学习的更高目标。
数学学习过程中所倡导的思考方式是具有学科特点的。
看到一幅图画时,别的学科可能关注的是这幅图是多么的美观,但是对于数学学习来说,教师需要引导学生关注这个图形的组成与分解,引导学生思考的是多边形线的条数等。
这种量化、精确化的思考方式是数学教学最根本的目标价值所在。
高中数学必修1知识点总结第一章集合与函数概念【】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性.(2)常用数集及其记法N表示自然数集,N*或N+表示正整数集,Z表示整数集,Q表示有理数集,R表示实数集.(3)集合与元素间的关系对象a与集合M的关系是a M∈,或者a M∉,两者必居其一.(4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合.③描述法:{x|x具有的性质},其中x为集合的代表元素.④图示法:用数轴或韦恩图来表示集合.(5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【】集合间的基本关系(6)子集、真子集、集合相等(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n -非空真子集.【】集合的基本运算 (8)交集、并集、补集x B ∈∅=∅B A ⊆ B B ⊆x B ∈A A =A ∅=B A ⊇ B B ⊇补集UA{|,}x x U x A ∈∉且1()U A A =∅ 2()U A A U=【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法不等式 解集||(0)x a a <> {|}x a x a -<<||(0)x a a >>|x x a <-或}x a >||,||(0)ax b c ax b c c +<+>>把ax b +看成一个整体,化成||x a <,||(0)x a a >>型不等式来求解(2)一元二次不等式的解法判别式0∆> 0∆= 0∆<()()()UU U A B A B =()()()UU U A B A B =24b ac∆=-二次函数2(0)y ax bx c a=++>的图象O一元二次方程20(0) ax bx c a++=>的根21,242b b acxa-±-=(其中12)x x<122bx xa==-无实根20(0) ax bx c a++>>的解集1{|x x x<或2}x x>{|x}2bxa≠-R20(0) ax bx c a++<>的解集12{|}x x x x<<∅∅〖〗函数及其表示【】函数的概念(1)函数的概念①设A、B是两个非空的数集,如果按照某种对应法则f,对于集合A中任何一个数x,在集合B中都有唯一确定的数()f x和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数.(2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a xb <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <.(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合. ④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论.⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义.(4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2++=,则在()0a y xb y xc y()()()0a y≠时,由于,x y为实数,故必须有2()4()()0∆=-⋅≥,从而确定函数的值域或最值.b y a yc y④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值.⑧函数的单调性法.【】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系.(6)映射的概念①设A、B是两个集合,如果按照某种对应法则f,对于集合A中任何一个元素,在集合B中都有唯一的元素和它对应,那么这样的对应(包括集合A,B 以及A到B的对应法则f)叫做集合A到B的映射,记作:f A B→.②给定一个集合A到集合B的映射,且,∈∈.如果元素a和元素b对应,a Ab B那么我们把元素b叫做元素a的象,元素a叫做元素b的原象.〖〗函数的基本性质【】单调性与最大(小)值(1)函数的单调性①定义及判定方法如果对于属于定义域I内某个区间上的任意两个自变量的值x1、x2,当x.1.< .x.2.时,都有f(x...1.)>f(x.....2.).,那么就说f(x)在这个区间上是减函数....y=f(X)yxo x x2f(x )f(x )211(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象下降为减)(4)利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x=,令()u g x=,若()y f u=为增,()u g x=为增,则[()]y f g x=为增;若()y f u=为减,()u g x=为减,则[()]y f g x=为增;若()y f u=为增,()u g x=为减,则[()]y f g x=为减;若()y f u=[()]y f g x=为减.(2)打“√”函数()(0)af x x ax=+>的图象与性质()f x分别在(,]a-∞、,)a+∞]a上为减函数.(3)最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M ≤;(2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【】奇偶性(4)函数的奇偶性①定义及判定方法函数的 奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇函..数..(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于原点对称)如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...f(x)....,那么函数f(x)叫做偶函数....(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于y 轴对称)②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数. 〖补充知识〗函数的图象 (1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象. ①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴 ()()y f x y f x =−−−→=--原点1()()y x y f x y f x -==−−−−→=直线()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.第二章 基本初等函数(Ⅰ) 〖〗指数函数【】指数与指数幂的运算 (1)根式的概念①如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n n 是偶数时,正数a 的正的n 次方根用n 次方根用符号表示;0的n 次方根是0;负数a 没有n 次方根.n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:n a =;当n 为奇数时,a =;当n 为偶数时,(0)|| (0)a a a a a ≥⎧==⎨-<⎩. (2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,m na a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是:1()0,,,m m nn aa m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数.(3)分数指数幂的运算性质①(0,,)r s r s a a a a r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈ ③()(0,0,)r r r ab a b a b r R =>>∈ 【】指数函数及其性质(4)指数函数〖〗对数函数 【】对数与对数运算(1)对数的定义①若(0,1)x a N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数.②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>.(2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.(3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…).(4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么①加法:log log log ()a a a M N MN += ②减法:log log log a a a M M N N-=③数乘:log log ()n a a n M M n R =∈ ④logaNa N =⑤log log (0,)bn a a nM M b n R b=≠∈ ⑥换底公式:log log (0,1)log b a b NN b b a=>≠且【】对数函数及其性质(5)对数函数(6)反函数的概念设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=表示x 是y 的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯上改写成1()y f x -=. (7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=;③将1()x f y -=改写成1()y f x -=,并注明反函数的定义域.(8)反函数的性质①原函数()y f x =与反函数1()y f x -=的图象关于直线y x =对称.②函数()y f x =的定义域、值域分别是其反函数1()y f x -=的值域、定义域.③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.④一般地,函数()y f x =要有反函数则它必须为单调函数.〖〗幂函数(1)幂函数的定义一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数.(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当qpα=(其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则qp y x =是奇函数,若p 为奇数q 为偶数时,则q p y x =是偶函数,若p 为偶数q 为奇数时,则q py x =是非奇非偶函数.⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.〖补充知识〗二次函数(1)二次函数解析式的三种形式①一般式:2()(0)f x ax bx c a =++≠②顶点式:2()()(0)f x a x h k a =-+≠③两根式:12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式.③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便.(3)二次函数图象的性质①二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2bx a=-顶点坐标是24(,)24b ac b a a--. ②当0a >时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2ba-+∞上递增,当2b x a =-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2ba -∞-上递增,在[,)2b a -+∞上递减,当2bx a=-时,2max 4()4ac b f x a -=.③二次函数2()(0)f x ax bx c a =++≠当240b ac ∆=->时,图象与x 轴有两个交点11221212(,0),(,0),||||||M x M x M M x x a =-=. (4)一元二次方程20(0)ax bx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.设一元二次方程20(0)ax bx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=-③判别式:∆ ④端点函数值符号. ①k <x 1≤x 2 ⇔②x 1≤x 2<k ⇔③x1<k <x 2 ⇔ af (k )<0④k1<x1≤x2<k2⇔⑤有且仅有一个根x1(或x2)满足k1<x1(或x2)<k2⇔f(k1)f(k2)<0,并同时考虑f(k1)=0或f(k2)=0这两种情况是否也符合⑥k1<x1<k2≤p1<x2<p2⇔此结论可直接由⑤推出.(5)二次函数2()(0)f x ax bx c a=++≠在闭区间[,]p q上的最值设()f x在区间[,]p q上的最大值为M,最小值为m,令01() 2x p q=+.(Ⅰ)当0a>时(开口向上)①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a =- ③若2b q a->,则()m f q =①若02b x a -≤,则()M f q =b a()M f p = 0<时)2a ()f p ②若2b p q a ≤-≤,则()2b M f a =- ③若2b q a->,则()M f q =①若02b x a -≤,则()m f q = ②02b x a->,则()m f p =.x 0x 0x第三章 函数的应用一、方程的根与函数的零点1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。
1 等比数列的概念
1.等比数列的定义
一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q 表示(q ≠0).
定义还可以叙述为:在数列{a n }中,若
1n n a a +=q (q 为常数且q ≠0),则{a n }是等比数列. 2.对等比数列定义的理解
(1)由等比数列的定义知,数列除末项外的每一项都可能作分母,故每一项均不为0,因此公比也不为0,由此可知,若数列中有“0”项存在,则该数列不可能是等比数列.
(2)“从第2项起”是因为首项没有“前一项”.同时注意公比是每一项与其前一项之比,前后次序不能颠倒.
(3)定义中的“同一常数”是定义的核心之一,一定不能把“同”字省略,这是因为如果一个数列从第2项起,每一项与它的前一项的比尽管是一个与n 无关的常数,却是不同的常数,那么此数列也不是等比数列.当且仅当这些常数相同时,数列才是等比数列.
(4)若一个数列不是从第2项起,而是从第3项或第n (n >3,n ∈N*)项起,每一项与它的前一项的比等于同一常数,则此数列不是等比数列.
(5)等比数列的定义可作为判定或证明等比数列的依据,即判断
1n n a a +或1n n a a -(n ≥2)是否为非零常数q .。
新课标数学必修1知识点总结第一章集合与函式概念一、集合(一)集合有关概念1、集合的含义:某些指定的物件集在一起就成为一个集合,其中每一个物件叫元素。
2、集合中元素的三个特性:1)元素的确定性; 2)元素的互异性; 3)元素的无序性3、元素与集合的关係a是集合a的元素,就说a属于集合a 记作a∈a ,相反,a不属于集合a 记作 aa4、常用数集及其记法:非负整数集(即自然数集)n 正整数集 n*或 n+ 整数集z 有理数集q 实数集r5、集合的表示:1)列举法:例,注意一定要加“{}”2)描述法:例,注意1)加“{}”,2)加小竖线“|”3)venn图法:通常用平面上封闭曲线的内部表示集合,这种图叫做venn图。
6、集合的分类:有限集、无限集、空集(二)集合间的基本关係1、包含关係:若任意,都有,则a是b的子集,记作若,且存在且,则a是b的真子集,记作ab结论:(1)任何一个集合都是它本身的子集,即(2)对于集合a,b,c,如果,且,则(子集关係的传递性)(3)ab ab或a=b(4)空集是任意集合的子集,且空集是任意非空集合的真子集。
(5)若集合a中含有n个元素,则集合a有2n个子集,(2n-1)个真子集。
2、“相等”关係:若,且,则a=b(三)集合的运算1、并集1)定义:一般地,由所有属于集合a或属于集合b的元素所组成的集合,叫做a与b的并集,记作:a∪b(读作"a并b"),即a∪b=。
2)性质:a∪b=b∪a;a (a∪b);b (a∪b);a∪a=a;a∪=a;aba∪b=b。
2、交集1)定义:一般地,由所有属于a且属于b的元素所组成的集合,叫做a与b 的交集,记作a∩b(读作"a交b"),即a∩b=。
2)性质:a∩b=b∩a;(a∩b) a;(a∩b) b;a∩a=a;a∩=;aba∩b=a。
3、补集1)全集:一般地,如果一个集合含有我们所研究问题中涉及的所有元素,那幺就称这个集合为全集,通常记为u。
高中数学新课标必修1高中数学新课标必修1是高中阶段数学学习的起点,它为学生提供了数学基础知识和基本技能,为后续的数学学习打下坚实的基础。
本课程涵盖了数与式、函数、几何、概率与统计等数学领域的基础知识,旨在培养学生的数学思维能力、逻辑推理能力和解决问题的能力。
首先,数与式部分,学生将学习实数的概念、性质以及运算规则,包括有理数、无理数、复数等。
此外,还将学习代数式的运算,包括整式的加减乘除、分式的化简、根式的运算等。
这部分内容是后续学习函数、方程等更高级数学概念的基础。
接着,函数部分是高中数学的核心内容之一。
学生将学习函数的定义、性质、图像以及应用。
包括一次函数、二次函数、指数函数、对数函数等常见函数类型。
通过这部分的学习,学生能够理解函数的基本概念,掌握函数图像的绘制方法,以及如何利用函数解决实际问题。
在几何部分,学生将学习平面几何和立体几何的基础知识。
包括点、线、面的位置关系,三角形、四边形、圆等基本几何图形的性质和定理。
此外,还将学习空间几何体的体积和表面积的计算方法。
这部分内容有助于培养学生的空间想象能力和几何直观。
概率与统计是高中数学新课标必修1的另一个重要部分。
学生将学习概率的基本概念,包括随机事件、概率的计算方法等。
同时,还将学习数据的收集、整理和分析方法,包括数据的描述、概率分布、统计图表等。
这部分内容对于培养学生的数据分析能力和逻辑思维能力具有重要意义。
最后,高中数学新课标必修1还包含了数学建模和数学探究等内容,这些内容旨在培养学生的创新意识和实践能力。
通过数学建模,学生能够将数学知识应用于解决实际问题,提高解决复杂问题的能力。
而数学探究则鼓励学生主动探索数学问题,培养独立思考和自主学习的能力。
总之,高中数学新课标必修1是高中数学学习的基石,它不仅涵盖了数学的基础知识,还注重培养学生的数学思维和实践能力。
通过本课程的学习,学生将为未来的数学学习和其他学科的学习打下坚实的基础。
新课标数学必修1知识点总结第一章 集合与函数概念一、集合有关概念1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。
2、集合的中元素的三个特性:1.元素的确定性;2.元素的互异性;3.元素的无序性说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。
(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。
(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。
(4)集合元素的三个特性使集合本身具有了确定性和整体性。
3、集合的表示:{ … } 如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}1. 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}2.集合的表示方法:列举法与描述法。
注意啊:常用数集及其记法:非负整数集(即自然数集) 记作:N正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R关于“属于”的概念集合的元素通常用小写的拉丁字母表示,如:a 是集合A 的元素,就说a 属于集合A 记作 a ∈A ,相反,a 不属于集合A 记作A a ∉列举法:把集合中的元素一一列举出来,然后用一个大括号括上。
描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
用确定的条件表示某些对象是否属于这个集合的方法。
①语言描述法:例:{不是直角三角形的三角形}②数学式子描述法:例:不等式x-3>2的解集是{R x ∈| x-3>2}或{x| x-3>2}4、集合的分类:1.有限集 含有有限个元素的集合2.无限集 含有无限个元素的集合3.空集 不含任何元素的集合 例:{x|x 2=-5}二、集合间的基本关系1.“包含”关系—子集注意: 有两种可能(1)A 是B 的一部分,;(2)A 与B 是同一集合。
反之: 集合A 不包含于集合B,或集合B 不包含集合A,记作A B 或B A2.“相等”关系(5≥5,且5≤5,则5=5)实例:设 A={x|x 2-1=0} B={-1,1} “元素相同”结论:对于两个集合A 与B ,如果集合A 的任何一个元素都是集合B 的元素,同时,集合B 的任何一个元素都是集合A 的元素,我们就说集合A 等于集合B ,即:A=B ① 任何一个集合是它本身的子集。
A A A A ⊇⊆,②真子集:如果B A ⊆,且B A ≠; B 那就说集合A 是集合B 的真子集,记作A B(或B A)③如果A B, B C ,那么 A C④如果A B 同时B A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。
三、集合的运算1.交集的定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A∩B(读作"A交B"),即A∩B={x|x∈A,且x∈B}.2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B 的并集。
记作:A∪B(读作"A并B"),即A∪B={x|x∈A,或x∈B}.3、交集与并集的性质:A∩A = A, A∩φ= φ, A∩B = B∩A,A∪A = A,A∪φ= A ,A∪B = B∪A.4、全集与补集(1)补集:设S是一个集合,A是S的一个子集(即),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)记作:C S A 即C S A ={x S且x A}(2)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。
通常用U来表示。
(3)性质:⑴C U(C UA)=A ⑵(C U A)∩A=Φ ⑶(C U A)∪A=U二、函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A 中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A 叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.注意:○2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;○3 函数的定义域、值域要写成集合或区间的形式.定义域补充能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1. (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零(6)实际问题中的函数的定义域还要保证实际问题有意义.(又注意:求出不等式组的解集即为函数的定义域。
)构成函数的三要素:定义域、对应关系和值域再注意:(1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。
相同函数的判断方法:①表达式相同;②定义域一致(两点必须同时具备)(见课本21页相关例2)值域补充(1)、函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域. (2).应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解复杂函数值域的基础。
3. 函数图象知识归纳(1)定义:在平面直角坐标系中,以函数y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x ∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上. 即记为C={ P(x,y) | y= f(x) , x∈A }图象C一般的是一条光滑的连续曲线(或直线),也可能是由与任意平行与Y轴的直线最多只有一个交点的若干条曲线或离散点组成。
(2) 画法A、描点法:根据函数解析式和定义域,求出x,y的一些对应值并列表,以(x,y)为坐标在坐标系内描出相应的点P(x, y),最后用平滑的曲线将这些点连接起来.B、图象变换法(请参考必修4三角函数)常用变换方法有三种,即平移变换、伸缩变换和对称变换(3)作用:1、直观的看出函数的性质;2、利用数形结合的方法分析解题的思路。
提高解题的速度。
发现解题中的错误。
4.快去了解区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.5.什么叫做映射一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A B为从集合A到集合B的一个映射。
记作“f:A →B”给定一个集合A到B的映射,如果a∈A,b∈B.且元素a和元素b对应,那么,我们把元素b叫做元素a的象,元素a叫做元素b的原象说明:函数是一种特殊的映射,映射是一种特殊的对应,①集合A、B及对应法则f是确定的;②对应法则有“方向性”,即强调从集合A到集合B的对应,它与从B到A的对应关系一般是不同的;③对于映射f:A→B来说,则应满足:(Ⅰ)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;(Ⅱ)集合A中不同的元素,在集合B中对应的象可以是同一个;(Ⅲ)不要求集合B中的每一个元素在集合A中都有原象。
常用的函数表示法及各自的优点:○1 函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据;○2 解析法:必须注明函数的定义域;○3 图象法:描点法作图要注意:确定函数的定义域;化简函数的解析式;观察函数的特征;○4 列表法:选取的自变量要有代表性,应能反映定义域的特征.注意啊:解析法:便于算出函数值。
列表法:便于查出函数值。
图象法:便于量出函数值补充一:分段函数(参见课本P24-25)在定义域的不同部分上有不同的解析表达式的函数。
在不同的范围里求函数值时必须把自变量代入相应的表达式。
分段函数的解析式不能写成几个不同的方程,而就写函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.(1)分段函数是一个函数,不要把它误认为是几个函数;(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.补充二:复合函数如果y=f(u),(u∈M),u=g(x),(x∈A),则y=f[g(x)]=F(x),(x∈A) 称为f、g的复合函数。
例如: y=2sinX y=2cos(X2+1)7.函数单调性(1).增函数设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间D上是增函数。
区间D称为y=f(x)的单调增区间(睇清楚课本单调区间的概念)如果对于区间D上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.注意:○1 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;○2 必须是对于区间D内的任意两个自变量x1,x2;当x1<x2时,总有f(x1)<f(x2)。
(2)图象的特点如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.(3).函数单调区间与单调性的判定方法(A) 定义法:○1 任取x1,x2∈D,且x1<x2;○2 作差f(x1)-f(x2);○3 变形(通常是因式分解和配方);○4 定号(即判断差f(x1)-f(x2)的正负);○5 下结论(指出函数f(x)在给定的区间D上的单调性).(B)图象法(从图象上看升降)_(C)复合函数的单调性复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律如下:函数单调性u=g(x) 增增减减y=f(u) 增减增减y=f[g(x)] 增减减增注意:1、函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写成其并集. 2、还记得我们在选修里学习简单易行的导数法判定单调性吗?8.函数的奇偶性(1)偶函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.(2).奇函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.注意:○1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;函数可能没有奇偶性,也可能既是奇函数又是偶函数。