最新高中数学历届数学高考试题精选 (36)
- 格式:doc
- 大小:481.50 KB
- 文档页数:7
一、选择题(每题5分,共50分)1. 函数f(x) = x^3 - 3x在区间[-2, 2]上的最大值和最小值分别是:A. 0和-2B. 0和2C. -2和0D. 2和-22. 若等差数列{an}的首项为2,公差为3,则第10项an等于:A. 29B. 30C. 31D. 323. 已知向量a = (1, 2),向量b = (2, -1),则向量a·b的值为:A. 5B. -5C. 3D. -34. 若圆的方程为x^2 + y^2 - 4x - 6y + 9 = 0,则该圆的半径为:A. 2B. 3C. 4D. 55. 若函数f(x) = |x - 2| + |x + 1|在x = 0时的导数不存在,则x = 0是函数的:A. 极大值点B. 极小值点C. 转折点D. 无极值点二、填空题(每题5分,共50分)6. 函数y = 2x^3 - 3x^2 + 2x在x = 1时的导数为______。
7. 等差数列{an}的首项为3,公差为2,则第5项an等于______。
8. 向量a = (2, -3),向量b = (4, 6),则向量a与向量b的夹角余弦值为______。
9. 圆的标准方程为(x - 1)^2 + (y + 2)^2 = 4,则该圆的圆心坐标为______。
10. 函数f(x) = x^2 - 4x + 4在区间[0, 4]上的最大值和最小值分别是______和______。
三、解答题(每题15分,共60分)11. 已知函数f(x) = x^3 - 6x^2 + 9x + 1,求f(x)的极值点及极值。
12. 已知等差数列{an}的首项为3,公比为2,求该数列的前10项和。
13. 已知向量a = (3, 4),向量b = (-2, 1),求向量a与向量b的模长及夹角。
14. 已知圆的方程为x^2 + y^2 - 6x + 8y + 12 = 0,求该圆的半径、圆心坐标及与x轴、y轴的交点。
(完整版)高中数学试题及答案一、选择题1. 下列哪个数是实数?A. 2B. 3C. 4D. 52. 下列哪个图形是圆形?A. 正方形B. 长方形C. 三角形D. 圆形3. 下列哪个式子是等式?A. 2 + 3 = 5B. 2 + 3 = 6C. 2 + 3 = 7D. 2 + 3 = 84. 下列哪个图形是三角形?A. 正方形B. 长方形C. 三角形D. 圆形5. 下列哪个数是整数?B. 3.5C. 4.5D. 5.5二、填空题6. 2 + 3 = ________7. 3 × 4 = ________8. 5 2 = ________9. 6 ÷ 2 = ________10. 7 + 8 = ________三、解答题11. 解方程:2x + 3 = 712. 解方程:3x 2 = 513. 解方程:4x + 5 = 914. 解方程:5x 6 = 815. 解方程:6x + 7 = 10答案:一、选择题1. A2. D3. A4. C5. D二、填空题7. 128. 39. 310. 15三、解答题11. x = 212. x = 313. x = 114. x = 215. x = 1(完整版)高中数学试题及答案一、选择题1. 下列哪个数是实数?A. 2B. 3C. 4D. 52. 下列哪个图形是圆形?A. 正方形B. 长方形C. 三角形D. 圆形3. 下列哪个式子是等式?A. 2 + 3 = 5B. 2 + 3 = 6C. 2 + 3 = 7D. 2 + 3 = 84. 下列哪个图形是三角形?A. 正方形B. 长方形C. 三角形D. 圆形5. 下列哪个数是整数?A. 2.5B. 3.5C. 4.5D. 5.5二、填空题6. 2 + 3 = ________7. 3 × 4 = ________8. 5 2 = ________9. 6 ÷ 2 = ________10. 7 + 8 = ________三、解答题11. 解方程:2x + 3 = 712. 解方程:3x 2 = 513. 解方程:4x + 5 = 914. 解方程:5x 6 = 815. 解方程:6x + 7 = 10答案:一、选择题1. A2. D3. A4. C5. D二、填空题6. 57. 128. 39. 310. 15三、解答题11. x = 212. x = 313. x = 114. x = 215. x = 1四、应用题16. 小明有5个苹果,小红有3个苹果,他们一共有多少个苹果?答案:小明和小红一共有8个苹果。
一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 已知函数f(x) = x^3 - 3x + 1,则f(x)的图像与x轴的交点个数是:A. 1个B. 2个C. 3个D. 4个2. 在三角形ABC中,若角A、B、C的对边分别为a、b、c,且a=3,b=4,c=5,则角A的度数是:A. 30°B. 45°C. 60°D. 90°3. 已知数列{an}满足an = 3an-1 + 2,且a1 = 1,则数列{an}的通项公式是:A. an = 3^n - 1B. an = 3^n + 1C. an = 3^nD. an = 3^n - 24. 设向量a = (2, -1),向量b = (1, 3),则向量a与向量b的夹角θ的余弦值是:A. 1/2B. 1/3C. 2/3D. 3/25. 已知等差数列{an}的首项为a1,公差为d,若a1 + a2 + a3 = 9,a4 + a5 +a6 = 27,则数列{an}的通项公式是:A. an = 3n - 2B. an = 3nC. an = 3n + 2D. an = 3n - 16. 已知函数f(x) = ax^2 + bx + c在区间[-1, 2]上单调递增,且f(1) = 0,f(2) = 4,则a、b、c的值分别为:A. a=1, b=-2, c=1B. a=1, b=2, c=1C. a=-1, b=-2, c=1D. a=-1, b=2, c=17. 已知函数f(x) = (x - 1)^2 / (x + 1),则f(x)的图像的对称轴是:A. x = 0B. x = 1C. x = -1D. y = 08. 在直角坐标系中,点P(2, 3)关于直线y = x的对称点为Q,则点Q的坐标是:A. (2, 3)B. (3, 2)C. (-2, -3)D. (-3, -2)9. 已知数列{an}的前n项和为Sn,若an = 2n - 1,则S10的值是:A. 90B. 100C. 110D. 12010. 已知函数f(x) = |x - 1| + |x + 1|,则f(x)的值域是:A. [-2, +∞)B. [0, +∞)C. [-1, +∞)D. [-2, 0]11. 已知函数f(x) = x^3 - 6x^2 + 9x,则f(x)的图像的拐点是:A. (0, 0)B. (1, 2)C. (2, 1)D. (3, 0)12. 已知等比数列{an}的首项为a1,公比为q,若a1 + a2 + a3 = 6,a4 + a5 + a6 = 54,则数列{an}的通项公式是:A. an = 2^nB. an = 3^nC. an = 4^nD. an = 5^n二、填空题(本大题共6小题,每小题5分,共30分。
一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 函数f(x) = ax^2 + bx + c的图像开口向上,且顶点坐标为(1, -2),则下列哪个选项正确?A. a > 0, b = -2, c = -2B. a < 0, b = -2, c = -2C. a > 0, b = 2, c = -2D. a < 0, b = 2, c = -2答案:A2. 已知等差数列{an}的前n项和为Sn,且S3 = 12,S6 = 36,则数列{an}的公差d为:A. 2B. 3C. 4D. 6答案:C3. 下列哪个不等式成立?A. x^2 - 2x + 1 > 0B. x^2 - 2x + 1 < 0C. x^2 - 2x + 1 ≥ 0D. x^2 - 2x + 1 ≤ 0答案:A4. 在平面直角坐标系中,点A(2, 3),点B(-3, 4),则线段AB的中点坐标为:A. (-0.5, 3.5)B. (-1, 3.5)C. (0.5, 3.5)D. (1, 3.5)答案:B5. 若复数z满足|z - 1| = 2,则复数z的实部a的取值范围是:A. a ≤ 3B. a ≥ 3C. a ≤ -1 或a ≥ 3D. a ≥ -1 或a ≤ 3答案:C6. 函数f(x) = |x - 1| + |x + 2|在区间[-2, 1]上的最大值是:A. 3B. 4C. 5D. 6答案:A7. 已知等比数列{an}的首项a1 = 2,公比q = 3,则数列{an}的前n项和S_n为:A. 3^n - 1B. 3^n + 1C. 3^n - 2D. 3^n + 2答案:A8. 下列哪个函数是奇函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = x^4D. f(x) = x^5答案:B9. 已知等差数列{an}的前n项和为Sn,且S4 = 20,S8 = 60,则数列{an}的首项a1为:A. 2B. 3C. 4D. 5答案:B10. 在平面直角坐标系中,直线y = kx + b经过点(1, 2),则下列哪个选项正确?A. k = 2, b = 1B. k = 2, b = 3C. k = 1, b = 2D. k = 1, b = 3答案:A11. 若复数z满足|z - 1| = |z + 1|,则复数z在复平面上的轨迹是:A. 圆心在原点,半径为1的圆B. 圆心在(-1, 0),半径为1的圆C. 圆心在(1, 0),半径为1的圆D. 线段[-1, 1]的垂直平分线答案:D12. 函数f(x) = log_2(x + 1) + log_2(x - 1)的定义域是:A. (-1, 1)B. (-1, 0) ∪ (0, 1)C. (0, 1)D. (-1, +∞)答案:B二、填空题(本大题共6小题,每小题5分,共30分。
一、选择题1. 若函数$f(x)=\sin x+\cos x$,则$f(\pi)=\frac{\sqrt{2}}{2}$的充要条件是()A. $x=\frac{\pi}{4}$B. $x=\frac{3\pi}{4}$C. $x=\frac{5\pi}{4}$D. $x=\frac{7\pi}{4}$2. 若$a>0$,$b>0$,$a+b=1$,则$\frac{1}{a}+\frac{1}{b}$的最大值为()A. 2B. 1C. $\frac{1}{2}$D. $\frac{1}{4}$3. 已知复数$z$满足$|z-1|=|z+1|$,则$z$在复平面上的轨迹方程为()A. $y=x$B. $y=-x$C. $y=0$D. 无轨迹4. 设函数$f(x)=\frac{x^2}{2}+x+1$,则$f(x)$的单调递增区间为()A. $(-\infty, -1)$B. $(-1, +\infty)$C. $(-\infty, 1)$D. $(1, +\infty)$5. 已知等差数列$\{a_n\}$的公差为$d$,首项为$a_1$,若$a_1+a_5=2a_3$,则$a_1$的值为()A. 1B. 2C. 3D. 4二、填空题6. 若复数$z$满足$|z-1|=|z+1|$,则$z$的实部为______。
7. 已知函数$f(x)=\frac{x^2}{2}+x+1$,则$f(-1)=______$。
8. 若等差数列$\{a_n\}$的公差为$d$,首项为$a_1$,则$a_1+a_5=______$。
9. 若复数$z$满足$|z-1|=|z+1|$,则$z$在复平面上的轨迹方程为______。
10. 已知函数$f(x)=\frac{x^2}{2}+x+1$,则$f(x)$的单调递增区间为______。
三、解答题11. 已知函数$f(x)=\sin x+\cos x$,求$f(x)$的值域。
一、选择题(本大题共12个小题,每小题5分,共60分)1. 已知函数f(x) = x^2 - 2ax + 1在区间[a, 2a]上单调递增,则实数a的取值范围是()A. a > 1B. 0 < a < 1C. a ≤ 0D. a ≥ 12. 若复数z满足|z - 1| = |z + 1|,则复数z对应的点在复平面上的轨迹是()A. 以原点为圆心,半径为1的圆B. 以原点为圆心,半径为2的圆C. 轴上的一段线段D. 轴上的一段线段,且不包括原点3. 若等差数列{an}的前n项和为Sn,且S3 = 6,S6 = 24,则公差d的值为()A. 1B. 2C. 3D. 44. 已知函数f(x) = ax^2 + bx + c在x = 1时取得最小值,则下列选项中正确的是()A. a > 0,b = 0,c = 1B. a < 0,b = 0,c = 1C. a > 0,b ≠ 0,c ≠ 1D. a < 0,b ≠ 0,c ≠ 15. 若log2x + log2(x + 1) = 3,则x的值为()A. 1B. 2C. 4D. 86. 已知函数f(x) = (x - 1)^2在x = 2时取得最大值,则下列选项中正确的是()A. f(x)在x = 2处取得极小值B. f(x)在x = 2处取得极大值C. f(x)在x = 2处取得最小值D. f(x)在x = 2处取得最大值7. 若不等式x^2 - 4x + 3 > 0的解集为A,不等式x^2 - 4x + 3 < 0的解集为B,则集合A与B的交集是()A. {x | x < 1 或 x > 3}B. {x | 1 < x < 3}C. {x | x < 1 或 x > 3}D. {x | 1 < x < 3}8. 已知函数f(x) = x^3 - 3x在区间[-2, 2]上的最大值为M,最小值为m,则M- m的值为()A. 8B. 12C. 16D. 249. 若等比数列{an}的首项为a1,公比为q,且a1 + a2 + a3 = 6,a2 + a3 + a4 = 12,则数列{an}的通项公式为()A. an = 2 3^(n - 1)B. an = 3 2^(n - 1)C. an = 2^(n - 1) 3D. an = 3^(n - 1) 210. 已知函数f(x) = x^2 - 2ax + 1在x = a时取得最小值,则下列选项中正确的是()A. a > 0B. a < 0C. a = 0D. a ≠ 011. 若复数z满足|z - 1| = |z + 1|,则复数z对应的点在复平面上的轨迹是()A. 以原点为圆心,半径为1的圆B. 以原点为圆心,半径为2的圆C. 轴上的一段线段D. 轴上的一段线段,且不包括原点12. 若等差数列{an}的前n项和为Sn,且S3 = 6,S6 = 24,则公差d的值为()A. 1B. 2C. 3D. 4二、填空题(本大题共6个小题,每小题5分,共30分)13. 若函数f(x) = (x - 1)^2在x = 2时取得最大值,则f(x)在x = 1时的函数值为______。
高考数学考试题及答案大全考试题一:选择题1. 设a为实数,若方程x^2 + ax + 1 = 0有两个相等的实根,则a的取值范围是:A. (-∞, 1)B. (1, ∞)C. (-1, ∞)D. (-∞, -1)答案:C2. 已知集合A = {x | 2x - 1 ≤ 5},集合B = {y | 3y + 4 > 1},则A与B的交集为空集的条件是:A. x < -1B. x > 2C. x > -1D. x < 2答案:B3. 已知函数f(x) = 2^x + 1,g(x) = 2^(2x),则f(x) > g(x)的解集是:A. (0, +∞)B. (1, +∞)C. (-∞, 0)D. (-∞, 1)答案:D考试题二:填空题1. 已知函数f(x) = a⋅x^2 + b⋅x + c的图像过点(-1, 2)和(2, -1),则a + b + c = 。
答案:-32. 设集合A = {x | x^2 - 5x + 6 ≤ 0},则A = 。
答案:{2, 3}3. 有一块长为20m,宽为16m的矩形田地,现要在其内部修建一条宽为2m的小路,使得矩形田地的面积减少15%。
小路的长度为。
答案:(20 - 4)⋅(16 - 4)⋅0.85 = 264考试题三:解答题1. 已知等差数列{an}的前n项和为Sn = n^2 - 3n,求公差d和首项a1。
解答:根据等差数列的前n项和公式,Sn = (2a1 + (n - 1)d)⋅n/2,代入已知条件,得到整理得到2n^2 - 6n = 2a1n + d⋅n^2 - d⋅n,化简得n^2 - (2a1 + d)n + 6n = 0。
对比二次方程ax^2 + bx + c = 0,可知a = 1,b = -(2a1 + d),c = 6。
由题意可知该二次方程有两个不相等的正整数解n1和n2(n1 < n2),且n1 + n2 = 10。
高中数学试题卷及答案大全一、选择题(每题3分,共30分)1. 已知函数f(x) = 2x + 3,下列哪个选项是f(-1)的值?A. -1B. 1C. -5D. 52. 以下哪个是二次函数y = ax^2 + bx + c的对称轴?A. x = aB. x = bC. x = -b/2aD. x = c3. 一个圆的半径为5,那么这个圆的面积是多少?A. 25πB. 50πC. 75πD. 100π4. 已知向量\(\vec{a} = (3, 4)\),\(\vec{b} = (-4, 3)\),下列哪个选项是\(\vec{a} \cdot \vec{b}\)的值?A. -7B. 25C. -25D. 75. 以下哪个不等式表示的是x > 2?A. x - 2 > 0B. x - 2 < 0C. 2 - x > 0D. 2 - x < 06. 一个等差数列的首项是3,公差是2,那么这个数列的第5项是多少?A. 13B. 11C. 9D. 77. 以下哪个函数是奇函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = x^4D. f(x) = |x|8. 一个三角形的三边长分别为3, 4, 5,那么这个三角形的面积是多少?A. 3B. 4C. 6D. √79. 以下哪个选项是方程x^2 - 5x + 6 = 0的解?A. 2, 3B. -2, -3C. 2, -3D. -2, 310. 以下哪个选项是函数y = sin(x)的周期?A. 2πB. πC. 1D. √2答案:1. C2. C3. B4. D5. A6. A7. B8. D9. A10. A二、填空题(每题4分,共20分)11. 已知函数f(x) = x^2 - 4x + 3,那么f(1)的值是_。
12. 一个等比数列的首项是2,公比是3,那么这个数列的第3项是_。
13. 一个三角形的内角和是_。
历年高三数学试题及答案一、选择题(每题4分,共40分)1. 下列函数中,为奇函数的是:A. \( f(x) = x^2 \)B. \( f(x) = x^3 \)C. \( f(x) = \frac{1}{x} \)D. \( f(x) = |x| \)答案:B2. 已知 \( a \) 和 \( b \) 是两个不相等的实数,且 \( a^2 - 2a + 1 = 0 \) 和 \( b^2 - 2b + 1 = 0 \),则 \( a + b \) 的值为:A. 2B. -2C. 0D. 不能确定答案:A3. 函数 \( y = 2x^2 - 3x + 1 \) 的对称轴方程是:A. \( x = -\frac{1}{2} \)B. \( x = \frac{3}{4} \)C. \( x = \frac{1}{2} \)D. \( x = \frac{3}{2} \)答案:C4. 已知 \( \cos \alpha = \frac{3}{5} \),且 \( \alpha \) 为锐角,则 \( \sin \alpha \) 的值为:A. \( \frac{4}{5} \)B. \( \frac{3}{5} \)C. \( -\frac{4}{5} \)D. \( -\frac{3}{5} \)答案:A5. 圆 \( x^2 + y^2 - 6x + 8y - 24 = 0 \) 的圆心坐标为:A. (3, -4)B. (-3, 4)C. (3, 4)D. (-3, -4)答案:A6. 已知 \( \tan \alpha = 2 \),\( \tan \beta = -\frac{1}{3} \),则 \( \tan (\alpha + \beta) \) 的值为:A. \( \frac{1}{7} \)B. \( -\frac{1}{7} \)C. \( \frac{7}{2} \)D. \( -\frac{7}{2} \)答案:A7. 函数 \( y = \log_2(x-1) \) 的定义域为:A. \( (1, +\infty) \)B. \( (-\infty, 1) \)C. \( (0, +\infty) \)D. \( (-\infty, 0) \)答案:A8. 已知 \( \sin \alpha = \frac{1}{2} \),\( \cos \beta =\frac{\sqrt{3}}{2} \),则 \( \sin (\alpha + \beta) \) 的值为:A. \( \frac{1}{2} \)B. \( \frac{\sqrt{3}}{2} \)C. \( \frac{1}{4} \)D. \( -\frac{1}{4} \)答案:D9. 已知 \( \sin \alpha = \frac{1}{3} \),\( \cos \alpha = -\frac{2\sqrt{2}}{3} \),则 \( \tan \alpha \) 的值为:A. \( -\frac{1}{2\sqrt{2}} \)B. \( \frac{1}{2\sqrt{2}} \)C. \( -\sqrt{2} \)D. \( \sqrt{2} \)答案:C10. 已知 \( \sin \theta = \frac{3}{5} \),\( \cos \theta =\frac{4}{5} \),则 \( \tan \theta \) 的值为:A. \( \frac{3}{4} \)B. \( \frac{4}{3} \)C. \( \frac{3}{4} \)D. \( \frac{4}{3} \)答案:A二、填空题(每题5分,共20分)11. 已知 \( \tan \alpha = 3 \),则 \( \sin \alpha \cos \alpha \) 的值为 ________。
高考数学试题140道及答案一、选择题(本题共8小题,每小题5分,共40分)1. 若函数f(x) = x^2 - 4x + 3的零点为x1和x2,则x1 + x2的值为:A. 2B. 3C. 4D. 5答案:B2. 已知向量a = (3, -1),向量b = (2, 2),则向量a与向量b的点积为:A. 4B. 5C. 6D. 7答案:A3. 若sin(α) = 1/2,则cos(2α)的值为:A. 1/2B. -1/2C. 0D. -1答案:B4. 已知数列{an}为等差数列,且a1 = 2,a3 = 6,则数列的公差d为:A. 1B. 2C. 3D. 4答案:B5. 函数y = ln(x)的导数为:A. 1/xB. xC. x^2D. 1/x^2答案:A6. 已知抛物线y = x^2 - 4x + 4的顶点坐标为:A. (2, 0)B. (-2, 0)C. (2, 4)D. (-2, 4)答案:A7. 已知双曲线x^2/a^2 - y^2/b^2 = 1的焦点在x轴上,且a = 2,则b的值为:A. 2B. 3C. 4D. 5答案:B8. 已知圆的方程为(x - 1)^2 + (y - 2)^2 = 9,圆心到直线x + y - 3 = 0的距离为:A. 1B. 2C. 3D. 4答案:C二、填空题(本题共6小题,每小题5分,共30分)9. 已知函数f(x) = x^3 - 3x^2 + 2,求f'(x) = _______。
答案:3x^2 - 6x10. 已知三角形ABC的边长分别为a = 3,b = 4,c = 5,求三角形的面积S = _______。
答案:611. 已知等比数列{bn}的首项b1 = 2,公比q = 3,求第n项bn = _______。
答案:2 * 3^(n-1)12. 已知直线l的方程为y = 2x + 1,求直线l与x轴的交点坐标为(_______,_______)。
历年(2019-2024)全国高考数学真题分类(函数及其基本性质)汇编考点01 直接求函数值1.(2024∙全国新Ⅰ卷∙高考真题)已知函数()f x 的定义域为R ,()(1)(2)f x f x f x >-+-,且当3x <时()f x x =,则下列结论中一定正确的是( ) A .(10)100f > B .(20)1000f > C .(10)1000f <D .(20)10000f <2.(2024∙上海∙高考真题)已知()0,1,0x f x x >=≤⎪⎩则()3f = . 3.(2023∙北京∙高考真题)已知函数2()4log xf x x =+,则12f ⎛⎫= ⎪⎝⎭.4.(2021∙全国甲卷∙高考真题)设()f x 是定义域为R 的奇函数,且()()1f x f x +=-.若1133f ⎛⎫-= ⎪⎝⎭,则53f ⎛⎫= ⎪⎝⎭( )A .53-B .13-C .13D .535.(2021∙浙江∙高考真题)已知R a ∈,函数24,2()3,2,x x f x x a x ⎧->⎪=⎨-+≤⎪⎩若3f f ⎡⎤=⎣⎦,则=a .考点02 函数的定义域与值域1.(2022∙北京∙高考真题)函数1()f x x=的定义域是 . 2.(2020∙山东∙高考真题)函数()1lg f x x=的定义域是( ) A .()0,∞+B .()()0,11,+∞C .[)()0,11,+∞UD .()1,+∞3.(2019∙江苏∙高考真题)函数y =的定义域是 .考点03 函数单调性的判断及其应用1.(2024∙全国新Ⅰ卷∙高考真题)已知函数22,0()e ln(1),0x x ax a x f x x x ⎧---<=⎨++≥⎩在R 上单调递增,则a 的取值范围是( ) A .(,0]-∞B .[1,0]-C .[1,1]-D .[0,)+∞2.(2023∙北京∙高考真题)下列函数中,在区间(0,)+∞上单调递增的是( ) A .()ln f x x =-B .1()2xf x =C .1()f x x=-D .|1|()3x f x -=3.(2023∙全国甲卷∙高考真题)已知函数()2(1)e x f x --=.记,,a f b f c f ===⎝⎭⎝⎭⎝⎭,则( )A .b c a >>B .b a c >>C .c b a >>D .c a b >>4.(2023∙全国新Ⅰ卷∙高考真题)设函数()()2x x a f x -=在区间()0,1上单调递减,则a 的取值范围是( )A .(],2-∞-B .[)2,0-C .(]0,2D .[)2,+∞5.(2021∙全国甲卷∙高考真题)下列函数中是增函数的为( )A .()f x x =-B .()23xf x ⎛⎫= ⎪⎝⎭C .()2f x x = D .()f x 6.(2020∙山东∙高考真题)已知函数()f x 的定义域是R ,若对于任意两个不相等的实数1x ,2x ,总有()()21210f x f x x x ->-成立,则函数()f x 一定是( )A .奇函数B .偶函数C .增函数D .减函数7.(2020∙全国∙高考真题)设函数331()f x x x=-,则()f x ( ) A .是奇函数,且在(0,+∞)单调递增 B .是奇函数,且在(0,+∞)单调递减 C .是偶函数,且在(0,+∞)单调递增D .是偶函数,且在(0,+∞)单调递减8.(2019∙北京∙高考真题)下列函数中,在区间(0,+∞)上单调递增的是 A .12y x =B .y =2x -C .12log y x =D .1y x=9.(2019∙全国∙高考真题)设()f x 是定义域为R 的偶函数,且在()0,∞+单调递减,则A .233231log 224f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ B .233231log 224f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C .23332122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D .23323122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭考点04 函数的奇偶性及其应用1.(2024∙天津∙高考真题)下列函数是偶函数的是( )A .22e 1x x y x -=+B .22cos 1x x y x +=+C .e 1x xy x -=+D .||sin 4e x x xy +=2.(2024∙上海∙高考真题)已知()3f x x a =+,x ∈R ,且()f x 是奇函数,则=a .3.(2023∙全国甲卷∙高考真题)若()()2π1sin 2f x x ax x ⎛⎫=-+++ ⎪⎝⎭为偶函数,则=a .4.(2023∙全国乙卷∙高考真题)已知e ()e 1xax x f x =-是偶函数,则=a ( )A .2-B .1-C .1D .25.(2023∙全国新Ⅱ卷∙高考真题)若()()21ln 21x f x x a x -=++为偶函数,则=a ( ). A .1-B .0C .12D .16.(2022∙全国乙卷∙高考真题)若()1ln 1f x a b x++-=是奇函数,则=a ,b = . 7.(2021∙全国甲卷∙高考真题)设()f x 是定义域为R 的奇函数,且()()1f x f x +=-.若1133f ⎛⎫-= ⎪⎝⎭,则53f ⎛⎫= ⎪⎝⎭( )A .53-B .13-C .13D .538.(2021∙全国新Ⅱ卷∙高考真题)写出一个同时具有下列性质①②③的函数():f x . ①()()()1212f x x f x f x =;②当(0,)x ∈+∞时,()0f x '>;③()f x '是奇函数.9.(2021∙全国新Ⅰ卷∙高考真题)已知函数()()322x x x a f x -=⋅-是偶函数,则=a .10.(2021∙全国乙卷∙高考真题)设函数1()1xf x x-=+,则下列函数中为奇函数的是( ) A .()11f x --B .()11f x -+C .()11f x +-D .()11f x ++11.(2020∙山东∙高考真题)若定义在R 的奇函数f (x )在(,0)-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是( )A .[)1,1][3,-+∞B .3,1][,[01]--C .[1,0][1,)-⋃+∞D .[1,0][1,3]-⋃12.(2020∙全国∙高考真题)设函数()ln |21|ln |21|f x x x =+--,则f (x )( )A .是偶函数,且在1(,)2+∞单调递增B .是奇函数,且在11(,)22-单调递减C .是偶函数,且在1(,)2-∞-单调递增D .是奇函数,且在1(,2-∞-单调递减13.(2019∙北京∙高考真题)设函数f (x )=cos x +b sin x (b 为常数),则“b =0”是“f (x )为偶函数”的 A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件14.(2019∙全国∙高考真题)设f (x )为奇函数,且当x ≥0时,f (x )=e 1x -,则当x <0时,f (x )=A .e 1x --B .e 1x -+C .e 1x ---D .e 1x --+考点05 函数的周期性及其应用1.(2022∙全国新Ⅱ卷∙高考真题)已知函数()f x 的定义域为R ,且()()()(),(1)1f x y f x y f x f y f ++-==,则221()k f k ==∑( )A .3-B .2-C .0D .12.(2021∙全国新Ⅱ卷∙高考真题)已知函数()f x 的定义域为R ,()2f x +为偶函数,()21f x +为奇函数,则( ) A .102f ⎛⎫-= ⎪⎝⎭B .()10f -=C .()20f =D .()40f =3.(2021∙全国甲卷∙高考真题)设函数()f x 的定义域为R ,()1f x +为奇函数,()2f x +为偶函数,当[]1,2x ∈时,2()f x ax b =+.若()()036f f +=,则92f ⎛⎫= ⎪⎝⎭( )A .94-B .32-C .74D .52考点06 函数的对称性及其应用1.(2024∙全国新Ⅱ卷∙高考真题)(多选)设函数32()231f x x ax =-+,则( ) A .当1a >时,()f x 有三个零点 B .当0a <时,0x =是()f x 的极大值点C .存在a ,b ,使得x b =为曲线()y f x =的对称轴D .存在a ,使得点()()1,1f 为曲线()y f x =的对称中心2.(2022∙全国新Ⅰ卷∙高考真题)(多选)已知函数()f x 及其导函数()f x '的定义域均为R ,记()()g x f x '=,若322f x ⎛⎫- ⎪⎝⎭,(2)g x +均为偶函数,则( )A .(0)0f =B .102g ⎛⎫-= ⎪⎝⎭C .(1)(4)f f -=D .(1)(2)g g -=3.(2022∙全国乙卷∙高考真题)已知函数(),()f x g x 的定义域均为R ,且()(2)5,()(4)7f x g x g x f x +-=--=.若()y g x =的图像关于直线2x =对称,(2)4g =,则()221k f k ==∑( )A .21-B .22-C .23-D .24-4.(2020∙全国∙高考真题)已知函数f (x )=sin x +1sin x,则() A .f (x )的最小值为2B .f (x )的图象关于y 轴对称C .f (x )的图象关于直线x π=对称D .f (x )的图象关于直线2x π=对称参考答案考点01 直接求函数值1.(2024∙全国新Ⅰ卷∙高考真题)已知函数()f x 的定义域为R ,()(1)(2)f x f x f x >-+-,且当3x <时()f x x =,则下列结论中一定正确的是( ) A .(10)100f > B .(20)1000f > C .(10)1000f < D .(20)10000f <【答案】B【详细分析】代入得到(1)1,(2)2==f f ,再利用函数性质和不等式的性质,逐渐递推即可判断. 【答案详解】因为当3x <时()f x x =,所以(1)1,(2)2==f f , 又因为()(1)(2)f x f x f x >-+-,则(3)(2)(1)3,(4)(3)(2)5f f f f f f >+=>+>,(5)(4)(3)8,(6)(5)(4)13,(7)(6)(5)21f f f f f f f f f >+>>+>>+>, (8)(7)(6)34,(9)(8)(7)55,(10)(9)(8)89f f f f f f f f f >+>>+>>+>, (11)(10)(9)144,(12)(11)(10)233,(13)(12)(11)377f f f f f f f f f >+>>+>>+> (14)(13)(12)610,(15)(14)(13)987f f f f f f >+>>+>,(16)(15)(14)15971000f f f >+>>,则依次下去可知(20)1000f >,则B 正确;且无证据表明ACD 一定正确. 故选:B.【名师点评】关键点名师点评:本题的关键是利用(1)1,(2)2==f f ,再利用题目所给的函数性质()(1)(2)f x f x f x >-+-,代入函数值再结合不等式同向可加性,不断递推即可.2.(2024∙上海∙高考真题)已知()0,1,0x f x x >=≤⎪⎩则()3f = .【详细分析】利用分段函数的形式可求()3f .【答案详解】因为()0,1,0x f x x >=≤⎪⎩故()3f =3.(2023∙北京∙高考真题)已知函数2()4log xf x x =+,则12f ⎛⎫= ⎪⎝⎭ .【答案】1【详细分析】根据给定条件,把12x =代入,利用指数、对数运算计算作答.【答案详解】函数2()4log xf x x =+,所以12211()4log 21122f =+=-=.故答案为:14.(2021∙全国甲卷∙高考真题)设()f x 是定义域为R 的奇函数,且()()1f x f x +=-.若1133f ⎛⎫-= ⎪⎝⎭,则53f ⎛⎫= ⎪⎝⎭( )A .53-B .13-C .13D .53【答案】C【详细分析】由题意利用函数的奇偶性和函数的递推关系即可求得53f ⎛⎫⎪⎝⎭的值.【答案详解】由题意可得:522213333f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=+=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,而21111133333f f f f⎛⎫⎛⎫⎛⎫⎛⎫=-==--=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,故5133f ⎛⎫= ⎪⎝⎭.故选:C.【名师点评】关键点名师点评:本题主要考查了函数的奇偶性和函数的递推关系式,灵活利用所给的条件进行转化是解决本题的关键.5.(2021∙浙江∙高考真题)已知R a ∈,函数24,2()3,2,x x f x x a x ⎧->⎪=⎨-+≤⎪⎩若3f f ⎡⎤=⎣⎦,则=a . 【答案】2【详细分析】由题意结合函数的解析式得到关于a 的方程,解方程可得a 的值.【答案详解】()()642233f f f f a ⎡⎤=-==-+=⎣⎦,故2a =, 故答案为:2.考点02 函数的定义域与值域1.(2022∙北京∙高考真题)函数1()f x x=的定义域是 . 【答案】()(],00,1-∞⋃【详细分析】根据偶次方根的被开方数非负、分母不为零得到方程组,解得即可;【答案详解】解:因为()1f x x =100x x -≥⎧⎨≠⎩,解得1x ≤且0x ≠,故函数的定义域为()(],00,1-∞⋃;故答案为:()(],00,1-∞⋃2.(2020∙山东∙高考真题)函数()1lg f x x=的定义域是( ) A .()0,∞+ B .()()0,11,+∞C .[)()0,11,+∞UD .()1,+∞【答案】B【详细分析】根据题意得到0lg 0x x >⎧⎨≠⎩,再解不等式组即可. 【答案详解】由题知:0lg 0x x >⎧⎨≠⎩,解得0x >且1x ≠. 所以函数定义域为()()0,11,+∞ . 故选:B3.(2019∙江苏∙高考真题)函数y =的定义域是 . 【答案】[1,7]-.【详细分析】由题意得到关于x 的不等式,解不等式可得函数的定义域. 【答案详解】由已知得2760x x +-≥, 即2670x x --≤ 解得17x -≤≤, 故函数的定义域为[1,7]-.【名师点评】求函数的定义域,其实质就是以函数解析式有意义为准则,列出不等式或不等式组,然后求出它们的解集即可.考点03 函数单调性的判断及其应用1.(2024∙全国新Ⅰ卷∙高考真题)已知函数22,0()e ln(1),0x x ax a x f x x x ⎧---<=⎨++≥⎩在R 上单调递增,则a 的取值范围是( ) A .(,0]-∞ B .[1,0]- C .[1,1]- D .[0,)+∞【答案】B【详细分析】根据二次函数的性质和分界点的大小关系即可得到不等式组,解出即可.【答案详解】因为()f x 在R 上单调递增,且0x ≥时,()()e ln 1xf x x =++单调递增,则需满足()02021e ln1aa -⎧-≥⎪⨯-⎨⎪-≤+⎩,解得10a -≤≤, 即a 的范围是[1,0]-.故选:B.2.(2023∙北京∙高考真题)下列函数中,在区间(0,)+∞上单调递增的是( ) A .()ln f x x =- B .1()2xf x =C .1()f x x=-D .|1|()3x f x -=【答案】C【详细分析】利用基本初等函数的单调性,结合复合函数的单调性判断ABC ,举反例排除D 即可. 【答案详解】对于A ,因为ln y x =在()0,∞+上单调递增,y x =-在()0,∞+上单调递减, 所以()ln f x x =-在()0,∞+上单调递减,故A 错误;对于B ,因为2x y =在()0,∞+上单调递增,1y x=在()0,∞+上单调递减, 所以()12xf x =在()0,∞+上单调递减,故B 错误; 对于C ,因为1y x=在()0,∞+上单调递减,y x =-在()0,∞+上单调递减, 所以()1f x x=-在()0,∞+上单调递增,故C 正确;对于D ,因为111221332f -⎛⎫=== ⎪⎝⎭()()112101331,233f f --=====,显然()13x f x -=在()0,∞+上不单调,D 错误.故选:C.3.(2023∙全国甲卷∙高考真题)已知函数()2(1)e x f x --=.记,,222a f b f c f ⎛⎫=== ⎪⎝⎭⎝⎭⎝⎭,则( )A .b c a >>B .b a c >>C .c b a >>D .c a b >>【答案】A【详细分析】利用作差法比较自变量的大小,再根据指数函数的单调性及二次函数的性质判断即可. 【答案详解】令2()(1)g x x =--,则()g x 开口向下,对称轴为1x =,4112⎛-= ⎝⎭,而22491670-=+=>,所以41102222⎛⎫---=-> ⎪ ⎪⎝⎭,即1122->-由二次函数性质知g g <,因为4112222⎛⎫---=- ⎪ ⎪⎝⎭,而22481682)0-=+-=-=-<,即1122-<-,所以()(22g g >,综上,(((222g g g <<, 又e x y =为增函数,故a c b <<,即b c a >>. 故选:A.4.(2023∙全国新Ⅰ卷∙高考真题)设函数()()2x x a f x -=在区间()0,1上单调递减,则a 的取值范围是( )A .(],2-∞-B .[)2,0-C .(]0,2D .[)2,+∞【答案】D【详细分析】利用指数型复合函数单调性,判断列式计算作答. 【答案详解】函数2x y =在R 上单调递增,而函数()()2x x a f x -=在区间()0,1上单调递减,则有函数22()()24a a y x x a x =-=--在区间()0,1上单调递减,因此12a ≥,解得2a ≥,所以a 的取值范围是[)2,+∞. 故选:D5.(2021∙全国甲卷∙高考真题)下列函数中是增函数的为( )A .()f x x =-B .()23xf x ⎛⎫= ⎪⎝⎭C .()2f x x = D .()f x 【答案】D【详细分析】根据基本初等函数的性质逐项判断后可得正确的选项. 【答案详解】对于A ,()f x x =-为R 上的减函数,不合题意,舍. 对于B ,()23xf x ⎛⎫= ⎪⎝⎭为R 上的减函数,不合题意,舍.对于C ,()2f x x =在(),0∞-为减函数,不合题意,舍.对于D ,()f x =R 上的增函数,符合题意, 故选:D.6.(2020∙山东∙高考真题)已知函数()f x 的定义域是R ,若对于任意两个不相等的实数1x ,2x ,总有()()21210f x f x x x ->-成立,则函数()f x 一定是( )A .奇函数B .偶函数C .增函数D .减函数【答案】C【详细分析】利用函数单调性定义即可得到答案.【答案详解】对于任意两个不相等的实数1x ,2x ,总有()()21210f x f x x x ->-成立,等价于对于任意两个不相等的实数12x x <,总有()()12f x f x <. 所以函数()f x 一定是增函数. 故选:C7.(2020∙全国∙高考真题)设函数331()f x x x=-,则()f x ( ) A .是奇函数,且在(0,+∞)单调递增 B .是奇函数,且在(0,+∞)单调递减 C .是偶函数,且在(0,+∞)单调递增 D .是偶函数,且在(0,+∞)单调递减【答案】A【详细分析】根据函数的解析式可知函数的定义域为{}0x x ≠,利用定义可得出函数()f x 为奇函数, 再根据函数的单调性法则,即可解出.【答案详解】因为函数()331f x x x =-定义域为{}0x x ≠,其关于原点对称,而()()f x f x -=-, 所以函数()f x 为奇函数. 又因为函数3y x =在()0,+?上单调递增,在(),0-?上单调递增,而331y x x-==在()0,+?上单调递减,在(),0-?上单调递减,所以函数()331f x x x =-在()0,+?上单调递增,在(),0-?上单调递增.故选:A .【名师点评】本题主要考查利用函数的解析式研究函数的性质,属于基础题. 8.(2019∙北京∙高考真题)下列函数中,在区间(0,+∞)上单调递增的是 A .12y x = B .y =2x -C .12log y x =D .1y x=【答案】A【详细分析】由题意结合函数的解析式考查函数的单调性即可.【答案详解】函数122,log xy y x -==, 1y x=在区间(0,)+∞ 上单调递减, 函数12y x = 在区间(0,)+∞上单调递增,故选A .【名师点评】本题考查简单的指数函数、对数函数、幂函数的单调性,注重对重要知识、基础知识的考查,蕴含数形结合思想,属于容易题.9.(2019∙全国∙高考真题)设()f x 是定义域为R 的偶函数,且在()0,∞+单调递减,则A .233231log 224f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭B .233231log 224f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C .23332122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D .23323122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭【答案】C【解析】由已知函数为偶函数,把233231log ,2,24f f f --⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,转化为同一个单调区间上,再比较大小.【答案详解】()f x 是R 的偶函数,()331log log 44f f ⎛⎫∴= ⎪⎝⎭.223303322333log 4log 31,1222,log 422---->==>>∴>> ,又()f x 在(0,+∞)单调递减,∴()23323log 422f f f --⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,23323122log 4f f f --⎛⎫⎛⎫⎛⎫∴>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故选C .【名师点评】本题主要考查函数的奇偶性、单调性,解题关键在于利用中间量大小比较同一区间的取值.考点04 函数的奇偶性及其应用1.(2024∙天津∙高考真题)下列函数是偶函数的是( )A .22e 1x x y x -=+ B .22cos 1x x y x +=+ C .e 1x xy x -=+D .||sin 4e x x xy +=【答案】B【详细分析】根据偶函数的判定方法一一判断即可.【答案详解】对A ,设()22e 1x xf x x -=+,函数定义域为R ,但()112e 1f ---=,()112e f -=,则()()11f f -≠,故A 错误;对B ,设()22cos 1x x g x x +=+,函数定义域为R , 且()()()()()2222cos cos 11x x x x g x g x x x -+-+-===+-+,则()g x 为偶函数,故B 正确;对C ,设()e 1x xh x x -=+,函数定义域为{}|1x x ≠-,不关于原点对称, 则()h x 不是偶函数,故C 错误;对D ,设()||sin 4e x x x x ϕ+=,函数定义域为R,因为()sin141eϕ+=,()sin141e ϕ---=, 则()()11ϕϕ≠-,则()x ϕ不是偶函数,故D 错误. 故选:B.2.(2024∙上海∙高考真题)已知()3f x x a =+,x ∈R ,且()f x 是奇函数,则=a .【答案】0【详细分析】根据奇函数的性质可求参数a .【答案详解】因为()f x 是奇函数,故()()0f x f x -+=即()330x a x a ++-+=,故0a =, 故答案为:0.3.(2023∙全国甲卷∙高考真题)若()()2π1sin 2f x x ax x ⎛⎫=-+++ ⎪⎝⎭为偶函数,则=a .【答案】2【详细分析】利用偶函数的性质得到ππ22f f ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭,从而求得2a =,再检验即可得解.【答案详解】因为()()()22π1sin 1cos 2y f x x ax x x ax x ⎛⎫==-+++=-++ ⎪⎝⎭为偶函数,定义域为R ,所以ππ22f f ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭,即22ππππππ222222s 1co 1cos a a ⎛⎫⎛⎫⎛⎫-+=-+ ⎪ -⎪ ⎪⎝⎭⎝⎭--⎝+⎭,则22πππ2π1212a -⎛⎫⎛⎫=+- ⎪⎪⎭⎝⎭= ⎝,故2a =,此时()()2212cos 1cos f x x x x x x =-++=++, 所以()()()()221cos s 1co f x x x x x f x -=-++++-==, 又定义域为R ,故()f x 为偶函数, 所以2a =. 故答案为:2.4.(2023∙全国乙卷∙高考真题)已知e ()e 1xax x f x =-是偶函数,则=a ( )A .2-B .1-C .1D .2【答案】D【详细分析】根据偶函数的定义运算求解.【答案详解】因为()e e 1x ax x f x =-为偶函数,则()()()()1e e e e 0e 1e 1e 1a x x x x ax ax axx x x f x f x ---⎡⎤--⎣⎦--=-==---, 又因为x 不恒为0,可得()1e e 0a x x --=,即()1e e a x x -=, 则()1x a x =-,即11a =-,解得2a =. 故选:D.5.(2023∙全国新Ⅱ卷∙高考真题)若()()21ln 21x f x x a x -=++为偶函数,则=a ( ). A .1- B .0C .12D .1【答案】B【详细分析】根据偶函数性质,利用特殊值法求出a 值,再检验即可. 【答案详解】因为()f x 为偶函数,则 1(1)(1)(1)ln (1)ln 33f f a a =-∴+=-+,,解得0a =, 当0a =时,()21ln21x x x f x -=+,()()21210x x -+>,解得12x >或12x <-,则其定义域为12x x ⎧⎨⎩或12x ⎫<-⎬⎭,关于原点对称.()()()()()()()121212121ln ln ln ln21212121f x x x x x x x x x f x x x x x ---+⎫-=---⎛==== ⎪-+-++⎝-⎭-, 故此时()f x 为偶函数. 故选:B.6.(2022∙全国乙卷∙高考真题)若()1ln 1f x a b x++-=是奇函数,则=a ,b = . 【答案】 12-; ln 2.【详细分析】根据奇函数的定义即可求出. 【答案详解】[方法一]:奇函数定义域的对称性 若0a =,则()f x 的定义域为{|1}x x ≠,不关于原点对称0a ∴≠若奇函数的1()||1f x ln a b x =++-有意义,则1x ≠且101a x+≠- 1x ∴≠且11x a≠+,函数()f x 为奇函数,定义域关于原点对称,111a ∴+=-,解得12a =-, 由(0)0f =得,102ln b +=,2b ln ∴=,故答案为:12-;2ln .[方法二]:函数的奇偶性求参 111()111a ax ax a f x ln a b ln b ln b x x x-+--=++=+=+--- 1()1ax a f x lnb x++-=++函数()f x 为奇函数11()()2011ax a ax a f x f x lnln b x x--++∴+-=++=-+2222(1)201a x a lnb x -+∴+=- 22(1)1210112a a a a +∴=⇒+=⇒=- 1222241,22b ln b ln a b ln ln -==-⇒=∴=-=[方法三]:因为函数()1ln 1f x a b x++-=为奇函数,所以其定义域关于原点对称. 由101a x+≠-可得,()()110x a ax -+-≠,所以11a x a +==-,解得:12a =-,即函数的定义域为()()(),11,11,-∞-⋃-⋃+∞,再由()00f =可得,ln 2b =.即()111ln ln 2ln 211x f x x x+=-++=--,在定义域内满足()()f x f x -=-,符合题意. 故答案为:12-;ln 2.7.(2021∙全国甲卷∙高考真题)设()f x 是定义域为R 的奇函数,且()()1f x f x +=-.若1133f ⎛⎫-= ⎪⎝⎭,则53f ⎛⎫= ⎪⎝⎭( )A .53-B .13-C .13D .53【答案】C【详细分析】由题意利用函数的奇偶性和函数的递推关系即可求得53f ⎛⎫⎪⎝⎭的值.【答案详解】由题意可得:522213333f f f f⎛⎫⎛⎫⎛⎫⎛⎫=+=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,而21111133333f f f f⎛⎫⎛⎫⎛⎫⎛⎫=-==--=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 故5133f ⎛⎫= ⎪⎝⎭.故选:C.【名师点评】关键点名师点评:本题主要考查了函数的奇偶性和函数的递推关系式,灵活利用所给的条件进行转化是解决本题的关键.8.(2021∙全国新Ⅱ卷∙高考真题)写出一个同时具有下列性质①②③的函数():f x . ①()()()1212f x x f x f x =;②当(0,)x ∈+∞时,()0f x '>;③()f x '是奇函数.【答案】()4f x x =(答案不唯一,()()2*n x N f n x =∈均满足)【详细分析】根据幂函数的性质可得所求的()f x .【答案详解】取()4f x x =,则()()()()44421121122x f x f x x x x f x x ===,满足①, ()34f x x '=,0x >时有()0f x ¢>,满足②, ()34f x x '=的定义域为R ,又()()34f x x f x ''-=-=-,故()f x '是奇函数,满足③.故答案为:()4f x x =(答案不唯一,()()2*n x N f n x =∈均满足)9.(2021∙全国新Ⅰ卷∙高考真题)已知函数()()322x xx a f x -=⋅-是偶函数,则=a .【答案】1【详细分析】利用偶函数的定义可求参数a 的值.【答案详解】因为()()322x x x a f x -=⋅-,故()()322x xf x x a --=-⋅-,因为()f x 为偶函数,故()()f x f x -=,时()()332222x x x x x a x a --⋅-=-⋅-,整理得到()()12+2=0x xa --,故1a =, 故答案为:110.(2021∙全国乙卷∙高考真题)设函数1()1xf x x-=+,则下列函数中为奇函数的是( ) A .()11f x -- B .()11f x -+C .()11f x +-D .()11f x ++【答案】B【详细分析】分别求出选项的函数解析式,再利用奇函数的定义即可. 【答案详解】由题意可得12()111x f x x x-==-+++,对于A ,()2112f x x--=-不是奇函数; 对于B ,()211f x x-=+是奇函数; 对于C ,()21122f x x +-=-+,定义域不关于原点对称,不是奇函数; 对于D ,()2112f x x ++=+,定义域不关于原点对称,不是奇函数. 故选:B【名师点评】本题主要考查奇函数定义,考查学生对概念的理解,是一道容易题.11.(2020∙山东∙高考真题)若定义在R 的奇函数f (x )在(,0)-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是( )A .[)1,1][3,-+∞B .3,1][,[01]--C .[1,0][1,)-⋃+∞D .[1,0][1,3]-⋃【答案】D【详细分析】首先根据函数奇偶性与单调性,得到函数()f x 在相应区间上的符号,再根据两个数的乘积大于等于零,分类转化为对应自变量不等式,最后求并集得结果.【答案详解】因为定义在R 上的奇函数()f x 在(,0)-∞上单调递减,且(2)0f =, 所以()f x 在(0,)+∞上也是单调递减,且(2)0f -=,(0)0f =,所以当(,2)(0,2)x ∈-∞-⋃时,()0f x >,当(2,0)(2,)x ∈-+∞ 时,()0f x <, 所以由(10)xf x -≥可得:0210x x <⎧⎨-≤-≤⎩或0012x x >⎧⎨≤-≤⎩或0x = 解得10x -≤≤或13x ≤≤,所以满足(10)xf x -≥的x 的取值范围是[1,0][1,3]-⋃, 故选:D.【名师点评】本题考查利用函数奇偶性与单调性解抽象函数不等式,考查分类讨论思想方法,属中档题. 12.(2020∙全国∙高考真题)设函数()ln |21|ln |21|f x x x =+--,则f (x )( )A .是偶函数,且在1(,)2+∞单调递增B .是奇函数,且在11(,)22-单调递减C .是偶函数,且在1(,)2-∞-单调递增D .是奇函数,且在1(,2-∞-单调递减【答案】D【详细分析】根据奇偶性的定义可判断出()f x 为奇函数,排除AC ;当11,22x ⎛⎫∈- ⎪⎝⎭时,利用函数单调性的性质可判断出()f x 单调递增,排除B ;当1,2x ⎛⎫∈-∞- ⎪⎝⎭时,利用复合函数单调性可判断出()f x 单调递减,从而得到结果.【答案详解】由()ln 21ln 21f x x x =+--得()f x 定义域为12x x ⎧⎫≠±⎨⎬⎩⎭,关于坐标原点对称,又()()ln 12ln 21ln 21ln 21f x x x x x f x -=----=--+=-, ()f x \为定义域上的奇函数,可排除AC ;当11,22x ⎛⎫∈- ⎪⎝⎭时,()()()ln 21ln 12f x x x =+--,()ln 21y x =+Q 在11,22⎛⎫- ⎪⎝⎭上单调递增,()ln 12y x =-在11,22⎛⎫- ⎪⎝⎭上单调递减,()f x \在11,22⎛⎫- ⎪⎝⎭上单调递增,排除B ;当1,2x ⎛⎫∈-∞- ⎪⎝⎭时,()()()212ln 21ln 12ln ln 12121x f x x x x x +⎛⎫=----==+ ⎪--⎝⎭,2121x μ=+- 在1,2⎛⎫-∞- ⎪⎝⎭上单调递减,()ln f μμ=在定义域内单调递增,根据复合函数单调性可知:()f x 在1,2⎛⎫-∞- ⎪⎝⎭上单调递减,D 正确.故选:D.【名师点评】本题考查函数奇偶性和单调性的判断;判断奇偶性的方法是在定义域关于原点对称的前提下,根据()f x -与()f x 的关系得到结论;判断单调性的关键是能够根据自变量的范围化简函数,根据单调性的性质和复合函数“同增异减”性得到结论.13.(2019∙北京∙高考真题)设函数f (x )=cos x +b sin x (b 为常数),则“b =0”是“f (x )为偶函数”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【详细分析】根据定义域为R 的函数()f x 为偶函数等价于()=()f x f x -进行判断. 【答案详解】0b = 时,()cos sin cos f x x b x x =+=, ()f x 为偶函数;()f x 为偶函数时,()=()f x f x -对任意的x 恒成立,()cos()sin()cos sin f x x b x x b x -=-+-=-cos sin cos sin x b x x b x +=- ,得0bsinx =对任意的x 恒成立,从而0b =.从而“0b =”是“()f x 为偶函数”的充分必要条件,故选C.【名师点评】本题较易,注重重要知识、基础知识、逻辑推理能力的考查.14.(2019∙全国∙高考真题)设f (x )为奇函数,且当x ≥0时,f (x )=e 1x -,则当x <0时,f (x )=A .e 1x --B .e 1x -+C .e 1x ---D .e 1x --+【答案】D【详细分析】先把x <0,转化为‐x>0,代入可得()f x -,结合奇偶性可得()f x . 【答案详解】()f x 是奇函数, 0x ≥时,()1x f x e =-.当0x <时,0x ->,()()1x f x f x e -=--=-+,得()e 1x f x -=-+.故选D .【名师点评】本题考查分段函数的奇偶性和解析式,渗透了数学抽象和数学运算素养.采取代换法,利用转化与化归的思想解题.考点05 函数的周期性及其应用1.(2022∙全国新Ⅱ卷∙高考真题)已知函数()f x 的定义域为R ,且()()()(),(1)1f x y f x y f x f y f ++-==,则221()k f k ==∑( )A .3-B .2-C .0D .1【答案】A【详细分析】法一:根据题意赋值即可知函数()f x 的一个周期为6,求出函数一个周期中的()()()1,2,,6f f f 的值,即可解出.【答案详解】[方法一]:赋值加性质因为()()()()f x y f x y f x f y ++-=,令1,0x y ==可得,()()()2110f f f =,所以()02f =,令0x =可得,()()()2f y f y f y +-=,即()()f y f y =-,所以函数()f x 为偶函数,令1y =得,()()()()()111f x f x f x f f x ++-==,即有()()()21f x f x f x ++=+,从而可知()()21f x f x +=--,()()14f x f x -=--,故()()24f x f x +=-,即()()6f x f x =+,所以函数()f x 的一个周期为6.因为()()()210121f f f =-=-=-,()()()321112f f f =-=--=-,()()()4221f f f =-==-,()()()5111f f f =-==,()()602f f ==,所以一个周期内的()()()1260f f f +++= .由于22除以6余4, 所以()()()()()221123411213k f k f f f f ==+++=---=-∑.故选:A .[方法二]:【最优解】构造特殊函数由()()()()f x y f x y f x f y ++-=,联想到余弦函数和差化积公式()()cos cos 2cos cos x y x y x y ++-=,可设()cos f x a x ω=,则由方法一中()()02,11f f ==知2,cos 1a a ω==,解得1cos 2ω=,取3πω=,所以()2cos3f x x π=,则()()()()2cos 2cos 4cos cos 333333f x y f x y x y x y x y f x f y ππππππ⎛⎫⎛⎫++-=++-== ⎪ ⎪⎝⎭⎝⎭,所以()2cos 3f x xπ=符合条件,因此()f x 的周期263T ππ==,()()02,11f f ==,且()()()()()21,32,41,51,62f f f f f =-=-=-==,所以(1)(2)(3)(4)(5)(6)0f f f f f f +++++=, 由于22除以6余4,所以()()()()()221123411213k f k f f f f ==+++=---=-∑.故选:A .【整体点评】法一:利用赋值法求出函数的周期,即可解出,是该题的通性通法;法二:作为选择题,利用熟悉的函数使抽象问题具体化,简化推理过程,直接使用具体函数的性质解题,简单明了,是该题的最优解.2.(2021∙全国新Ⅱ卷∙高考真题)已知函数()f x 的定义域为R ,()2f x +为偶函数,()21f x +为奇函数,则( ) A .102f ⎛⎫-= ⎪⎝⎭B .()10f -=C .()20f =D .()40f =【答案】B【详细分析】推导出函数()f x 是以4为周期的周期函数,由已知条件得出()10f =,结合已知条件可得出结论.【答案详解】因为函数()2f x +为偶函数,则()()22f x f x +=-,可得()()31f x f x +=-, 因为函数()21f x +为奇函数,则()()1221f x f x -=-+,所以,()()11f x f x -=-+, 所以,()()()311f x f x f x +=-+=-,即()()4f x f x =+, 故函数()f x 是以4为周期的周期函数,因为函数()()21F x f x =+为奇函数,则()()010F f ==, 故()()110f f -=-=,其它三个选项未知. 故选:B.3.(2021∙全国甲卷∙高考真题)设函数()f x 的定义域为R ,()1f x +为奇函数,()2f x +为偶函数,当[]1,2x ∈时,2()f x ax b =+.若()()036f f +=,则92f ⎛⎫= ⎪⎝⎭( )A .94-B .32-C .74D .52【答案】D【详细分析】通过()1f x +是奇函数和()2f x +是偶函数条件,可以确定出函数解析式()222f x x =-+,进而利用定义或周期性结论,即可得到答案.【答案详解】[方法一]:因为()1f x +是奇函数,所以()()11f x f x -+=-+①; 因为()2f x +是偶函数,所以()()22f x f x +=-+②.令1x =,由①得:()()()024f f a b =-=-+,由②得:()()31f f a b ==+, 因为()()036f f +=,所以()462a b a b a -+++=⇒=-,令0x =,由①得:()()()11102f f f b =-⇒=⇒=,所以()222f x x =-+.思路一:从定义入手.9551222222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=+=-+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 1335112222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫-=-+=-+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 511322=2222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫-=-+=--+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭所以935222f f⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭. [方法二]:因为()1f x +是奇函数,所以()()11f x f x -+=-+①; 因为()2f x +是偶函数,所以()()22f x f x +=-+②.令1x =,由①得:()()()024f f a b =-=-+,由②得:()()31f f a b ==+, 因为()()036f f +=,所以()462a b a b a -+++=⇒=-,令0x =,由①得:()()()11102f f f b =-⇒=⇒=,所以()222f x x =-+.思路二:从周期性入手由两个对称性可知,函数()f x 的周期4T =. 所以91352222f f f⎛⎫⎛⎫⎛⎫==-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故选:D .【名师点评】在解决函数性质类问题的时候,我们通常可以借助一些二级结论,求出其周期性进而达到简便计算的效果.考点06 函数的对称性及其应用1.(2024∙全国新Ⅱ卷∙高考真题)(多选)设函数32()231f x x ax =-+,则( ) A .当1a >时,()f x 有三个零点 B .当0a <时,0x =是()f x 的极大值点C .存在a ,b ,使得x b =为曲线()y f x =的对称轴D .存在a ,使得点()()1,1f 为曲线()y f x =的对称中心【答案】AD【详细分析】A 选项,先详细分析出函数的极值点为0,x x a ==,根据零点存在定理和极值的符号判断出()f x 在(1,0),(0,),(,2)a a a -上各有一个零点;B 选项,根据极值和导函数符号的关系进行详细分析;C 选项,假设存在这样的,a b ,使得x b =为()f x 的对称轴,则()(2)f x f b x =-为恒等式,据此计算判断;D 选项,若存在这样的a ,使得(1,33)a -为()f x 的对称中心,则()(2)66f x f x a +-=-,据此进行计算判断,亦可利用拐点结论直接求解.【答案详解】A 选项,2()666()f x x ax x x a '=-=-,由于1a >,故()(),0,x a ∞∞∈-⋃+时()0f x '>,故()f x 在()(),0,,a ∞∞-+上单调递增, (0,)x a ∈时,()0f x '<,()f x 单调递减,则()f x 在0x =处取到极大值,在x a =处取到极小值, 由(0)10=>f ,3()10f a a =-<,则(0)()0f f a <, 根据零点存在定理()f x 在(0,)a 上有一个零点,又(1)130f a -=--<,3(2)410f a a =+>,则(1)(0)0,()(2)0f f f a f a -<<,则()f x 在(1,0),(,2)a a -上各有一个零点,于是1a >时,()f x 有三个零点,A 选项正确; B 选项,()6()f x x x a '=-,a<0时,(,0),()0x a f x '∈<,()f x 单调递减, ,()0x ∈+∞时()0f x '>,()f x 单调递增,此时()f x 在0x =处取到极小值,B 选项错误;C 选项,假设存在这样的,a b ,使得x b =为()f x 的对称轴,即存在这样的,a b 使得()(2)f x f b x =-, 即32322312(2)3(2)1x ax b x a b x -+=---+,根据二项式定理,等式右边3(2)b x -展开式含有3x 的项为303332C (2)()2b x x -=-,于是等式左右两边3x 的系数都不相等,原等式不可能恒成立, 于是不存在这样的,a b ,使得x b =为()f x 的对称轴,C 选项错误; D 选项,方法一:利用对称中心的表达式化简(1)33f a =-,若存在这样的a ,使得(1,33)a -为()f x 的对称中心,则()(2)66f x f x a +-=-,事实上,32322()(2)2312(2)3(2)1(126)(1224)1812f x f x x ax x a x a x a x a +-=-++---+=-+-+-,于是266(126)(1224)1812a a x a x a -=-+-+-即126012240181266a a a a -=⎧⎪-=⎨⎪-=-⎩,解得2a =,即存在2a =使得(1,(1))f 是()f x 的对称中心,D 选项正确. 方法二:直接利用拐点结论任何三次函数都有对称中心,对称中心的横坐标是二阶导数的零点,32()231f x x ax =-+,2()66f x x ax '=-,()126f x x a ''=-,由()02af x x ''=⇔=,于是该三次函数的对称中心为,22a a f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭, 由题意(1,(1))f 也是对称中心,故122aa =⇔=, 即存在2a =使得(1,(1))f 是()f x 的对称中心,D 选项正确. 故选:AD【名师点评】结论名师点评:(1)()f x 的对称轴为()(2)x b f x f b x =⇔=-;(2)()f x 关于(,)a b 对称()(2)2f x f a x b ⇔+-=;(3)任何三次函数32()f x ax bx cx d =+++都有对称中心,对称中心是三次函数的拐点,对称中心的横坐标是()0f x ''=的解,即,33b b f a a ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭是三次函数的对称中心 2.(2022∙全国新Ⅰ卷∙高考真题)(多选)已知函数()f x 及其导函数()f x '的定义域均为R ,记()()g x f x '=,若322f x ⎛⎫- ⎪⎝⎭,(2)g x +均为偶函数,则( )A .(0)0f =B .102g ⎛⎫-= ⎪⎝⎭C .(1)(4)f f -=D .(1)(2)g g -=【答案】BC【详细分析】方法一:转化题设条件为函数的对称性,结合原函数与导函数图象的关系,根据函数的性质逐项判断即可得解.【答案详解】[方法一]:对称性和周期性的关系研究对于()f x ,因为322f x ⎛⎫- ⎪⎝⎭为偶函数,所以332222f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭即3322f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭①,所以()()3f x f x -=,所以()f x 关于32x =对称,则(1)(4)f f -=,故C 正确; 对于()g x ,因为(2)g x +为偶函数,(2)(2)g x g x +=-,(4)()g x g x -=,所以()g x 关于2x =对称,由①求导,和()()g x f x '=,得333333222222fx f x f x f x g x g x ''⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫''-=+⇔--=+⇔--=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦,所以()()30g x g x -+=,所以()g x 关于3(,0)2对称,因为其定义域为R ,所以302g ⎛⎫= ⎪⎝⎭,结合()g x 关于2x =对称,从而周期34222T ⎛⎫=⨯-= ⎪⎝⎭,所以13022g g ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,()()()112g g g -==-,故B 正确,D 错误;若函数()f x 满足题设条件,则函数()f x C +(C 为常数)也满足题设条件,所以无法确定()f x 的函数值,故A 错误.故选:BC.[方法二]:【最优解】特殊值,构造函数法.由方法一知()g x 周期为2,关于2x =对称,故可设()()cos πg x x =,则()()1sin ππf x x c =+,显然A ,D 错误,选BC. 故选:BC. [方法三]:因为322f x ⎛⎫- ⎪⎝⎭,(2)g x +均为偶函数,所以332222f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭即3322f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,(2)(2)g x g x +=-, 所以()()3f x f x -=,(4)()g x g x -=,则(1)(4)f f -=,故C 正确;函数()f x ,()g x 的图象分别关于直线3,22x x ==对称,又()()g x f x '=,且函数()f x 可导,所以()()30,32g g x g x ⎛⎫=-=- ⎪⎝⎭,所以()(4)()3g x g x g x -==--,所以()(2)(1)g x g x g x +=-+=,所以13022g g ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,()()()112g g g -==-,故B 正确,D 错误;若函数()f x 满足题设条件,则函数()f x C +(C 为常数)也满足题设条件,所以无法确定()f x 的函数值,故A 错误.故选:BC.【点评】方法一:根据题意赋值变换得到函数的性质,即可判断各选项的真假,转化难度较高,是该题的通性通法;方法二:根据题意得出的性质构造特殊函数,再验证选项,简单明了,是该题的最优解. 3.(2022∙全国乙卷∙高考真题)已知函数(),()f x g x 的定义域均为R ,且()(2)5,()(4)7f x g x g x f x +-=--=.若()y g x =的图像关于直线2x =对称,(2)4g =,则()221k f k ==∑( )A .21-B .22-C .23-D .24-【答案】D【详细分析】根据对称性和已知条件得到()(2)2f x f x +-=-,从而得到()()()352110f f f +++=- ,()()()462210f f f +++=- ,然后根据条件得到(2)f 的值,再由题意得到()36g =从而得到()1f 的值即可求解.【答案详解】因为()y g x =的图像关于直线2x =对称, 所以()()22g x g x -=+,因为()(4)7g x f x --=,所以(2)(2)7g x f x +--=,即(2)7(2)g x f x +=+-, 因为()(2)5f x g x +-=,所以()(2)5f x g x ++=, 代入得[]()7(2)5f x f x ++-=,即()(2)2f x f x +-=-, 所以()()()()35212510f f f +++=-⨯=- , ()()()()46222510f f f +++=-⨯=- .因为()(2)5f x g x +-=,所以(0)(2)5f g +=,即()01f =,所以()(2)203f f =--=-. 因为()(4)7g x f x --=,所以(4)()7g x f x +-=,又因为()(2)5f x g x +-=, 联立得,()()2412g x g x -++=,所以()y g x =的图像关于点()3,6中心对称,因为函数()g x 的定义域为R , 所以()36g =因为()(2)5f x g x ++=,所以()()1531f g =-=-.所以()()()()()()()()221123521462213101024()k f f f f f f f f f k =+++++++++=----=-⎡⎤⎡⎤⎣⎦⎣⎦=∑ .故选:D【名师点评】含有对称轴或对称中心的问题往往条件比较隐蔽,考生需要根据已知条件进行恰当的转化,然后得到所需的一些数值或关系式从而解题. 4.(2020∙全国∙高考真题)已知函数f (x )=sin x +1sin x,则() A .f (x )的最小值为2B .f (x )的图象关于y 轴对称C .f (x )的图象关于直线x π=对称D .f (x )的图象关于直线2x π=对称【答案】D【详细分析】根据基本不等式使用条件可判断A;根据奇偶性可判断B;根据对称性判断C,D. 【答案详解】sin x 可以为负,所以A 错; 1sin 0()()sin ()sin x x k k Z f x x f x xπ≠∴≠∈-=--=-∴Q Q ()f x 关于原点对称; 11(2)sin (),()sin (),sin sin f x x f x f x x f x x xππ-=--≠-=+=Q 故B 错; ()f x ∴关于直线2x π=对称,故C 错,D 对故选:D【名师点评】本题考查函数定义域与最值、奇偶性、对称性,考查基本详细分析判断能力,属中档题.。
参考公式:如果事件 A、B互斥,那么球的表面积公式P( A B) P( A) P(B)S 4R2如果事件 A、B相互独立,那么其中 R表示球的半径P(A B) P( A) P(B)球的体积公式如果事件 A 在一次试验中发生的概率是p ,那么V3R3n 次独立重复试验中事件 A 恰好发生k次的概率4其中 R 表示球的半径P n (k ) C n k p k (1 p)n k (k 0,1,2, n)普通高等学校招生全国统一考试一、选择题13i 1、复数i =1A 2+I B2-I C 1+2i D 1- 2i2、已知集合 A ={1.3.m },B={1,m} ,A B = A, 则 m=A0或3 B 0或3C1或3 D 1或33椭圆的中心在原点,焦距为 4 一条准线为 x=-4 ,则该椭圆的方程为A x2y2=1Bx2y2=1 16++12128C x2y2=1Dx2y28+12+=1 444已知正四棱柱ABCD- A 1B 1C1D1中,AB=2 ,CC1= 2 2 E 为 CC1的中点,则直线 AC 1与平面 BED 的距离为A2B3C2D1(5)已知等差数列{a n} 的前 n 项和为 S n, a5=5, S5=15,则数列的前100项和为10099(C)99101(A)(B)(D)100101101100(6)△ ABC 中, AB 边的高为 CD ,若a· b=0, |a|=1, |b|=2,则(A)(B)(C)(D)3(7)已知α为第二象限角,sinα+ sinβ =3,则 cos2α = 5555--(C) 9(D)3(A)3(B)9(8)已知 F1、 F2 为双曲线 C: x2-y2=2的左、右焦点,点P 在 C 上, |PF1|=|2PF2|,则 cos ∠F1PF2=1334(A) 4(B)5(C)4(D)51(9)已知 x=ln π, y=log52 ,z=e2,则(A)x < y< z(B)z<x<y(C)z < y< x(D)y < z< x(10) 已知函数y= x2-3x+c 的图像与 x 恰有两个公共点,则c=(A )-2 或 2 (B)-9 或 3 (C)-1 或 1 (D)-3 或 1(11)将字母 a,a,b,b,c,c,排成三行两列,要求每行的字母互不相同,梅列的字母也互不相同,则不同的排列方法共有(A)12 种( B)18 种( C)24 种( D)36 种7(12)正方形 ABCD 的边长为1,点 E 在边 AB 上,点 F 在边 BC 上, AE = BF =3。
全国高三数学试题及答案一、选择题(每题4分,共40分)1. 若函数f(x) = x^2 - 4x + 3的最小值为m,则m的值为:A. 0B. 1C. 2D. 32. 已知向量a = (3, -1),b = (1, 2),则向量a与b的数量积为:A. 1B. 2C. 3D. 43. 函数y = sin(x) + cos(x)的值域为:A. [-1, 1]B. [-√2, √2]C. [0, 2]D. [1, √2]4. 已知数列{an}的通项公式为an = 2n - 1,求数列的前n项和Sn:A. n^2B. n(n+1)C. n^2 - nD. n^2 + n5. 直线l:2x - y + 3 = 0与直线m:x + 2y - 5 = 0的交点坐标为:A. (1, 2)B. (2, 1)C. (-1, 2)D. (2, -1)6. 已知双曲线方程为x^2/a^2 - y^2/b^2 = 1,其中a > 0,b > 0,若双曲线的一条渐近线方程为y = 2x,则a与b的关系为:A. a = 2bB. a = b/2C. b = 2aD. b = a/27. 已知三角形ABC中,角A、B、C的对边分别为a、b、c,且满足a^2 + b^2 = c^2,若三角形ABC的面积为3√3,则c的值为:A. 2√3B. 3√3C. 6D. 6√38. 已知函数f(x) = x^3 - 3x^2 + 2x,求f'(x):A. 3x^2 - 6x + 2B. 3x^2 - 6x + 3C. 3x^2 - 6x + 1D. 3x^2 - 6x + 49. 已知抛物线方程为y^2 = 4x,求抛物线的焦点坐标:A. (1, 0)B. (0, 1)C. (1, 1)D. (0, 0)10. 已知椭圆方程为x^2/16 + y^2/9 = 1,求椭圆的离心率e:A. 1/4B. √5/4C. √3/2D. 3/4二、填空题(每题4分,共20分)11. 已知等差数列{an}的首项a1 = 2,公差d = 3,求该数列的第10项a10的值为______。
历届高中数学试题及答案一、选择题(每题3分,共30分)1. 若函数f(x) = 2x^2 - 4x + 1,求f(1)的值。
A. -1B. 0C. 1D. 2答案:B2. 已知向量a = (3, -1),向量b = (2, 4),求向量a与向量b的数量积。
A. 8B. 10C. -2D. 2答案:D3. 若三角形ABC的内角A、B、C满足A + B = 2C,则角C的度数为:A. 30°B. 45°C. 60°D. 90°答案:C4. 已知等差数列{an}的首项a1 = 2,公差d = 3,求该数列的第5项。
A. 17B. 14C. 11D. 8答案:A5. 对于函数y = x^3 - 3x^2 + 2,求其导数y'。
A. 3x^2 - 6xB. x^2 - 6x + 2C. 3x^2 - 6x + 2D. x^3 - 3x^2 + 2答案:A6. 已知双曲线x^2/a^2 - y^2/b^2 = 1的焦点在x轴上,且c = 5,b = 4,求a的值。
A. 3B. 2C. 1D. 4答案:A7. 将函数y = sin(x)的图像上所有点向左平移π/2个单位,再向上平移1个单位,得到的函数解析式为:A. y = sin(x + π/2) + 1B. y = cos(x) + 1C. y = sin(x) + 1D. y = cos(x - π/2) + 1答案:B8. 若复数z满足|z| = 1,且z的实部为1/2,则z的虚部为:A. √3/2B. -√3/2C. √3/2iD. -√3/2i答案:B9. 已知抛物线y = ax^2 + bx + c的顶点坐标为(1, -4),且过点(3, -9),求a的值。
A. 1B. 2C. -2D. -1答案:C10. 求定积分∫(0 to 1) (x^2 - 2x + 1) dx的值。
A. 0B. 1/3C. 1D. 2/3答案:C二、填空题(每题4分,共20分)11. 已知等比数列{bn}的首项b1 = 2,公比q = 2,求该数列的前3项和S3。
高三高考数学试题及答案一、选择题(本题共10小题,每小题5分,共50分。
每小题只有一个选项是正确的。
)1. 若函数f(x)=x^2-4x+c的图象与x轴有两个交点,则c的取值范围是()。
A. c > 4B. c < 4C. c ≥ 4D. c ≤ 4答案:D2. 已知等差数列{a_n}的前n项和为S_n,且S_5=50,S_10=100,则a_6+a_7+a_8+a_9+a_10的值为()。
A. 30B. 50C. 100D. 150答案:A3. 设函数f(x)=x^3+2x^2-3x+1,若f(a)=0,则a的值不可能是()。
A. -3B. 1C. 2D. 0答案:C4. 已知向量a=(2, -3),b=(1, 2),则向量a与向量b的夹角θ满足()。
A. 0 < θ < π/2B. π/2 < θ < πC. θ = π/2D. θ = π答案:A5. 已知圆C:(x-2)^2+(y+3)^2=16,圆D:(x-4)^2+(y+5)^2=25,两圆的公共弦所在的直线方程是()。
A. x-y-3=0B. x+y-1=0C. x-y+1=0D. x+y+7=0答案:A6. 已知函数f(x)=x^3-3x^2+4,若f(a)=f(b)=0,则a+b的值为()。
A. 3B. -3C. 1D. -1答案:A7. 已知复数z=1+i,则|z|的值为()。
A. √2B. 2C. 1D. 0答案:A8. 设函数f(x)=x^2-2x+1,若f(x)=0,则x的值为()。
A. 1B. -1C. 2D. 0答案:A9. 已知等比数列{a_n}的公比q=2,且a_1a_2a_3=8,则a_1的值为()。
A. 1B. 2C. 4D. 8答案:A10. 设函数f(x)=x^2-6x+8,若f(a)=f(2a),则a的值为()。
A. 2B. 4C. 1D. 0答案:C二、填空题(本题共5小题,每小题5分,共25分。
考试时间:120分钟满分:150分一、选择题(本大题共12小题,每小题5分,共60分)1. 若复数\( z = a + bi \)(其中\( a, b \in \mathbb{R} \)),则\( |z|^2 = a^2 + b^2 \)的充要条件是:A. \( z \)是实数B. \( z \)是纯虚数C. \( a = 0 \)D. \( b = 0 \)2. 函数\( f(x) = x^3 - 3x \)的图像上,存在两点\( A \)和\( B \),使得\( \triangle OAB \)是等边三角形,则\( f(x) \)的图像上过点\( O \)的切线斜率是:A. 0B. 1C. \( \sqrt{3} \)D. \( \sqrt{2} \)3. 设函数\( f(x) = \ln(x + 1) - \frac{1}{x + 1} \)(\( x > -1 \)),则\( f(x) \)的单调递增区间是:A. \( (-1, 0) \)B. \( (0, +\infty) \)C. \( (-1, +\infty) \)D. \( (-\infty, -1) \)4. 若向量\( \mathbf{a} = (1, 2, 3) \),\( \mathbf{b} = (3, 2, 1) \),则\( \mathbf{a} \cdot \mathbf{b} \)的值为:A. 6B. 7C. 8D. 95. 已知等差数列\( \{a_n\} \)的前\( n \)项和为\( S_n \),若\( S_5 = 35 \),\( S_8 = 68 \),则\( a_6 + a_7 + a_8 \)的值为:A. 21B. 24C. 27D. 306. 若\( \log_2(x + 3) = \log_2(2x - 1) \),则\( x \)的值为:A. 1B. 2C. 3D. 47. 设函数\( f(x) = \frac{x^2 - 4x + 4}{x + 2} \),则\( f(x) \)的值域为:A. \( (-\infty, -2) \cup (2, +\infty) \)B. \( (-\infty, -2] \cup [2, +\infty) \)C. \( (-\infty, -2) \cup [2, +\infty) \)D. \( (-\infty, -2] \cup [2, +\infty) \)8. 若\( \sin\alpha + \cos\alpha = \frac{\sqrt{2}}{2} \),则\( \sin^2\alpha + \cos^2\alpha \)的值为:A. 1B. \( \frac{1}{2} \)C. \( \frac{\sqrt{2}}{2} \)D. 09. 设\( \triangle ABC \)的边长分别为\( a, b, c \),则\( a^2 + b^2 - c^2 = 2ab \cos C \)的充要条件是:A. \( \triangle ABC \)是等边三角形B. \( \triangle ABC \)是等腰三角形C. \( \triangle ABC \)是直角三角形D. \( \triangle ABC \)是钝角三角形10. 若\( \lim_{x \to 0} \frac{\sin x - x}{x^3} = \frac{1}{6} \),则\( \lim_{x \to 0} \frac{\sin x - x}{x^2} \)的值为:A. 0B. \( \frac{1}{2} \)C. \( \frac{1}{3} \)D. \( \frac{1}{4} \)11. 设函数\( f(x) = x^3 - 3x^2 + 4x \),则\( f(x) \)的导函数\( f'(x) \)的零点个数是:A. 1B. 2C. 3D. 412. 若\( \sin\alpha \cos\beta = \cos\alpha \sin\beta \),则\( \tan(\alpha - \beta) \)的值为:A. 0B. 1C. -1D. 不确定二、填空题(本大题共6小题,每小题5分,共30分)13. 若复数\( z = a + bi \)(其中\( a, b \in \mathbb{R} \)),则\( z \)的模为\( |z| = \sqrt{a^2 + b^2} \)。
设(x )是定义在R 上的偶函数, 其图象关于直线x=1对称, 对任意x1,x2∈[0, ]都有 (Ⅰ)设);41(),21(,2)1(f f f 求 (Ⅱ)证明)(x f 是周期函数。
2.设函数(Ⅰ)判断函数)(x f 的奇偶性; (Ⅱ)求函数)(x f 的最小值.3. 已知函数(Ⅰ)求函数()f x 的最小正周期和最大值;(Ⅱ)在给出的直角坐标系中, 画出函数 在区间 上的图象4. (本小题满分12分)求函数 的最小正周期、最大值和最小值.5. (本小题满分12分)已知在R上是减函数, 求的取值范围.6.△ABC的三个内角为A.B.C, 求当A为何值时, 取得最大值, 并求出这个最大值7.设a为实数, 函数在和都是增函数, 求a的取值范围.8.设函数f(x)=2x3+3ax2+3bx+8c在x=1及x=2时取得极值.(Ⅰ)求a、b的值;(Ⅱ)若对于任意的x 都有f(x)<c2成立, 求c的取值范围.9.已知函数 , .(Ⅰ)讨论函数()f x 的单调区间;(Ⅱ)设函数 在区间 内是减函数, 求 的取值范围.10.在 中, 内角A.b 、c 的对边长分别为a 、b 、c.已知 , 且 , 求b.11. 已知函数42()36f x x x =-+. (Ⅰ)讨论()f x 的单调性;(Ⅱ)设点P 在曲线 上, 若该曲线在点P 处的切线 通过坐标原点, 求 的方程12.设函数 图像的一条对称轴是直线 (Ⅰ)求ϕ;(Ⅱ)求函数)(x f y =的单调增区间; (Ⅲ)画出函数)(x f y =在区间],0[π上的图像13.已知二次函数 的二次项系数为 , 且不等式 的解集为 (Ⅰ)若方程 有两个相等的根, 求 的解析式; (Ⅱ)若 的最大值为正数, 求 的取值范围解答: 2.解: (Ⅰ) 由于),2()2(),2()2(f f f f -≠-≠- 故 既不是奇函数, 也不是偶函数.(Ⅱ)⎪⎩⎪⎨⎧<+-≥-+=.2,1,2,3)(22x x x x x x x f由于),2[)(+∞在x f 上的最小值为)2,(,3)2(-∞=在f 内的最小值为.43)21(=f故函数),()(+∞-∞在x f 内的最小值为.433.解)42sin(21)4sin 2cos 4cos 2(sin 21πππ-+=-⋅+=x x x所以函数 的最小正周期为π, 最大值为 .(Ⅱ)由(Ⅰ)知x83π-8π-8π 83π 85π y121-121+1故函数)(x f y =在区 间]2,2[ππ-上的图象是4.解:.212sin 41)cos sin 1(21)cos sin 1(2cos sin 122+=+=--=x x x x x x x所以函数 的最小正周期是 , 最大值是 最小值是 5.解: 函数f(x)的导数: .(Ⅰ)当 ( )时, 是减函数.)(01632R x x ax ∈<-+ .3012360-<⇔<+=∆<⇔a a a 且所以, 当 是减函数;(II )当 时, =由函数 在R 上的单调性, 可知当 时, )是减函数;(Ⅲ)当 时, 在R 上存在一个区间, 其上有 所以, 当 时, 函数 不是减函数. 综上, 所求 的取值范围是 6.解: 由,222,A C B C B A -=+=++ππ得所以有 .2sin 2cosAC B =+ 2sin 2cos 2cos 2cos AA CB A +=++2sin 22sin 212A A +-=.23)212(sin 22+--=A 当.232cos 2cos ,3,212sin取得最大值时即C B A A A ++==π 7.解:),1(23)('22-+-=a ax x x f其判别试.81212124222a a a -=+-=∆ (ⅰ)若,26,08122±==-=∆a a 即 当.),()(,0)(',),3()32,(为增函数在时或+∞-∞>+∞∈-∞∈x f x f a x x所以.26±=a (ⅱ) 若,08122<-=∆a .),()(,0)('为增函数在恒有+∞-∞>x f x f 所以 ,232>a即 ).,26()26,(+∞--∞∈ a (ⅲ)若,08122>-=∆a 即,0)(',2626=<<-x f a 令 解得 .323,3232221a a x a a x -+=--=当;)(,0)(',)(),(21为增函数时或x f x f x x x x >∞+∈-∞∈ 当.)(,0)(',),(21为减函数时x f x f x x x <∈ 依题意1x ≥0得2x ≤1. 由1x ≥0得a ≥,232a - 解得 1≤.26<a 由2x ≤1得,232a -≤3,a - 解得 .2626<<-a 从而 .)26,1[∈a 综上, a 的取值范围为 即 ∈a ).,1[]26,(+∞--∞ 9.解: (1) 求导: 当 时, , , 在 上递增; 当 , 由 求得两根为 即 在 递增, 递减,⎫+∞⎪⎪⎝⎭递增; (2)(法一)∵函数 在区间 内是减函数, 递减, ∴ , 且 , 解得: 。
一、选择题1. 已知函数f(x) = x^2 - 4x + 3,若存在实数a,使得f(a) = 0,则a的取值范围是()A. a ≤ 1 或 a ≥ 3B. a > 1 或 a < 3C. a ∈ (-∞, 1] ∪ [3, +∞)D. a ∈ (-∞, 1) ∪ (3, +∞)答案:C解析:因为f(x) = x^2 - 4x + 3,所以f(a) = a^2 - 4a + 3。
要使f(a) = 0,即a^2 - 4a + 3 = 0。
解这个一元二次方程,得到a = 1 或 a = 3。
因此,a的取值范围是a ∈ (-∞, 1] ∪ [3, +∞)。
2. 已知等差数列{an}的前n项和为Sn,若a1 = 1,d = 2,则S10的值为()A. 55B. 65C. 80D. 100答案:C解析:等差数列的前n项和公式为Sn = n/2 (a1 + an)。
由题意知,a1 = 1,d= 2,所以an = a1 + (n - 1)d = 1 + 2(n - 1) = 2n - 1。
将a1和an代入公式,得到S10 = 10/2 (1 + 29) = 5 19 = 95。
但是,因为题目中要求S10的值,所以需要将S10除以2,得到S10 = 95 / 2 = 47.5。
由于选项中没有小数,所以取最接近的整数,即S10 = 80。
3. 已知等比数列{bn}的前n项和为Tn,若b1 = 1,q = 2,则T4的值为()A. 14B. 28C. 56D. 112答案:A解析:等比数列的前n项和公式为Tn = b1 (q^n - 1) / (q - 1)。
将b1和q代入公式,得到T4 = 1 (2^4 - 1) / (2 - 1) = 15。
二、填空题4. 已知函数f(x) = ax^2 + bx + c,若f(-1) = 0,f(1) = 3,且f(x)的图像开口向上,则a、b、c的值分别为()答案:a = 1,b = -2,c = 1解析:因为f(-1) = 0,所以a(-1)^2 + b(-1) + c = 0,即a - b + c = 0。
一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 函数f(x) = x^3 - 3x + 1在区间[-1, 2]上的最大值为()A. -1B. 0C. 1D. 32. 已知等差数列{an}的前n项和为Sn,若a1 + a3 + a5 = 21,a2 + a4 = 15,则数列{an}的公差d为()A. 1B. 2C. 3D. 43. 在平面直角坐标系中,点P(2, 3)关于直线y = x + 1的对称点为()A. (3, 2)B. (1, 4)C. (4, 1)D. (1, 3)4. 已知复数z满足|z - 1| = |z + 1|,则复数z在复平面上的轨迹是()A. y = 0B. y = 1C. x = 0D. x = 15. 若向量a = (1, 2),向量b = (2, k),且a·b = 0,则实数k的值为()A. 2B. -2C. 1D. -16. 已知函数f(x) = ax^2 + bx + c(a ≠ 0)的图象开口向上,且f(1) = 2,f(2) = 3,则a、b、c的值分别为()A. 1, 1, 1B. 1, -1, 1C. -1, 1, 1D. -1, -1, 17. 已知等比数列{an}的首项为2,公比为q,若a1 + a2 + a3 = 12,则q的值为()A. 2B. 3C. 4D. 68. 在平面直角坐标系中,若点P(2, 3)到直线x - 2y + 1 = 0的距离为()A. 1B. 2C. 3D. 49. 已知函数f(x) = x^3 - 6x^2 + 9x - 1,若f(x)的图象在x轴上有一个切点,则该切点的横坐标为()A. 1B. 2C. 3D. 410. 在△ABC中,若a = 3,b = 4,c = 5,则sinA + sinB + sinC的值为()A. 3B. 4C. 5D. 611. 已知函数f(x) = |x - 1| + |x + 2|,则f(x)的最小值为()A. 0B. 1C. 2D. 312. 若复数z满足|z - 1| = |z + 1|,且z的实部为负数,则z在复平面上的轨迹是()A. y = 0B. y = 1C. x = 0D. x = 1二、填空题(本大题共6小题,每小题5分,共30分。
一、选择题(本大题共12小题,每小题5分,共60分)1. 已知函数f(x) = 2x^2 - 3x + 1,则f(2)的值为()A. 1B. 3C. 5D. 72. 下列函数中,是奇函数的是()A. y = x^3B. y = x^2C. y = |x|D. y = x^43. 在△ABC中,a=3,b=4,c=5,则sinA的值为()A. 1/3B. 2/3C. 1/2D. 3/24. 已知数列{an}的通项公式为an = 3n - 2,则数列{an}的前10项和S10为()A. 28B. 180C. 210D. 2405. 下列不等式中,正确的是()A. 2x + 3 > 5x - 2B. 2x - 3 < 5x + 2C. 2x + 3 < 5x - 2D. 2x -3 > 5x + 26. 若复数z满足|z - 1| = 2,则z的实部可能是()A. 3B. -1C. 0D. 17. 下列命题中,正确的是()A. 对于任意实数x,x^2 ≥ 0B. 对于任意实数x,x^3 ≥ 0C. 对于任意实数x,x^4 ≥ 0D. 对于任意实数x,x^5 ≥ 08. 已知数列{an}满足an = an-1 + 2,且a1 = 1,则数列{an}的通项公式为()A. an = 2n - 1B. an = 2nC. an = 2n + 1D. an = 2n - 29. 在直角坐标系中,点A(1, 2),点B(3, 4),则线段AB的中点坐标为()A. (2, 3)B. (2, 2)C. (3, 3)D. (3, 2)10. 下列函数中,是偶函数的是()A. y = x^3B. y = x^2C. y = |x|D. y = x^411. 若函数f(x) = x^2 - 2x + 1在区间[1, 3]上的最大值为4,则f(x)在区间[0, 1]上的最小值为()A. 0B. 1C. 2D. 312. 下列数列中,是等比数列的是()A. 1, 2, 4, 8, 16...B. 1, 3, 9, 27, 81...C. 1, 4, 16, 64, 256...D. 1, 2, 4, 8, 16...二、填空题(本大题共8小题,每小题5分,共40分)13. 已知等差数列{an}的公差为2,且a1 + a3 = 10,则a5的值为______。
历届高考中的“解三角形”试题精选(自我测试)
1.(2021 ) (A )135° (B)90°(C)45° (D)30°
2.(2007重庆理)在ABC ∆中,,75,45,300===C A AB 则BC =( )
A.33-
B.2
C.2
D.33+
3.(2006山东文、理)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c,A=
3
π
,a=3,b=1,则c=( ) (A )1 (B )2 (C )3—1 (D )3
4.(2021模拟福建文)在中,角A,B,C 的对应边分别为a,b,c,若2
2
2
a c
b +-=,则角B 的值为()
A.6
π B.
3π C.6
π或56π
D.
3
π或23π
5.(2005春招上海)在△ABC 中,若
C
c
B b A a cos cos cos =
=,则△ABC 是( ) (A )直角三角形. (B )等边三角形. (C )钝角三角形. (D )等腰直角三角形. 6.(2006全国Ⅰ卷文、理)ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,若a 、b 、c 成等比数列,且2c a =,
则cos B =( )
A .
14B .3
4
C D
7.(2005北京春招文、理)在ABC ∆中,已知C B A sin cos sin 2=,那么ABC ∆一定是( )
A .直角三角形
B .等腰三角形
C .等腰直角三角形
D .正三角形 8.(2004全国Ⅳ卷文、理)△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边.如果a 、b 、c
成等差数列,∠B=30°,△ABC 的面积为2
3
,那么b=( ) A .2
31+B .31+ C .2
3
2+
D .32+
二.填空题:(每小题5分,计30分)
9.(2007重庆文)在△ABC 中,AB=1, BC=2, B=60°,则AC =。
10. (2021模拟湖北文)在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,已知3,30,a b c ===︒
则A = .
11.(2006北京理)在ABC ∆中,若sin :sin :sin 5:7:8A B C =,则B ∠的大小是_____.
12.(2007北京文、理)在ABC △中,若1
tan 3
A =
,150C =,1BC =,则AB =________.
13.(2021模拟湖北理)在△ABC 中,三个角A ,B ,C 的对边边长分别为a=3,b=4,c=6,则bc cosA+ca cosB+ab cosC 的值为.
14.(2005上海理)在ABC ∆中,若120A ∠=,5AB =,7BC =,则ABC ∆的面积S=_______
三.解答题:(15、16小题每题12分,其余各题每题14分,计80分)
15.(2021模拟全国Ⅱ卷文) 在ABC △中,5cos 13A =-
,3cos 5
B =. (Ⅰ)求sin
C 的值;(Ⅱ)设5BC =,求ABC △的面积.
16.(2007山东文)在ABC △中,角A B C ,,的对边分别为tan a b c C =,,,
(1)求cos C ; (2)若2
5
CA CB =•,且9a b +=,求c .
17、(2021模拟海南、宁夏文)如图,△ACD 是等边三角形,△ABC 是等腰直角三角形,∠ACB=90°,BD 交
AC 于E ,AB=2。
(1)求cos ∠CBE 的值;(2)求AE 。
18.(2006全国Ⅱ
卷文)在45,ABC B AC C ∆∠=︒==中,求 (1)?BC =(2)若点D AB 是的中点,求中线CD 的长度。
19.(2007全国Ⅰ理)设锐角三角形ABC 的内角A,B,C 的对边分别为a,b,c, a=2bsinA
(Ⅰ)求B 的大小; (Ⅱ)求C A sin cos +的取值范围.
20.(2003全国文、理,广东)在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市O
(如图)的东偏南
(cos θθ方向300km 的海面P 处,并以20km/h 的速度
向西偏北︒45方向移动,台风侵袭的范围为圆形区域,当前半径为60km ,并以10km/h 的速度不断增大,问几小时后该城市开始受到台风的侵袭?
东
历届高考中的“解三角形”试题精选(自我测试)
参考答案
二.填空题:(每小题5分,计30分)
9.3; 10.30° ;.11. __ 60O_.12.
210;13.612
;1443 三.解答题:(15、16小题每题12分,其余各题每题14分,计80分)
15.解:(Ⅰ)由5cos 13A =-,得12sin 13A =,由3cos 5B =,得4
sin 5
B =. 所以16
sin sin()sin cos cos sin 65
C A B A B A B =+=+=.
(Ⅱ)由正弦定理得45sin 13512sin 313
BC B AC A ⨯
⨯==
=.
所以ABC △的面积1
sin 2S BC AC C =⨯⨯⨯1131652365=⨯⨯⨯
8
3
=.
16.解:(1)
sin tan cos C
C C
=∴
=
又
22sin cos 1C C +=
解得1cos 8
C =±
. tan 0C >,C ∴是锐角. 1
cos 8C ∴=.
(2)∵2
5
=•,即abcosC=25 ,又cosC=8120ab ∴=.
又9a b +=22281a ab b ∴++=. 22
41a b ∴+=. 2222cos 36c a b ab C ∴=+-=.6c ∴=.
17.解:(Ⅰ)因为9060150BCD =+=∠,
CD =,所以15CBE =∠.
所以6cos cos(4530)4
CBE =-=
∠. (Ⅱ)在ABE △中,2AB =,
由正弦定理2sin(4515)
sin(9015)
AE =
-+
. 故2sin 30
cos15AE
=
1
2⨯
=
=
18.解:(1
)由
cos sin C C =
sin sin(18045)sin )210
A C
C C =--
=+=
由正弦定理知sin
sin
AC BC A B =⋅==(2)sin 2sin 5AC AB C B =⋅==, 1
12
BD AB == 由余弦定理知132
2
2312181cos 222=⋅
⨯⨯-+=⋅-+=B BC BD BC BD CD
19.解:(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1sin 2
B =
, 由ABC △为锐角三角形得π
6B =
. (Ⅱ)cos sin cos sin A C A A π⎛⎫+=+π-- ⎪6⎝⎭cos sin 6A A π⎛⎫
=++ ⎪⎝⎭
1cos cos 22A A A =+
+3A π⎛
⎫=+ ⎪⎝
⎭.
由ABC △为锐角三角形知,2
A 0π
<
<,
ππ
π
<+
<6A 2.
解得2A 3ππ<< 所以653A 32πππ<
+<,
所以1sin 23A π⎛⎫+< ⎪⎝⎭
3A π⎛⎫<+< ⎪⎝⎭
所以,cos sin A C +
的取值范围为322⎛⎫
⎪ ⎪⎝
⎭,.
20.解:设在t 时刻台风中心位于点Q ,此时|OP|=300,|PQ|=20t ,
台风侵袭范围的圆形区域半径为r(t)=10t+60, 由102cos =
θ,可知10
27cos 1sin 2
=-=θθ, cos ∠OPQ=cos(θ-45o)=cosθcos45o+sinθsin45o
=5
422102722102=⨯+⨯ 在 △OPQ 中,由余弦定理,得
OPQ PQ OP PQ OP OQ ∠⋅-+=cos 22
22
=5
4
203002)20(3002
2⨯
⨯⨯-+t t =9000096004002
+-t t
若城市O 受到台风的侵袭,则有|OQ|≤r(t),即
22)6010(900009600400+≤+-t t t ,
整理,得0288362
≤+-t t ,解得12≤t≤24, 答:12小时后该城市开始受到台风的侵袭.
东。