陶瓷气体放电管工作原理及选型应用
- 格式:doc
- 大小:89.15 KB
- 文档页数:8
陶瓷气体放电管特性及应用摘要:随着邮电通信、广播电视、各类家用电器、设备仪表、计算机设备等的发展,陶瓷气体放电管作为防雷及过电压保护的保护设施,正日益得到越来越广泛的应用。
相比于其他类型的放电管,陶瓷气体放电管管身体积小,工作功率大,运行效率高,且绝缘性能突出,两极之间电容小,是目前行业内性能十分突出的优质放电管。
加强对于陶瓷气体放电管应用原理及其特性研究,有利于更好的将其使用于实际生产之中,充分发挥设备特性,取得良好的电路保护效果。
本文即对陶瓷气体放电管工作原理作出简要分析,并对其自身特性及实际应用进行相关阐述。
关键词:陶瓷气体放电管原理特性应用陶瓷气体放电管是一种陶瓷材料制成的特殊结构的气体放电设备,其在放电间隙之间充填某种特定的惰性气体充当介质,同时配置活性很高的电子发射材料,并配备放电引燃机构。
气体放电管设备的生产过程中,通过贵金属焊料在高温环境下进行构件焊接,最终方可生产得到陶瓷气体放电管。
陶瓷气体放电管的主要应用是瞬间过压时的保护作用,除此之外,还在点火时也会有所应用。
相比于其他类型的放电管设备,陶瓷气体放电管两极间电容更低,对于冲击电流的耐受性能更好,且具有高阻抗的特性,这都是普通放电管所不具备的性能,可见陶瓷气体放电管是一类性能较为优越的放电管设备。
当通电线路在遭遇雷击等状况下出现瞬时突变高压状况时,设备的放电管将被击穿,其阻抗瞬间由原有的高值降低,短时内呈现几乎线路短路的状态。
此时,陶瓷气体放电管可将过大的电流进行放泄,即通过设备中的线路接地或者原有的回路泄出电流,从而使得瞬间升高的电压下降到某一安全的低值,保证电路中电流、电压均控制在较为合理的范围之内,从而在瞬时高压状况之下对线路及线路中的各个设备起到了保护作用。
陶瓷气体放电管的电压限制作用将一直持续到线路瞬时高压消失,此后,气体放电管将快速的重新恢复到其所固有的高电阻状态,以使得线路可以恢复其正常的工作状态。
1 陶瓷气体放电管工作原理陶瓷气体放电管在使用过程中其基本原理相对简单,为气体放电,即特殊情况下设备间气体通过放电使得原有的陶瓷气体放电管由断路状态转换为短路的工作状态,将额余电流释放,从而保持电路的电压、电流稳定状态,实现其正常的运作。
陶瓷放电管的工作原理陶瓷放电管是一种利用陶瓷材料制成的放电装置,其工作原理是利用陶瓷材料的特性来实现电流的放电和控制。
以下将详细介绍陶瓷放电管的工作原理。
陶瓷放电管由陶瓷材料制成,其主要成分是氧化铝、氧化锆等。
这些陶瓷材料具有很好的绝缘性能和耐高温性能,能够在较高温度下正常工作。
陶瓷放电管的外形通常是一种管状结构,内部含有两个电极,一个是阴极,一个是阳极。
当在陶瓷放电管的两个电极之间施加一定的电压时,电流开始在两个电极之间流动。
此时,电流通过陶瓷材料,由电子和离子组成。
在陶瓷材料中,电子和离子会发生碰撞,使得离子获得能量并激发到高能级。
接下来,激发态的离子会通过退激发过程回到低能级,释放出能量。
这些能量以光的形式发出,形成放电现象。
陶瓷材料在光的激发过程中表现出特定的发光特性,不同的陶瓷材料会发出不同颜色的光。
陶瓷放电管的工作原理中,光的特性是非常重要的。
陶瓷材料的发光特性取决于其晶格结构和掺杂材料的种类和浓度。
通过调整陶瓷材料的成分和结构,可以实现不同颜色的光输出。
陶瓷放电管还可以通过改变电压的大小来调节放电的强度和频率。
当施加的电压较低时,放电强度较弱,发出的光较暗;当施加的电压较高时,放电强度较强,发出的光较亮。
通过控制电压的大小,可以实现对陶瓷放电管的亮度和颜色的调节。
陶瓷放电管的工作原理还与陶瓷材料的导电特性有关。
陶瓷材料具有较高的电阻率,可以限制电流的流动。
这使得陶瓷放电管具有较好的电流控制特性,可以在较小的电流范围内工作。
陶瓷放电管是利用陶瓷材料的特性来实现电流的放电和控制的装置。
通过施加一定的电压,在陶瓷材料中产生放电现象,并释放出光能。
通过调节电压的大小,可以实现对陶瓷放电管的亮度和颜色的调节。
陶瓷放电管在照明、显示和装饰等领域有着广泛的应用。
陶瓷气体放电管1. 简介陶瓷气体放电管是一种使用气体放电产生可见光和紫外线的装置。
它由外壳、电极、填充气体以及辅助电路等部分组成。
陶瓷气体放电管通常用于照明、显示、激光器、电子设备等领域。
它具有体积小、寿命长、发光效率高等特点,因此在现代科技发展中扮演着重要角色。
2. 结构陶瓷气体放电管的结构主要由以下几个部分组成:2.1 外壳陶瓷气体放电管的外壳通常采用陶瓷材料制成,具有良好的耐热性和耐压性。
外壳的设计旨在保护内部电路和装置,同时也确保放电发光的稳定性和安全性。
2.2 电极陶瓷气体放电管中的电极主要有阴极和阳极两种。
阴极是放电的主要部分,负责向气体中释放电子。
阳极则用于收集流经管内气体的电流。
电极通常采用导电材料制成,如钨、铝等。
2.3 填充气体陶瓷气体放电管的填充气体是产生放电的关键因素。
常见的填充气体有氖气、氩气、氙气等。
这些气体通常能够在放电时产生可见光和紫外线。
2.4 辅助电路陶瓷气体放电管中的辅助电路用于提供正常工作所需的电压和电流。
辅助电路包括电源、控制电路等。
3. 工作原理陶瓷气体放电管的工作原理是通过高电压激励填充气体,使其在管内产生放电现象。
当电极上施加足够高的电压时,阴极释放的电子会与填充气体中的原子或分子发生碰撞,激发其电子跃迁并发射光子,从而产生可见光或紫外线。
不同的填充气体和电极材料会导致不同的放电现象。
例如,氖气放电会产生红色光芒,氩气放电则产生蓝绿色光芒。
通过控制填充气体的种类和压强,可以实现不同颜色的光发射。
4. 应用领域陶瓷气体放电管在多个领域具有广泛的应用:4.1 照明陶瓷气体放电管在照明领域中被广泛使用。
其高发光效率和寿命长的特点使得其成为节能高效的照明设备。
此外,陶瓷气体放电管还可提供不同颜色的光源,满足不同场合的照明需求。
4.2 显示陶瓷气体放电管也广泛应用于显示技术中,如电视、屏幕和标牌等。
由于其发光效率高和对比度好,陶瓷气体放电管被认为是一种理想的显示设备。
G as D ischarge T ubes Selection Guide陶瓷气体放电管产品选型指南GDT版权及最终解释权归君耀电子(BrightKing )所有V2, 2018目录1GDT工作原理 (3)2GDT特点 (3)3GDT典型应用电路 (3)4GDT参数说明 (4)4.1.DC Spark-over Voltage 直流火花放电电压(直流击穿电压) (4)4.2.Maximum Impulse Spark-over Voltage 最大冲击火花放电电压(脉冲击穿电压) (5)4.3.Nominal Impulse Discharge Current 标称冲击放电电流 (6)4.4.Impulse Life耐冲击电流寿命 (7)5GDT选型注意事项 (7)5.1.直流击穿电压(DC-Spark-over Voltage)与脉冲击穿电压(Impulse Spark-over Voltage) (7)5.2.GDT的续流问题 (8)5.3.封装形式 (8)6GDT命名规则 (8)7君耀电子(BrightKing)GDT产品线 (9)7.1.两极放电管 (9)7.2.三极放电管 (10)1 GDT 工作原理GDT (Gas Discharge Tubes ),即陶瓷气体放电管。
GDT 是内部由一个或一个以上放电间隙内充有惰性气体构成的密闭器件。
GDT 电气性能取决于气体种类、气体压力、内部电极结构、制作工艺等因素。
GDT 可以承受高达数十甚至数百千安培的浪涌电流冲击,具有极低的结电容,应用于保护电子设备和人身免遭瞬态高电压的危害。
图1为典型的GDT 伏安特性图。
IV i 1i 2i 3U 1U 2U 3U 1 — 直流火花放电电压U 2 — 辉光电压U 3 — 弧光电压i 1 — 辉光至弧光转变电流i 2 — 峰值电流i 3 — 弧光至辉光转变电流图1 GDT 伏安特性曲线2 GDT 特点结电容低,大部分系列产品结电容不超过2pF ,特大通流量产品结电容在十几至几十皮法; 通流量大,我司GDT 单体8/20μs 波形的通流量范围为500A~100kA ; 直流击穿电压范围为75V~6000V ,脉冲击穿电压范围为600V~7800V ; 绝缘阻抗高,一般在1GΩ以上,不易老化,可靠性高;封装多样,有贴片器件及插件器件,两端器件及三端器件,圆形及方形电极,满足不同应用需求。
陶瓷气体放电管工作原理及选型应用、产品简述陶瓷气体放电管(Gas Tube)是防雷保护设备中应用最广泛的一种开关器件,无论是交直流电源的防雷还是各种信号电路的防雷,都可以用它来将雷电流泄放入大地。
其主要特点是:放电电流大,极间电容小(≤3pF),绝缘电阻高(≥109Ω),击穿电压分散性较大(±20%),反应速度较慢(最快为0.1~0.2μs)。
按电极数分,有二极放电管和三极放电管(相当于两个二极放电管串联)两种。
其外形为圆柱形,有带引线和不带引线两种结构形式(有的还带有过热时短路的保护卡)。
2、工作原理气体放电管由封装在充满惰性气体的陶瓷管中相隔一定距离的两个电极组成。
其电气性能基本上取决于气体种类、气体压力以及电极距离,中间所充的气体主要是氖或氩, 并保持一定压力,电极表面涂以发射剂以减少电子发射能。
这些措施使得动作电压可以调整(一般是70伏到几千伏),而且可以保持在一个确定的误差范围内。
当其两端电压低于放电电压时,气体放电管是一个绝缘体(电阻Rohm>100MΩ)。
当其两端电压升高到大于放电电压时,产生弧光放电,气体电离放电后由高阻抗转为低阻抗, 使其两端电压迅速降低,大约降几十伏。
气体放电管受到瞬态高能量冲击时,它能以10-6秒量级的速度,将其两极间的高阻抗变为低阻抗,通过高达数十千安的浪涌电流。
3、特性曲线Vs导通电压,Vg辉光电压,Vf弧光电压,Va熄弧电压4、主要特性参数①直流击穿电压Vsdc:在放电管上施加100V/s的直流电压时的击穿电压值。
这是放电管的标称电压,常用的有90V、150V、230V、350V、470V、600V、800V 等几种,我们有最高3000V、最低70V的。
其误差范围:一般为±20%,也有的为±15%。
②脉冲(冲击)击穿电压Vsi:在放电管上施加1kV/μs的脉冲电压时的击穿电压值。
因反应速度较慢,脉冲击穿电压要比直流击穿电压高得多。
气体放电管设计及使用
气体放电管称陶瓷气体放电管是开关型过压保护器件,简称GDT。
陶瓷气体放电管GDT是在放电间隙内充入适当的气体介质,配以高活性的电子发射材料及放电诱导设计,通过金属焊料高温封接而制成的一种陶瓷气体放电器件,它主要用于瞬时大电压的过电压保护。
气体放电管设计及使用:
1)气体放电管的加入不能影响线路的正常工作,这就要保证气体放电管的直流击穿电压的下限值必须高于线路的最大正常工作电压。
据此确定所需放电管的标称直流击穿电压值。
2)确定线路所能承受的最高瞬时电压值,要确保放电管的冲击击穿电压值必须低于此值。
以确保当瞬间过压来临时,放电管的反映速度快于线路的反映速度,抢先一步将过电压限制在安全值。
这是放电管的一个最重要的指标。
3)根据线路中可能窜入的冲击电流强度,确定所选用放电管必须达到的耐冲击电流能力(如:在室外一般选用10kA以上等级;在入室端一般选用5kA等级;在设备终端处一般选用2kA左右等级)。
4)当过电压消失后,要确保放电管及时熄灭,以免影响线路的正常工作。
这就要求放电管的过保持电压尽可能高,以保证正常线路工作电压不会引起放电管的持续导通(即续流问题)。
5)若过电压持续的时间很长,气体放电管的长时间动作将产生很高的热量。
为了防止该热量所造成的保护设备或者终端设备的损坏同时也为了防止发生任何可能的火灾,气体放电管此时必须配上适当的短路装置,我们称之为FS装置( 即“失效保护装置”)。
气体放电管选型很重要,在放电管工作中能长期发挥稳定质量保障更重要。
浪拓电子气体放电管为电子,通信及工业设备提供优质保护,气体放电管产品系列丰富,反应快速,具有稳定的保护水平。
GDTGDTGas Discharge TubesGas Discharge Tubes陶瓷气体放电管陶瓷气体放电管1.结构内部为空腔,里面有一种或几种惰性气体,采用陶瓷封装,利用惰性气体浓度不同,制成不同电压参数。
2.原理并联在电路中,当电路正常工作时,陶瓷放电管呈高阻态,当有过电压时,将内部的惰性气体击穿,从而将大部分能量泄放。
浪涌过后,陶瓷放电管恢复正常,从而起到保护电路的作用。
3.特点开关型过压保护器件反应速度100ns;最大通流量为100KA(8/20µs);使用寿命长;电压规格为70-6000V;电压偏差±20%;绝缘性能好,内阻1G-10G欧;缺点,残压高;电容小于3pF耐腐蚀,耐高低温能力强,使用寿命长。
4.技术参数DC Spark-over V oltage(直流火花放电电压(标称直流击穿电压)):施加缓慢升高的直流电压(一般为100V/S)时,GDT火花放电时刻的电压。
Maximum Impulse Spark-over V oltage(脉冲击穿电压(脉冲火花放电电压)):施加规定上升率和极性的冲击电压(一般为1000V/µs),在放电电流流过GDT之前,其两端子之间电压的最大值。
Nominal Impulse Discharge Current(标称脉冲放电电流):给定波形(8/20µs)的冲击电流峰值。
AC Discharge Current(交流放电电流):放电管能承受50HZ市电耐工频交流电流能力。
Impulse Life(脉冲寿命):在一定的电压波形和峰值下,能承受冲击的次数。
Minimum Insulation Resistance(最小绝缘电阻):放电管两端时间一定的电压而测试出来的绝缘阻值。
Maximum Capacitance(寄生电容):放电管两端的寄生电容值。
5.电气符号三级两级6.分类按照通流量(8/20µs)分:G H K L M N P W X Y Z2K 2.5K 3K 5K 10K 15K 20K 50K 60K 80K 100K7.命名方式2RM075L-82R:表示两级(3R表示三级);M:表示通流量为10KA075:表示标称直流击穿电压为75V;L:表示直插(M表示贴片);-8:表示惯纵直径。
陶瓷气体放电管
陶瓷气体放电管是一种用于产生电流的器件,它主要由陶瓷管、电极和填充气体三部分组成。
填充在陶瓷管中的气体通过加电压的方式使电子激发并产生电流,从而实现电气信号的放大和控制。
陶瓷气体放电管的工作原理是基于气体放电现象。
通常,填充在陶瓷管中的气体可以被分成两类,即惰性气体和反应性气体。
惰性气体包括氦、氖、氩等,而反应性气体则包括氢、氧、氮等。
当放电管加上一定的电压时,电极之间的电场足以将气体分子电离,并产生大量电子。
这些电子与气体原子或分子相互作用,使其能级发生变化,从而发出特定的光谱线。
陶瓷气体放电管的主要优点是具有高精度、高稳定性、高可靠性等特点。
它能够承受高电量的电流,从而使其具有较高的输出功率和响应速度。
此外,陶瓷气体放电管适用于各种电气信号放大和控制应用,例如放大器、振荡器、测量仪器等。
总之,陶瓷气体放电管是一种高性能的电子元件,它广泛应用于各种电子设备中。
在未来,随着科技的不断发展,陶瓷气体放电管的应用领域和功能将不断扩展和升级。
陶瓷气体放电管及选型原则金属陶瓷气体放电管GDT 金属陶瓷气体放电管它主要是由二个数个金属电极,在电极之间有一定的间隙,在电极之间充有稳定的惰性气体,并保持一定的压力, 采用陶瓷而密封装形成的保护器件, 叫陶瓷气体放电管• 它具有快速的响应速度,响应时间≤100nS,• 它是一种开关型并联于线路中旁路于浪涌电流一种防雷型保护器件• 电压规格从 70V~6000V,突波耐电流能力强从几百安培到几十甚至到好几百千安培不等• 封装外形尺寸多样化,Φ5.5*6、Φ5.0*7.2、Φ8*6、Φ8*8、Φ8*10、Φ11、Φ20、Φ25、Φ32、6.2*4.2、4.0*4.2、1812(4532)、1206 等不同规格的陶瓷气体放电管• 电容值低,一般只有几皮法• 无极性,安装方便简捷• 绝缘阻抗高、不易老化,可靠性强• 专用于高频通迅信号线路进行防护,一般不能直接用在有源电路上进行防护由于金属陶瓷气体放电管存在续流的问题而不能直接用在有源电路上进行保护,因而在有源产品上的防护必须要利用限压型的保护器件(压敏电阻或防雷型的HYPERFIX 等)配合使用。
金属陶瓷气体放电管广泛应用消费通迅产品中保护半导体及敏感器件,以防IC免受瞬间过电压的冲击和而受损坏• 通讯设备过压抗雷击保护:如 ADSL、MODEM、CATV、IC 卡电话机、以太网交换机、网卡、语音分离器、电话机、传真机、RS485、RS232 端口、天线、移动基站、配线架、双功器等。
• 由于放电管的脉冲击穿电压高,一般在选型设计的时候要做二极保护是比较安全可靠的。
深圳市瑞隆源电子有限公司陶瓷气体放电管产品符合于RoHS WEEE 相应的条款并通过相应的检测机构检验,满足其相应的测试标准: IEC61000-4-5、GB9043、ITU K21、IEC61643-311、GR1089、UL 等标准。
以上文章来源于深圳市瑞隆源电子有限公司。
气体放电管原理选型及应用原理:气体放电管采用陶瓷密闭封装,内部由两个或数个带间隙的金属电极,充以惰性气体(氩气或氖气)构成,基本外形如图1所示。
当加到两电极端的电压达到使气体放电管内的气体击穿时,气体放电管便开始放电,并由高阻变成低阻,使电极两端的电压不超过击穿电压。
气体放电管的主要参数1)反应时间指从外加电压超过击穿电压到产生击穿现象的时间,气体放电管反应时间一般在μs数量极。
2)功率容量指气体放电管所能承受及散发的最大能量,其定义为在固定的8×20μs电流波形下,所能承受及散发的电流。
3)电容量指在特定的1MHz频率下测得的气体放电管两极间电容量。
气体放电管电容量很小,一般为≤1pF。
4)直流击穿电压当外施电压以500V/s的速率上升,放电管产生火花时的电压为击穿电压。
气体放电管具有多种不同规格的直流击穿电压,其值取决于气体的种类和电极间的距离等因素。
5)温度范围其工作温度范围一般在-55℃~+125℃之间。
6)绝缘电阻是指在外施50或100V直流电压时测量的气体放电管电阻,一般>1010Ω。
气体放电管的应用示例1)电话机/传真机等各类通讯设备防雷应用如图3所示。
特点为低电流量,高持续电源,无漏电流,高可靠性。
图3 通讯设备防雷应用2)气体放电管和压敏电阻组合构成的抑制电路图4是气体放电管和压敏电阻组合构成的浪涌抑制电路。
由于压敏电阻有一致命缺点:具有不稳定的漏电流,性能较差的压敏电阻使用一段时间后,因漏电流变大可能会发热自爆。
为解决这一问题在压敏电阻之间串入气体放电管。
但这又带来了缺点就是反应时间为各器件的反应时间之和。
例如压敏电阻的反应时间为25ns,气体放电管的反应时间为100ns,则图4的R2,G,R3的反应时间为150ns,为改善反应时间加入R1压敏电阻,这样可使反应时间为25ns。
图4 气体放电管和压敏电阻配合应用3)气体放电管在综合浪涌保护系统中的应用自动控制系统所需的浪涌保护系统一般由二级或三级组成,利用各种浪涌抑制器件的特点,可以实现可靠保护。
放电管得原理及选型使1、产品简述陶瓷气体放电管(Gas Tube)就是防雷保护设备中应用最广泛得一种开关器件,无论就是交直流电源得防雷还就是各种信号电路得防雷,都可以用它来将雷电流泄放入大地.其主要特点就是:放电电流大,极间电容小(≤3pF),绝缘电阻高(≥109Ω),击穿电压分散性较大(±20%),反应速度较慢(最快为0、1~0、2μs)。
按电极数分,有二极放电管与三极放电管(相当于两个二极放电管串联)两种。
其外形为圆柱形,有带引线与不带引线两种结构形式(有得还带有过热时短路得保护卡)。
2、工作原理气体放电管由封装在充满惰性气体得陶瓷管中相隔一定距离得两个电极组成。
其电气性能基本上取决于气体种类、气体压力以及电极距离,中间所充得气体主要就是氖或氩, 并保持一定压力,电极表面涂以发射剂以减少电子发射能。
这些措施使得动作电压可以调整(一般就是70伏到几千伏),而且可以保持在一个确定得误差范围内。
当其两端电压低于放电电压时,气体放电管就是一个绝缘体(电阻Rohm〉100MΩ).当其两端电压升高到大于放电电压时,产生弧光放电,气体电离放电后由高阻抗转为低阻抗,使其两端电压迅速降低,大约降几十伏。
气体放电管受到瞬态高能量冲击时,它能以10-6秒量级得速度,将其两极间得高阻抗变为低阻抗,通过高达数十千安得浪涌电流。
3、特性曲线Vs导通电压,Vg辉光电压,Vf弧光电压,Va熄弧电压4、主要特性参数①直流击穿电压Vsdc:在放电管上施加100V/s得直流电压时得击穿电压值。
这就是放电管得标称电压,常用得有90V、150V、230V、350V、470V、600V、800V等几种,我们有最高3000V、最低70V得.其误差范围:一般为±20%,也有得为±15%。
②脉冲(冲击)击穿电压Vsi:在放电管上施加1kV/μs得脉冲电压时得击穿电压值。
因反应速度较慢,脉冲击穿电压要比直流击穿电压高得多。
陶瓷气体放电管的作用引言陶瓷气体放电管是一种用于电气和电子设备中的重要元件。
它具有多种功能和应用,可以在各种场合下实现电流的放电和控制。
本文将详细介绍陶瓷气体放电管的作用及其在不同领域中的应用。
什么是陶瓷气体放电管陶瓷气体放电管是一种利用特定的气体(如氩、氖等)进行放电的装置。
它由一个或多个封闭在陶瓷外壳内的金属螺丝组成,内部充满了特定压力和成分的气体。
当施加适当的电压时,气体会发生放电现象,产生可见光、紫外线或其他形式的辐射。
作用1. 光源陶瓷气体放电管常被用作光源,在各种场合下发出可见光或紫外线。
其中最常见的应用是荧光灯。
荧光灯使用汞蒸汽和磷粉混合物来产生可见光。
当通入适当电压时,汞蒸汽放电产生紫外线,然后通过磷粉的荧光转换,产生可见光。
这种光源具有高效、长寿命和节能等特点,在室内照明和显示器背光等领域得到广泛应用。
2. 激光器陶瓷气体放电管还可以用于激光器的制造。
激光器是一种能够产生高强度、单色、相干性极好的激光束的装置。
在激光器中,通过对陶瓷气体放电管施加高电压,使气体处于激发状态,当气体原子或分子从高能级跃迁到低能级时,会释放出一束相干的激光。
激光器广泛应用于科学研究、医学治疗、材料加工等领域。
3. 气体检测陶瓷气体放电管还可以用于气体检测。
不同的气体在特定条件下会产生不同的放电特性,通过监测陶瓷气体放电管中的放电现象,可以判断周围环境中是否存在特定的气体以及其浓度。
这种气体检测技术在环境监测、工业安全等领域具有重要的应用价值。
4. 气体放电研究陶瓷气体放电管也被广泛应用于气体放电研究中。
通过对陶瓷气体放电管中的放电现象进行观察和分析,可以深入研究气体放电的基本原理和特性。
这对于提高气体放电技术的效率和可靠性具有重要意义,并且为相关领域的科学家和工程师提供了宝贵的实验数据。
应用领域1. 照明陶瓷气体放电管在照明领域有广泛的应用。
除了荧光灯之外,它还被用于汽车前大灯、舞台灯光、投影仪等场合。
陶瓷气体放电管—搜狗百科1、陶瓷气体放电管的加入不能影响线路的正常工作,这就要保证陶瓷气体放电管的直流击穿电压的下限值必须高于线路的最大正常工作电压。
据此确定所需陶瓷气体放电管的标称直流击穿电压值。
例如:在电话线的过电压防护中,常态时,电话线两线间的电压为48V,但当振铃信号来时,两线间的峰值电压可达175V左右,因此,此时选用的陶瓷气体放电管的直流击穿电压的下限值必须高于175V,考虑到留点余量,所以一般选用直流击穿电压值下限为190V(标称直流击穿电压值为230V)的陶瓷气体放电管。
2、确定线路所能承受的最高瞬时电压值,要确保陶瓷气体放电管的冲击击穿电压值必须低于此值。
以确保当瞬间过压来临时,陶瓷气体放电管的反映速度快于线路的反映速度,抢先一步将过电压限制在安全值。
这是陶瓷气体放电管的一个最重要的指标。
例如:上例所述的电话线上,如果只用于保护一般的电话机,则只需选用冲击击穿电压小于800V(实测典型值为650V左右)的陶瓷气体放电管,但若被保护对象为更精密的设备(如传真机等),则可选用我公司陶瓷气体放电管(实测典型值不到400V)。
3、根据线路中可能窜入的冲击电流强度,确定所选用陶瓷气体放电管必须达到的耐冲击电流能力(如:在室外一般选用10kA以上等级;在入室端一般选用5kA等级;在设备终端处一般选用1kA左右等级)。
4、当过电压消失后,要确保陶瓷气体放电管及时熄灭,以免影响线路的正常工作。
这就要求陶瓷气体放电管的过保持电压尽可能高,以保证正常线路工作电压不会引起陶瓷气体放电管的持续导通(即续流问题)。
由于陶瓷气体放电管有一个特点是:维持陶瓷气体放电管持续放电的电压值要远小于陶瓷气体放电管的击穿电压值。
一般用户没有测试条件,无法判定此项指标好坏,在此提供一种简单判定办法,以标称直流击穿电压为230V的陶瓷气体放电管为例:找一可调直流稳压电源,在其输出串联一51K左右限流电阻再接到陶瓷气体放电管的二电极,将输出电压由小逐渐调高直至陶瓷气体放电管放电,然后再慢慢调低电源输出电压,观察陶瓷气体放电管熄灭时的电压值,一般的陶瓷气体放电管此值均为60V左右,5、若过电压持续的时间很长,陶瓷气体放电管的长时间动作将产生很高的热量。
⽓体放电管(简称GDT)选型攻略GDT是⽓体放电管缩写词,(gas discharge tube)实质是⼀种密封在陶瓷腔体中的放电间隙,腔体中充有惰性⽓体以稳定放电管的放电电压。
其主要特点是通流能量⼤,可达数⼗千安,绝缘电阻极⾼,⽆漏流,⽆⽼化失效,⽆极性双向保护,静态电容极⼩,特别适⽤于⾼速⽹络通讯设备的粗保护。
可⼴泛⽤于各种电源及信号线的第⼀级雷击浪涌保护。
浪拓电⼦(LT)供应的GDT产品分为三⼤类:➣2电极⽓体放电管(GDT)·标准贴⽚式(SMD), 2电极·标准引线, 2-电极·薄形⽔平表⾯贴装系列·⾼电压系列·⾼电流系列·快速反应系列➣3电极⽓体放电管(GDT)·标准贴⽚式(SMD), 3-电极·标准引线, 3-电极·⾼电压, 3-电极·快速反应系列, 3-电极➣混和系列(复合式)⽓体放电管(GDT)·⽆续流GDT·过压组合式保护器陶瓷⽓体放电管选型指南· 在直流电路中⽓体放电管的标称电压选择为⼯作电压的1.8倍:在交流电路中选择为⼯作电压有效值的2.5倍。
· ⽓体放电管标称电流容量应⼤于被保护电路的可能最⼤浪涌冲击容量。
· 由于⽓体放电管有续流,⽓体放电管⼀般不可使⽤在直流电路中,除⾮直流⼯作电压低于⽓体放电管的击穿维持电压。
浪拓电⼦-陶瓷⽓体放电管全系列.pdf (923.05 KB, 下载次数: 2)◆浪拓电⼦提供的陶瓷⽓体放电管(GDT)包括多个品种,产品封装形式覆盖了SMD1206、SMD1210、SMD1812、φ5、φ5.5、φ8、φ8.3、φ16、φ30等各种标准封装形式,满⾜您不同应⽤环境的设计需求。
此帖出⾃信息发布论坛。
陶瓷气体放电管的作用
陶瓷气体放电管是一种特殊的电子元器件,其主要作用是将电能转化为光能或者热能,同时还可以产生一定的电磁波。
它通常由一个陶瓷管和两个电极组成,其中一个电极为阴极,另一个为阳极。
当加上一定的电压时,放电管内部会产生气体放电现象,从而使得放电管发出特定的光谱线或者产生特定的热效应。
陶瓷气体放电管广泛应用于各种科学技术领域中。
其中最常见的应用就是在荧光灯和紫外线灯中。
荧光灯和紫外线灯都利用了荧光粉的发光性质来发出可见光或者紫外线辐射。
而荧光粉需要通过紫外线激发才能发出可见光或者其他辐射。
因此,在这些灯中使用陶瓷气体放电管可以产生足够强度的紫外线辐射,从而激发荧光粉并使其发出相应的辐射。
此外,陶瓷气体放电管还广泛应用于医疗和生物技术领域。
例如,在医学成像中,放电管可以产生足够强度的X射线或者γ射线,从而使得内部组织和器官的影像能够清晰可见。
在生物技术领域中,放电管可以产生足够强度的紫外线辐射,从而对DNA进行特定的修饰或者切割。
此外,陶瓷气体放电管还广泛应用于光通信、光纤通信、激光加工等
领域。
在光通信和光纤通信中,放电管可以产生足够强度的激光束或者其他特定波长的光束,从而实现高速数据传输。
在激光加工中,放电管可以产生足够强度的激光束或者其他特定波长的光束,从而实现高精度加工。
总之,陶瓷气体放电管是一种非常重要的电子元器件,在各种科学技术领域中都有广泛应用。
通过不同的设计和使用方式,它可以产生不同波长、不同强度、不同功率等多种形式的辐射和效应。
陶瓷气体放电管,如何正确选型?陶瓷气体放电管,都是干货,看完就明白了陶瓷气体放电管,简称GDT,是一种开关型过压防雷保护元器件。
众所周知,陶瓷气体放电管GDT广泛应用于防雷工程的第一级或第二级保护上,常与限压型防雷保护器件综合应用。
不论是各种信号电路的防雷还是交直流电源的防雷,都可以借助陶瓷气体放电管将强大的雷电流泄放入大地,对高频电子线路的保护有着明显的优越性。
接下来,跟着专业的电路保护专家东沃电子,一起来揭开陶瓷气体放电管那层神秘的面纱,再也不怕被忽悠了!陶瓷气体放电管工作原理陶瓷气体放电管,其内部是由一个或多个放电间隙内充有惰性气体组成的密闭器件,其电气性能跟气体种类、气体压力和电极距离三者相关,主要应用于瞬时大电压的过电压保护。
其惰性气体主要是氖或氩,并保持一定的压力,同时电极表面涂以发射剂减少电子发射能。
陶瓷气体放电管工作原理是并联在电路中,在正常情况,由其独有的高阻抗和低电容特性,几乎对电路不产生任何影响;但,一旦有异常浪涌涌现时,GDT以纳秒级的响应速度被击穿放电,使得其阻抗下降,呈短路状态,将浪涌电流通过地线转接给大地,从而达到电路防护作用;当异常浪涌消失,GDT迅速回到了高阻状态,电路正常运行。
陶瓷气体放电管特性揭秘东沃电子,在研发、生产电路保护器件方面拥有精湛的技术水平和丰富的研发经验,为广大客户提供高品质的保护器件产品,只为电路更安全。
东沃电子结合陶瓷气体放电管的实际应用,总结出几点特点,助力大家更好地了解陶瓷气体放电管。
√ 纳秒级响应速度√ 稳定的击穿电压√ 低电容特性√ 高绝缘电阻√ 无穿越电压√ 对原电路无影响,电路设计简单方便√ 无放射性,对人体、环境和生态无影响√ 高可靠性,不易损坏,使用期限长由于陶瓷器气体放电管独有的特性,广泛应用各种场合,是一种常用、高效的防雷保护器件。
陶瓷气体放电管选型原则陶瓷气体放电管,外形圆柱形,按照电极数,可分为二极管放电管和三级放电管两种,带引线和不带引线两种结构形式,型号繁多,如何选择正确型号陶瓷气体放电管是采购商最头痛的难题?东沃电子,一家专业的陶瓷气体放电管生产厂家,为您带来满满的陶瓷气体放电管选型干货:1、陶瓷气体放电管的加入前提条件是陶瓷气体放电管的直流击穿电压的下限值必须高于电路中的最大正常工作电压,才能不能影响电路正常工作。
陶瓷气体放电管工作原理及选型应用
、产品简述
陶瓷气体放电管(Gas Tube)是防雷保护设备中应用最广泛的一种开关器件,
无论是交直流电源的防雷还是各种信号电路的防雷,都可以用它来将雷电流泄放入大地。
其主要特点是:放电电流大,极间电容小(≤3pF),绝缘电阻高(≥109Ω),击穿电压分散性较大(±20%),反应速度较慢(最快为0.1~0.2μs)。
按电极数分,有二极放电管和三极放电管(相当于两个二极放电管串联)两种。
其外形为圆柱形,有带引线和不带引线两种结构形式(有的还带有过热时短路的保护卡)。
2、工作原理
气体放电管由封装在充满惰性气体的陶瓷管中相隔一定距离的两个电极组成。
其电气性能基本上取决于气体种类、气体压力以及电极距离,中间所充的气体主要是氖或氩, 并保持一定压力,电极表面涂以发射剂以减少电子发射能。
这些措施使得动作电压可以调整(一般是70伏到几千伏),而且可以保持在一个确定的误
差范围内。
当其两端电压低于放电电压时,气体放电管是一个绝缘体(电阻Rohm>100MΩ)。
当其两端电压升高到大于放电电压时,产生弧光放电,气体电离放电后由高阻抗转为低阻抗, 使其两端电压迅速降低,大约降几十伏。
气体放
电管受到瞬态高能量冲击时,它能以10-6秒量级的速度,将其两极间的高阻抗变为低阻抗,通过高达数十千安的浪涌电流。
3、特性曲线
Vs导通电压,Vg辉光电压,Vf弧光电压,Va熄弧电压
4、主要特性参数
①直流击穿电压Vsdc:在放电管上施加100V/s的直流电压时的击穿电压值。
这是放电管的标称电压,常用的有90V、150V、230V、350V、470V、600V、800V
等几种,我们有最高3000V、最低70V的。
其误差范围:一般为±20%,也有的为±15%。
②脉冲(冲击)击穿电压Vsi:在放电管上施加1kV/μs的脉冲电压时的击穿电压值。
因反应速度较慢,脉冲击穿电压要比直流击穿电压高得多。
陶瓷气体放电管对低上升速率和高上升速率电压的响应如下图所示。
③冲击放电电流Idi:分为8/20μs波(短波)和10/1000μs波(长波)冲击放电电流两种。
常用的是8/20μs波。
冲击放电电流又分为单次冲击放电电流(8/20μs波冲击1次)和标称冲击放电电流(8/20μs波冲击10次),一般后者约为前者的一半左右,有2.5 kA、5 kA、10 kA、20 kA……等规格。
5、命名规则
6、封装及分类
按电极数分,有二极放电管和三极放电管(相当于两个二极放电管串联)两种。
其外形为圆柱形,有带引线和不带引线两种结构形式(有的还带有过热时短路的保护卡)。
两极:
1206-xxxAHIP Series
1812-xxxCHIP Series
2E-8*6(S) Series
2E-4 Series
2E-5 Series
2E-6 Series
2E-7 Series
2E-8*6 Series
2E-8*8 Series
三极:
3E-5(S) Series
3E-5(SS) Series
3E-6 Series
3E-7 Series
3E-8 Series
3E-8(T) Series
7、产品特点
优点:①击穿(导通)前相当于开路,电阻很大,没有漏电流或漏电流很小;②击穿(导通)后相当于短路,可通过很大的电流,压降很小;③脉冲通流容量(峰值电流)很大;2.5kA~100kA;④具有双向对称特性。
⑤电容值很小,小于3pF。
缺点:①由于气体电离需要一定的时间,所以响应速度较慢,反应时间一般为0.2~0.3μs(200~300ns),最快也有0.1μs(100ns)左右,在它未导通前,会有一个幅度较大的尖脉冲漏过去,而起不到保护作用。
②击穿电压一致性较差,分散性较大,一般为±20%。
③击穿电压只有几个特定值。
8、选型及应用
使用指导:
①在快速脉冲冲击下,陶瓷气体放电管气体电离需要一定的时间(一般为0.2~
0.3μs,最快的也有0.1μs左右),因而有一个幅度较高的尖脉冲会泄漏到后面去。
若要抑制这个尖脉冲,有以下几种方法:a、在放电管上并联电容器或压敏电阻;b、在放电管后串联电感或留一段长度适当的传输线,使尖脉冲衰减到较低的电平;c、采用两级保护电路,以放电管作为第一级,以TVS管或半导体过压保护器作为第二级,两级之间用电阻、电感或自恢复保险丝隔离。
②直流击穿电压Vsdc的选择:直流击穿电压Vsdc的最小值应大于可能出现的最高电源峰值电压或最高信号电压的1.2倍以上。
③冲击放电电流的选择:要根据线路上可能出现的最大浪涌电流或需要防护的最大浪涌电流选择。
放电管冲击放电电流应按标称冲击放电电流(或单次冲击放电电流的一半)来计算
④陶瓷气体放电管因击穿电压误差较大,一般不作并联使用。
⑤续流问题:为了使放电管在冲击击穿后能正常熄弧,在有可能出现续流的地方(如有源电路中),可以在放电管上串联压敏电阻或自恢复保险丝等限制续流,使它小于放电管的维持电流。
Welcome To Download !!!
欢迎您的下载,资料仅供参考!。