交流运放耦合
- 格式:docx
- 大小:210.96 KB
- 文档页数:7
集成运算放大器的设计方法运算放大器电路大全我们经常看到很多非常经典的运算放大器应用图集,但是这些应用都建立在双电源的基础上,很多时候,电路的设计者必须用单电源供电,但是他们不知道该如何将双电源的电路转换成单电源电路。
在设计单电源电路时需要比双电源电路更加小心,设计者必须要完全理解这篇文章中所述的内容。
1.1 电源供电和单电源供电所有的运算放大器都有两个电源引脚,一般在资料中,它们的标识是VCC+和VCC-,但是有些时候它们的标识是VCC+和GND。
这是因为有些数据手册的作者企图将这种标识的差异作为单电源运放和双电源运放的区别。
但是,这并不是说他们就一定要那样使用――他们可能可以工作在其他的电压下。
在运放不是按默认电压供电的时候,需要参考运放的数据手册,特别是绝对最大供电电压和电压摆动说明。
绝大多数的模拟电路设计者都知道怎么在双电源电压的条件下使用运算放大器,比如图一左边的那个电路,一个双电源是由一个正电源和一个相等电压的负电源组成。
一般是正负15V,正负12V和正负5V也是经常使用的。
输入电压和输出电压都是参考地给出的,还包括正负电压的摆动幅度极限Vom以及最大输出摆幅。
单电源供电的电路(图一中右)运放的电源脚连接到正电源和地。
正电源引脚接到VCC+,地或者VCC-引脚连接到GND。
将正电压分成一半后的电压作为虚地接到运放的输入引脚上,这时运放的输出电压也是该虚地电压,运放的输出电压以虚地为中心,摆幅在Vom 之内。
有一些新的运放有两个不同的最高输出电压和最低输出电压。
这种运放的数据手册中会特别分别指明Voh 和Vol 。
需要特别注意的是有不少的设计者会很随意的用虚地来参考输入电压和输出电压,但在大部分应用中,输入和输出是参考电源地的,所以设计者必须在输入和输出的地方加入隔直电容,用来隔离虚地和地之间的直流电压。
(参见1.3节)图一通常单电源供电的电压一般是5V,这时运放的输出电压摆幅会更低。
另外现在运放的供电电压也可以是3V 也或者会更低。
运放作为低频电路的主要元件之一,在供电方式上有单电源和双电源两种,而选择何种供电方式,是初学者的困惑之处,本人也因此做了详细的实验,在此对这个问题作一些总结。
首先,运放分为单电源运放和双电源运放,在运放的datasheet 上,如果电源电压写的是(+3V-+30V)/(±1.5V-±15V)如324,则这个运放就是单电源运放,既能够单电源供电,也能够双电源供电;如果电源电压是(±1.5V-±15V)如741,则这个运放就是双电源运放,仅能采用双电源供电。
但是,在实际应用中,这两种运放都能采用单电源、双电源的供电模式。
具体使用方式如下:1:在放大直流信号时,如果采用双电源运放,则只能选择正负双电源供电,否则无法正常工作;如果采用单电源运放,则单电源供电或双电源供电都可以正常工作;2:在放大交流信号时,无论是单电源运放还是双电源运放,采用正负双电源供电都可以正常工作;3:在放大交流信号时,无论是单电源运放还是双电源运放,简单的采用单电源供电都无法正常工作,对于单电源运放,表现为无法对信号的负半周放大,而双电源运放无法正常工作。
要采用单电源,就需要所谓的“偏置”。
而偏置的结果是把供电所采用的单电源相对的变成“双电源”。
具体电路如图:首先,采用耦合电容将运放电路和其他电路直流隔离,防止各部分直流电位的相互影响。
然后在输入点上加上Vcc/2的直流电压,分析一下各点的电位,Vcc是Vcc,in是Vcc/2,-Vcc是GND,然后把各点的电位减去Vcc/2,便成了Vcc是Vcc/2,in是0,-Vcc是-Vcc/2,相当于是“双电源”!!在正式的双电源供电中,输入端的电位相对于输入信号电压是0,动态电压是Vcc是+Vcc,in是0+Vin,-Vcc是-VCC,而偏置后的单电源供电是Vcc是+Vcc,in是Vcc/2+Vin,-Vcc是GND,相当于Vcc是Vcc/2,in是0+Vin,-Vcc是-Vcc/2,与双电源供电相同,只是电压范围只有双电源的一半,输出电压幅度相应会比较小。
使用单电源的运放交流放大电路(含同相和反相输入式)使用单电源的运放交流放大电路在采用电容耦合的交流放大电路中,静态时,当集成运放输出端的直流电压不为零时,由于输出耦合电容的隔直流作用,放大电路输出的电压仍为零。
所以不需要集成运放满足零输入时零输出的要求。
因此,集成运放可以采用单电源供电,其-VEE端接"地"(即直流电源负极),集成运放的+Vcc端接直流电源正极,这时,运放输出端的电压V0只能在0~+Vcc之间变化。
在单电源供电的运放交流放大电路中,为了不使放大后的交流信号产生失真,静态时,一般要将运放输出端的电压V0设置在0至+Vcc值的中间,即V0=+Vcc/2。
这样能够得到较大的动态范围;动态时,V0在+Vcc/2值的基础上,上增至接近+Vcc 值,下降至接近0V,输出电压uo的幅值近似为Vcc/2。
图3请见原稿1.2.1 单电源同相输入式交流放大电路图3是使用单电源的同相输入式交流放大电路。
电源Vcc通过R1和R2分压,使运放同相输入端电位由于C隔直流,使RF引入直流全负反馈。
所以,静态时运放输出端的电压V0=V-≈V+=+Vcc/2;C通交流,使RF引入交流部分负反馈,是电压串联负反馈。
放大电路的电压增益为放大电路的输入电阻Ri=R1/R2/rif≈R1/R2,放大电路的输出电阻R0=r0f≈0。
1.2.2 单电源反相输入式交流放大电路图4是使用单电源的反相输入式交流放大电路。
电源V cc通过R1和R2分压,使运放同相输入端电位为了避免电源的纹波电压对V+电位的干扰,可以在R2两端并联滤波电容C3,消除谐振;由于C1隔直流,使RF引入直流全负反馈。
所以,静态时,运放输出端的电压V0=V-≈V+=+Vcc/2;C1通交流,使RF引入交流部分负反馈,是电压并联负反馈。
放大电路的电压增益为放大电路的输入电阻Ri≈R,放大电路的输出电阻R0=r0f≈0。
2 运放交流放大电路的设计在设计单级运放交流放大电路时,(1)选择能够满足使用要求的集成运算放大器。
运放耦合电容
运放是一种广泛应用于电子电路中的放大器,而耦合电容则是一种常见的电容器。
在运放电路中,耦合电容的作用是将信号从一个级别传递到另一个级别,同时隔离直流信号。
这种耦合电容通常被称为直流耦合电容。
直流耦合电容的作用是将信号从一个级别传递到另一个级别,同时隔离直流信号。
在运放电路中,如果没有运用直流耦合电容,那么在一个级别的输出信号将叠加到另一个级别的偏置电压上,这会导致系统的失效。
而直流耦合电容可以隔离这些信号,从而确保系统的正确运行。
然而,耦合电容也会引入一些问题。
一般来说,耦合电容会对信号的频率响应产生影响,从而导致信号失真。
此外,耦合电容还需要正确的标定和选择,否则可能会导致电路不稳定或者产生不希望的影响。
因此,在运放电路中使用耦合电容需要注意一些问题。
首先,需要选择正确的容值和质量的耦合电容。
其次,需要考虑信号的频率响应和失真问题。
最后,需要进行正确的标定和测试,以确保电路的稳定性和性能。
总之,耦合电容在运放电路中发挥着重要的作用,但同时也需要注意一些问题。
正确选择和使用耦合电容可以确保系统的正确运行和高性能。
- 1 -。
运算放⼤器参数详解运算放⼤器参数详解技术2010-12-19 22:05:36 阅读80 评论0 字号:⼤中⼩订阅运算放⼤器(常简称为“运放”)是具有很⾼放⼤倍数的电路单元。
在实际电路中,通常结合反馈⽹络共同组成某种功能模块。
由于早期应⽤于模拟计算机中,⽤以实现数学运算,故得名“运算放⼤器”,此名称⼀直延续⾄今。
运放是⼀个从功能的⾓度命名的电路单元,可以由分⽴的器件实现,也可以实现在半导体芯⽚当中。
随着半导体技术的发展,如今绝⼤部分的运放是以单⽚的形式存在。
现今运放的种类繁多,⼴泛应⽤于⼏乎所有的⾏业当中。
历史直流放⼤电路在⼯业技术领域中,特别是在⼀些测量仪器和⾃动化控制系统中应⽤⾮常⼴泛。
如在⼀些⾃动控制系统中,⾸先要把被控制的⾮电量(如温度、转速、压⼒、流量、照度等)⽤传感器转换为电信号,再与给定量⽐较,得到⼀个微弱的偏差信号。
因为这个微弱的偏差信号的幅度和功率均不⾜以推动显⽰或者执⾏机构,所以需要把这个偏差信号放⼤到需要的程度,再去推动执⾏机构或送到仪表中去显⽰,从⽽达到⾃动控制和测量的⽬的。
因为被放⼤的信号多数变化⽐较缓慢的直流信号,分析交流信号放⼤的放⼤器由于存在电容器这样的元件,不能有效地耦合这样的信号,所以也就不能实现对这样信号的放⼤。
能够有效地放⼤缓慢变化的直流信号的最常⽤的器件是运算放⼤器。
运算放⼤器最早被发明作为模拟信号的运算(实现加减乘除⽐例微分积分等)单元,是模拟电⼦计算机的基本组成部件,由真空电⼦管组成。
⽬前所⽤的运算放⼤器,是把多个晶体管组成的直接耦合的具有⾼放⼤倍数的电路,集成在⼀块微⼩的硅⽚上。
第⼀块集成运放电路是美国仙童(fairchild)公司发明的µA741,在60年代后期⼴泛流⾏。
直到今天µA741仍然是各⼤学电⼦⼯程系中讲解运放原理的典型教材。
原理运放如上图有两个输⼊端a,b和⼀个输出端o.也称为倒向输⼊端(反相输⼊端),⾮倒向输⼊端(同相输⼊端)和输出端.当电压加U-加在a端和公共端(公共端是电压的零位,它相当于电路中的参考结点.)之间,且其实际⽅向从a 端指向公共端时,输出电压U实际⽅向则⾃公共端指向o端,即两者的⽅向正好相反.当输⼊电压U+加在b端和公共端之间,U与U+两者的实际⽅向相对公共端恰好相同.为了区别起见,a端和b 端分别⽤"-"和"+"号标出,但不要将它们误认为电压参考⽅向的正负极性.电压的正负极性应另外标出或⽤箭头表⽰.反转放⼤器和⾮反转放⼤器如下图:⼀般可将运放简单地视为:具有⼀个信号输出端⼝(Out)和同相、反相两个⾼阻抗输⼊端的⾼增益直接耦合电压放⼤单元,因此可采⽤运放制作同相、反相及差分放⼤器。
运放耦合电容运放是指运算放大器,是一种广泛应用于电子电路中的重要器件。
它通常被用于信号放大、滤波、正负输入的功率放大、计算、积分等操作。
在实际应用中,运放还可以应用于振荡电路、比较电路、电压控制振荡器等。
运放通常由三个部分组成:输入级、输出级和反馈电路。
输入级通常被设计成高阻抗,以减少信号源对电路的干扰。
输出级通常是一对功率放大器,它们可以以高功率输出放大后的信号,并驱动负载。
反馈电路通常用于控制放大器的放大倍数,提高电路的稳定性和精度。
接下来,我们将介绍一种常用的耦合电容电路,它可以将AC信号从运放的输出级传递到下一个电路阶段而不影响DC电压。
这个电路通常被称为耦合电容器,简称为AC耦合。
具体地说,在运放电路中,输入电容器和输出电容器通常被用于建立AC耦合。
其中,输入电容器用于将信号引入运放,输出电容器用于将信号引出运放。
这两个电容器通常被设计为比较大的值,以确保它们在信号频率下是一个开路,同时在满足采样定理的前提下,也可以提高电路的频带宽度。
AC耦合电路的好处在于它可以防止运放的输入和输出级之间的DC偏移电压影响到后面的电路阶段。
这个偏移电压通常是由于运放的不稳定性、温度变化、电源电压波动等因素产生的。
如果没有耦合电容器,这个偏移电压会被传递到后面的电路中,导致电路工作不稳定。
而通过加入AC耦合电容,可以隔离DC偏移电压,只传输重要的AC信号,从而提高电路的稳定性和精度。
除了AC耦合电容器,还有一种常用的耦合电容电路,它被称为DC耦合电容器。
与AC 耦合器不同,DC耦合器是用于传输整个信号,包括DC偏移电压。
这个电路通常被用于传输信号到要求直流稳定的场合,例如驱动功放的信号放大器等。
总之,运放和耦合电容器是电子电路中非常重要的元件,它们可以用于控制电路的放大倍数,提高电路的精确度和稳定性。
如果您想要深入了解运放和耦合电容器的原理,请继续学习电子电路的相关知识,欢迎您的加入!。
运算放大器在实际中的应用广西大学电气工程学摘要:运算放大器是电路中一种重要的多端器件,一般运算放大器的作用是把输入电压或输入电流放大一定倍数之后再传送出去,如手机信号的放大。
运算放大器在计算器、电压比较器、双向振荡器及滤波器等仪器中起到重要作用。
关键词:运算放大器,放大信号,计算器,电压比较器,振荡器,滤波器。
The Application Of Operational Amplifiers In RealityAbstract:The operational amplifier is a kind of important multiterminal elements in the circuit. Generally, the function of operational amplifier is transferring out the Input voltage or input current after amplification must have multiple, Such as the amplification of Mobile phone signal.The operational amplifier plays an critical part in the machines like Calculators, Voltage comparator, Two-way oscillator, filter and so on.Keywords:Operational Amplifier, signal Amplification, Calculator, Voltage comparator, oscillator, filter.正文:运算放大器是具有很高放大倍数的电路单元,早期应用于模拟计算机中,用以实现数学运算,随着半导体技术的发展,现在大部分的运放是以单片的形式存在。
交流耦合双电源供电运放电路
交流耦合双电源供电运放电路是一种常见的运放电路配置,它使用两个电源分别给运放的正负供电引脚供电,以提供更高的性能和灵活性。
这种电路的基本原理是通过一个小信号交流耦合电容将输入信号耦合到运放的非反向输入端,通过反馈电阻将输出信号反馈到运放的反向输入端,从而形成一个负反馈的运放放大电路。
其中,一个电源(通常为正电源)连接到运放的正电源引脚,在运放的非反向输入端和输出端之间串联一个耦合电容。
另一个电源(通常为负电源)连接到运放的负电源引脚。
这样,通过两个电源供电,运放可以正常工作。
此外,还要注意保证两个电源的电压范围和电流能够满足运放的工作要求,并且还需要注意两个电源之间的稳定性和抗干扰能力。
这种电路配置的优点是可以实现更高的信号放大和更大的输入动态范围。
缺点是需要提供两个稳定的电源,并且在设计和布局上需要考虑到两个电源之间的干扰和耦合问题。
单电源运放我们经常看到很多非常经典的运算放大器应用图集,但是他们都建立在双电源的基础上,很多时候,电路的设计者必须用单电源供电,但是他们不知道该如何将双电源的电路转换成单电源电路。
在设计单电源电路时需要比双电源电路更加小心,设计者必须要完全理解这篇文章中所述的内容。
1.1 电源供电和单电源供电所有的运算放大器都有两个电源引脚,一般在资料中,它们的标识是VCC+和VCC -,但是有些时候它们的标识是VCC+和GND。
这是因为有些数据手册的作者企图将这种标识的差异作为单电源运放和双电源运放的区别。
但是,这并不是说他们就一定要那样使用――他们可能可以工作在其他的电压下。
在运放不是按默认电压供电的时候,需要参考运放的数据手册,特别是绝对最大供电电压和电压摆动说明。
绝大多数的模拟电路设计者都知道怎么在双电源电压的条件下使用运算放大器,比如图一左边的那个电路,一个双电源是由一个正电源和一个相等电压的负电源组成。
一般是正负15V,正负12V 和正负5V 也是经常使用的。
输入电压和输出电压都是参考地给出的,还包括正负电压的摆动幅度极限Vom 以及最大输出摆幅。
单电源供电的电路(图一中右)运放的电源脚连接到正电源和地。
正电源引脚接到VCC+,地或者VCC-引脚连接到GND。
将正电压分成一半后的电压作为虚地接到运放的输入引脚上,这时运放的输出电压也是该虚地电压,运放的输出电压以虚地为中心,摆幅在Vom 之内。
有一些新的运放有两个不同的最高输出电压和最低输出电压。
这种运放的数据手册中会特别分别指明Voh 和Vol。
需要特别注意的是有不少的设计者会很随意的用虚地来参考输入电压和输出电压,但在大部分应用中,输入和输出是参考电源地的,所以设计者必须在输入和输出的地方加入隔直电容,用来隔离虚地和地之间的直流电压。
(参见1.3 节)图一通常单电源供电的电压一般是5V,这时运放的输出电压摆幅会更低。
另外现在运放的供电电压也可以是3V 也或者会更低。
有关运放在单电源下的最关键注意事项在很多电子论坛经常看见运放在单电源供电下,进行测量放大的电路,出现啥啥问题、不能正常工作等等。
实际上其实这一切都是由于不同运放的不同输入结构造成的。
在说明下面这个问题前,首先强调一下:对于单电源应用,我这里指的是"直流"放大应用,此时运放的输入端电位受输入信号的牵制,输入信号的直流电平直接影响到运放的输入端电位。
而对于放大交流信号,因为有输入、输出电容隔离,此时运放用啥电源都没有关系,所以不在此讨论话题内。
对于直流放大,因为没有了隔直电容,输入信号的直流电位就会直接影响到运放的工作点,如果运放输入端工作电压超出运放的Vicom这个参数范围,就不能正常工作了。
Vicom这个参数一般都有正负两个值,究竟是啥含义呢?以NE5532的Vicom参数为例:从NE5532的内部结构知道运放输入端必须要比Vee脚高2V以上,以便可以给公共恒流源提供工作电压。
如果运放输入端接到Vee脚,那么差分管Vbe没有偏压,并且下面的公共恒流源电路也不能正常工作,运放也就工作在非正常状态了。
所以得到Vicom的最小值极限就是必须比Vee高2V同样可以推导到如果运放输入端接到Vcc,他也不能工作,也必须比Vcc低2V才能工作。
所以Vicom的最大极限值就是比Vcc低2V。
所以我们看到NE5532的Vicomm 有2个值,分别是正负13V,意思是在正负15V供电下(即Vcc=+15,Vee=-15V),运放差分输入端的电位必须要比Vee 高(-13)-(-15)=2V以上,比Vcc低(+13)-(+15)=-2V。
再看看LM358的输入结构是PNP达林顿输入结构,当输入端接到Vee脚,此时PNP管仍旧能正常工作。
而LM358的Vicom参数如下:说明在单26V供电(Vee=GND,Vcc=26V)下,Vicom的最小值可以为0V,即允许输入端直接接到Vee脚。
但为啥叫称呼他们为单电源运放呢?这主要是相对于输入信号的地来说的,因为一般输入信号是以自己的地为参考信号的,当没有信号输入时,输入信号的直流电位肯定就是地电位0V了。
运算放大器基本电路大全1.2虚地单电源工作的运放需要外部提供一个虚地,通常情况下,这个电压是VCC/2,图二的电路可以用来产生VCC/2的电压,但是他会降低系统的低频特性。
图二R1和R2是等值的,通过电源允许的消耗和允许的噪声来选择,电容C1是一个低通滤波器,用来减少从电源上传来的噪声。
在有些应用中可以忽略缓冲运放。
在下文中,有一些电路的虚地必须要由两个电阻产生,但是其实这并不是完美的方法。
在这些例子中,电阻值都大于100K,当这种情况发生时,电路图中均有注明。
1.3交流耦合虚地是大于电源地的直流电平,这是一个小的、局部的地电平,这样就产生了一个电势问题:输入和输出电压一般都是参考电源地的,如果直接将信号源的输出接到运放的输入端,这将会产生不可接受的直流偏移。
如果发生这样的事情,运放将不能正确的响应输入电压,因为这将使信号超出运放允许的输入或者输出范围。
解决这个问题的方法将信号源和运放之间用交流耦合。
使用这种方法,输入和输出器件就都可以参考系统地,并且运放电路可以参考虚地。
当不止一个运放被使用时,如果碰到以下条件级间的耦合电容就不是一定要使用:第一级运放的参考地是虚地第二级运放的参考第也是虚地这两级运放的每一级都没有增益。
任何直流偏置在任何一级中都将被乘以增益,并且可能使得电路超出它的正常工作电压范围。
如果有任何疑问,装配一台有耦合电容的原型,然后每次取走其中的一个,观察电工作是否正常。
除非输入和输出都是参考虚地的,否则这里就必须要有耦合电容来隔离信号源和运放输入以及运放输出和负载。
一个好的解决办法是断开输入和输出,然后在所有运放的两个输入脚和运放的输出脚上检查直流电压。
所有的电压都必须非常接近虚地的电压,如果不是,前级的输出就就必须要用电容做隔离。
(或者电路有问题)1.4组合运放电路在一些应用中,组合运放可以用来节省成本和板上的空间,但是不可避免的引起相互之间的耦合,可以影响到滤波、直流偏置、噪声和其他电路特性。
运算放大器应用电路的设计与制作(一) 运算放大器 1.原理运算放大器是目前应用最广泛的一种器件,当外部接入不同的线性或非线性元器件组成输入和负反响电路时,可以灵敏地实现各种特定的函数关系。
在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。
运算放大器一般由4个局部组成,偏置电路,输入级,中间级,输出级。
图1运算放大器的特性曲线 图2运算放大器输入输出端图示图1是运算放大器的特性曲线,一般用到的只是曲线中的线性局部。
如图2所示。
U -对应的端子为“-〞,当输入U -单独加于该端子时,输出电压与输入电压U -反相,故称它为反相输入端。
U +对应的端子为“+〞,当输入U +单独由该端参加时,输出电压与U +同相,故称它为同相输入端。
输出:U 0= A(U +-U -) ; A 称为运算放大器的开环增益〔开环电压放大倍数〕。
在实际运用经常将运放理想化,这是由于一般说来,运放的输入电阻很大,开环增益也很大,输出电阻很小,可以将之视为理想化的,这样就能得到:开环电压增益A ud =∞;输入阻抗r i =∞;输出阻抗r o =0;带宽f BW =∞;失调与漂移均为零等理想化参数。
2.理想运放在线性应用时的两个重要特性输出电压U O 与输入电压之间满足关系式:U O =A ud 〔U +-U -〕,由于A ud =∞,而U O 为有限值,因此,U +-U -≈0。
即U +≈U -,称为“虚短〞。
由于r i =∞,故流进运放两个输入端的电流可视为零,即I IB =0,称为“虚断〞,这说明运放对其前级汲取电流极小。
上述两个特性是分析理想运放应用电路的根本原那么,可简化运放电路的计算。
3. 运算放大器的应用 (1)比例电路所谓的比例电路就是将输入信号按比例放大的电路,比例电路又分为反向比例电路、同相比例电路、差动比例电路。
(a) 反向比例电路反向比例电路如图3所示,输入信号参加反相输入端:图3反向比例电路电路图对于理想运放,该电路的输出电压与输入电压之间的关系为:为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R ’=R 1 // R F 。
我们经常看到很多非常经典的运算放大器应用图集,但是他们都建立在双电源的基础上,很多时候,电路的设计者必须用单电源供电,但是他们不知道该如何将双电源的电路转换成单电源电路。
在设计单电源电路时需要比双电源电路更加小心,设计者必须要完全理解这篇文章中所述的内容。
1.1 电源供电和单电源供电所有的运算放大器都有两个电源引脚,一般在资料中,它们的标识是VCC+和VCC-,但是有些时候它们的标识是VCC+和GND。
这是因为有些数据手册的作者企图将这种标识的差异作为单电源运放和双电源运放的区别。
但是,这并不是说他们就一定要那样使用――他们可能可以工作在其他的电压下。
在运放不是按默认电压供电的时候,需要参考运放的数据手册,特别是绝对最大供电电压和电压摆动说明。
绝大多数的模拟电路设计者都知道怎么在双电源电压的条件下使用运算放大器,比如图一左边的那个电路,一个双电源是由一个正电源和一个相等电压的负电源组成。
一般是正负15V,正负12V 和正负5V 也是经常使用的。
输入电压和输出电压都是参考地给出的,还包括正负电压的摆动幅度极限V om 以及最大输出摆幅。
单电源供电的电路(图一中右)运放的电源脚连接到正电源和地。
正电源引脚接到VCC +,地或者VCC-引脚连接到GND。
将正电压分成一半后的电压作为虚地接到运放的输入引脚上,这时运放的输出电压也是该虚地电压,运放的输出电压以虚地为中心,摆幅在V om 之内。
有一些新的运放有两个不同的最高输出电压和最低输出电压。
这种运放的数据手册中会特别分别指明V oh 和V ol。
需要特别注意的是有不少的设计者会很随意的用虚地来参考输入电压和输出电压,但在大部分应用中,输入和输出是参考电源地的,所以设计者必须在输入和输出的地方加入隔直电容,用来隔离虚地和地之间的直流电压。
(参见1.3 节)图一通常单电源供电的电压一般是5V,这时运放的输出电压摆幅会更低。
另外现在运放的供电电压也可以是3V 也或者会更低。
运算放大器的单电源供电方法2007年11月14日星期三 11:29大部分运算放大器要求双电源(正负电源)供电,只有少部分运算放大器可以在单电源供电状态下工作,如LM358(双运放)、LM324(四运放)、CA3140(单运放)等。
需要说明的是,单电源供电的运算放大器不仅可以在单电源条件下工作,也可在双电源供电状态下工作。
例如,LM324可以在、+5~+12V单电源供电状态下工作,也可以在+5~±12V双电源供电状态下工作。
在一些交流信号放大电路中,也可以采用电源偏置电路,将静态直流输出电压降为电源电压的一半,采用单电源工作,但输入和输出信号都需要加交流耦合电容,利用单电源供电的反相放大器如图1(a)所示,其运放输出波形如图1(b)所示。
该电路的增益Avf=-RF/R1。
R2=R3时,静态直流电压Vo(DC)=1/2Vcc。
耦合电容Cl和C2的值由所需的低频响应和电路的输入阻抗(对于C1)或负载(对于C2)来确定。
Cl及C2可由下式来确定:C1=1000/2πfoRl(μF);C2=1000/2πfoRL(μF),式中,fo是所要求最低输入频率。
若R1、RL单位用kΩ,fO用Hz,则求得的C1、C2单位为μF。
一般来说,R2=R3≈2RF。
图2是一种单电源加法运算放大器。
该电路输出电压Vo=一RF(V1/Rl十V2/R2十V3/R3),若R1=R2=R3=RF,则Vo=一(V1十V2十V3)。
需要说明的是,采用单电源供电是要付出一定代价的。
它是个甲类放大器,在无信号输入时,损耗较大。
思考题(1)图3是一种增益为10、输入阻抗为10kΩ、低频响应近似为30Hz、驱动负载为1kΩ的单电源反相放大器电路。
该电路的不失真输入电压的峰—峰值是多少呢?(提示:一般运算放大器的典型输入、输出特性如图4所示);(2)图5是单电源差分放大器。
若输入电压为50Hz交流电压,V1=1V,V2=O.4V,它的输出电压该是多少呢?。
多级放大电路的耦合方式及性能指标详解在每一级带负载的情况下,多级放大电路的放大倍数是各级电压增益之积。
输入电阻是从输入级看过去得到的等效电阻,输出电阻指的是从输出级等效的电阻,对于多级放大电路要求输入电阻尽量大,输出电阻尽量小,从而输出信号不失真,获得较大的电压增益。
一、多级放大电路的耦合方式1、直接耦合直接耦合指的是将各级放大电路直接相连;第一级电路的输出是T1的集电极,T1的集电极直接与T2的基极相连,主要应用在集成电路中,优点是没有电感和电容等这类电抗元件,低频特性好,元器件简单,但是直接耦合的电路前后级的静态工作点相互影响,容易产生零点飘移(可以通过差分电路消除)。
直接耦合2、阻容耦合阻容耦合指的是多级放大电路的前级放大电路和后级放大电路之间的连接是电容,通过电容把信号源与放大电路、放大电路的前后级、放大电路与负载相连,如下图所示中的C2;输入信号通过C1耦合到T1,T1的输出端通过C2和T2的输入端相连。
Q点之间相互独立,不能放大直流信号,低频特性差。
当温度发生变化时,前级电路的静态电压变化,但是由于耦合电容的存在,所以发生的变化不会耦合到下级电路,因此解决了零点漂移现象。
阻容耦合3、变压器耦合变压器耦合指的是通过变压器连接前后级的耦合方式,如下所示,通过磁耦合将原边的信号耦合到副边,变压器通交流,阻挡直流电压、电流。
这种耦合方式的优点是可以利用原边和副边绕组的距数比让级之间达到阻抗匹配,前后级的静态工作点相互独立。
但低频特性差、体积大、笨重,且不能集成。
这种藕合方式主要应用在高频信号的放大场合。
变压器耦合4、光电耦合光电耦合对输入输出电气隔离良好,抗干扰能力强。
二、多级放大电路的性能指标多级放大电路的主要指标有电压放大倍数、输入电阻、输出电阻等性能指标;电压放大倍数:组成它的各级电压放大倍数之积。
多级放大电路输入电阻/输出电阻:多级放大电路的输入阻抗就是第一级的输入阻抗;多级放大电路的输出阻抗就是最后一级的输出阻抗;。
运算放大器基本电路大全运算放大器电路大全我们经常看到很多非常经典的运算放大器应用图集,但是这些应用都建立在双电源的基础上,很多时候,电路的设计者必须用单电源供电,但是他们不知道该如何将双电源的电路转换成单电源电路。
在设计单电源电路时需要比双电源电路更加小心,设计者必须要完全理解这篇文章中所述的内容。
1.1 电源供电和单电源供电所有的运算放大器都有两个电源引脚,一般在资料中,它们的标识是VCC+和VCC -,但是有些时候它们的标识是VCC+和GND。
这是因为有些数据手册的作者企图将这种标识的差异作为单电源运放和双电源运放的区别。
但是,这并不是说他们就一定要那样使用――他们可能可以工作在其他的电压下。
在运放不是按默认电压供电的时候,需要参考运放的数据手册,特别是绝对最大供电电压和电压摆动说明。
绝大多数的模拟电路设计者都知道怎么在双电源电压的条件下使用运算放大器,比如图一左边的那个电路,一个双电源是由一个正电源和一个相等电压的负电源组成。
一般是正负15V,正负12V和正负5V也是经常使用的。
输入电压和输出电压都是参考地给出的,还包括正负电压的摆动幅度极限Vom以及最大输出摆幅。
单电源供电的电路(图一中右)运放的电源脚连接到正电源和地。
正电源引脚接到VCC+,地或者VCC-引脚连接到GND。
将正电压分成一半后的电压作为虚地接到运放的输入引脚上,这时运放的输出电压也是该虚地电压,运放的输出电压以虚地为中心,摆幅在Vom 之内。
有一些新的运放有两个不同的最高输出电压和最低输出电压。
这种运放的数据手册中会特别分别指明Voh 和Vol 。
需要特别注意的是有不少的设计者会很随意的用虚地来参考输入电压和输出电压,但在大部分应用中,输入和输出是参考电源地的,所以设计者必须在输入和输出的地方加入隔直电容,用来隔离虚地和地之间的直流电压。
(参见1.3节)图一通常单电源供电的电压一般是5V,这时运放的输出电压摆幅会更低。
另外现在运放的供电电压也可以是3V 也或者会更低。
电源供电和单电源供电所有的运算放大器都有两个电源引脚,一般在资料中,它们的标识是VCC+和VCC-,但是有些时候它们的标识是VCC+和GND。
这是因为有些数据手册的作者企图将这种标识的差异作为单电源运放和双电源运放的区别。
但是,这并不是说他们就一定要那样使用――他们可能可以工作在其他的电压下。
在运放不是按默认电压供电的时候,需要参考运放的数据手册特别是绝对最大供电电压和电压摆动说明。
绝大多数的模拟电路设计者都知道怎么在双电源电压的条件下使用运算放大器,比方图一左边的那个电路,一个双电源是由一个正电源和一个相等电压的负电源组成。
一般是正负15V,正负12V 和正负5V也是经常使用的。
输入电压和输出电压都是参考地给出的,还包括正负电压的摆动幅度极限Vom 以及最大输出摆幅。
单电源供电的电路(图一中右)运放的电源脚连接到正电源和地。
正电源引脚接到VCC+,地或者VCC-引脚连接到GND。
将正电压分成一半后的电压作为虚地接到运放的输入引脚上,这时运放的输出电压也是该虚地电压,运放的输出电压以虚地为中心,摆幅在Vom 之内。
有一些新的运放有两个不同的最高输出电压和最低输出电压。
这种运放的数据手册中会特别分别指明Voh 和Vol 。
需要特别注意的是有不少的设计者会很随意的用虚地来参考输入电压和输出电压,但在大部分应用中,输入和输出是参考电源地的,所以设计者必须在输入和输出的地方加入隔直电容,用来隔离虚地和地之间的直流电压。
(参见1.3节)图一通常单电源供电的电压一般是5V,这时运放的输出电压摆幅会更低。
另外现在运放的供电电压也可以是3V 也或者会更低。
出于这个原因在单电源供电的电路中使用的运放基本上都是Rail-To-Rail 的运放,这样就消除了丧失的动态范围。
需要特别指出的是输入和输出不一定都能够承受Rail-To-Rail 的电压。
虽然器件被指明是轨至轨(Rail-To-Rail)的,如果运放的输出或者输入不支持轨至轨,接近输入或者接近输出电压极限的电压可能会使运放的功能退化,所以需要仔细的参考数据手册是否输入和输出是否都是轨至轨。
交流耦合运放(转)
电气电子技术2010-01-26 10:42:44 阅读153 评论0 字号:大中小订阅
集成运算放大器除了可构成各种基本运算电路外,也可以用来构成各种交流放大电路。
集成运放构成交流放大电路时,可采用双电源供电,也可以采用单电源供电。
采用电容耦合时,可以不考虑集成运放输入失调的影响,但集成运放的高频参数将对交流放大电路的上限频率起到限制作用,用增益带宽积GBW 来表示,一个运放的GBW是一定的,增益带宽积的值指的是当放大倍数为1时,此运放的上限截止频率的值。
若想达到放大倍数为100,则上限截止频率为5MHz/100=50KHz。
这里的放大倍数就是指的输入与输出最大电压的比值,而不是增益,增益的单位是dB,用G表示,计算方法是G=10lgA/B,A与B分别代表输出与输入电压,如果A=B,即没有放大,则G=0db;若A=10B,则G=10db;若A=100B,则G=20db;若A=1000,则G=30db。
一般来说,单独利用一级运放,放大倍数只能是几十倍左右,若想放大到上百上千倍,则需要多级放大。
5.2.1 反相交流放大电路
由集成运算放大器构成的反相交流放大电路如图5.2.1所示。
图中C1为输入耦合电容,u i为交流信号源,因此i1、i f也都为交流电流。
该电路采用双电源供电,要求正、负电源对称,静态(即u i=0)时,运算放大器同相输入端和反相输入端以及输出端的静态电位都应为0V。
图5.2.1双电源交流反相放大电路
当输入交流信号Ui时,放大器输出电压Uo为
因此,放大电路的电压增益为
因为反相比例运算电路电压放大倍数,,则式(5.2.1)可改写成
由式(5.2.2)可见,放大电路具有高通特性,其下限频率f L为
在通带内C1可视为短路,故通带内电压放大倍数为
例5.2.1已知集成运放741的BW G=1 MHz,试估算图5.2.1所示交流放大电路的下限和上限频率。
解:由式(5.2.3)可求得下限频率f L为
根据式(5.1.27)可得上限频率f H为
图5.2.2(a)所示电路为单电源供电的反相交流放大电路,为使运算放大器能对交流信号进行有效的放大而不产生失真,此时运算放大器的两输入端和输出端的静态电位不能为0 V,而必须大于0 V,一般取电源电压Vcc的一半,因此图中电阻R2和R3为静态偏置电阻,当它们阻值相等时,在同相端得到的静态电位为(1/2)Vcc,又由于“虚短路”,使得反相端的静态电位也为(1/2)Vcc,这样,可以得到如下结论:当运算放大器单电源应用构成线性放大器时,其同相端、反相端和输出端的静态电位相等,且一般为电源电压的一半。
图5.2.2单电源供电的反相交流放大电路
(a)电路(b)交流等效电路
图中C1、C2分别为交流输入和输出耦合电容,C3为滤波电容,要求它们对交流的容抗近似为零,这样可以画出交流等效电路如图5.2.2(b)所示。
其电路形式和双电源供电的反相比例运算电路相同,因此其通带内电压放大倍数为
例5.2.2 根据图5.2.2所示参数,试求放大电路的下限频率。
解:由图5.2.2可见,电路中由C1、R2和C2、R L形成两个RC高通电路。
由C1R1组成的高通电路可得转折频率f L1为
由C2R L组成的高通电路可得转折频率f L2为
由于,所以放大电路的下限频率f L决定于f L2,即
5.2.2 同相交流放大电路
由集成运算放大器构成的同相交流放大器如图5.2.3(a)所示,图中C1为输入耦合电容,R2用以提供同相输入端直流通路。
该电路的下限频率f L决定于C1及R2,即
在通带内,C1的容抗近似为零,所以电压增益为
图5.2.3(a)所示电路由于同相端接入电阻R2,故使该电路的输入电阻降低,其值近似等于R2。
为了提高电路的输入电阻,可采用图5.2.3(b)所示电路,该电路中C2的容量取足够大,对交流短路,这样输出电压
U0通过R F在R1上产生的反馈电压,即,使R2中几乎没有交流电流通过,从而获得极高的输入电阻。
图5.2.3 同相交流放大电路
(a)一般电路(b)高输入电阻电路
如果上述同相放大器采用单电源供电,则电路中需加入静态偏置电阻,电路变为如图5.2.4(a)所示。
图中R2和R3为电压偏置电阻,使得A点电位为Vcc/2,通过电阻R1和R F使得运算放大器的反相输入端和输出端的静态电位为Vcc/2,又通过电阻R4,使运算放大器同相输入端的静态电位也为Vcc/2。
电容C3为滤波电容,而C1和C2分别为输入和输出耦合电容。
该放大器的交流等效电路如图5.2.4(b)所示,显然其通带内电压放大倍数为
图5.2.4单电源供电同相放大器实用电路
(a)实用电路(b)交流等效电路
有一本书上用上面的单电源供电同相放大电路图,即直流偏置电路不加在反相输入端。
单电源供电差动放大电路:。