大学物理试题库后附详细答案
- 格式:docx
- 大小:735.09 KB
- 文档页数:70
大学物理试题及答案 1物理试题及答案1一、选择题1. 下列哪个物理量是标量?A. 加速度B. 动量C. 荷电量D. 质量答案:D2. 以下哪一项是描述物体向心加速度的?A. F = mV^2/RB. F = maC. F = GmM/R^2D. F = -kx答案:A3. 以下哪种基本力被用于原子核内?A. 弱相互作用力B. 强相互作用力C. 电磁力D. 万有引力答案:B4. 如果一个物体以匀速直线运动,哪些物理量会保持不变?A. 动量B. 加速度C. 动能D. 势能答案:A5. 加速度和质量都是矢量量,因为它们有什么共同之处?A. 它们都可以用标量表示B. 它们都受到相同的力C. 它们都有方向D. 它们都可以用向量表示答案:C二、填空题6. 一个物体从7m/s的速度以匀加速度减速到0m/s,它移动的距离为_____。
答案:(7^2)/2a7. 假设你跳下一个10米高的建筑物,你从地上跳起的速度至少要是_____。
答案:14m/s8. 当电荷增加_____倍,电场的力就增加了相同的倍数。
答案:两倍9. 加速度是速度的_____,速度是位移的_____。
答案:导数,导数10. 能量的单位是_____,它也等于1焦耳。
答案:耗三、解答题11. 题目:一个1000磅的汽车从初始速度60英里/小时匀加速度减速50英里/小时,它会相撞的距离有多远?解答:首先,将速度转换为英尺/秒,即60英里/小时=88英尺/秒,50英里/小时=73.3英尺/秒;通过减去初始速度和最终速度,可以算出减速度,即-5.1英尺/秒^2;将所得的值代入公式,S = (v_f^2 - v_i^2)/2a,算出S = 263英尺。
12. 题目:一颗飞船以7km/s的速度飞行,绕月球公转,它的圆周半径是6000公里。
求该飞船的向心加速度。
解答:首先,将速度转化为米/秒,即7 x 1000 = 7000米/秒;其次,将圆周半径转化为米,即6000 x 1000 = 6 x 10^6米;最后,应用公式a = v^2/r,将所得的值代入,得到a = 6.12 m/s^2。
大学物理考试题型及答案一、选择题(每题3分,共30分)1. 光在真空中的传播速度是()。
A. 3×10^8 m/sB. 3×10^4 km/sC. 3×10^5 km/sD. 3×10^6 km/s答案:A2. 根据牛顿第二定律,物体的加速度与作用力成正比,与物体的质量成反比。
这一定律的数学表达式是()。
A. F = maB. F = m/aC. a = F/mD. a = mF答案:A3. 一个物体从静止开始自由下落,其下落的高度h与时间t之间的关系是()。
A. h = gt^2B. h = 1/2 gt^2C. h = 2gtD. h = gt答案:B4. 电场强度的定义式是()。
A. E = F/qB. E = qFC. E = FqD. E = F/g答案:A5. 理想气体状态方程为()。
A. PV = nRTB. PV = P1V1C. PV^γ = constantD. PV = mRT答案:A6. 根据热力学第一定律,系统吸收的热量Q与对外做功W之间的关系是()。
A. ΔU = Q - WB. ΔU = Q + WC. ΔU = W/QD. ΔU = WQ答案:B7. 波长为λ的单色光照射到光栅上,产生第三级最大亮度条纹,若该光栅的刻痕间距为d,则()。
A. d sinθ = 2λB. d sinθ = λC. d sinθ = 3λD. d sinθ = 4λ答案:C8. 根据狭义相对论,随着速度v的增加,一个物体的质量m将如何变化()。
A. m 保持不变B. m 增加C. m 减少D. m 先增加后减少答案:B9. 一个电路中的总电阻R等于各部分电阻之和,这种电路被称为()。
A. 串联电路B. 并联电路C. 混联电路D. 分压电路答案:A10. 在磁场中,带电粒子的运动轨迹是圆周,其半径与电荷速度成正比,与磁场强度成反比。
这种现象称为()。
大学物理试题及答案一、单项选择题(每题3分,共30分)1. 光年是天文学中用来表示距离的单位,它表示的是()。
A. 时间单位B. 光在一年内传播的距离C. 光在真空中一年内传播的距离D. 光在一年内传播的距离,但与介质有关答案:C2. 根据相对论,当物体的速度接近光速时,其质量会()。
A. 保持不变B. 增加C. 减少D. 先增加后减少答案:B3. 在理想气体状态方程 PV=nRT 中,P、V、n、R、T 分别代表()。
A. 压强、体积、摩尔数、气体常数、温度B. 功率、速度、质量、加速度、时间C. 动量、位置、质量、力、时间D. 电流、电压、电荷、电阻、电势答案:A4. 根据麦克斯韦方程组,电场和磁场的关系是()。
A. 电场是磁场的源头B. 磁场是电场的源头C. 电场和磁场相互独立D. 电场和磁场相互产生答案:D5. 以下哪种现象不属于量子力学范畴()。
A. 光电效应B. 原子光谱C. 布朗运动D. 超导现象答案:C6. 根据热力学第一定律,系统内能的变化等于系统吸收的热量与对外做的功之差,即()。
A. ΔU = Q - WB. ΔU = Q + WC. ΔU = W - QD. ΔU = Q/W答案:A7. 以下哪种波是横波()。
B. 电磁波C. 光波D. 以上都是答案:D8. 根据牛顿第三定律,作用力和反作用力的关系是()。
A. 方向相同,大小相等B. 方向相反,大小相等C. 方向相同,大小不等D. 方向相反,大小不等答案:B9. 在电路中,欧姆定律描述了电压、电流和电阻之间的关系,其公式为()。
A. V = IRC. R = VID. V = RI答案:A10. 根据能量守恒定律,能量在转化和传递过程中()。
A. 可以被创造B. 可以被消灭C. 总量保持不变D. 总量不断增加答案:C二、填空题(每题4分,共20分)11. 光在真空中的传播速度是_______m/s。
答案:3×10^812. 根据普朗克关系式,E=hv,其中E代表能量,h代表普朗克常数,v代表频率,普朗克常数的值是______。
大学物理试题库(含答案)一 卷1、(本题12分)1mol 单原子理想气体经历如图所示的过程,其中ab 是等温线,bc 为等压线,ca 为等容线, 求循环效率2、(本题10分) 一平面简谐波沿 x 方向传播,振幅为20cm ,周期为4s ,t=0时波源在 y 轴上的位移为10cm ,且向y 正方向运动。
(1)画出相量图,求出波源的初位相并写出其振动方程; (2)若波的传播速度为u ,写出波函数。
3、(本题10分)一束光强为I 0的自然光相继通过由2个偏振片,第二个偏振片的偏振化方向相对前一个偏振片沿顺时针方向转了300 角,问透射光的光强是多少?如果入射光是光强为I 0的偏振光,透射光的光强在什么情况下最大?最大的光强是多少?4、(本题10分)有一光栅,每厘米有500条刻痕,缝宽a = 4×10-4cm ,光栅距屏幕1m , 用波长为6300A 的平行单色光垂直照射在光栅上,试问:(1)(2) 第一级主极大和第二级主极大之间的距离为多少?5、(本题10分)用单色光λ=6000A 做杨氏实验,在光屏P处产生第五级亮纹,现将折射率n=1.5的玻璃片放在其中 一条光路上,此时P 处变成中央亮纹的位置,则此玻璃片 厚度h 是多少?6、(本题10分)一束波长为λ的单色光,从空气垂直入射到折射率为n 的透明薄膜上,在膜的上下表面,反射光有没有位相突变?要使折射光得到加强,膜的厚度至少是多少?7、(本题10分) 宽度为0~a 的一维无限深势阱波函数的解为)sin(2x an a n π=ψ 求:(1)写出波函数ψ1和ψ2 的几率密度的表达式 (2)求这两个波函数几率密度最大的位置8、(本题10分)实验发现基态氢原子可吸收能量为12.75eV 的光子。
试问:(1)氢原子吸收该光子后会跃迁到哪个能级?P 2P a(2)受激发的氢原子向低能级跃迁时,可能发出哪几条谱线?请定性画出这些能级和跃迁。
9、(本题 10分)请写出n=2的8个量子态(n , l , m l , m s )。
大学物理试题题库及答案一、选择题(每题2分,共20分)1. 光在真空中的传播速度是()。
A. 299792458 m/sB. 300000000 m/sC. 299792458 km/sD. 300000000 km/s2. 根据牛顿第二定律,物体的加速度与作用力成正比,与物体的质量成反比。
那么,当作用力增加一倍时,物体的加速度()。
A. 增加一倍B. 减少一半C. 保持不变D. 无法确定3. 一个物体从静止开始自由下落,其下落过程中,重力做功的功率与时间的关系是()。
A. 线性增加B. 指数增加C. 先增加后减少D. 保持不变4. 根据热力学第一定律,一个封闭系统的内能变化等于系统与外界交换的热量与系统对外做的功之和。
如果一个系统既没有热量交换也没有做功,那么它的内能()。
A. 增加B. 减少C. 保持不变5. 电磁波谱中,波长最短的是()。
A. 无线电波B. 微波C. 红外线D. 伽马射线6. 根据麦克斯韦方程组,变化的磁场会产生()。
A. 电场B. 磁场C. 重力场D. 温度场7. 一个理想的弹簧振子,其振动周期与振幅无关,与()有关。
A. 弹簧的劲度系数B. 振子的质量C. 弹簧的劲度系数和振子的质量D. 振子的质量与重力加速度8. 根据量子力学,一个粒子的波函数可以描述粒子的()。
A. 位置B. 动量C. 能量D. 位置和动量的概率分布9. 根据狭义相对论,当一个物体以接近光速的速度运动时,其质量会()。
A. 增加B. 减少C. 保持不变10. 在理想气体状态方程PV=nRT中,R代表的是()。
A. 气体常数B. 温度C. 压力D. 体积二、填空题(每题2分,共20分)1. 根据库仑定律,两个点电荷之间的力与它们的电荷量乘积成正比,与它们之间距离的平方成反比,其比例系数是______。
2. 欧姆定律表明,导体中的电流与两端电压成正比,与导体的电阻成反比,其数学表达式为______。
3. 一个物体在水平面上以恒定加速度运动,其位移与时间的关系可以表示为s = __________。
大学物理考试题库及答案一、选择题(每题2分,共20分)1. 在国际单位制中,下列哪个单位不是基本单位?A. 米(m)B. 千克(kg)C. 秒(s)D. 瓦特(W)答案:D2. 一个物体在平直道路上做匀速运动,下列哪个因素不会影响物体的运动状态?A. 道路摩擦力B. 道路坡度C. 物体质量D. 物体速度答案:C3. 下列哪个现象表明地球是圆的?A. 星星在夜空中闪烁B. 船只在海平面上逐渐消失C. 地平线D. 月亮的形状变化答案:B4. 关于牛顿第三定律,下列说法正确的是:A. 作用力与反作用力大小相等,方向相反B. 作用力与反作用力大小不等,方向相反C. 作用力与反作用力大小相等,方向相同D. 作用力与反作用力大小不等,方向相同答案:A5. 下列哪个物理量是标量?A. 速度B. 力C. 加速度D. 路程答案:D6. 一个物体从静止开始沿着光滑斜面下滑,下列哪个因素会影响物体的加速度?A. 物体质量B. 斜面角度C. 重力加速度D. 物体与斜面之间的摩擦力答案:B7. 下列哪个现象与电磁感应无关?A. 发电机B. 变压器C. 电动机D. 麦克斯韦方程组答案:D8. 光在真空中的传播速度约为:A. 1×10^5 km/sB. 3×10^5 km/sC. 1×10^8 m/sD. 3×10^8 m/s答案:D9. 下列哪个物理现象可以用光的波动理论解释?A. 光的直线传播B. 光的反射C. 光的折射D. 光的衍射答案:D10. 下列哪个物理学家提出了万有引力定律?A. 伽利略B. 牛顿C. 开普勒D. 卡文迪许答案:B二、填空题(每题2分,共20分)1. 国际单位制中的基本单位有:米(m)、千克(kg)、秒(s)、安培(A)、开尔文(K)、摩尔(mol)和坎德拉(cd)。
2. 牛顿第二定律的数学表达式为:F = ma。
3. 在真空中,光的速度为:3×10^8 m/s。
大学物理试题及答案一、选择题(每题2分,共10分)1. 根据牛顿第三定律,作用力与反作用力的大小关系是:A. 相等B. 不相等C. 有时相等,有时不相等D. 无法确定2. 物体的惯性只与物体的:A. 质量有关B. 速度有关C. 位置有关D. 形状有关3. 根据能量守恒定律,以下哪种情况是可能发生的?A. 一个静止的物体突然加速运动,没有外力作用B. 一个物体在没有外力作用下速度减慢C. 一个物体在没有外力作用下速度保持不变D. 一个物体在没有外力作用下从静止变为运动4. 波的干涉现象说明波具有:A. 粒子性B. 波动性C. 能量D. 动量5. 根据热力学第二定律,以下哪个过程是不可能自发发生的?A. 热量从高温物体传向低温物体B. 热量从低温物体传向高温物体C. 气体自发膨胀D. 气体自发收缩二、填空题(每空1分,共10分)6. 根据麦克斯韦方程组,电场的高斯定律可以表示为:_________。
7. 在理想气体状态方程 PV=nRT 中,P 代表_______,V 代表_______,n 代表_______,R 是_______常数,T 代表_______。
8. 根据量子力学的不确定性原理,粒子的位置和动量不能同时被精确测量,这一原理由_______提出。
9. 光的双缝干涉实验展示了光的_______性。
10. 根据爱因斯坦的相对论,当物体的速度接近光速时,其质量会随着速度的增加而_______。
三、简答题(每题5分,共20分)11. 解释什么是光电效应,并简述其基本原理。
12. 描述牛顿运动定律的第二定律,并给出一个生活中的例子。
13. 解释什么是热力学温标,并简述其与摄氏温标的区别。
14. 简述什么是电磁感应,并给出一个实际应用的例子。
四、计算题(每题15分,共30分)15. 一个质量为2kg的物体在水平面上以5m/s²的加速度加速运动。
求作用在物体上的力的大小。
16. 一个理想气体在等压过程中,从体积V1=2m³增加到V2=4m³,温度从T1=300K增加到T2=600K。
大学物理考试题及答案一、选择题1.以下哪个物理学家被公认为量子力学的创始人?A.爱因斯坦B.牛顿C.薛定谔D.海森堡答案:C2.下列哪个表示力的单位?A.焦耳B.牛C.千瓦D.安培答案:B3.在自由落体运动中,物体在垂直方向上的加速度恒定为:A.9.8 m/s²B.10 m/s²C.8 m/s²D.不确定答案:A4.根据牛顿第一定律,当一个物体受到合力作用时,它的运动状态会发生改变,这个说法是:A.正确的B.错误的答案:B5.下列哪个量是矢量?A.质量B.密度C.速度D.能量答案:C二、填空题1.根据能量守恒定律,物体在自由落体运动过程中,其动能和势能之和始终为 ________。
答案:常数2.根据牛顿第二定律,物体的加速度与作用在它上面的 __________ 成正比,与物体的质量成反比。
答案:力3.在光的折射现象中,光速在光疏介质中的值大于光在光密介质中的值,这种现象被称为光的 __________。
答案:折射4.根据万有引力定律,两个物体之间的引力与它们的质量_________,与它们的距离 __________ 。
答案:成正比;的平方成反比5.根据电流的定义,电流等于单位时间内通过截面的 _________ 数量。
答案:电荷三、计算题1.一个物体以5 m/s的速度在水平地面上运动,受到2 N的水平力的作用,求物体在2 s后的位移。
答案:将物体的初速度、时间、加速度代入位移公式,位移 = 初速度 ×时间 + 1/2 ×加速度 ×时间²,由于水平力没有改变物体的速度,即加速度为0,代入数值计算得到位移为10 m。
2.一个电流为2 A的电源连接在电阻为5 Ω的电路上,请计算通过电路的电流以及电路中的电压。
答案:根据欧姆定律,电流 = 电压 / 电阻,因此通过电路的电流为2 A,通过电路的电压为10 V。
3.一个光速为3 × 10^8 m/s的光束从空气射入玻璃介质中,计算光束在玻璃中的速度。
大学物理考试题及答案一、选择题1. 下列关于力的描述,正确的是()。
A. 力是物体间的相互作用,具有大小和方向。
B. 力的作用是相互的,作用力和反作用力大小相等,方向相反。
C. 力的作用效果与力的作用点有关。
D. 以上选项均正确。
答案:D2. 物体做匀速直线运动时,下列说法正确的是()。
A. 物体的速度不变。
B. 物体的加速度为零。
C. 物体所受合力为零。
D. 以上选项均正确。
答案:D3. 关于功的定义,下列说法正确的是()。
A. 功是力和力的方向的乘积。
B. 功是力和力的方向的点积。
C. 功等于力的大小乘以物体在力的方向上的位移。
D. 功是力对物体所做的功。
答案:C4. 根据牛顿第二定律,下列说法正确的是()。
A. 物体的加速度与作用力成正比。
B. 物体的加速度与物体的质量成反比。
C. 加速度的方向与作用力的方向相同。
D. 以上选项均正确。
答案:D5. 波长为λ的光波在介质中的波速为v,那么在真空中该光波的波速为()。
A. vB. λ/vC. 3×10^8 m/sD. 2×10^8 m/s答案:C二、填空题1. 物体在水平面上受到的摩擦力与物体对水平面的压力成正比,比例系数为_________。
答案:摩擦系数2. 一个质量为2kg的物体,受到一个10N的水平力作用,加速度为_________。
答案:5 m/s^23. 一个电路中,电阻R1为10Ω,电阻R2为20Ω,当它们串联时,总电阻为_________。
答案:30Ω4. 一束光从空气射入水中,如果水的折射率为1.33,那么光线的传播方向将_________。
答案:改变5. 一个半径为R的圆形线圈,通以电流I,放在均匀磁场中,线圈所受的磁力矩大小为_________。
答案:μ = I * (πR^2)三、计算题1. 一个质量为0.5kg的物体,受到一个斜向上的力F,大小为20N,与水平方向成30度角,求物体的加速度。
解:首先分解力F为水平分量和垂直分量。
大学物理试题及答案第一部分:选择题1.下列哪个物理量在不同位置上的取值具有不连续性?A. 速度B. 加速度C. 势能D. 动能答案:C. 势能2.以下哪个物理量在自由落体运动过程中保持常数?A. 速度B. 加速度C. 位移D. 质量答案:B. 加速度3.功的国际单位是什么?A. 牛顿B. 焦耳C. 瓦特D. 千瓦时答案:B. 焦耳4.电流强度的国际单位是什么?A. 欧姆B. 安培C. 法拉D. 牛顿答案:B. 安培5.下列哪个物理量是矢量?A. 功B. 能量C. 数密度D. 速度答案:D. 速度第二部分:填空题1.在匀速运动中,速度大小不变,但方向可以改变。
2.牛顿第二定律的公式为F=ma。
3.根据万有引力定律,两个物体的引力与它们的质量成正比。
4.电阻的单位是欧姆。
5.热量传递的方式主要有传导、对流和辐射。
第三部分:解答题1.简述牛顿第一定律的内容和意义。
答案:牛顿第一定律也称为惯性定律,它指出一个物体如果没有受到外力作用,或者所受到的外力平衡时,物体将保持静止状态或匀速直线运动的状态。
这个定律说明了惯性的概念,即物体的运动状态不会自发改变,需要外力的作用才会改变。
牛顿第一定律为力学奠定了基础,对于解释运动现象和研究物理规律有着重要意义。
2.简述电流的定义和计算方法。
答案:电流是单位时间内电荷通过导体所携带的量,通常用字母I表示,其定义为单位时间内通过导体两端的电荷量。
电流的计量单位是安培(A),1安培等于每秒通过导体两端的1库仑电荷。
电流的计算方法可以用欧姆定律来表示,即I = V / R,其中I是电流,V是电压,R是电阻。
根据欧姆定律,电流的大小与电压成正比,与电阻成反比。
3.解释热传导的过程,并给出一个实际生活中的例子。
答案:热传导是热量通过物质内部的传递方式,它是由物质内部分子的热运动引起的。
当一个物体的一部分温度升高时,其分子会与邻近的分子发生碰撞,将热能传递给周围分子,导致温度逐渐均匀。
⼤学物理试题及参考答案《⼤学物理》试题及参考答案⼀、填空题(每空1分、共20分)1.某质点从静⽌出发沿半径为m R 1=的圆周运动,其⾓加速度随时间的变化规律是t t 6122-=β(SI) ,则该质点切向加速度的⼤⼩为。
2.真空中两根平⾏的⽆限长载流直导线,分别通有电流1I 和2I ,它们之间的距离为d ,则每根导线单位长度受的⼒为。
3.某电容器电容F C µ160=,当充电到100V 时,它储存的能量为____________焦⽿。
4.⼀个均匀带电球⾯,半径为10厘⽶,带电量为2×109-库仑。
在距球⼼6厘⽶处的场强为__________。
5.⼀平⾏板电容器充电后切断电源。
若使两极板间距离增加,则两极板间场强E __________,电容C__________。
(选填:增加、不变、减少)6.⼀质量为m ,电量为q 的带电粒⼦以速度v 与磁感应强度为B 的磁场成θ⾓进⼊时,其运动的轨迹为⼀条等距螺旋,其回旋半径R 为____________ ,周期T 为__________,螺距H 为__________。
7. 真空中⼀个边长为a 的正⽅体闭合⾯的中⼼,有⼀个带电量为Q 库仑的点电荷。
通过⽴⽅体每⼀个⾯的电通量为____________。
8.电⼒线稀疏的地⽅,电场强度。
稠密的地⽅,电场强度。
9. 均匀带电细圆环在圆⼼处的场强为。
10.⼀电偶极⼦,带电量为q=2×105-库仑,间距L =0.5cm ,则它的电距为________库仑⽶11.⼀空⼼圆柱体的内、外半径分别为1R ,2R ,质量为m (SI 单位).则其绕中⼼轴竖直轴的转动惯量为____________。
12.真空中的两个平⾏带电平板,板⾯⾯积均为S ,相距为d (S d ??),分别带电q + 及q -,则两板间相互作⽤⼒F 的⼤⼩为____________。
13.⼀个矩形载流线圈长为a 宽为b ,通有电流I ,处于匀强磁场B 中。
大学物理考试题及答案一、选择题(每题4分,共40分)1. 下列哪个量是标量?A. 力B. 位移C. 动量D. 速度2. 下列哪个量是矢量?A. 质量B. 静力C. 动能D. 加速度3. 以恒力F作用下,物体位移x的函数关系为F = 2x + 3,其中F 为单位时间内物体所受的总力,则力学功W与位移x的函数关系是:A. W = 2x^2 + 3xB. W = 4x + 3C. W = 4x^2 + 6xD. W = 2x + 34. 物体A自由落体以恒定加速度a1下落,物体B自由落体以恒定加速度a2下落。
当两者同时从同一高度下落时,哪个物体先触地?A. 物体AB. 物体BC. 物体A和物体B同时触地D. 初始速度不同,无法确定5. 压强的单位是:A. 牛顿/平方米B. 焦耳/秒C. 瓦特/安培D. 千克/立方米6. 当一个物体浸没在液体中时,所受浮力等于:A. 物体的重力B. 液体的重力C. 物体的体积D. 物体的质量7. 功率的单位是:A. 焦耳B. 瓦特C. 牛顿D. 米/秒8. 电阻的单位是:A. 欧姆B. 瓦特C. 安培D. 瓦/米9. 轴上有两个质量相等的物体A和B,A在轴上离轴心的距离是B 的2倍,则这两个物体对轴的转动惯量之比是:A. 1:1B. 1:2C. 2:1D. 1:410. 电磁感应现象中,导线中产生电动势的原因是:A. 导线自身的电子受到力的作用B. 磁场变化引起电磁感应C. 电磁波辐射作用D. 电磁振荡引起电动势二、填空题(每题4分,共40分)11. 物体在光滑水平面上受到的摩擦力等于 _______________ 。
12. 力学功的单位是_________________。
13. 物体下落的过程中,速度不断增大,则物体的加速度为___________ 。
14. 一个能够制热的物体对另一个物体传递能量的方式是_________________。
15. 光线从一个光密介质射入到一个光疏介质中时发生_________________。
06章一、填空题(一)易(基础题)1、热力学第二定律的微观实质可以理解为:在孤立系统内部所发生的不可逆过程,总是沿着熵 增大 的方向进行。
2、热力学第二定律的开尔文表述和克劳修斯表述是等价的,表明在自然界中与热现象有关的实际宏观过程都是不可逆的,开尔文表述指出了____功热转换__________的过程是不可逆的,而克劳修斯表述指出了___热传导_______的过程是不可逆的.3.一定量的某种理想气体在某个热力学过程中,外界对系统做功240J ,气体向外界放热620J ,则气体的内能 减少 (填增加或减少),E 2—E 1= -380 J 。
4.一定量的理想气体在等温膨胀过程中,内能 不变 ,吸收的热量全部用于对外界做功 。
5.一定量的某种理想气体在某个热力学过程中,对外做功120J ,气体的内能增量为280J ,则气体从外界吸收热量为 400 J 。
6、在孤立系统内部所发生的过程,总是由热力学概率 小 的宏观状态向热力学概率 大 的宏观状态进行。
7、一定量的单原子分子理想气体在等温过程中,外界对它作功为200J.则该过程中需吸热____-200____J.补充1、一定量的双原子分子理想气体在等温过程中,外界对它作功为200J.则该过程中需吸热____-200____J.补充2、一定量的理想气体在等温膨胀过程中,吸收的热量为500J 。
理想气体做功为 500 J 。
补充3、一定量的理想气体在等温压缩过程中,放出的热量为300J ,理想气体做功为 -300 J 。
8、要使一热力学系统的内能增加,可以通过 做功 或 热传递 两种方式,或者两种方式兼用来完成。
9、一定量的气体由热源吸收热量526610J ⋅⨯,内能增加541810J ⋅⨯,则气体对外作 功______J.10、工作在7℃和27℃之间的卡诺致冷机的致冷系数为 14 ,工作 在7℃和27℃之间的卡诺热机的循环效率为 6.67% 。
(二)中(一般综合题)1、2mol 单原子分子理想气体,经一等容过程后,温度从200K 上升到500K,则气体吸收的热量为_37.4810⨯____J.2、气体经历如图2所示的一个循环过程,在这个循环中,外界传给气体的净热量是 90J 。
大学物理试题题库及答案一、选择题(每题3分,共30分)1. 光在真空中的传播速度是:A. 300,000 km/sB. 299,792 km/sC. 299,792 km/hD. 3×10^8 m/s答案:D2. 根据牛顿第三定律,作用力和反作用力的关系是:A. 作用力和反作用力大小相等,方向相反B. 作用力和反作用力大小不等,方向相反C. 作用力和反作用力大小相等,方向相同D. 作用力和反作用力大小不等,方向相同答案:A3. 以下哪个是电磁波谱中波长最长的部分?A. 无线电波B. 微波C. 红外线D. 紫外线答案:A4. 热力学第一定律表明能量守恒,其数学表达式为:A. ΔQ = ΔU + WB. ΔQ = ΔU - WC. ΔQ = ΔH + WD. ΔQ = ΔH - W答案:A5. 以下哪个是描述电磁场的基本方程?A. 麦克斯韦方程组B. 牛顿运动定律C. 热力学第二定律D. 欧姆定律答案:A6. 根据量子力学,电子在原子中的运动状态由什么决定?A. 电子的质量B. 电子的电荷C. 电子的能级D. 电子的自旋答案:C7. 以下哪个是描述光的干涉现象的实验?A. 杨氏双缝实验B. 费马原理C. 牛顿环实验D. 光电效应实验答案:A8. 以下哪个是描述电磁波的传播速度的公式?A. c = λfB. c = 1/√(μ₀ε₀)C. c = E/BD. c = 3×10^8 m/s答案:B9. 以下哪个是描述电磁感应现象的定律?A. 法拉第电磁感应定律B. 欧姆定律C. 库仑定律D. 洛伦兹力定律答案:A10. 根据相对论,物体的质量会随着其速度的增加而增加,这个现象称为:A. 质量守恒B. 质量增加C. 质量不变D. 质量减少答案:B二、填空题(每题3分,共30分)1. 光速在真空中的速度是______ m/s。
答案:3×10^82. 牛顿第三定律表明,作用力和反作用力大小______,方向______。
《大学物理》考试试卷及答案解析一、选择题(每个题只有一个正确选项,把答案填入表格中,每题3分,共24分) 题号 1 2 3 4 5 6 7 8 答案 ACDCDBCA1.一运动质点在某瞬时位于矢径),(y x r的端点处,s 为路程,表示速度大小为错误的是( A )(A) dt dr (B) dtds (C )dt r d (D )22()()dx dydt dt +2.竖立的圆筒形转笼,半径为R ,绕中心轴OO '转动,物块A 紧靠在圆筒的内壁上,物块与圆筒间的摩擦系数为μ,要使物块A 不下落,圆筒转动的角速度ω至少应为( C ) ( A)Rgμ (B)g μ(C)R gμ (D)Rg 3.对功的概念有以下几种说法正确的是( D )(1)保守力作正功时系统内相应的势能增加.(2) 质点运动经一闭合路径,保守力对质点作的功为零.(3)作用力与反作用力大小相等、方向相反,所以两者所作的功的代数合必为零. (4)做功大小与参考系有关。
(A) (1) 、 (2)是正确的. (B) (2) 、 (3)是正确的. (C) (3)、(4)是正确的. (D) (2)、(4)是正确的. 4.一物体静止在粗糙的水平地面上,现用一大小为1F 的水平拉力拉动物体,经过一段时间后其速度变为v ,若将水平拉力大小变为2F ,物体从静止开始经同样的时间后速度变为2v ,对于上述两个过程,用1F W ,2F W 分别表示1F 、2F 所做的功,1f W ,2f W 分别表示前后两次克服摩擦力所做的功,则( C ) (A )21214,2F F f f W W W W >> (B )21214,2F F f f W W W W >= (C )21214,2F F f f W W W W <=, (D )21214,2F F f f W W W W <<5.关于高斯定理0ε∑⎰⎰=⋅=Φise qs d E,下列说法中正确的是( D )(A )如果高斯面无电荷,则高斯面上的电场强度处处为零 (B )如果高斯面上的电场强度处处为零,则高斯面内无电荷(C )若通过高斯面的电通量为零,则高斯面上的电场强度处处为零 (D )如果高斯面上的电场强度处处为零,则通过高斯面的电通量为零6、半径为R 的金属球与地连接,在与球心O 相距d 处有一电荷为q 的点电荷,如图所示。
普通物理试题库一、选择题1. 质点沿轨道AB 作曲线运动,速率逐渐减小,图中哪一种情况正确地表示了质在C 处的加速度?(A) (B) (C) (D)2.一质点沿x 轴运动的规律是542+-=t t x (SI 制)。
则前三秒内它的 ( ) (A)位移和路程都是3m ; (B)位移和路程都是-3m ; (C)位移是-3m ,路程是3m ; (D)位移是-3m ,路程是5m 。
3. 一质点的运动方程是j t R i t R r ϖϖϖωωsin cos +=,R 、ω为正常数。
从t =ωπ/到t =ωπ/2时间内(1)该质点的位移是( )(A) -2R i ϖ; (B) 2R i ϖ; (C) -2j ϖ; (D) 0。
(2)该质点经过的路程是( )(A) 2R ; (B) R π; (C) 0; (D) ωπR 。
4. 一细直杆AB ,竖直靠在墙壁上,B 端沿水平方向以速度v ϖ滑离墙壁,则当细杆运动到图示位置时,细杆中点C 的速度( )(A)大小为v/2,方向与B 端运动方向相同;(B)大小为v /2,方向与A 端运动方向相同;(C)大小为v /2, 方向沿杆身方向; 角。
(D)大小为θcos 2v,方向与水平方向成 θ5. 某人以4km/h 的速率向东前进时,感觉风从正北吹来,如将速率增加一倍,则感觉风从东北方向吹来。
实际风速与风向为 ( )(A)4km/h ,从北方吹来; (B)4km/h ,从西北方吹来; (C)24km/h ,从东北方吹来; (D) 24km/h ,从西北方吹来。
6. 质量为0.25kg 的质点,受i t F ϖϖ =(N)的力作用,t =0时该质点以v ϖ=2j ϖm/s 的速度通过坐标原点,该质点任意时刻的位置矢量是 ( )(A)22t i ϖ+2j ϖm ;(B)j t i t ϖϖ2323+m ;(C)j t i t ϖϖ343243+m ;(D) 条件不足,无法确定。
第一章 质点运动学1 -1 质点作曲线运动,在时刻t 质点的位矢为r ,速度为v ,速率为v,t 至(t +Δt )时间内的位移为Δr , 路程为Δs , 位矢大小的变化量为Δr ( 或称Δ|r |),平均速度为v ,平均速率为v .(1) 根据上述情况,则必有( ) (A) |Δr |= Δs = Δr(B) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d s ≠ d r (C) |Δr |≠ Δr ≠ Δs ,当Δt →0 时有|d r |= d r ≠ d s (D) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d r = d s (2) 根据上述情况,则必有( )(A) |v |= v ,|v |= v (B) |v |≠v ,|v |≠ v (C) |v |= v ,|v |≠ v (D) |v |≠v ,|v |= v分析与解 (1) 质点在t 至(t +Δt )时间内沿曲线从P 点运动到P′点,各量关系如图所示, 其中路程Δs =PP′, 位移大小|Δr |=PP ′,而Δr =|r |-|r |表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt →0 时,点P ′无限趋近P 点,则有|d r |=d s ,但却不等于d r .故选(B).(2) 由于|Δr |≠Δs ,故ts t ΔΔΔΔ≠r ,即|v |≠v . 但由于|d r |=d s ,故tst d d d d =r ,即|v |=v .由此可见,应选(C). 1 -2 一运动质点在某瞬时位于位矢r (x,y )的端点处,对其速度的大小有四种意见,即(1)t r d d ; (2)t d d r ; (3)t s d d ; (4)22d d d d ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛t y t x .下述判断正确的是( )(A) 只有(1)(2)正确 (B) 只有(2)正确(C) 只有(2)(3)正确 (D) 只有(3)(4)正确分析与解trd d 表示质点到坐标原点的距离随时间的变化率,在极坐标系中叫径向速率.通常用符号v r 表示,这是速度矢量在位矢方向上的一个分量;td d r表示速度矢量;在自然坐标系中速度大小可用公式t s d d =v 计算,在直角坐标系中则可由公式22d d d d ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=t y t x v 求解.故选(D).1 -3 质点作曲线运动,r 表示位置矢量, v 表示速度,a 表示加速度,s 表示路程, a t表示切向加速度.对下列表达式,即(1)d v /d t =a ;(2)d r /d t =v ;(3)d s /d t =v ;(4)d v /d t |=a t. 下述判断正确的是( )(A) 只有(1)、(4)是对的 (B) 只有(2)、(4)是对的 (C) 只有(2)是对的 (D) 只有(3)是对的分析与解 td d v表示切向加速度a t,它表示速度大小随时间的变化率,是加速度矢量沿速度方向的一个分量,起改变速度大小的作用;trd d 在极坐标系中表示径向速率v r (如题1 -2 所述);ts d d 在自然坐标系中表示质点的速率v ;而t d d v 表示加速度的大小而不是切向加速度at.因此只有(3) 式表达是正确的.故选(D). 1 -4 一个质点在做圆周运动时,则有( ) (A) 切向加速度一定改变,法向加速度也改变 (B) 切向加速度可能不变,法向加速度一定改变 (C) 切向加速度可能不变,法向加速度不变 (D) 切向加速度一定改变,法向加速度不变分析与解 加速度的切向分量a t起改变速度大小的作用,而法向分量a n 起改变速度方向的作用.质点作圆周运动时,由于速度方向不断改变,相应法向加速度的方向也在不断改变,因而法向加速度是一定改变的.至于a t是否改变,则要视质点的速率情况而定.质点作匀速率圆周运动时, a t恒为零;质点作匀变速率圆周运动时, a t为一不为零的恒量,当a t改变时,质点则作一般的变速率圆周运动.由此可见,应选(B).*1 -5 如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动.设该人以匀速率v 0 收绳,绳不伸长且湖水静止,小船的速率为v ,则小船作( )(A) 匀加速运动,θcos 0v v =(B) 匀减速运动,θcos 0v v = (C) 变加速运动,θcos 0v v =(D) 变减速运动,θcos 0v v = (E) 匀速直线运动,0v v =分析与解 本题关键是先求得小船速度表达式,进而判断运动性质.为此建立如图所示坐标系,设定滑轮距水面高度为h,t 时刻定滑轮距小船的绳长为l ,则小船的运动方程为22h l x -=,其中绳长l 随时间t 而变化.小船速度22d d d d h l t llt x -==v ,式中t l d d 表示绳长l 随时间的变化率,其大小即为v 0,代入整理后为θlh l cos /0220v v v =-=,方向沿x 轴负向.由速度表达式,可判断小船作变加速运动.故选(C).讨论 有人会将绳子速率v 0按x 、y 两个方向分解,则小船速度θcos 0v v =,这样做对吗?1 -6 已知质点沿x 轴作直线运动,其运动方程为32262t t x -+=,式中x 的单位为m,t 的单位为 s .求:(1) 质点在运动开始后4.0 s 内的位移的大小; (2) 质点在该时间内所通过的路程;(3) t =4 s 时质点的速度和加速度.分析 位移和路程是两个完全不同的概念.只有当质点作直线运动且运动方向不改变时,位移的大小才会与路程相等.质点在t 时间内的位移Δx 的大小可直接由运动方程得到:0Δx x x t -=,而在求路程时,就必须注意到质点在运动过程中可能改变运动方向,此时,位移的大小和路程就不同了.为此,需根据0d d =tx来确定其运动方向改变的时刻t p ,求出0~t p 和t p ~t 内的位移大小Δx 1 、Δx 2 ,则t 时间内的路程21x x s ∆+∆=,如图所示,至于t =4.0 s 时质点速度和加速度可用tx d d 和22d d t x两式计算.解 (1) 质点在4.0 s 内位移的大小m 32Δ04-=-=x x x(2) 由 0d d =tx 得知质点的换向时刻为s 2=p t (t =0不合题意)则m 0.8Δ021=-=x x xm 40Δ242-=-=x x x所以,质点在4.0 s 时间间隔内的路程为m 48ΔΔ21=+=x x s(3) t =4.0 s 时1s0.4s m 48d d -=⋅-==t t xv2s0.422m.s 36d d -=-==t t x a1 -7 一质点沿x 轴方向作直线运动,其速度与时间的关系如图(a)所示.设t =0 时,x =0.试根据已知的v -t 图,画出a -t 图以及x -t 图.分析 根据加速度的定义可知,在直线运动中v -t 曲线的斜率为加速度的大小(图中AB 、CD 段斜率为定值,即匀变速直线运动;而线段BC 的斜率为0,加速度为零,即匀速直线运动).加速度为恒量,在a -t 图上是平行于t 轴的直线,由v -t 图中求出各段的斜率,即可作出a -t 图线.又由速度的定义可知,x -t 曲线的斜率为速度的大小.因此,匀速直线运动所对应的x -t 图应是一直线,而匀变速直线运动所对应的x –t 图为t 的二次曲线.根据各段时间内的运动方程x =x (t ),求出不同时刻t 的位置x ,采用描数据点的方法,可作出x -t 图.解 将曲线分为AB 、BC 、CD 三个过程,它们对应的加速度值分别为2s m 20-⋅=--=AB AB AB t t a v v (匀加速直线运动)0=BC a (匀速直线运动)2s m 10-⋅-=--=CD CD CD t t a v v (匀减速直线运动)根据上述结果即可作出质点的a -t 图[图(B)].在匀变速直线运动中,有2021t t x x ++=v由此,可计算在0~2s和4~6s时间间隔内各时刻的位置分别为用描数据点的作图方法,由表中数据可作0~2s和4~6s时间内的x -t 图.在2~4s时间内, 质点是作1s m 20-⋅=v 的匀速直线运动, 其x -t 图是斜率k =20的一段直线[图(c)].1 -8 已知质点的运动方程为j i r )2(22t t -+=,式中r 的单位为m,t 的单位为s.求: (1) 质点的运动轨迹;(2) t =0 及t =2s时,质点的位矢;(3) 由t =0 到t =2s内质点的位移Δr 和径向增量Δr ;*(4) 2s 内质点所走过的路程s .分析 质点的轨迹方程为y =f (x ),可由运动方程的两个分量式x (t )和y (t )中消去t 即可得到.对于r 、Δr 、Δr 、Δs 来说,物理含义不同,可根据其定义计算.其中对s 的求解用到积分方法,先在轨迹上任取一段微元d s ,则22)d ()d (d y x s +=,最后用⎰=s s d 积分求s. 解 (1) 由x (t )和y (t )中消去t 后得质点轨迹方程为2412x y -=这是一个抛物线方程,轨迹如图(a)所示.(2) 将t =0s和t =2s分别代入运动方程,可得相应位矢分别为j r 20= , j i r 242-=图(a)中的P 、Q 两点,即为t =0s和t =2s时质点所在位置. (3) 由位移表达式,得j i j i r r r 24)()(Δ020212-=-+-=-=y y x x其中位移大小m 66.5)(Δ)(ΔΔ22=+=y x r而径向增量m 47.2ΔΔ2020222202=+-+=-==y x y x r r r r*(4) 如图(B)所示,所求Δs 即为图中PQ 段长度,先在其间任意处取AB 微元d s ,则22)d ()d (d y x s +=,由轨道方程可得x x y d 21d -=,代入d s ,则2s内路程为m 91.5d 4d 402=+==⎰⎰x x s s QP1 -9 质点的运动方程为23010t t x +-= 22015t t y -=式中x ,y 的单位为m,t 的单位为s.试求:(1) 初速度的大小和方向;(2) 加速度的大小和方向.分析 由运动方程的分量式可分别求出速度、加速度的分量,再由运动合成算出速度和加速度的大小和方向.解 (1) 速度的分量式为t t xx 6010d d +-==v t ty y 4015d d -==v当t =0 时, v o x =-10 m·s-1 , v o y =15 m·s-1 ,则初速度大小为120200s m 0.18-⋅=+=y x v v v设v o 与x 轴的夹角为α,则23tan 00-==xy αv vα=123°41′(2) 加速度的分量式为2s m 60d d -⋅==ta xx v , 2s m 40d d -⋅-==t a y y v则加速度的大小为222s m 1.72-⋅=+=y x a a a设a 与x 轴的夹角为β,则32tan -==x ya a β β=-33°41′(或326°19′)1 -10 一升降机以加速度1.22 m·s-2上升,当上升速度为2.44 m·s-1时,有一螺丝自升降机的天花板上松脱,天花板与升降机的底面相距2.74 m .计算:(1)螺丝从天花板落到底面所需要的时间;(2)螺丝相对升降机外固定柱子的下降距离.分析 在升降机与螺丝之间有相对运动的情况下,一种处理方法是取地面为参考系,分别讨论升降机竖直向上的匀加速度运动和初速不为零的螺丝的自由落体运动,列出这两种运动在同一坐标系中的运动方程y 1 =y 1(t )和y 2 =y 2(t ),并考虑它们相遇,即位矢相同这一条件,问题即可解;另一种方法是取升降机(或螺丝)为参考系,这时,螺丝(或升降机)相对它作匀加速运动,但是,此加速度应该是相对加速度.升降机厢的高度就是螺丝(或升降机)运动的路程.解1 (1) 以地面为参考系,取如图所示的坐标系,升降机与螺丝的运动方程分别为20121at t y +=v20221gt t h y -+=v当螺丝落至底面时,有y 1 =y 2 ,即20202121gt t h at t -+=+v vs 705.02=+=ag ht (2) 螺丝相对升降机外固定柱子下降的距离为m 716.021202=+-=-=gt t y h d v解2 (1)以升降机为参考系,此时,螺丝相对它的加速度大小a ′=g +a ,螺丝落至底面时,有2)(210t a g h +-=s 705.02=+=ag ht (2) 由于升降机在t 时间内上升的高度为2021at t h +='v则 m 716.0='-=h h d1 -11 一质点P 沿半径R =3.0 m 的圆周作匀速率运动,运动一周所需时间为20.0s,设t =0 时,质点位于O 点.按(a )图中所示Oxy 坐标系,求(1) 质点P 在任意时刻的位矢;(2)5s时的速度和加速度.分析 该题属于运动学的第一类问题,即已知运动方程r =r (t )求质点运动的一切信息(如位置矢量、位移、速度、加速度).在确定运动方程时,若取以点(0,3)为原点的O′x′y′坐标系,并采用参数方程x′=x′(t )和y′=y′(t )来表示圆周运动是比较方便的.然后,运用坐标变换x =x 0 +x ′和y =y 0 +y ′,将所得参数方程转换至Oxy 坐标系中,即得Oxy 坐标系中质点P 在任意时刻的位矢.采用对运动方程求导的方法可得速度和加速度.解 (1) 如图(B)所示,在O′x′y′坐标系中,因t Tθπ2=,则质点P 的参数方程为t TR x π2sin=',t TR y π2cos-=' 坐标变换后,在O x y 坐标系中有t TR x x π2sin='=, R t TR y y y +-=+'=π2cos0 则质点P 的位矢方程为j i r ⎪⎭⎫ ⎝⎛+-+=R t T R t T R π2cos π2sinj i )]π1.0(cos 1[3)π1.0(sin 3t t -+=(2) 5s时的速度和加速度分别为j j i r )s m π3.0(π2sin π2π2cos π2d d 1-⋅=+==t TT R t T T R t v i j i r a )s m π03.0(π2cos )π2(π2sin )π2(d d 222222-⋅-=+-==t TT R t T T R t 1 -12 地面上垂直竖立一高20.0 m 的旗杆,已知正午时分太阳在旗杆的正上方,求在下午2∶00 时,杆顶在地面上的影子的速度的大小.在何时刻杆影伸展至20.0 m ?分析 为求杆顶在地面上影子速度的大小,必须建立影长与时间的函数关系,即影子端点的位矢方程.根据几何关系,影长可通过太阳光线对地转动的角速度求得.由于运动的相对性,太阳光线对地转动的角速度也就是地球自转的角速度.这样,影子端点的位矢方程和速度均可求得.解 设太阳光线对地转动的角速度为ω,从正午时分开始计时,则杆的影长为s =h tg ωt ,下午2∶00 时,杆顶在地面上影子的速度大小为132s m 1094.1cos d d --⋅⨯===tωωh t s v 当杆长等于影长时,即s =h ,则s 606034πarctan 1⨯⨯===ωh s ωt 即为下午3∶00 时.1 -13 质点沿直线运动,加速度a =4 -t2 ,式中a 的单位为m·s-2 ,t 的单位为s.如果当t =3s时,x =9 m,v =2 m·s-1 ,求质点的运动方程.分析 本题属于运动学第二类问题,即已知加速度求速度和运动方程,必须在给定条件下用积分方法解决.由t a d d v =和tx d d =v 可得t a d d =v 和t x d d v =.如a =a (t )或v =v (t ),则可两边直接积分.如果a 或v 不是时间t 的显函数,则应经过诸如分离变量或变量代换等数学操作后再做积分.解 由分析知,应有⎰⎰=tt a 0d d 0vv v得 03314v v +-=t t (1)由⎰⎰=txx t x 0d d 0v得 00421212x t t t x ++-=v (2) 将t =3s时,x =9 m,v =2 m·s-1代入(1) (2)得v 0=-1 m·s-1,x 0=0.75 m .于是可得质点运动方程为75.0121242+-=t t x 1 -14 一石子从空中由静止下落,由于空气阻力,石子并非作自由落体运动,现测得其加速度a =A -B v ,式中A 、B 为正恒量,求石子下落的速度和运动方程.分析 本题亦属于运动学第二类问题,与上题不同之处在于加速度是速度v 的函数,因此,需将式d v =a (v )d t 分离变量为t a d )(d =v v 后再两边积分. 解 选取石子下落方向为y 轴正向,下落起点为坐标原点.(1) 由题意知 v v B A ta -==d d (1) 用分离变量法把式(1)改写为 t B A d d =-vv (2) 将式(2)两边积分并考虑初始条件,有⎰⎰=-t t B A 0d d d 0v v v v v 得石子速度 )1(Bt e B A --=v 由此可知当,t →∞时,B A →v 为一常量,通常称为极限速度或收尾速度. (2) 再由)1(d d Bt e BA t y --==v 并考虑初始条件有 t e BA y t Bt y d )1(d 00⎰⎰--= 得石子运动方程)1(2-+=-Bt e B A t B A y 1 -15 一质点具有恒定加速度a =6i +4j ,式中a 的单位为m·s-2 .在t =0时,其速度为零,位置矢量r 0 =10 m i .求:(1) 在任意时刻的速度和位置矢量;(2) 质点在Oxy 平面上的轨迹方程,并画出轨迹的示意图.分析 与上两题不同处在于质点作平面曲线运动,根据叠加原理,求解时需根据加速度的两个分量a x 和a y 分别积分,从而得到运动方程r 的两个分量式x (t )和y (t ).由于本题中质点加速度为恒矢量,故两次积分后所得运动方程为固定形式,即20021t a t x x x x ++=v 和20021t a t y y y y ++=v ,两个分运动均为匀变速直线运动.读者不妨自己验证一下. 解 由加速度定义式,根据初始条件t 0 =0时v 0 =0,积分可得⎰⎰⎰+==t t t t 000)d 46(d d j i a v v j i t t 46+=v 又由td d r =v 及初始条件t =0 时,r 0=(10 m)i ,积分可得 ⎰⎰⎰+==tt r r t t t t 00)d 46(d d 0j i r v j i r 222)310(t t ++=由上述结果可得质点运动方程的分量式,即x =10+3t 2y =2t 2消去参数t ,可得运动的轨迹方程3y =2x -20 m 这是一个直线方程.直线斜率32tan d d ===αx y k ,α=33°41′.轨迹如图所示. 1 -16 一质点在半径为R 的圆周上以恒定的速率运动,质点由位置A 运动到位置B,OA 和OB 所对的圆心角为Δθ.(1) 试证位置A 和B 之间的平均加速度为)Δ(/)Δcos 1(22θR θa v -=;(2) 当Δθ分别等于90°、30°、10°和1°时,平均加速度各为多少? 并对结果加以讨论.分析 瞬时加速度和平均加速度的物理含义不同,它们分别表示为td d v =a 和tΔΔv =a .在匀速率圆周运动中,它们的大小分别为R a n 2v =,t a ΔΔv = ,式中|Δv |可由图(B)中的几何关系得到,而Δt 可由转过的角度Δθ 求出.由计算结果能清楚地看到两者之间的关系,即瞬时加速度是平均加速度在Δt →0 时的极限值.解 (1) 由图(b)可看到Δv =v 2 -v 1 ,故θΔcos 2Δ212221v v v v -+=v)Δcos 1(2θ-=v而vv θR s t ΔΔΔ==所以 θR θt a Δ)cos Δ1(2ΔΔ2v -==v(2) 将Δθ=90°,30°,10°,1°分别代入上式,得R a 219003.0v ≈,Ra 229886.0v ≈ R a 239987.0v ≈,Ra 24000.1v ≈ 以上结果表明,当Δθ→0 时,匀速率圆周运动的平均加速度趋近于一极限值,该值即为法向加速度R2v . 1 -17 质点在Oxy 平面内运动,其运动方程为r =2.0t i +(19.0 -2.0t 2 )j ,式中r 的单位为m,t 的单位为s .求:(1)质点的轨迹方程;(2) 在t 1=1.0s 到t 2 =2.0s 时间内的平均速度;(3) t 1 =1.0s时的速度及切向和法向加速度;(4) t =1.0s 时质点所在处轨道的曲率半径ρ.分析 根据运动方程可直接写出其分量式x =x (t )和y =y (t ),从中消去参数t ,即得质点的轨迹方程.平均速度是反映质点在一段时间内位置的变化率,即t ΔΔr =v ,它与时间间隔Δt 的大小有关,当Δt →0 时,平均速度的极限即瞬时速度td d r =v .切向和法向加速度是指在自然坐标下的分矢量a t 和a n ,前者只反映质点在切线方向速度大小的变化率,即t t te a d d v =,后者只反映质点速度方向的变化,它可由总加速度a 和a t 得到.在求得t 1 时刻质点的速度和法向加速度的大小后,可由公式ρa n 2v =求ρ. 解 (1) 由参数方程x =2.0t , y =19.0-2.0t 2消去t 得质点的轨迹方程:y =19.0 -0.50x 2(2) 在t 1 =1.00s 到t 2 =2.0s时间内的平均速度j i r r 0.60.2ΔΔ1212-=--==t t t r v (3) 质点在任意时刻的速度和加速度分别为j i j i j i t ty t x t y x 0.40.2d d d d )(-=+=+=v v v j j i a 222220.4d d d d )(-⋅-=+=s m ty t x t 则t 1 =1.00s时的速度v (t )|t =1s=2.0i -4.0j切向和法向加速度分别为t t y x t t t tt e e e a 222s 1s m 58.3)(d d d d -=⋅=+==v v v n n t n a a e e a 222s m 79.1-⋅=-=(4) t =1.0s质点的速度大小为122s m 47.4-⋅=+=y x v v v则m 17.112==na ρv 1 -18 飞机以100 m·s-1 的速度沿水平直线飞行,在离地面高为100 m 时,驾驶员要把物品空投到前方某一地面目标处,问:(1) 此时目标在飞机正下方位置的前面多远? (2) 投放物品时,驾驶员看目标的视线和水平线成何角度?(3) 物品投出2.0s后,它的法向加速度和切向加速度各为多少?分析 物品空投后作平抛运动.忽略空气阻力的条件下,由运动独立性原理知,物品在空中沿水平方向作匀速直线运动,在竖直方向作自由落体运动.到达地面目标时,两方向上运动时间是相同的.因此,分别列出其运动方程,运用时间相等的条件,即可求解.此外,平抛物体在运动过程中只存在竖直向下的重力加速度.为求特定时刻t 时物体的切向加速度和法向加速度,只需求出该时刻它们与重力加速度之间的夹角α或β.由图可知,在特定时刻t ,物体的切向加速度和水平线之间的夹角α,可由此时刻的两速度分量v x 、v y 求出,这样,也就可将重力加速度g 的切向和法向分量求得.解 (1) 取如图所示的坐标,物品下落时在水平和竖直方向的运动方程分别为x =vt , y =1/2 gt 2飞机水平飞行速度v =100 m·s -1 ,飞机离地面的高度y =100 m,由上述两式可得目标在飞机正下方前的距离m 4522==gy x v(2) 视线和水平线的夹角为 o 5.12arctan ==xy θ(3) 在任意时刻物品的速度与水平轴的夹角为 v v v gt αx yarctan arctan == 取自然坐标,物品在抛出2s 时,重力加速度的切向分量与法向分量分别为2s m 88.1arctan sin sin -⋅=⎪⎭⎫ ⎝⎛==v gt g αg a t 2s m 62.9arctan cos cos -⋅=⎪⎭⎫ ⎝⎛==v gt g αg a n 1 -19 如图(a)所示,一小型迫击炮架设在一斜坡的底端O 处,已知斜坡倾角为α,炮身与斜坡的夹角为β,炮弹的出口速度为v 0,忽略空气阻力.求:(1)炮弹落地点P 与点O 的距离OP ;(2) 欲使炮弹能垂直击中坡面.证明α和β必须满足αβtan 21tan =并与v 0 无关. 分析 这是一个斜上抛运动,看似简单,但针对题目所问,如不能灵活运用叠加原理,建立一个恰当的坐标系,将运动分解的话,求解起来并不容易.现建立如图(a)所示坐标系,则炮弹在x 和y 两个方向的分运动均为匀减速直线运动,其初速度分别为v 0cos β和v 0sin β,其加速度分别为g sin α和gcos α.在此坐标系中炮弹落地时,应有y =0,则x =OP .如欲使炮弹垂直击中坡面,则应满足v x =0,直接列出有关运动方程和速度方程,即可求解.由于本题中加速度g 为恒矢量.故第一问也可由运动方程的矢量式计算,即20g 21t t +=v r ,做出炮弹落地时的矢量图[如图(B)所示],由图中所示几何关系也可求得OP uuu r (即图中的r 矢量).(1)解1 由分析知,炮弹在图(a)所示坐标系中两个分运动方程为αgt βt x sin 21cos 20-=v (1) αgt βt y cos 21sin 20-=v (2) 令y =0 求得时间t 后再代入式(1)得)cos(cos sin 2)sin sin cos(cos cos sin 2220220βααg ββαβααg βx OP +=-==v v 解2 做出炮弹的运动矢量图,如图(b)所示,并利用正弦定理,有βgt αt βαsin 212πsin 2πsin 20=⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛--v r 从中消去t 后也可得到同样结果.(2) 由分析知,如炮弹垂直击中坡面应满足y =0 和v x =0,则0sin cos 0=-=αgt βx v v (3)由(2)(3)两式消去t 后得αβsin 21tan = 由此可知.只要角α和β满足上式,炮弹就能垂直击中坡面,而与v 0 的大小无关.讨论 如将炮弹的运动按水平和竖直两个方向分解,求解本题将会比较困难,有兴趣读者不妨自己体验一下.1 -20 一直立的雨伞,张开后其边缘圆周的半径为R ,离地面的高度为h ,(1) 当伞绕伞柄以匀角速ω旋转时,求证水滴沿边缘飞出后落在地面上半径为g ωh R r /212+=的圆周上;(2) 读者能否由此定性构想一种草坪上或农田灌溉用的旋转式洒水器的方案?分析 选定伞边缘O 处的雨滴为研究对象,当伞以角速度ω旋转时,雨滴将以速度v 沿切线方向飞出,并作平抛运动.建立如图(a)所示坐标系,列出雨滴的运动方程并考虑图中所示几何关系,即可求证.由此可以想像如果让水从一个旋转的有很多小孔的喷头中飞出,从不同小孔中飞出的水滴将会落在半径不同的圆周上,为保证均匀喷洒对喷头上小孔的分布还要给予精心的考虑.解 (1) 如图(a)所示坐标系中,雨滴落地的运动方程为t ωR t x ==v (1)h gt y ==221 (2) 由式(1)(2)可得 g h ωR x 2222= 由图(a)所示几何关系得雨滴落地处圆周的半径为22221ωgh R R x r +=+= (2) 常用草坪喷水器采用如图(b)所示的球面喷头(θ0 =45°)其上有大量小孔.喷头旋转时,水滴以初速度v 0 从各个小孔中喷出,并作斜上抛运动,通常喷头表面基本上与草坪处在同一水平面上.则以φ角喷射的水柱射程为gR 2sin 0v = 为使喷头周围的草坪能被均匀喷洒,喷头上的小孔数不但很多,而且还不能均匀分布,这是喷头设计中的一个关键问题.1 -21 一足球运动员在正对球门前25.0 m 处以20.0 m·s-1 的初速率罚任意球,已知球门高为3.44 m .若要在垂直于球门的竖直平面内将足球直接踢进球门,问他应在与地面成什么角度的范围内踢出足球? (足球可视为质点)分析 被踢出后的足球,在空中作斜抛运动,其轨迹方程可由质点在竖直平面内的运动方程得到.由于水平距离x 已知,球门高度又限定了在y 方向的范围,故只需将x 、y 值代入即可求出.解 取图示坐标系Oxy ,由运动方程θt x cos v =, 221sin gt θt y -=v 消去t 得轨迹方程222)tan 1(2tan x θg θx y +-=v以x =25.0 m,v =20.0 m·s-1 及3.44 m≥y ≥0 代入后,可解得71.11°≥θ1 ≥69.92°27.92°≥θ2 ≥18.89°如何理解上述角度的范围?在初速一定的条件下,球击中球门底线或球门上缘都将对应有两个不同的投射倾角(如图所示).如果以θ>71.11°或θ <18.89°踢出足球,都将因射程不足而不能直接射入球门;由于球门高度的限制,θ 角也并非能取71.11°与18.89°之间的任何值.当倾角取值为27.92°<θ <69.92°时,踢出的足球将越过门缘而离去,这时球也不能射入球门.因此可取的角度范围只能是解中的结果.1 -22 一质点沿半径为R 的圆周按规律2021bt t s -=v 运动,v 0 、b 都是常量.(1) 求t 时刻质点的总加速度;(2) t 为何值时总加速度在数值上等于b ?(3) 当加速度达到b 时,质点已沿圆周运行了多少圈?分析 在自然坐标中,s 表示圆周上从某一点开始的曲线坐标.由给定的运动方程s =s (t ),对时间t 求一阶、二阶导数,即是沿曲线运动的速度v 和加速度的切向分量a t,而加速度的法向分量为a n =v 2 /R .这样,总加速度为a =a te t+a n e n .至于质点在t 时间内通过的路程,即为曲线坐标的改变量Δs =s t -s 0.因圆周长为2πR,质点所转过的圈数自然可求得.解 (1) 质点作圆周运动的速率为bt ts -==0d d v v 其加速度的切向分量和法向分量分别为b t s a t -==22d d , Rbt R a n 202)(-==v v 故加速度的大小为R )(402222bt b a a a a t tn -+=+=v 其方向与切线之间的夹角为⎥⎦⎤⎢⎣⎡--==Rb bt a a θt n 20)(arctan arctan v (2) 要使|a |=b ,由b bt b R R=-+4022)(1v 可得 bt 0v = (3) 从t =0 开始到t =v 0 /b 时,质点经过的路程为b s s s t 2200v =-=因此质点运行的圈数为bRR s n π4π220v == 1 -23 一半径为0.50 m 的飞轮在启动时的短时间内,其角速度与时间的平方成正比.在t =2.0s 时测得轮缘一点的速度值为4.0 m·s-1.求:(1) 该轮在t′=0.5s的角速度,轮缘一点的切向加速度和总加速度;(2)该点在2.0s内所转过的角度.分析 首先应该确定角速度的函数关系ω=kt 2.依据角量与线量的关系由特定时刻的速度值可得相应的角速度,从而求出式中的比例系数k ,ω=ω(t )确定后,注意到运动的角量描述与线量描述的相应关系,由运动学中两类问题求解的方法(微分法和积分法),即可得到特定时刻的角加速度、切向加速度和角位移.解 因ωR =v ,由题意ω∝t 2 得比例系数322s rad 2-⋅===Rtt ωk v 所以 22)(t t ωω== 则t ′=0.5s 时的角速度、角加速度和切向加速度分别为12s rad 5.02-⋅='=t ω2s rad 0.24d d -⋅='==t tωα 2s m 0.1-⋅==R αa t总加速度n t t n R ωR αe e a a a 2+=+= ()()2222s m 01.1-⋅=+=R ωR αa在2.0s内该点所转过的角度 rad 33.532d 2d 203202200====-⎰⎰t t t t ωθθ 1 -24 一质点在半径为0.10 m 的圆周上运动,其角位置为342t θ+=,式中θ 的单位为rad,t 的单位为s.(1) 求在t =2.0s时质点的法向加速度和切向加速度.(2) 当切向加速度的大小恰等于总加速度大小的一半时,θ 值为多少?(3) t 为多少时,法向加速度和切向加速度的值相等?分析 掌握角量与线量、角位移方程与位矢方程的对应关系,应用运动学求解的方法即可得到.解 (1) 由于342t θ+=,则角速度212d d t tθω==.在t =2 s 时,法向加速度和切向加速度的数值分别为 22s 2s m 30.2-=⋅==ωr a t n2s 2s m 80.4d d -=⋅==t ωr a t t(2) 当22212/t n t a a a a +==时,有223n t a a =,即 ()()422212243t r rt = 得 3213=t此时刻的角位置为 rad 15.3423=+=t θ(3) 要使t n a a =,则有()()422212243t r rt = t =0.55s1 -25 一无风的下雨天,一列火车以v 1=20.0 m·s-1 的速度匀速前进,在车内的旅客看见玻璃窗外的雨滴和垂线成75°角下降.求雨滴下落的速度v2 .(设下降的雨滴作匀速运动)分析 这是一个相对运动的问题.设雨滴为研究对象,地面为静止参考系S,火车为动参考系S′.v 1 为S′相对S 的速度,v 2 为雨滴相对S的速度,利用相对运动速度的关系即可解.解 以地面为参考系,火车相对地面运动的速度为v 1 ,雨滴相对地面竖直下落的速度为v 2 ,旅客看到雨滴下落的速度v 2′为相对速度,它们之间的关系为1'22v v v += (如图所示),于是可得 1o 12s m 36.575tan -⋅==v v 1 -26 如图(a)所示,一汽车在雨中沿直线行驶,其速率为v 1 ,下落雨滴的速度方向偏于竖直方向之前θ 角,速率为v 2′,若车后有一长方形物体,问车速v 1为多大时,此物体正好不会被雨水淋湿?分析 这也是一个相对运动的问题.可视雨点为研究对象,地面为静参考系S,汽车为动参考系S′.如图(a)所示,要使物体不被淋湿,在车上观察雨点下落的方向(即雨点相对于汽车的运动速度v 2′的方向)应满足hl αarctan≥.再由相对速度的矢量关系122v v v -=',即可求出所需车速v 1.解 由122v v v -='[图(b)],有θθαcos sin arctan221v v v -= 而要使hlαarctan ≥,则 hl θθ≥-cos sin 221v v v ⎪⎭⎫ ⎝⎛+≥θh θl sin cos 21v v 1 -27 一人能在静水中以1.10 m·s-1 的速度划船前进.今欲横渡一宽为1.00 ×103 m 、水流速度为0.55 m·s-1 的大河.(1) 他若要从出发点横渡该河而到达正对岸的一点,那么应如何确定划行方向? 到达正对岸需多少时间? (2)如果希望用最短的时间过河,应如何确定划行方向? 船到达对岸的位置在什么地方?分析 船到达对岸所需时间是由船相对于岸的速度v 决定的.由于水流速度u 的存在, v 与船在静水中划行的速度v ′之间有v =u +v ′(如图所示).若要使船到达正对岸,则必须使v 沿正对岸方向;在划速一定的条件下,若要用最短时间过河,则必须使v 有极大值.。
大学物理考试题目及答案一、选择题(每题3分,共30分)1. 光在真空中的传播速度是多少?A. 3×10^8 m/sB. 3×10^4 m/sC. 3×10^5 m/sD. 3×10^6 m/s答案:A2. 根据牛顿第二定律,物体的加速度与作用力成正比,与物体的质量成反比。
这一定律的数学表达式是什么?A. F = maB. F = m/aC. a = F/mD. a = mF答案:A3. 一个物体从静止开始自由下落,其下落的高度h与时间t之间的关系是什么?A. h = gt^2B. h = 1/2 gt^2C. h = 2gtD. h = gt答案:B4. 电场强度的定义式是:A. E = F/qB. E = qFD. E = F/g答案:A5. 一个理想的气体经历等压变化时,其体积与温度的关系遵循什么定律?A. 查理定律B. 盖-吕萨克定律C. 阿伏加德罗定律D. 波义耳定律答案:B6. 根据能量守恒定律,一个封闭系统的总能量是:A. 增加的B. 减少的C. 不变的D. 无法确定的答案:C7. 波长为λ的光波在介质中的折射率为n,当光波从真空进入该介质时,其波速会:A. 增加B. 减少C. 不变D. 先增加后减少答案:B8. 一个电路中的电流I与电阻R之间的关系由欧姆定律描述,该定律的数学表达式是什么?A. I = V/RB. I = VRD. I = V + R答案:A9. 根据热力学第一定律,一个系统的内能变化等于它与外界交换的热量和它对外做的功之和。
如果一个系统吸收了热量并且对外做功,那么它的内能将会:A. 增加B. 减少C. 不变D. 无法确定答案:A10. 两个点电荷之间的相互作用力遵循:A. 库仑定律B. 牛顿定律C. 高斯定律D. 毕奥-萨伐尔定律答案:A二、填空题(每题4分,共20分)11. 一个物体的质量为2kg,受到的力为10N,根据牛顿第二定律,它的加速度是 _______ m/s²。
普通物理试题库一、选择题1. 质点沿轨道AB 作曲线运动,速率逐渐减小,图中哪一种情况正确地表示了质点在C 处2. 一质点沿x 轴运动的规律是542+-=t t x (SI 制)。
则前三秒内它的 ( )(A)位移和路程都是3m ;(B)位移和路程都是-3m ;(C)位移是-3m ,路程是3m ;(D)位移是-3m ,路程是5m 。
3. 一质点的运动方程是j t R i t R r ϖϖϖωωsin cos +=,R 、ω为正常数。
从t =ωπ/到t =ωπ/2时间内(1)该质点的位移是 ( )(A) -2R i ϖ; (B) 2R i ϖ; (C) -2j ϖ; (D) 0。
(2)该质点经过的路程是 ( )(A) 2R ; (B) R π; (C) 0; (D) ωπR 。
4. 一细直杆AB ,竖直靠在墙壁上,B 端沿水平方向以速度v ϖ滑离墙壁,则当细杆运动到图示位置时,细杆中点C 的速度 ( )(A)大小为v/2,方向与B 端运动方向相同;(B)大小为v /2,方向与A 端运动方向相同;(C)大小为v /2, 方向沿杆身方向; (D)大小为θcos 2v ,方向与水平方向成 θ 角。
5. 某人以4km/h 的速率向东前进时,感觉风从正北吹来,如将速率增加一倍,则感觉风从东北方向吹来。
实际风速与风向为 ( )(A)4km/h ,从北方吹来; (B)4km/h ,从西北方吹来; (C)24km/h ,从东北方吹来; (D) 24km/h ,从西北方吹来。
6. 质量为0.25kg 的质点,受i t F ϖϖ =(N)的力作用,t =0时该质点以v ϖ=2j ϖm/s 的速度通过坐标原点,该质点任意时刻的位置矢量是 ( )(A)22t i ϖ+2j ϖm ;(B)j t i t ϖϖ2323+m ;(C)j t i t ϖϖ343243+m ;(D) 条件不足,无法确定。
7. 一轻绳跨过一定滑轮,两端各系一重物,它们的质量分别为1m 和2m ,且21m m > (滑轮质量及一切摩擦均不计),此时系统的加速度大小为a ,今用一竖直向下的恒力g m F 1=代替1m ,系统的加速度大小为a ',则有 ( )(A) a a ='; (B) a a >'; (C) a a <'; (D) 条件不足,无法确定。
8. 如图所示,质点从竖直放置的圆周顶端A 处分别沿不同长度的弦AB 和AC (AC <AB )由静止下滑,不计摩擦阻力。
质点下滑到底部所需要的时间分别为B t 和C t ,则 ( )θA CB(A) B t =C t ;(B) B t >C t ;(C) B t <C t ;(D)条件不足,无法判定。
9. 如图所示,系统置于以g/2加速度上升的升降机内,A 、B 两物块质量均为m ,A 所处桌面是水平的,绳子和定滑轮质量忽略不计。
(1) 若忽略一切摩擦,则绳中张力为 ( )(A) mg ;(B) mg /2;(C) 2mg ;(D) 3mg /4。
(2) 若A 与桌面间的摩擦系数为μ (系统仍加速滑动),则绳中张力为 ( )(A )mg μ; (B) 4/3mg μ; (C) 4/)1(3mg μ+;(D) 4/)1(3mg μ-。
10. 沙子从h =0.8m 高处落到以3m/s 速度水平向右运动的传送带上。
取g=10m/s 2,则传送带给予沙子的作用力的方向 ( )(A) 与水平夹角ο53向下; (B) 与水平夹角ο53向上;(C) 与水平夹角ο37向上; (D) 与水平夹角ο37向下。
11. 用铁锤把质量很小的钉子敲入木板,设木板对钉子的阻力与钉子进入木板的深度成正比。
在铁锤敲打第一次时,能把钉子敲入1.00cm 。
如果铁锤第二次敲打的速度与第一次完全相同,那么第二次敲入多深为 ( )2g a =(A) 0.41cm; (B) 0.50cm; (C) 0.73cm; (D) 1.00cm。
12.一物体对某质点p作用的万有引力()(A)等于将该物体质量全部集中于质心处形成的一个质点对p的万有引力;(B)等于将该物体质量全部集中于重心处形成的一个质点对p的万有引力;(C)等于该物体上各质点对p的万有引力的矢量和;(D)以上说法都不对。
所受阻力与其进入墙壁的深度x的关系如图所示,则该子弹能进入墙壁的深度为()2cm; (D)12.5 cm。
(A)3cm; (B)2 cm; (C)214.将一个物体提高10m,下列哪一种情况下提升力所作的功最小? ()(A)以5m/s的速度匀速提升;(B)以10m/s的速度匀速提升;(C)将物体由静止开始匀加速提升10m,速度增加到5m/s;(D)物体以10m/s的初速度匀减速上升10m,速度减小到5m/s。
15.在系统不受外力作用的非弹性碰撞过程中()(A)动能和动量都守恒;(B)动能和动量都不守恒;(C)动能不守恒、动量守恒;(D)动能守恒、动量不守恒。
16. 力kN j i F )53(ϖϖϖ+=,其作用点的矢径为m j i r )34(ϖϖϖ-=,则该力对坐标原点的力矩大小为 ( )(A)m kN ⋅-3; (B )m kN ⋅29; (C)m kN ⋅19; (D)m kN ⋅3。
17. 圆柱体以80rad /s 的角速度绕其轴线转动,它对该轴的转动惯量为24m kg ⋅。
由于恒力矩的作用,在10s 内它的角速度降为40rad /s 。
圆柱体损失的动能和所受力矩的大小为( )(A)80J ,80m N ⋅;(B)800J ,40m N ⋅;(C)4000J ,32m N ⋅;(D)9600J ,16m N ⋅。
18. 一匀质圆盘状飞轮质量为20kg ,半径为30cm ,当它以每分钟60转的速率旋转时,其动能为 ( )(A)22.16π J ; (B)21.8πJ ;(C )1.8J ; (D )28.1πJ 。
19. 如图所示,一轻绳跨过两个质量均为m 、半径均为R 的匀质圆盘状定滑轮。
绳的两端分别系着质量分别为m 和2m 的重物,不计滑轮转轴的摩擦。
将系统由静止释放,且绳与两滑轮间均无相对滑动,则两滑轮之间绳的张力。
( )(A)mg ; (B)3mg /2; (C)2mg ; (D)11mg /8。
20. 一根质量为m 、长度为L 的匀质细直棒,平放在水平桌面上。
若它与桌面间的滑动摩擦系数为μ,在t =0时,使该棒绕过其一端的竖直轴在水平桌面上旋转,其初始角速度为0ω,则棒停止转动所需时间为 ( )(A)μωg L 3/20; (B) μωg L 3/0; (C) μωg L 3/40; (D) μωg L 6/0。
21. 关于力矩有以下几种说法,其中正确的是 ( )(A )内力矩会改变刚体对某个定轴的角动量(动量矩);(B )作用力和反作用力对同一轴的力矩之和必为零;(C )角速度的方向一定与外力矩的方向相同;(D )质量相等、形状和大小不同的两个刚体,在相同力矩的作用下,它们的角加速度一定相等。
22. 一质量为60kg 的人站在一质量为60kg 、半径为l m 的匀质圆盘的边缘,圆盘可绕与盘面相垂直的中心竖直轴无摩擦地转动。
系统原来是静止的,后来人沿圆盘边缘走动,当人相对圆盘的走动速度为2m/s 时,圆盘角速度大小为( )(A) 1rad/s ; (B) 2rad/s ; (C) 2/3rad/s ; (D) 4/3rad/s 。
23.如图所示,一根匀质细杆可绕通过其一端O 的水平轴在竖直平面内自由转动,杆长5/3m 。
今使杆从与竖直方向成︒60角由静止释放(g 取10m/s 2),则杆的最大角速度为( )(A )3rad/s ; (B)πrad/s ; (C)3.0rad/s ; (D)3/2rad/s 。
24. 对一个绕固定水平轴O 匀速转动的转盘,沿图示的同一水平直线从相反方向射入两颗质量相同、速率相等的子弹,并停留在盘中,则子弹射入后转盘的角速度应 ( )(A) 增大; (B) 减小; (C) 不变;(D) 无法确定。
25. 一根长为l 、质量为M 的匀质棒自由悬挂于通过其上端的光滑水平轴上。
现有一质量为m 的子弹以水平速度v 0射向棒的中心,并以v 0/2的水平速度穿出棒,此后棒的最大偏转角恰为︒90,则v 0的大小为 ( ) (A)34gl m M ; (B)2gl ; (C)gl m M 2; (D)22316m gl M 。
26. 一个转动惯量为J 的圆盘绕一固定轴转动,初角速度为0ω。
设它所受阻力矩与转动角速度成正比M=ωk -(k 为正常数)(1)它的角速度从0ω变为0ω/2所需时间是 ( )(A) J /2; (B) J /k ; (C) (J /k )ln 2; (D) J /2k 。
(2)在上述过程中阻力矩所作的功为 ( )(A) J 20ω/4; (B) -3J 20ω/8; (C) -J 20ω/4; (D) J 20ω/8。
27. 两个事件分别由两个观察者S 、S '观察,S 、S '彼此相对作匀速运动,观察者S 测得两事件相隔3s ,两事件发生地点相距10m ,观察者S '测得两事件相隔5s ,S '测得两事件发生地的距离最接近于多少m? ( )(A) 0; (B) 2; (C) l0; (D) 17; (E)10 9 。
28. 某种介子静止时的寿命为s 810-,质量为g 2510-。
如它在实验室中的速度为s m /1028⨯,则它的一生中能飞行多远(以m 为单位)? ( )(A)310-; (B)2; (C)5; (D)5/6; (E)5/9。
29. 一刚性直尺固定在K '系中,它与X '轴正向夹角︒='45α,在相对K '系以u 速沿X '轴作匀速直线运动的K 系中,测得该尺与X 轴正向夹角为 ( )(A) ︒>45α; (B) ︒<45α; (C) ︒=45α;(D) 若u 沿X '轴正向,则︒>45α;若u 沿X '轴反向,则︒<45α。
30. 电子的动能为0.25MeV ,则它增加的质量约为静止质量的? ( )(A) 0.1倍; (B )0.2倍; (C) 0.5倍; (D) 0.9倍。
31.k E 是粒子的动能,p 是它的动量,那么粒子的静能20c m 等于 ( )(A)k k E E c p 2/)(222-; (B)k k E E c p 2/)(22-; (C)222k E c p -;(D)k k E E c p 2/)(222+; (E)k k E E pc 2/)(2-。