2016---2017学年度第一学期九年级数学教学计划
- 格式:pdf
- 大小:105.73 KB
- 文档页数:4
2016---2017学年度第一学期九年级年级数学学科教学计划本学期我担任九年级三、四两个班的数学教学工作。
共有学生101人,上学期期末考试成绩不是很理想,为了在本学期的数学教学工作中取得更好的成绩,我在本学期的数学教学中务必精耕细作。
使用的教材是新课程标准实验教材《人教版数学九年级上册》,如何用新理念使用好新课程标准教材?如何在教学中贯彻新课标精神?这要求在教学过程中具有创新意识、每一个教学环节都必须巧做安排。
为此,特制定本计划。
一、教材分析本学期教学内容共计五章,知识的前后联系,教材的教学目标,重、难点分析如下:1、认识一元二次方程及其有关概念,掌握配方法、公式法和因式分解法等方法解方程。
经历分析和解决实际问题的过程,体会一元二次方程的数学模型作用,进一步提高在实际问题中运用方程的基本能力。
2、通过具体实例认识旋转,探索它的基本性质,欣赏旋转在现实生活中的应用。
探索图形之间的变换关系,灵活运用轴对称、平移、旋转的组合进行图案设计。
3、理解圆及其有关概念,理解弧、弦、圆心角的关系等性质特征,进一步培养学生的合情推理能力。
4、通过实例进一步丰富对概率的认识,并解决一些实际问题。
二、学情分析九年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。
九(7)班和九(8)班比较,九(8)班学生稍活跃,但有少数学生不上进,思维不紧跟老师,九(7)班学生相对单纯,有部分同学基础较差,问题较严重。
要在本期获得理想成绩,老师和学生都要付出努力,查漏补缺,充分发挥学生是学习的主体,教师是教的主体作用,注重方法,培养能力。
三、教研课题导学式教学模式实践研究四、方法措施(一)、认真学习钻研新课标,掌握教材;课堂内讲授与练习相结合,及时根据反馈信息,扫除学习中的障碍点。
(二)、认真备课、精心授课,抓紧课堂四十五分钟,认真上好每一堂课,争取充分掌握学生动态,努力提高教学效果。
(三)、抓住关键、分散难点、突出重点,在培养学生能力上下功夫;落实每一堂课后辅助,查漏补缺。
初三第一学期数学教学计划初三第一学期数学教学计划五篇时间过得真快,总在不经意间流逝,我们的工作又迈入新的阶段,来为今后的学习制定一份计划。
什么样的计划才是有效的呢?以下是小编收集整理的初三第一学期数学教学计划5篇,供大家参考借鉴,希望可以帮助到有需要的朋友。
初三第一学期数学教学计划篇1一、指导思想以书之香教育工作计划为指导思想,结合书之香教育一对一辅导的实际,有计划,有目标,有步骤进行辅导教学,时依据考纲和课本,快速提分,设法引导学生,因材施教,调整好生的学习状态,努力提高学生的合格率、平均分,力争在初三升学考试中取得好成绩。
二、初三上学期的学习形式1、重视课本,系统学习。
初中数学基础包括基础知识和基本技能两方面。
现在中考命题仍然以基础知识题为主,有些基础题是课本上的原题或改造,后面的大题虽是高于教材,但原型一般还是教材中的例题式习题,是教材中题目的引伸、变形或组合,应以课本为主,在上课时必须深钻教材,把书中的内容进行归纳整理,使之形成自己的知识结构。
2、夯实基础,学会思考。
在应用基础知识时应做到熟练、正确、迅速。
上课不能只听老师讲,要敢于质疑,积极思考方法和策略,应通过老师的教,自己悟出来,自己学出来,尤其在解决新情景问题的过程中,应感悟出如何正确思考。
3、重视基础知识的理解和方法的学习。
基础知识既是初中所涉及的概念、公式、公理、定理等。
掌握基础知识之间的联系,要做到理清知识结构,形成整体知识,并能综合运用,例如:中考涉及的动点问题,既是方程、不等式与函数问题的结合,同时也常涉及到几何中的相似三角形、比例推导等等。
三、初三上学期的学习注意的几个问题1、扎实地夯实基础。
每年中考试题按难度比例,基础分占比例大,因此使每个学生对初中数学知识都能达到理解和掌握的要求,在应用基础知识时能做到熟练、正确和迅速。
2、中考有些基础题是课本上的原题或改造,必须深钻教材,绝不脱离课本。
3、不搞题海战术,精讲精练。
2017秋九年级数学上册全册教案(人教版)篇一:2016-2017学年新人教版九年级数学上册全册教案【新】篇二:2016秋九年级数学上册(人教版)教案(全册)1第二十一章一元二次方程 21.1 一元二次方程21.通过类比一元一次方程,了解一元二次方程的概念及一般式ax +bx+c=0(a≠0),分清二次项及其系数、一次项及其系数与常数项等概念.2.了解一元二次方程的解的概念,会检验一个数是不是一元二次方程的解.重点通过类比一元一次方程,了解一元二次方程的概念及一般式ax+bx +c=0(a≠0)和一元二次方程的解等概念,并能用这些概念解决简单问题.难点一元二次方程及其二次项系数、一次项系数和常数项的识别.活动1 复习旧知1.什么是方程?你能举一个方程的例子吗?2.下列哪些方程是一元一次方程?并给出一元一次方程的概念和一般形式. 12(1)2x-1 (2)mx+n=0 (3)+1=0 (4)x=1x3.下列哪个实数是方程2x-1=3的解?并给出方程的解的概念.2A.0 B.1 C.2 D.3活动2 探究新知根据题意列方程. 1.教材第2页问题1. 提出问题:(1)正方形的大小由什么量决定?本题应该设哪个量为未知数?(2)本题中有什么数量关系?能利用这个数量关系列方程吗?怎么列方程? (3)这个方程能整理为比较简单的形式吗?请说出整理之后的方程. 2.教材第2页问题2. 提出问题:(1)本题中有哪些量?由这些量可以得到什么?(2)比赛队伍的数量与比赛的场次有什么关系?如果有5个队参赛,每个队比赛几场?一共有20场比赛吗?如果不是20场比赛,那么究竟比赛多少场?(3)如果有x个队参赛,一共比赛多少场呢?3.一个数比另一个数大3,且两个数之积为0,求这两个数.提出问题:本题需要设两个未知数吗?如果可以设一个未知数,那么方程应该怎么列? 4.一个正方形的面积的2倍等于25,这个正方形的边长是多少?活动3 归纳概念提出问题:(1)上述方程与一元一次方程有什么相同点和不同点?(3)归纳一元二次方程的概念.2(2)类比一元一次方程,我们可以给这一类方程取一个什么名字?1.一元二次方程:只含有________个未知数,并且未知数的最高次数是________,这样的________方程,叫做一元二次方程.2.一元二次方程的一般形式是ax+bx+c=0(a≠0),其中ax是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.提出问题:(1)一元二次方程的一般形式有什么特点?等号的左、右分别是什么?(2)为什么要限制a≠0,b,c可以为0吗? (3)2x-x+1=0的一次项系数是1吗?为什么?3.一元二次方程的解(根):使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解(根).活动4 例题与练习例1 在下列方程中,属于一元二次方程的是________. 1122(1)4x=81;(2)2x-1=3y;(3)2=2;xx(4)2x-2x(x+7)=0.总结:判断一个方程是否是一元二次方程的依据:(1)整式方程;(2)只含有一个未知数;(3)含有未知数的项的最高次数是2.注意有些方程化简前含有二次项,但是化简后二次项系数为0,这样的方程不是一元二次方程.例2 教材第3页例题.例3 以-2为根的一元二次方程是( )2222A.x2+2x-1=0 B.x2-x-2=0 C.x2+x+2=0 D.x2+x-2=0总结:判断一个数是否为方程的解,可以将这个数代入方程,判断方程左、右两边的值是否相等.练习:1.若(a-1)x+3ax-1=0是关于x的一元二次方程,那么a的取值范围是________. 2.将下列一元二次方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项. (1)4x=81;(2)(3x-2)(x+1)=8x-3. 3.教材第4页练习第2题.4.若-4是关于x的一元二次方程2x+7x-k=0的一个根,则k 的值为________.答案:1.a≠1;2.略;3.略;4.k=4. 活动5 课堂小结与作业布置课堂小结我们学习了一元二次方程的哪些知识?一元二次方程的一般形式是什么?一般形式中有什么限制?你能解一元二次方程吗?作业布置教材第4页习题21.1第1~7题.222321.2 解一元二次方程 21.2.1 配方法(3课时) 第1课时直接开平方法理解一元二次方程“降次”——转化的数学思想,并能应用它解决一些具体问题.提出问题,列出缺一次项的一元二次方程ax+c=0,根据平方根的意义解出这个方程,然后知识迁移到解a(ex+f)+c=0型的一元二次方程.重点运用开平方法解形如(x+m)=n(n≥0)的方程,领会降次——转化的数学思想.难点通过根据平方根的意义解形如x=n的方程,将知识迁移到根据平方根的意义解形如(x+m)=n(n≥0)的方程.一、复习引入学生活动:请同学们完成下列各题.问题1:填空(1)x-8x+________=(x-________);(2)9x+12x+________=(3x+________);(3)x+px+________=(x+________).p2p解:根据完全平方公式可得:(1)16 4;(2)4 2;(3)( .22问题2:目前我们都学过哪些方程?二元怎样转化成一元?一元二次方程与一元一次方程有什么不同?二次如何转化成一次?怎样降次?以前学过哪些降次的方法?二、探索新知上面我们已经讲了x=9,根据平方根的意义,直接开平方得x=±3,如果x换元为2t+1,即(2t+1)=9,能否也用直接开平方的方法求解呢?(学生分组讨论)老师点评:回答是肯定的,把2t+1变为上面的x,那么2t+1=±3 即2t+1=3,2t+1=-3 方程的两根为t1=1,t2=-2例1 解方程:(1)x+4x+4=1 (2)x+6x+9=2分析:(1)x+4x+4是一个完全平方公式,那么原方程就转化为(x+2)=1. (2)由已知,得:(x+3)=2 直接开平方,得:x+32 即x+3=2,x+3=-2所以,方程的两根x1=-3+2,x2=-3-2 解:略.例2 市政府计划2年内将人均住房面积由现在的10 m提高到14.4 m,求每年人均住房面积增长率.分析:设每年人均住房面积增长率为x,一年后人均住房面积就应该是10+10x=10(1+x);二年后人均住房面积就应该是10(1+x)+10(1+x)x=10(1+x) 222222222222222222222解:设每年人均住房面积增长率为x,则:10(1+x)=14.4 (1+x)=1.44直接开平方,得1+x=±1.2 即1+x=1.2,1+x=-1.2所以,方程的两根是x1=0.2=20%,x2=-2.2224因为每年人均住房面积的增长率应为正的,因此,x2=-2.2应舍去.所以,每年人均住房面积增长率应为20%.(学生小结)老师引导提问:解一元二次方程,它们的共同特点是什么?共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.我们把这种思想称为“降次转化思想”.三、巩固练习教材第6页练习.四、课堂小结本节课应掌握:由应用直接开平方法解形如x=p(p≥0)的方程,那么x=±p转化为应用直接开平方法解形如(mx+n)=p(p≥0)的方程,那么mx+n=±p,达到降次转化之目的.若p<0则方程无解.五、作业布置教材第16页复习巩固1.225第2课时配方法的基本形式理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题.通过复习可直接化成x=p(p≥0)或(mx+n)=p(p≥0)的一元二次方程的解法,引入不能直接化成上面两种形式的一元二次方程的解题步骤.重点讲清直接降次有困难,如x+6x-16=0的一元二次方程的解题步骤.难点将不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧.一、复习引入(学生活动)请同学们解下列方程:(1)3x-1=5 (2)4(x-1)-9=0 (3)4x+16x+16=9 (4)4x+16x=-7 老师点评:上面的方程都能化成x=p或(mx+n)=p(p≥0)的形式,那么可得 x=±p或mx+np(p≥0).如:4x+16x+16=(2x+4),你能把4x+16x=-7化成(2x+4)=9吗?二、探索新知列出下面问题的方程并回答:(1)列出的经化简为一般形式的方程与刚才解题的方程有什么不同呢?(2)能否直接用上面前三个方程的解法呢?问题:要使一块矩形场地的长比宽多6 m,并且面积为16 m,求场地的长和宽各是多少?(1)列出的经化简为一般形式的方程与前面讲的三道题不同之处是:前三个左边是含有x的完全平方式而后二个不具有此特征.既然不能直接降次解方程,那么,我们就应该设法把它转化为可直接降次解方程的方程,下面,我们就来讲如何转化:x+6x-16=0移项→x+6x=16两边加(6/2)使左边配成x+2bx+b的形式→x+6x+3=16+9左边写成平方形式→(x+3)=25降次→x+3=±5即x+3=5或x+3=-5 解一次方程→x1=2,x2=-8可以验证:x1=2,x2=-8都是方程的根,但场地的宽不能是负值,所以场地的宽为2 m,长为8 m. 像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法.可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解.例1 用配方法解下列关于x的方程: 122(1)x-8x+1=0 (2)x-2x-=02三、巩固练习教材第9页练习1,2.(1)(2).2222 2 2 2 2 2 2 2 2 2 2 2 2 22222篇三:最新人教版九年级数学上册全册教案义务教育课程标准人教版数学电子教案九年级上册2016—2017学年度第一学期第 1 页第 2 页第 3 页第 4 页第 5 页《2017秋九年级数学上册全册教案(人教版)》出自:干货资源社。
数学教案九年级下册2016—2017学年度**: ***教学时间课题26.1二次函数(2)课型新授课教学目标知识和能力使学生会用描点法画出y=ax2的图象, 理解抛物线的有关概念。
过程和方法使学生经历、探索二次函数y=ax2图象性质的过程情感态度价值观培养学生观察、思考、归纳的良好思维习惯教学重点使学生理解抛物线的有关概念, 会用描点法画出二次函数y=ax2的图象是教学的重点。
教学难点用描点法画出二次函数y=ax2的图象以及探索二次函数性质是教学的难点。
教学准备教师多媒体课件学生“五个一”课堂教学程序设计设计意图一、提出问题1, 同学们可以回想一下, 一次函数的性质是如何研究的?(先画出一次函数的图象, 然后观察、分析、归纳得到一次函数的性质)2. 我们能否类比研究一次函数性质方法来研究二次函数的性质呢?如果可以,应先研究什么?(可以用研究一次函数性质的方法来研究二次函数的性质, 应先研究二次函数的图象)3. 一次函数的图象是什么?二次函数的图象是什么?二、范例例1.画二次函数y=x2的图象。
解:(1)列表:在x的取值范…-3 -2 -1 0 1 2 3 …图象的这些特点反映了函数的什么性质?先让学生观察下图, 回答以下问题;(1)XA、XB大小关系如何?是否都小于0?(2)yA.yB大小关系如何?(3)XC.XD大小关系如何?是否都大于0?(4)yC.yD大小关系如何?(XA<XB, 且XA<0, XB<0;yA>yB;XC<XD, 且XC>0, XD>0, yC<yD)其次, 让学生填空。
当X<0时, 函数值y随着x的增大而______, 当X>O时, 函数值y随X的增大而______;当X=______时, 函数值y=ax2 (a>0)取得最小值, 最小值y=______ 以上结论就是当a>0时, 函数y=ax2的性质。
九年级数学的第一学期教学计划范文一、指导思想二、学情分析:三、教材简析:本学期的教学内容共计五章,第16章:分式;第17章:反比例函数;第18章:勾股定理;第19章:四边形;第20章:数据的分析。
其中前四章既是重点又是难点。
四、提高教学质量的举措:1、认真研读新课程标准,钻研新教材,根据新课程标准,扩充教材内容,认真上课,批改作业,认真辅导,认真选择测试试卷,也让学生学会认真学习。
2、给学生介绍数学家,数学史,介绍相应的数学趣题,给出数学课外思考题,激发学生的兴趣。
4、运用新课程标准的理念指导教学,积极更新自己脑海中固有的教育理念,不同的教育理念将带来不同的教育效果。
5、培养学生良好的学习习惯,要求学生做到堂堂清、天天请、月月清。
6、开展分层教学,课堂上照顾好好、中、差这三类学生。
九年级数学的第一学期教学计划范文(二)一、本学期教材分析,学生现状分析二.确立本学期的教学目标及实施目标的具体做法。
(一)掌握学生心理特征,激发他们学习数学的积极性。
学生由小学进入中学,心理上发生了较大的变化,开始要求“独立自主”,但学生环境的更换并不等于他们已经具备了中学生的诸多能力。
因此对学习道路上的困难估计不足。
鉴于这些心理特征,教师必须十分重视激发学生的求知欲,有目的地时时地向学生介绍数学在日常生活中的应用,还要想办法让学生亲身体验生活离开数学知识将无法进行。
从而激发他们学习数学知识的直接兴趣,数学第一章内容的正确把握能较好地做到这些。
同时在言行上,教师要切忌伤害学生的自尊心。
(二)努力提高课堂____分钟效率(1)在教师这方面,首先做到要通读教材,驾奴教材,认真备课,认真备学生,认真备教法,对所讲知识的每一环节的过渡都要精心设计。
给学生出示的问题也要有层次,有梯度,哪些是独立完成的,哪些是小组合作完成的,知识的达标程度教师更要掌握。
同时作业也要分层次进行,使优生吃饱,差生吃好。
(2)重视学生能力的培养(三)加强对学生学法指导进入中学,有些学生纵然很努力,成绩依旧上不去,这说明中学阶段学习方法问题已成为突出问题,这就要求学生必须掌握知识的内存规律,不仅要知其然,还要知其所以然,以逐步提高分析、判断、综合、归纳的解题能力,我要求学生养成先复习,后做作业的好习惯。
二次根式21.1 二次根式【知识与技能】1.理解二次根式的概念,并利用a(a≥0)的意义解答具体题目.2.理解a(a≥0)是非负数和(a)2=a.a=a(a≥0)并利用它进行计算和化简.3.理解2【过程与方法】1.提出问题,根据问题给出概念,应用概念解决实际问题.2.通过复习二次根式的概念,用逻辑推理的方法推出a(a≥0)是一个非负数,用具体数据结合算术平方根的意义导出(a)2=a(a≥0),最后运用结论严谨解题.3.通过具体数据的解答,探究并利用这个结论解决具体问题.【情感态度】通过具体的数据体会从特殊到一般、分类的数学思想,理解二次根式的概念及二次根式的有关性质.【教学重点】1.形如a(a≥0)的式子叫做二次根式.2. a(a≥0)是一个非负数;(a)2=a(a≥0)及其运用.3.【教学难点】利用“a(a≥0)”解决具体问题.关键:用分类思想的方法导出a(a≥0)是一个非负数;用探究的方法导出一、情境导入,初步认识回顾:当a是正数时,a表示a的算术平方根,即正数a的正的平方根.当a是零时,a等于0,它表示零的平方根,也叫做零的算术平方根.当a是负数时,a没有意义.【教学说明】通过对算术平方根的回顾引入二次根式的概念.二、思考探究,获取新知概括:a(a≥0)表示非负数a的算术平方根,也就是说,a(a≥0)是一个非负数,它的平方等于a.即有:(1)a≥0;(2)(a)2=a(a≥0).形如a(a≥0)的式子叫做二次根式.注意:在a中,a的取值必须满足a≥0,即二次根式的被开方数必须是非负数.思考:2a等于什么?我们不妨取a的一些值,如2,-2,3,-3等,分别计算对应的2a的值,看看有什么规律.概括:当a≥0时,2a=a;当a<0时,2a=-a.三、运用新知,深化理解1.x取什么实数时,下列各式有意义?2.计算下列各式的值:【教学说明】可由学生抢答完成,再由老师总结归纳. 四、师生互动,课堂小结1.师生共同回顾二次根式的概念及有关性质:(1)(a )2=a (a ≥0);(2)当a ≥0时,2a =a ;当a <0时,2a =-a.2.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?请与同伴交流. 【教学说明】教师引导学生回顾知识点,让学生大胆发言,进行知识提炼和知识归纳.1.布置作业:从教材相应练习和“习题21.1”中选取.2.完成练习册中本课时练习的“课时作业”部分.本节课从复习算术平方根入手引入二次根式的概念,再通过特殊数据的计算,理解二次根式的有关性质,经历观察、归纳、分类讨论等思维过程,从中获得数学知识与技能,体验教学活动的方法.二次根式的乘除法1.二次根式的乘法【知识与技能】a∙=ab(a≥b,b≥0),并利用它们进行计算和化简.理解b【过程与方法】a∙=ab(a≥0,b≥0)并运用它进行计算.由具体数据发现规律,导出b【情感态度】a∙=ab(a≥0,b≥0),培养特殊到一般的探究精神,培养学生对事通过探究b物规律的观察发现能力,激发学生的学习兴趣.【教学重点】a∙=ab(a≥0,b≥0),及它的运用.b【教学难点】a∙=ab(a≥0,b≥0).发现规律,导出b一、情境导入,初步认识1.填空:参照上面的结果,用“>”、“<”或“=”填空.2.利用计算器计算填空.a∙=ab(a≥0,b≥0).【教学说明】由学生通过具体数据,发现规律,导出b二、思考探究,获取新知(学生活动)让3、4个同学上台总结规律.教师点评:(1)被开方数都是正数;(2)两个二次根式的积等于这样一个二次根式,它的被开方数等于前两个二次根式的被开方数的积.一般地,对二次根式的乘法规定为a∙=ab(a≥0,b≥0).:b【教学说明】引导学生应用公式a∙=ab(a≥0,b≥0).b三、运用新知,深化理解1.直角三角形两条直角边的长分别为15cm和12cm,那么此直角三角形斜边长是()A.32cmB.33cmC.9cmD.27cm【答案】1.B 2.C 3.A 4.D【教学说明】可由学生抢答完成,再由教师总结归纳.四、师生互动,课堂小结1.由学生小组讨论汇报通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?请与同伴交流.a∙=ab(a≥0,b≥0).2.教师总结归纳二次根式的乘法规定b【教学说明】教师引发学习回顾知识点,让学生大胆发言,进行知识提炼和知识归纳.1.布置作业:从教材“习题21.2”中选取.2.完成练习册中本课时练习的“课时作业”部分.a∙=ab(a≥0,b≥0),这节课教师引导学生通过具体数据,发现规律,导出b并学会它的应用,培养学生由特殊到一般的探究精神,培养学生对于事物规律的观察、发现能力,激发学生的学习兴趣.积的算术平方根【知识与技能】a∙(a≥0,b≥0);1.理解ab=ba∙(a≥0,b≥0).2.运用ab=b【过程与方法】a∙(a≥0,b≥0),并运用它解题和化简.利用逆向思维,得出ab=b【情感态度】a∙(a≥0,b≥0)以训练逆向思维,通过严谨解题,增强学生让学生推导ab=b准确解题的能力.【教学重点】a∙(a≥0,b≥0)及其运用.ab=b【教学难点】a∙(a≥0,b≥0)的理解与应用.ab=b一、情境导入,初步认识a∙=ab(a≥0,b≥0).反过来,一般地,对二次根式的乘法规定为ba∙(a≥0,b≥0).ab=b【教学说明】引导让学生通过复习上节课学习的二次根式的规定,利用逆向思维,得出a∙(a≥0,b≥0).ab=b二、思考探究,获取新知例1化简:【教学说明】引导学生利用ab =b a ∙(a ≥0,b ≥0)直接化简即可. 例2判断下列各式是否正确,不正确的请改正:【教学说明】注意引导学生理解并掌握积的算术平方根应用的条件:a ≥0,b ≥0. 三、运用新知,深化理解1.化简:(1)20;(2)18;(3)24;(4)54.2.自由落体的公式为s=21gt 2(g 为重力加速度,它的值为10m/s 2),若物体下落的高度为120m ,则下落的时间是 s.【教学说明】可由学生自主完成分组讨论,小组代表汇报,再由老师总结归纳. 四、师生互动,课堂小结1.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?请与同伴交流.2.教师总结归纳积的算术平方根等于各因式算术平方根的积,即ab =b a ∙(a ≥0,b ≥0).【教学说明】教师引导学生回顾知识点,让学生大胆发言,进行知识提炼和知识归纳.1.布置作业:从教材“习题21.2”中选取.2.完成练习册中本课时练习的“课时作业”部分.本课时教学以“自主探究——合作交流”为主体形式,先给学生独立思考的时间,提供学生创新的空间与可能,再给不同层次的学生提供一个交流合作的机会,培养学生独立探究、合作学习的能力,训练逆向思维,通过严谨解题,增加学生准确解题的能力.二次根式的除法【知识与技能】 1.理解b a b a =(a ≥0,b >0)和bab a =(a ≥0,b >0),并运用它们进行计算. 2.利用具体数据,通过学生练习活动,发现规律,归纳出除法规定,并用逆向思维写出逆向等式及利用它们进行计算和化简.3.理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式. 【过程与方法】1.先由具体数据,发现规律,导出b aba = (a ≥0,b >0),并用它进行计算. 2.再利用逆向思维,得出bab a =(a ≥0,b >0),并运用它进行解题和化简. 3.理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式. 【情感态度】 通过探究b aba =(a ≥0,b >0)培养学生由特殊到一般的探究精神;让学生推导bab a =(a ≥0,b >0)以训练逆向思维,通过严谨解题,增强学生准确解题的能力. 【教学重点】 1.理解b a b a =(a ≥0,b >0),bab a =(a ≥0,b >0)及利用它们进行计算和化简.2.最简二次根式的运用.【教学难点】发现规律,归纳出二次根式的除法规定.最简二次根式的运用.一、情境导入,初步认识(学生活动)请同学们完成下列各题.1.写出二次根式的乘法规定及逆向公式.2.填空:3.利用计算器计算填空:【教学说明】每组推荐一名学生上台阐述运算结果,最后教师点评. 二、思考探究,获取新知刚才同学们都练习得很好,上台的同学也回答得十分准确,根据大家的练习和回答,我们可以得到:一般地,对二次根式的除法规定:b aba =(a ≥0,b >0) 反过来,bab a =(a ≥0,b >0) 下面我们利用这个规定来计算和化简一些题目. 例1 计算:【教学说明】 直接利用b aba =(a ≥0,b >0) 例2化简:观察上面各小题的最后结果,发现这些二次根式有这些特点:(1)被开方数中不含分母;(2)被开方数中所含的因数(或因式)的幂的指数都小于2.【教学说明】利用二次根式的乘法、除法规定来化简,要求最后结果化成最简二次根式.三、运用新知,深化理解1.化简:3.如图,在Rt△ABC中,∠C=90°,AC=2.5cm,BC=6cm,求AB的长.【教学说明】第1题可由学生自主完成,第2题、3题教师可给予相应的指导.四、师生互动,课堂小结请若干学生口述小结,老师再利用电子课件将小结放映在屏幕上.1.布置作业:从教材“习题21.2”中选取.2.完成练习册中本课时练习的“课时作业”部分.本课时教学突出学生主体性原则,即通过探究学习,指导学生独立思考,通过具体数据得出规律,再让学生相互交流,或上台展示自己的发现,或表述个人的体验,从中获取成功的体验后,激发学生探究的激情.二次根式的加减法【知识与技能】1.掌握同类二次根式的概念,会判断同类二次根式,会合并同类二次根式.2.掌握二次根式加减乘除混合运算的方法.【过程与方法】通过二次根式的加减法运算培养学生的运算能力.【情感态度】形成良好的思维习惯,学会从数学的角度提出问题、理解问题,并能运用所学的知识解决问题.【教学重点】二次根式加减法的运算.【教学难点】探讨二次根式加减法的运算方法,快速准确进行二次根式加减法的运算.一、情境导入,初步认识1.合并同类项:(1)2x+3x;(2)2x2-3x2+5x2.解:(1)5x;(2)4x2.这几道题是你运用什么知识做的?加减法则.2.化简:3.如何进行二次根式的加减计算?先化简,再合并.4.同类二次根式:几个二次根式化成最简二次根式后,它们的被开方数相同,这些二次根式就称为同类二次根式,就是本书中所讲的被开方数相同的二次根式.如22与32;28、38与58.二、思考探究,获取新知例1计算:例2计算:【教学说明】进行二次根式的加减运算时,必须先将其化简,是同类二次根式才可合并.例3计算:【教学说明】在二次根式的运算中,多项式乘法法则和乘法公式仍然适用.三、运用新知,深化理解.1.下列计算是否正确?为什么?【教学说明】这类计算的简便方法是先变形,再代入求值.四、师生互动,课堂小结请学生分组讨论,小组代表汇报,教师展示本节课学习的知识要点.1.布置作业:从教材相应练习和“习题21.3”中选取.2.完成练习册中本课时练习的“课时作业”部分.一元二次方程22.1 一元二次方程1.知道一元二次方程的意义,能熟练地把一元二次方程整理成一般形式ax2+bx+c=0(a≠0).2.在分析、揭示实际问题的数量关系并把实际问题转化为数学模型(一元二次方程)的过程中,使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识.【过程与方法】通过解决实际问题,把实际问题转化为数学模型,引入一元二次方程的概念,让学生认识一元二次方程及其相关概念,提高学生利用方程思想解决实际问题的能力.【情感态度】通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.【教学重点】判定一个数是否是方程的根.【教学难点】由实际问题列出的一元二次方程解出根后,还要考虑这些根是否确定是实际问题的根.一、情境导入,初步认识问题1 绿苑小区住宅设计,准备在每两幢楼房之间,开辟面积为900平方米的一块长方形绿地,并且长比宽多10米,那么绿地的长和宽各为多少?【分析】设长方形绿地的宽为x米,不难列出方程x(x+10)=900,整理可得x2+10x-900=0.(1)问题2 学校图书馆去年年底有图书5万册,预计到明年年底增加到7.2万册.求这两年的年平均增长率.解:设这两年的年平均增长率为x,我们知道,去年年底的图书数是5万册,则今年年底的图书数是5(1+x)万册,同样,明年年底的图书数又是今年年底的(1+x)倍,即5(1+x)²(1+x)=5(1+x)2万册.可列得方程5(1+x)2=7.2,整理可得5x2+10x-2.2=0(2)【教学说明】教师引导学生列出方程,解决问题.二、思考探究,获取新知思考、讨论问题1和问题2分别归结为解方程(1)和(2).显然,这两个方程都不是一元二次方程.那么这两个方程与一元二次方程的区别在哪里?它们有什么共同特点呢?共同特点:(1)都是整式方程(2)只含有一个未知数(3)未知数的最高次数是2【归纳总结】上述两个整式方程中都只含有一个未知数,并且未知数的最高次数是2,这样的方程叫做一元二次方程.通常可写成如下的一般形式:ax2+bx+c=0(a、b、c是已知数,a≠0).其中ax2叫做二次项,a叫做二次项系数,bx叫做一次项系数,c叫做常数项.例1判断下列方程是否为一元二次方程:解:①是;②不是;③是;④不是;⑤不是;⑥是.【教学说明】(1)一元二次方程为整式方程;(2)类似⑤这样的方程要化简后才能判断.例2 将方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并写出其中的二次项系数.一次项系数及常数项.解:2x2-13x+11=0;2,-13,11.【教学说明】将一元二次方程化成一般形式时,通常要将首项化负为正,化分为整.三、运用新知,深化理解1.将下列方程化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.(1)5x2-1=4x(2)4x2=81(3)4x(x+2)=25(4)(3x-2)(x+1)=8x-3解:(1)5x2-4x-1=0;5,-4,-1;(2)4x2-81=0;4,0,-81(3)4x2+8x-25=0;4,8,-25(4)3x2-7x+1=0;3,-7,1.2.根据下列问题,列出关于x的方程,并将其化成一元二次方程的一般形式.(1)4个完全相同的正方形的面积之和是25,求正方形的边长x;(2)一个长方形的长比宽多2,面积是100,求长方形的长x;(3)把长为1的木条分成两段,使较短一段的长与全长的积,等于较长一段的长的平方,求较短一段的长x.解:(1)4x 2=25;4x 2-25=0; (2)x (x-2)=100;x 2-2x-100=0; (3)x=(1-x )2;x2-3x+1=0.3.若x=2是方程ax 2+4x-5=0的一个根,求a 的值. 解:∵x=2是方程ax2+4x-5=0的一个根. ∴4a+8-5=0解得:a=-43. 四、师生互动,课堂小结1.只含有一个未知数,并且未知数的最高次数是2的整式方程,叫做一元二次方程.2.一元二次方程的一般形式为ax 2+bx+c=0(a ≠0),一元二次方程的项及系数都是根据一般式定义的,这与多项式中的项、次数及其系数的定义是一致的.3.在实际问题转化为数学模型(一元二次方程)的过程中,体会学习一元二次方程的必要性和重要性.1.布置作业:从教材相应练习和“习题22.1”中选取. 2.完成练习册中本课时练习的“课时作业”部分.学习本课时,可让学生先自主探索再合作交流,小组内,小组之间充分交流后概括所得结论,从而强化学生对一元二次方程的有关概念的认识,掌握建模思想,利用一元二次方程解决实际问题.一元二次方程的解法1.直接开平方法和因式分解法【知识与技能】1.会用直接开平方法解形如a(x-k)2=b (a ≠0,ab ≥0)的方程. 2.灵活应用因式分解法解一元二次方程. 3.使学生了解转化的思想在解方程中的应用. 【过程与方法】创设学生熟悉的问题情境,综合运用探究式、启发式、活动式等几种方法进行教学.【情感态度】鼓励学生积极主动的参与“教”与“学”的整个过程,激发求知的欲望,体验求知的成功,增强学习的兴趣和自信心.【教学重点】利用直接开平方法和因式分解法解一元二次方程.【教学难点】合理选择直接开平方法和因式分解法较熟练地解一元二次方程.一、情境导入,初步认识问:怎样解方程(x+1)2=256?解:方法1:直接开平方,得x+1=±16所以原方程的解是x1=15,x2=-17方法2:原方程可变形为:(x+1)2-256=0,方程左边分解因式,得(x+1+16)(x+1-16)=0即(x+17)(x-15)=0所以x+17=0或x-15=0原方程的解x1=15,x2=-17【教学说明】让学生说出作业中的解法,教师板书.二、思考探究,获取新知例1 用直接开平方法解下列方程(1)(3x+1)2=7;(2)y2+2y+1=24;(3)9n2-24n+16=11.【教学说明】运用开平方法解形如(x+m)2=n(n≥0)的方程时,最容易出现的错误是漏掉负根.例2 用因式分解法解下列方程:(1)5x2-4x=0(2)3x(2x+1)=4x+2(3)(x+5)2=3x+15【教学说明】解这里的(2)(3)题时,注意整体划归的思想.三、运用新知,深化理解1.用直接开平方法解下列方程(1)3(x-1)2-6=0(2)x2-4x+4=5(3)(x+5)2=25(4)x2+2x+1=42.用因式分解法解下列方程:3.把小圆形场地的半径增加5m得到大圆形场地,场地面积增加了一倍,求小圆形场地解:设小圆形场地的半径为xm.则可列方程2πx2=π(x+5)2.解得x1=5+52,x2=5-52(舍去).答:小圆形场地的半径为(5+52)m.【教学说明】可由学生自主完成例题,分小组展示结果,教师点评.四、师生互动,课堂小结1.引导学生回忆用直接开平方法和因式分解法解一元二次方程的一般步骤.2.对于形如a(x-k)2=b(a≠0,b≥0)的方程,只要把(x-k)看作一个整体,就可转化为x2=n(n≥0)的形式用直接开平方法解.3.当方程出现相同因式(单项式或多项式)时,切不可约去相同因式,而应用因式分解法解.1.布置作业:从教材相应练习和“习题22.2”中选取.2.完成练习册中本课时练习的“课时作业”部分.本节课教师引导学生探讨直接开平方法和因式分解法解一元二次方程,让学生小组讨论,归纳总结探究,掌握基本方法和步骤,合理、恰当、熟练地运用直接开平方法和因式分解法,在整个教学过程中注意整体划归的思想.2.配方法【知识与技能】1.使学生掌握配方法的推导过程,熟练地用配方法解一元二次方程.2.在配方法的应用过程中体会“转化”的思想,掌握一些转化的技能.【过程与方法】通过探索配方法的过程,让学生体会转化的数学思想方法.【情感态度】学生在独立思考和合作探究中感受成功的喜悦,并体验数学的价值,增加学生学习数学【教学重点】使学生掌握用配方法解一元二次方程. 【教学难点】发现并理解配方的方法.一、情境导入,初步认识问题要使一块矩形场地的长比宽多6m ,并且面积为16m 2,场地的长和宽分别是多少? 设场地的宽为xm ,则长为(x+6)m ,根据矩形面积为16m 2,得到方程x (x+6)=16,整理得到x 2+6x-16=0.【教学说明】创设实际问题情境,让学生感受到生活中处处有数学,激发学生的主动性和求知欲.二、思考探究,获取新知 探究如何解方程x 2+6x-16=0?问题1 通过上节课的学习,我们现在会解什么样的一元二次方程?举例说明. 【教学说明】用问题唤起学生的回忆,明确我们现在会解的一元二次方程的特点:等号左边是一个完全平方式,右边是一个非负常数,即(x+m )2=n (n ≥0),运用直接开平方法可求解.问题2 你会用直接开平方法解下列方程吗? (1)(x+3)2=25 (2)x 2+6x+9=25 (3)x 2+6x=16 (4)x 2+6x-16=0【教学说明】教师启发学生逆向思考问题的思维方式,将x 2+6x-16=0转化为(x+3)2=25的形式,从而求得方程的解.解:移项得:x2+6x=16, 两边都加上9即(26)2,使左边配成x 2+bx+(b2)2的形式,得: x 2+6x+9=16+9,左边写成完全平方形式,得:(x+3)2=25,开平方,得:x+3=±5,(降次) 即x+3=5或x+3=-5 解一次方程得:x 1=2,x 2=-8.【归纳总结】将方程左边配成一个含有未知数的完全平方式,右边是一个非负常数,从而可以直接开平方求解,这种解一元二次方程的方法叫做配方法.例1填空:(1)x 2+8x+16=(x+4)2(2)x 2-x+41=(x-21)2(3)4x 2+4x+1=(2x+1)2例2 列方程:(1)x 2+6x+5=0 (2)2x 2+6x+2=0 (3)(1+x )2+2(1+x )-4=0【教学说明】教师可让学生自主完成例题,小组展示,教师点评归纳. 【归纳总结】利用配方法解方程应该遵循的步骤: (1)把方程化为一般形式ax 2+bx+c=0; (2)把常数项移到方程的右边; (3)方程两边同时除以二次项系数a ;(4)方程两边同时加上一次项系数一半的平方;(5)此时方程的左边是一个完全平方形式,然后利用直接开平方法来解. 三、运用新知,深化理解 1.用配方法解下列方程: (1)2x 2-4x-8=0 (2)x 2-4x+2=0 (3)x 2-21x-1=0 2.如果x 2-4x+y2+6y+2 z +13=0,求(xy )z 的值.【教学说明】学生独立解答,小组内交流,上台展示并讲解思路.四、师生互动,课堂小结1.用配方法解一元二次方程的步骤.2.用配方法解一元二次方程的注意事项.1.布置作业:从教材相应练习和“习题22.2”中选取.2.完成练习册中课时练习的“课时作业”部分.本节课先创设情境导入一元二次方程的解法,引导学生将要解决的问题转化为已学过的直接开平方法来解,从而探索出配方法的一般步骤,熟练运用配方法来解一元二次方程.公式法【知识与技能】1.理解一元二次方程求根公式的推导过程,了解公式法的概念.2.会熟练应用公式法解一元二次方程.【过程与方法】通过复习配方法解一元二次方程,引导学生推导出求根公式,使学生进一步认识特殊与一般的关系.【情感态度】经历探索求根公式的过程,培养学生抽象思维能力,渗透辩证唯物主义观点.【教学重点】求根公式的推导和公式法的应用.【教学难点】一元二次方程求根公式的推导.一、情境导入,初步认识用配方法解方程:(1)x 2+3x+2=0 (2)2x 2-3x+5=0 解:(1)x 1=-1,x 2=-2 (2)无解 二、思考探究,获取新知如果这个一元二次方程是一般形式ax 2+bx+c=0(a ≠0),你能否用上面配方法的步骤求出它们的两根?问题 已知ax 2+bx+c=0(a ≠0),试推导它的两个根【分析】因为前面具体数字的题目已做得很多,现在不妨把a,b,c 也当成具体数字,根据上面的解题步骤就可以推导下去.探究 一元二次方程ax 2+bx+c=0(a ≠0)的根由方程的系数a,b,c 而定,因此: (1)解一元二次方程时,可以先将方程化为一般形式ax 2+bx+c=0,当b 2-4ac ≥0时,将a,b,c 代入式子aac b b x 242-±-=就得到方程的根,当b 2-4ac <0时,方程没有实数根.(2)aac b b x 242-±-=叫做一元二次方程ax 2+bx+c=0(a ≠0)的求根公式.(3)利用求根公式解一元二次方程的方法叫公式法.【教学说明】教师可以引导学生利用配方法推出求根公式,体验获取知识的过程,体会成功的喜悦,可让学生小组展示.例1 用公式法解下列方程:①2x 2-4x-1=0 ②5x+2=3x2③(x-2)(3x-5)=0 ④4x 2-3x+1=0 解:①x 1=1+26,x 2=1-26②x 1=2,x 2=-31③x 1=2,x 2=35 ④无解【教学说明】(1)对②、③要先化成一般形式;(2)强调确定a,b,c 的值,注意它们的符号;(3)先计算b 2-4ac 的值,再代入公式.三、运用新知,深化理解 1.用公式法解下列方程: (1)x 2+x-12=0 (2)x 2-2x-41=0 (3)x 2+4x+8=2x+11 (4)x (x-4)=2-8x (5)x 2+2x=0 (6)x 2+25x+10=0解:(1)x 1=3,x 2=-4; (2)x 1=232+,x 2=232-; (3)x 1=1,x 2=-3;(4)x 1=-2+6,x 2=-2-6; (5)x 1=0,x 2=-2; (6)无解.【教学说明】用公式法解方程关键是要先将方程化为一般形式. 四、师生互动,课堂小结 1.求根公式的概念及其推导过程. 2.公式法的概念.3.应用公式法解一元二次方程.1.布置作业:从教材相应练习和“习题22.2”中选取. 2.完成练习册中本课时练习的“课时作业”部分.在学习活动中,要求学生主动参与,认真思考,比较观察,交流与表述,体验知识的获取的过程,激发学生的学习兴趣,利用师生的双边活动,适时调试,从而提高学习效率.一元二次方程根的判别式【知识与技能】1.能运用根的判别式,判断方程根的情况和进行有关的推理论证;2.会运用根的判别式求一元二次方程中字母系数的取值范围.【过程与方法】1.经历一元二次方程根的判别式的产生过程;2.向学生渗透分类讨论的数学思想;3.培养学生的逻辑思维能力以及推理论证能力.【情感态度】1.体验数学的简洁美;2.培养学生的探索、创新精神和协作精神.【教学重点】根的判别式的正确理解与运用.【教学难点】含字母系数的一元二次方程根的判别式的应用.一、情境导入,初步认识用公式法解下列一元二次方程(1)x2+5x+6=0(2)9x2-6x+1=0(3)x2-2x+3=0解:(1)x1=-2,x2=-31(2)x1=x2=3(3)无解【教学说明】让学生亲身感知一元二次方程根的情况,回顾已有知识.二、思考探究,获取新知观察解题过程,可以发现:在把系数代入求根公式之前,需先确定a,b,c 的值,然后求出b 2-4ac 的值,它能决定方程是否有解,我们把b 2-4ac 叫做一元二次方程根的判别式,通常用符号“Δ”来表示,即Δ=b 2-4ac.我们回顾一元二次方程求根公式的推导过程发现:【归纳结论】(1)当Δ>0时,方程有两个不相等的实数根:a acb b x 2421-+-=,aacb b x 2422---=; (2)当Δ=0时,方程有两个相等的实数根,x 1=x 2=-ab2; (3)当Δ<0时,方程没有实数根.例1利用根的判别式判定下列方程的根的情况:解:(1)有两个不相等的实数根; (2)有两个相等的实数根; (3)无实数根;(4)有两个不相等的实数根.例2 当m 为何值时,方程(m+1)x 2-(2m-3)x+m+1=0, (1)有两个不相等的实数根? (2)有两个相等的实数根? (3)没有实数根? 解:(1)m <41且m ≠-1; (2)m=41; (3)m >41.。
16-17年度人教版初三上学期数学教学计划_课题研究对于老师制作好的教学计划,有利于新课的讲授,查字典数学网为大家编辑了人教版初三上学期数学教学计划,希望对大家有所帮助。
一、学情分析:新学期,根据九年级合班的实际,首先是先摸清底子,稳住学生,然后根据学生学情分布情况,重新划分学习小组,对新合班过来的学生,做好各方面的工作,使他们迅速适应新环境,然后,尽快帮他们找到新的学习榜样和新学伴,帮他们树立竞争意识和发展意识以及创新意识,鼓励大家在新学期,获得更大的进步,取得更大的发展。
二、教学内容本学期所教九年级数学包括:,第二十一章《一元二次方程》第二十二章《二次函数》,第二十三章《旋转》,第二十四章《圆》、第二十五章《概率初步》。
代数三章,几何两章。
而且本学期要授完下册第二十七章内容。
三、教学目标:本学期的主要教学任务目标:(1)根据学情,调整好教学进度,优化学习方法,激活知识积累。
(2)形成知识网络,解决实际问题。
(3)强化规范训练,提高应考能力。
(4)关注学生特长需求,做好学生心理疏导。
具体的说,教育学生掌握基础知识与基本技能,培养学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力,使学生逐步学会正确、合理地进行运算,逐步学会观察分析、综合、抽象、概括。
会用归纳演绎、类比进行简单的推理。
使学生懂得数学来源与实践又反过来作用于实践。
提高学习数学的兴趣,逐步培养学生具有良好的学习习惯,实事求是的态度。
顽强的学习毅力和独立思考、探索的新思想。
培养学生应用数学知识解决问题的能力。
知识技能目标会解一元二次方程;理解旋转的基本性质;掌握圆及与圆有关的概念、性质;理解概率在生活中的应用。
过程方法目标:培养学生的观察、探究、推理、归纳的能力,发展学生合情推理能力、逻辑推理能力和推理认证表达能力,提高知识综合应用能力。
四、提高学科教育质量的主要措施1、认真做好教学工作。
把认真教学作为提高成绩的主要方法,认真研读新课程标准,钻研新教材,根据新课程标准,扩充教材内容,认真上课,批改作业,认真辅导,认真制作测试试卷,也让学生学会认真学习。
九年级数学上册教学计划一、基本情况:本学期我继任九年级156班数学,这班共有学生人,上学期期末检测及格人,及格率为%,平均分;100分以上人,72—99分人,60—71分人,40~59分人,30~40分人;30分以下人。
本班学生基础较差,两极分化太严重,且低分太多。
大部分学生学习态度不端正,不少学生对学习数学失去了信心。
为做好本学期的教育教学工作,特制定本计划。
二、指导思想:九年级数学是以党和国家的教育教学方针为指导,按照九年义务教育数学课程标准来实施的,其目的是教书育人,使每个学生都能够在此数学学习过程中获得最适合自己的发展。
通过初三数学的教学,提供参加生产和进一步学习所必需的数学基础知识与基本技能,进一步培养学生的运算能力、思维能力和空间想象能力,能够运用所学知识解决简单的实际问题,培养学生的数学创新意识、良好个性品质以及初步的唯物主义观。
三、教学内容:本学期所教九年级数学包括第一章反比例函数,第二章一元二次方程,第三章图型的相似第四章锐角三角函数第五章用样本推断总体。
四、教学目标:在《反比例函数》这章,让学生理解反比例函数的概念,关系式,掌握反比例函数的图像与性质,能用反比例函数解决实际问题。
在《一元二次方程》这章,让学生了解一元二次方程的各种解法并能运用一元二次方程和函数解决一些数学问题,逐步提高观察和归纳分析能力,体验数学结合的数学方法。
同时学会对知识的归纳、整理、和运用。
从而培养学生的思维能力和应变能力。
《图形的相似》要掌握线段的比和比例的基本性质及黄金分割,掌握相似三角形的判断及性质以及应用。
《锐角三角函数》要熟练掌握锐角三角比的意义及特殊角的三角比。
知道用计算器进行有关三角比的计算。
理解解直角三角形的概念。
掌握解直角三角形的方法及其应用。
《用样本推断总体》要学会总体平均数与方差的估计方法,掌握统计的简单应用。
五、教学重点、难点《反比例函数》的重点是:掌握反比例函数的图像与性质;难点是:用反比例函数解决实际问题。
2016-2017学年度苏科版九年级(上册)数学教学计划第一篇:2016-2017学年度苏科版九年级(上册)数学教学计划2016-2017学年度九年级(上册)数学教学计划九年级时间非常紧张,既要完成新课的教学任务,又要考虑到在九年级下册时对初中阶段整个数学知识进行全面、系统的复习。
所以在制定九年级的教学计划时,一定要留意时间的安排,同时掌握好教学进度。
一、学情分析通过对上期末检测分析,发现本班学生成绩较为均衡,但是高分并不是很高,低分人数不少,处于中间层次的学生人数居少。
一方面,平时对数学比较感兴趣的学生基础题还可以,但是在解题思路和技巧方面还是存在问题,几个比较优秀的学生解题熟练度还可以,一份试卷基本上一个小时能做完。
另一方面是出于中层的学生知识点都能理解,但是平时做少了,不够熟练,考试的时候出现一些不必要的错误,比如两点确定一条直线的时候,解二元一次方程出错;几何证明题基本的概念、定理不熟悉,不能够灵活运用,比如菱形的基本性质,有的同学还不能灵活运用。
在后面的教学过程中,我会更加注重培优拔尖,让优秀的学生更加优秀,把中间层次的学生尽量往前推,基础比较差的同学尽量让他们跟上。
二、指导思想坚持贯彻党的教育方针,以《初中数学新课程标准》为准绳,继承深入开展新课程教学改革。
以提高学生中考成绩为出发点,注重培养学生的基础知识和基本技能,提高学生解题答题的能力。
同时通过本学期的课堂教学,完成九年级上册数学教学任务。
并根据实际情况,适当完成九年级下册新授教学内容。
三、教学目标知识技能目标:会解一元二次方程;掌握圆及与圆有关的概念、性质;理解概率在生活中的应用。
过程方法目标:培养学生的观察、探究、推理、归纳的能力,发展学生合情推理能力、逻辑推理能力和推理认证表达能力,提高知识综合应用能力。
态度情感目标:进一步感受数学与日常生活密不可分的联系,同时对学生进行辩证唯物主义世界观教育。
四、教材分析第一章一元二次方程:本章主要是掌握配方法、公式法和因式分解法解一元二次方程,并运用一元二次方程解决实际问题。
2016年上半年初三数学教学工作计划新学期一开始,打算做好两个方面的工作一、回忆工作中的不足,制定改进措施,实施改进方案。
上学期工作,我认为要紧有两个方面的不足。
⑴听课太少。
听课本身就是一次学习的机会,能够取人之长补己之短,是迅速提高自己业务能力的捷径。
本学期,我将克服课多时刻紧的困难,以及不为懒惰寻借口,多听本学科以及其他学科优秀教师的课,珍惜每一次学习的机会。
⑵课堂设计不合理,没有当堂检测的时刻。
本学期在第一轮复习中一定努力在备课中做好一切充分预备,合理设计好每一个环节,让学生有充分的时刻练习与检测二、制定好中考复习打算复习分三个时期:一轮复习基础复习、二轮复习专题训练、三轮复习摸拟测试第一时期要求抓好基础知识,重视易混、易错知识点;差不多图形结论化,使定理图形化、图形公式化、公式语言化,即形、式、语言三为一体,让全体学生都有收获。
第二时期专题训练要求抓好考点。
这一时期设立了五个专题:一题多解咨询题,一题多变咨询题,题组咨询题,开放性咨询题,综合性咨询题。
通过一题多解,引导学生从不同角度,考虑咨询题,培养学生的发散思维;通过一题多变,使学生透过现象看本质,由命题的条件与结论的变化,拓宽思维;通过题组教学,使学生掌握某一类咨询题的考虑方法,学会联想与类比,适当进行知识的迁移;通过开放性咨询题,鼓舞学生大胆探究与猜想;通过解综合题,培养学生运用知识、解决咨询题的能力和制造性思维能力。
第三时期模拟测试。
通过做卷,讲评,要求咨询题发觉一个解决一个。
针对学生能力不同,进行不同系列的练评练的教学活动。
总之通过做好教学工作的每一环节,尽最大的努力,想出各种有效的方法,以提高教学质量。
九年级上册数学教学计划陈曙光一、基本情况:本学期我担任初三年级153班的数学教学工作。
共有学生47人,上学期期末参加全区统考及格率为59%,平均78.5分;优秀率为24%;综合评估全区第一。
但后进生较多,50分以下的学生将近占了三分之一,落后面比较大,学习风气还欠浓厚。
正如人们所说的“现在的学生是低分低能”,我深感教育教学的压力很大,在本学期的数学教学中务必精耕细作。
如何用新理念使用好新课程标准教材?如何在教学中贯彻新课标精神?这要求在教学过程中具有创新意识、每一个教学环节都必须巧做安排。
为此,特制定本计划。
二、指导思想:以党和国家的教育教学方针为指导,按照九年义务教育数学课程标准来实施,其目的是教书育人,使每个学生都能够在数学学习过程中获得最适合自己的发展。
通过初三数学的教学,提供参加生产实践和进一步学习所必需的数学基础知识与基本技能,进一步培养学生的运算能力、思维能力和空间想象能力,能够运用所学知识解决实际问题,培养学生的数学创新意识、良好个性品质以及初步的唯物主义观。
三、教学内容:本学期所教初三数学包括第一章反比例函数,第二章一元二次方程,第三章图形的相似,第四章锐角三角函数,第五章用样本推断总体。
四、教学目的:教育学生掌握基础知识与基本技能,培养学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力,使学生逐步学会正确、合理地进行运算,逐步学会观察分析、综合、抽象、概括。
会用归纳演绎、类比进行简单的推理。
使学生懂得数学来源与实践又反过来作用于实践。
提高学习数学的兴趣,逐步培养学生具有良好的学习习惯,实事求是的态度。
顽强的学习毅力和独立思考、探索的新思想。
培养学生应用数学知识解决问题的能力。
五、教学重点、难点1、《反比例函数》本章的主要内容有反比例函数的概念;反比例函数的图象与性质;反比例函数的应用。
本章的重点是反比例函数的图象与性质,反比例函数的应用。
而难点是反比例函数的应用。
2、《一元二次方程》本章的主要内容有一元二次方程的概念;一元二次方程的解法;一元二次方程根的判别式;一元二次方程根与系数的关系;一元二次方程的应用。
九年级数学工作计划九年级上册数学教学计划(优秀7篇)做任何工作都应有计划,以明确目的,避免盲目性,使工作循序渐进,有条不紊。
同样一个工作岗位,别人做的紧凑有序,而你却丢三落四?为什么有时候你感觉自己天天在忙碌,而似乎没有任何成果,工作总是裹足不前呢?一份优秀的工作教案可以提高你的效率。
以下这7篇九年级上册数学教学计划是来自于作者的九年级数学工作计划的范文范本,欢迎参考阅读。
九年级数学教学工作计划篇一一、指导思想:深入推进和贯彻《初中数学新课程标准》的精神,以学生发展为本,以改变学习方式为目的,以培养高素质的人才为目标,培养学生创新精神和实践能力为重点的素质教育,探索有效教学的新模式。
以课堂教学为中心,紧紧围绕初中数学教材、数学学科“基本要求”进行教学,针对近年来中考命题的变化和趋势进行研究,收集试卷,精选习题,建立题库,努力把握中考方向,积极探索高效的复习途径,力求达到减负、加压、增效的目的,促进学生生动、活泼、主动地学习,力求中考取得好成绩。
通过数学课的教学,使学生切实学好从事现代化建设和进一步学习所须的基本知识和基本能力,在思维能力、情感态度与价值观等多方面得到进步和发展。
二、学情分析:所带九年级242班学生两极分化严重。
个别学生不重视学习,学习习惯较差。
经过一学期的努力,很多学生在学习习惯方面有较大改进,学习积极性有所提高。
也有少数学生自制能力较差,对自己要求不严,甚至自暴自弃。
这些都需要针对不同情况采取相应措施,耐心教育。
三、教材分析:本学期的新内容只剩两章:圆和统计与概率。
圆这章的主要内容是圆的定义和性质,点、直线、圆与圆的位置关系,圆的切线,弧长和扇形的面积,圆锥的侧面展开图,平行投影和中心投影,三视图。
本章涉及的概念、定理较多,应弄清来龙去脉,准确理解和掌握概念与定理。
垂径定理及推论、圆的切线的判定定理和性质定理是本章的重点。
垂径定理、圆周角定理的证明、运用与圆有关的性质解决实际问题以及根据三视图描述基本几何体或实物原型,是本章的教学难点。
2017年人教版九年级数学上册教学计划2017-2018学年度第一学期九年级数学教学计划一、指导思想本教学计划坚持贯彻教育方针,以《初中数学新课程标准》为准绳,继续深入开展新课程教学改革。
以提高学生中考成绩为出发点,注重培养学生的基础知识和基本技能,提高学生解题答题的能力。
同时通过本学期的课堂教学,完成九年级上册数学教学任务,并计划完成九年级下册新授教学内容。
二、学情分析通过对上期末检测分析,发现本班学生存在很严重的两极分化。
一方面,平时成绩比较突出的学生基本上掌握了研究数学的方法和技巧,对研究数学兴趣浓厚。
另一方面,相当部分学生因为各种原因,数学已经落后很远,基本丧失了研究数学的兴趣。
三、教材分析第二十一章一元二次方程(13课时)本章主要研究一元二次方程及其有关概念,包括一元二次方程的解法(配方法、公式法、因式分解法)和运用一元二次方程分析和解决实际问题。
其中解一元二次方程的基本思路和具体解法是本章的重点内容。
方程是科学研究中重要的数学思想方法,也是后续内容研究的基础和工具。
本章是对一元一次方程知识的延续和深化,同时为二次函数的研究作好准备。
数学建模思想的教学在本章得到进一步渗透和巩固。
第二十二章二次函数(12课时)本章是学生研究了正比例函数、一次函数以后,进一步研究函数知识,是函数知识螺旋发展的一个重要环节。
二次函数是描述变量之间关系的重要的数学模型,它既是其他学科研究时所采用的重要方法之一,也是某些单变量最优化问题的数学模型,如本章所提及的求最大利润、最大面积等实际问题。
二次函数的图像抛物线,既是人们最为熟悉的曲线之一,同时抛物线形状在建筑上也有着广泛的应用,如抛物线型拱桥、抛物线型隧道等。
和一次函数、反比例函数一样,二次函数也是一种非常基本的初等函数,对二次函数的研究将为学生进一步研究函数、体会函数的思想奠定基础和积累经验。
第二十三章旋转(9课时)本章主要是探索和理解旋转的性质,能够按要求作出简单平面图形旋转后的图形。
2015——2016学年九年级上册数学教学计划任课教师:李华芝一、指导思想初中数学是义务教育的一门主要学科。
它是学习物理、化学、计算机等学科以及参加社会生活,生产和进一步学习的基础。
对学生良好的个性品质和辩证唯物主义世界观的形成有积极的作用。
数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。
教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。
学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。
二、教学理念数学教学应从学生实际出发,创设有助于学生自主学习的问题情境,引导学生通过实践、思考、探索、交流,获得知识,形成技能,发展思维,学会学习,促使学生在教师指导下生动活泼地、主动地、富有个性地学习。
在教学活动中,教师应发扬教学民主,成为学生数学活动的组织者、引导者、合作者;要善于激发学生的学习潜能,鼓励学生大胆创新与实践;要创造性地使用教材,积极开发、利用各种教学资源,为学生提供丰富多彩的学习素材;要关注学生的个体差异,有效地实施有差异的教学,使每个学生都得到充分的发展;要重视现代教育技术在教学中的应用,有条件的地区,要尽可能合理、有效地使用计算机和有关软件,提高教学效益对数学学习的评价要关注对学生学习过程的评价;恰当评价学生基础知识和基本技能的理解和掌握;重视对学生发现问题和解决问题能力的评价;评价结果以定性描述的方式呈现;更要关注他们在数学活动中所表现出来的情感与态度,帮助学生认识自我,建立信心。
三、学生情况分析本期任教九年级 3 班,学生到九年级两极分化现象较严重。
在学生所学知识的掌握程度上,一部分学生能够理解知识,知识间的内在联系也较为清楚,但个别学生连简单的基础知识还不能有效的掌握,成绩较差。
在学习能力上,一些学生课外主动获取知识的能力较差,向深处学习知识的能力没有得到培养,学生的逻辑推理、逻辑思维能力,计算能力需要进一步加强,以提升学生的整体成绩;在学习态度上,半数以上学生上课能全神贯注,积极的投入到学习中去,但有一部分学生缺乏学习数学的信心和毅力,根本就不学习数学,甚至不做数学作业。
2016—2017九年级(上)数学教学计划王芳一.基本情况:本学期担任的班级是九(4)班和九(5)班两个同层次的班级的数学,九(4)班共40人,学生整体基础比较弱,学习习惯不好,大部分学生比较懒散,能达到及格水平的同学不到班级一半。
九(5)班共39人,学生基础和四班差不多,属于同一层次,学习最好的只能勉强能考到80分左右,60%学生达不到及格水平,数学是两个同学的弱势学科。
二、教学措施:1、认真研读新课程标准,钻研新教材,根据新课程标准及教材适度安排教学内容,认真上课,批改作业,认真辅导,认真制作测试试卷。
2、激发学生的兴趣,给学生介绍数学家,数学史,介绍相应的数学趣题,给出数学课外思考题,激发学生的兴趣。
3、引导学生积极参与知识的构建,营造自主、探究、合作、交流、分享发现快乐的课堂。
4、引导学生积极归纳解题规律,引导学生一题多解,多解归一,培养学生透过现象看本质的能力,这是提高学生素质的根本途径之一,培养学生的发散思维,让学生处于一种思如泉涌的状态。
5、培养学生良好的学习习惯,陶行知说:教育就是培养习惯,有助于学生稳步提高学习成绩,发展学生的非智力因素,弥补智力上的不足。
6、教学中注重数学理论与社会实践的联系,鼓励学生多观察、多思考实际生活中蕴藏的数学问题,逐步培养学生运用书本知识解决实际问题的能力,重视实习作业。
指导成立“课外兴趣小组”,开展丰富多彩的课外活动,带动班级学生学习数学,同时发展这一部分学生的特长。
7、开展分层教学,布置作业设置a、b、c三类分层布置分别适合于差、中、好三类学生,课堂上的提问照顾好各个层次的学生,使他们都得到发展。
8、把辅优补差工作落到实处,进行个别辅导。
三.教学安排计划。
2016/2017学年第一学期工作计划买买提力·亚生2016年8月29日2016/2017学年第一学期工作计划根据学校教导室安排本人分配授九年级数学课和化学课的任务,这学期工作计划如下:第一充分准备每节课;备课阶段是上好一节课的最重要的阶段,如果准备不充分的话很难获得良好的课堂效果,所以首先要写好备课教案,要突出重点,解决难点,安排好每节课的课堂活动顺序,这样能把每节课上得有条理,前后关联。
充分做好每节课备课的同时,自己的备课笔记与网上下载的优秀教案进行比较,吸取网上优秀教案的优越之处来弥补自己的短处,更加丰富自己的授课教案。
第二讲课要认真;《认真》这个词应该是每个老师的工作标准,应该认真对待每节课的细节部分,上课的节奏与学生的课堂节奏要相匹配,在课堂上根据学生的实际情况决定讲课的节奏,要摸清每位学生的学习情况,把握学生们的学习兴趣,以学生在课堂上得兴趣为主,调好课堂情绪,认真讲说课的重要内容,讲解难点,不能落掉任何细节内容。
第三搞好实验课;实验课是化学的基础,如果不能搞好化学的实验,就不能提高化学课的成绩,所以想方设法搞好实验课,用多种途径上好实验课,网上下载实验课的有关视频,利用电脑软件网络化学实验室等现代化工具来上好化学实验课,一定要让学生掌握好常用实验仪器的名称,操作方法,实验步骤,重要实验的内容,让学生掌握独立写实验报告的能力。
第四加强家庭作业的标准化和多样化;作业是加强,巩固课后学习的重要手段,不抓好课堂学习就很难得到学习效果。
结合学生实际情况布置作业时适当调整作业的内容和难度,布置标准作业的同时布置抄写,背熟类别的作业,更加丰富学生的家庭作业内容。
第五加强对学生的精神教育;思想、精神教育是在课堂上不能或缺的。
如果学生没有学习精神或者没有学习的思想,再努力也不可能让学生学到什么知识,因为学习精神是学生学习的第一要素,学生对学习不感兴趣,那就得进行思想教育激发他们的学习兴趣,每节课找出适当的实际给学生进行思想精神教育,让他们好好反思自己的学习,让他们负责自己的未来。
课堂教学设计时间:20 年月日总第 1 课时备课组:课题一元二次方程授课年级八周次授课人教学目标知识与能力掌握一元二次方程的有关概念;会把一元二次方程化成一般形式;理解一元二次方程根的概念.过程与方法通过设置问题,建立数学模型进而引入课题进行学习。
情感态度价值观培养学生分析和解决问题的能力。
教学重点一元二次方程的概念及一般形式,以及判断一个数是否为方程的根。
教学难点建立数学模型,探究其解并考虑是否符合题意。
教学方法自主,合作,探究课型新教学准备课件教学过程设计备注【复习回顾】【新课探究】一、出示学习目标掌握一元二次方程的有关概念;会把一元二次方程化成一般形式;理解一元二次方程根的概念.二、指导学生自学问题(1) 有一块矩形铁皮,长100㎝,宽50㎝,在它的四角各切去一个正方形,然后将四周突出部分折起,就能制作一个无盖方盒,如果要制作的方盒的底面积为3600平方厘米,那么铁皮各角应切去多大的正方形问题(2) 要组织一次排球邀请赛,参赛的每两队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参加比赛?三、教师强调1.等号两边都是整式, 只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程叫做一元二次方程2.一般地,任何一个关于x 的一元二次方程都可以化为 02=++c bx ax 的形式,我们把 02=++c bx ax (a,b,c 为常数,a ≠0)称为一元二次方程的一般形式。
其中 2a x 是二次项,a 是二次项系数;bx 是一次项,b 是一次项系数;c 实常数项。
3.使方程左右两边相等的未知数的值就是这个一元二次方程的解,一元二次方程的解也叫一元二次方程的根。
【跟踪练习】判断下列方程是否为一元二次方程?【课堂小结】一元二次方程的概念,一元二次方程的一般形式.【布置作业】2.已知关于x 的一元二次方程 (m -1)x 2+3x -5m +4=0有一根为2,求m. 【当堂达标】【课后反思】主备人:贾凤 备课组成员:张立奇,王三平,薛宏国 ,李光明,翟晓蓉2222222(1)1-x 0(2)2(-1)312(3)2-3-10(4)-0(5)(3)(-369x 5-4x y x x x x x x x ====+==)()2)310.m x m x mx m +++=关于的方程(是一元二次二次方程,求221.13x 16(2)4581(3)(5)0(4)(2-2(-10(5)(5)5-10(6)(3-2(12-1)xx x x x x x x x x x x x x +=+=+==+=+=将下列方程化成一元二次方程的一般形式,写出其中的二次项,一次项系数和常数项:()))))(212.(1)350x m m x x ++++=当为何值时,方程是一元二次方程。
2016---2017学年度第一学期九年级数学教学计划
一、基本情况分析:
根据学校工作安排,本期我担任九(2)班的数学教学任务。
上学
年学生期末考试的成绩总体来看一般,优生面不广,尖子不尖。
在学生
所学知识的掌握程度上,良莠不齐,对优生来说,能够透彻理解知识,
知识间的内在联系也较为清楚,对差一点的学生来说,有些基础知识还
不能有效的掌握,对几何有畏难情绪,相关知识学得不很透彻。
在学习
能力上,学生课外主动获取知识的能力较差,为减轻学生的经济负担与
课业负担,不提倡学生买教辅参考书,学生自主拓展知识面,向深处学
习知识的能力没有得到很好的培养。
在以后的教学中,要培养学生课外
主动获取知识的能力。
学生的逻辑推理、逻辑思维能力,计算能力需要
得到加强,以提升学生的整体成绩,应在合适的时候补充课外知识,拓
展学生的知识面,提升学生素质。
二、指导思想:
通过九年数学的教学,提供进一步学习所必需的数学基础知识与基
本技能,进一步培养学生的运算能力、思维能力和空间想象能力,能够
运用所学知识解决简单的实际问题,教育学生掌握基础知识与基本技
能,培养学生的逻辑思维能力、运算能力、空间观念和解决简单实际问
题的能力,使学生逐步学会正确、合理地进行运算,逐步学会观察分
析、综合、抽象、概括。
会用归纳演绎、类比进行简单的推理。
提高学
生学习数学的兴趣,逐步培养学生具有良好的学习习惯,实事求是的态
度,顽强的学习毅力和独立思考、探索的新思想。
培养学生应用数学知
识解决问题的能力。
三、教学内容
本学期的教学内容共五章:
第21章:一元二次方程;第22章:二次函数;第23章:旋转;第24
章:圆;第25章:概率初步。
四、教学目标
师生共同努力,完成教学任务,尽可能地达到《课标》所规定的目标和要求,激发全体同学学习数学的兴趣,提高学生的数学水平。
五、主要教学措施
1.认真钻研教材,积极捕捉课改信息,尽力倡导自主、合作、探究学习,力争培养学生的学习兴趣和个性品质。
2.把握学生思想动态,及时与学生沟通,建立民主、平等、和谐的师生关系。
3.充分利用课堂教学时间,帮助学生理解教学重难点,训练考点、热点,强化记忆,形成能力,提高成绩。
4.改进教学方法,用多媒体创设情景进行教学,力求课堂的多样化、生活化和开放化,力争有更多的师生互动、生生互动的机会。
5.精讲多练,在教学新知识的同时,注重旧知识的复习,使所学知识系统化,条理化,让学生在练习、测试中巩固提高,减少遗忘。
6.加强培优补差中促差生的个别辅导,因材施教,培养学生的个性特长。
特别要多鼓励后进生,提高他们的学习兴趣,培养他们良好的学习习惯:(1)课前预习习惯;(2)积极思考,主动发言习惯;(3)自主作业习惯;(4)课后复习习惯。
7.改进阶段考试形式,改进评价方法,注重学习过程的评价,对基础知识技能“推迟判断”,让学生有再次考试的机会,成功的喜悦,重视学生发现问题、解决问题的能力的评价。
六、教学进度表(附后)
教 学 进 度 表
2016年9月起讫时间周次教 学 内 容课时数9.1-9.7121.1一元二次方程21.2.1配方法3 9.8-9.14221.2.2公式法21.2.3因式分解法2
9.15-9.21321.2.4一元二次方程根与系数的关系21.3
实际问题与一元二次方程 章节小结
4
9.22-9.28422.1.1二次函数22.1.2二次函数的图象和
性质(1)
2
9.29-10.5522.1.3二次函数的图象和性质(2)3
10.6-10.12622.1.4二次函数的图象和性质(3)2
10.13-10.19722.2二次函数与一元二次方程22.3实际问
题与二次函数
3
10.20-10.268第22章小结2
10.27-11.2923.1图形的旋转23.2中心对称4
11.3-11.91024.1圆的有关性质5 11.10-11.161124.2点和圆、直线和圆的位置关系5
11.17-11.231224.3正多边形和圆 24.4弧长和扇形的面
积
3
11.24-11.3013第24章小结2
12.1-12.71425.1随机事件和概率2 12.8-12.141525.2用列举法求概率2 12.15-12.211625.3用频率估计概率 第25章小结4 12.22-12.2817复习与测试 12.29-1.418复习与测试 1.5-1.1119复习与测试 1.12-1.1820复习与测试 1.19-1.2521复习与测试
1.26-
2.122复习与测试
2.2-2.623期末测试 。