2014年定西市中考数学试卷
- 格式:doc
- 大小:246.00 KB
- 文档页数:4
定西市中考数学试卷一、选择题:本大题共10小题.每小题3分.共30定西市中考数学试卷1.(3分)﹣2018的相反数是()A.﹣2018 B.2018 C.﹣D.【分析】直接利用相反数的定义分析得出答案.【解答】解:﹣2018的相反数是:2018.故选:B.【点评】此题主要考查了相反数.正确把握相反数的定义是解题关键.2.(3分)下列计算结果等于x3的是()A.x6÷x2B.x4﹣x C.x+x2D.x2•x【分析】根据同底数幂的除法、乘法及同类项的定义逐一计算即可得.【解答】解:A、x6÷x2=x4.不符合题意;B、x4﹣x不能再计算.不符合题意;C、x+x2不能再计算.不符合题意;D、x2•x=x3.符合题意;故选:D.【点评】本题主要考查整式的运算.解题的关键是掌握同底数幂的除法、乘法及同类项的定义.3.(3分)若一个角为65°.则它的补角的度数为()A.25°B.35°C.115°D.125°【分析】根据互为补角的两个角的和等于180°列式进行计算即可得解.【解答】解:180°﹣65°=115°.故它的补角的度数为115°.故选:C.【点评】本题考查了余角和补角.解决本题的关键是熟记互为补角的和等于180°.4.(3分)已知=(a≠0.b≠0).下列变形错误的是()A.=B.2a=3b C.=D.3a=2b【分析】根据两内项之积等于两外项之积对各选项分析判断即可得解.【解答】解:由=得.3a=2b.A、由原式可得:3a=2b.正确;B、由原式可得2a=3b.错误;C、由原式可得:3a=2b.正确;D、由原式可得:3a=2b.正确;故选:B.【点评】本题考查了比例的性质.主要利用了两内项之积等于两外项之积.5.(3分)若分式的值为0.则x的值是()A.2或﹣2 B.2 C.﹣2 D.0【分析】直接利用分式的值为零则分子为零进而得出答案.【解答】解:∵分式的值为0.∴x2﹣4=0.解得:x=2或﹣2.故选:A.【点评】此题主要考查了分式的值为零的条件.正确把握定义是解题关键.6.(3分)甲、乙、丙、丁四名同学在一次投掷实心球训练中.在相同条件下各投掷10次.他们成绩的平均数与方差s2如下表:甲乙丙丁平均数(环)11.1 11.1 10.9 10.9方差s2 1.1 1.2 1.3 1.4若要选一名成绩好且发挥稳定的同学参加比赛.则应该选择()A.甲B.乙C.丙D.丁【分析】根据平均数和方差的意义解答.【解答】解:从平均数看.成绩好的同学有甲、乙.从方差看甲、乙两人中.甲方差小.即甲发挥稳定.故选:A.【点评】本题考查了平均数和方差.熟悉它们的意义是解题的关键.7.(3分)关于x的一元二次方程x2+4x+k=0有两个实数根.则k的取值范围是()A.k≤﹣4 B.k<﹣4 C.k≤4D.k<4【分析】根据判别式的意义得△=42﹣4k≥0.然后解不等式即可.【解答】解:根据题意得△=42﹣4k≥0.解得k≤4.故选:C.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时.方程有两个不相等的实数根;当△=0时.方程有两个相等的实数根;当△<0时.方程无实数根.8.(3分)如图.点E是正方形ABCD的边DC上一点.把△ADE绕点A顺时针旋转90°到△ABF 的位置.若四边形AECF的面积为25.DE=2.则AE的长为()A.5 B. C.7 D.【分析】利用旋转的性质得出四边形AECF的面积等于正方形ABCD的面积.进而可求出正方形的边长.再利用勾股定理得出答案.【解答】解:∵把△ADE顺时针旋转△ABF的位置.∴四边形AECF的面积等于正方形ABCD的面积等于25.∴AD=DC=5.∵DE=2.∴Rt△ADE中.AE==.故选:D.【点评】此题主要考查了旋转的性质以及正方形的性质.正确利用旋转的性质得出对应边关系是解题关键.9.(3分)如图.⊙A过点O(0.0).C(.0).D(0.1).点B是x轴下方⊙A上的一点.连接BO.BD.则∠OBD的度数是()A.15°B.30°C.45°D.60°【分析】连接DC.利用三角函数得出∠DCO=30°.进而利用圆周角定理得出∠DBO=30°即可.【解答】解:连接DC.∵C(.0).D(0.1).∴∠DOC=90°.OD=1.OC=.∴∠DCO=30°.∴∠OBD=30°.故选:B.【点评】此题考查圆周角定理.关键是利用三角函数得出∠DCO=30°.10.(3分)如图是二次函数y=ax2+bx+c(a.b.c是常数.a≠0)图象的一部分.与x轴的交点A 在点(2.0)和(3.0)之间.对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时.y>0.其中正确的是()A.①②④B.①②⑤C.②③④D.③④⑤【分析】由抛物线的开口方向判断a与0的关系.由抛物线与y轴的交点判断c与0的关系.然后根据对称轴判定b与0的关系以及2a+b=0;当x=﹣1时.y=a﹣b+c;然后由图象确定当x取何值时.y>0.【解答】解:①∵对称轴在y轴右侧.∴a、b异号.∴ab<0.故正确;②∵对称轴x=﹣=1.∴2a+b=0;故正确;③∵2a+b=0.∴b=﹣2a.∵当x=﹣1时.y=a﹣b+c<0.∴a﹣(﹣2a)+c=3a+c<0.故错误;④根据图示知.当m=1时.有最大值;当m≠1时.有am2+bm+c≤a+b+c.所以a+b≥m(am+b)(m为实数).故正确.⑤如图.当﹣1<x<3时.y不只是大于0.故错误.故选:A.【点评】本题主要考查了二次函数图象与系数的关系.关键是熟练掌握①二次项系数a决定抛物线的开口方向.当a>0时.抛物线向上开口;当a<0时.抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0).对称轴在y轴左;当a与b异号时(即ab<0).对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y 轴交点.抛物线与y轴交于(0.c).二、填空题:本大题共8小题.每小题4分.共32分11.(4分)计算:2sin30°+(﹣1)2018﹣()﹣1=0.【分析】根据特殊角的三角函数值、幂的乘方和负整数指数幂可以解答本题.【解答】解:2sin30°+(﹣1)2018﹣()﹣1=2×+1﹣2=1+1﹣2=0.故答案为:0.【点评】本题考查实数的运算、负整数指数幂、特殊角的三角函数值.解答本题的关键是明确它们各自的计算方法.12.(4分)使得代数式有意义的x的取值范围是x>3.【分析】二次根式中被开方数的取值范围:二次根式中的被开方数是非负数.【解答】解:∵代数式有意义.∴x﹣3>0.∴x>3.∴x的取值范围是x>3.故答案为:x>3.【点评】本题主要考查了二次根式有意义的条件.如果所给式子中含有分母.则除了保证被开方数为非负数外.还必须保证分母不为零.13.(4分)若正多边形的内角和是1080°.则该正多边形的边数是8.【分析】n边形的内角和是(n﹣2)•180°.如果已知多边形的边数.就可以得到一个关于边数的方程.解方程就可以求出多边形的边数.【解答】解:根据n边形的内角和公式.得(n﹣2)•180=1080.解得n=8.∴这个多边形的边数是8.故答案为:8.【点评】本题考查了多边形的内角与外角.熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理.求边数的问题就可以转化为解方程的问题来解决.14.(4分)已知某几何体的三视图如图所示.其中俯视图为正六边形.则该几何体的侧面积为108.【分析】观察该几何体的三视图发现该几何体为正六棱柱.然后根据提供的尺寸求得其侧面积即可.【解答】解:观察该几何体的三视图发现该几何体为正六棱柱.其底面边长为3.高为6.所以其侧面积为3×6×6=108.故答案为:108.【点评】本题考查了由三视图判断几何体的知识.解题的关键是能够根据三视图判断几何体的形状及各部分的尺寸.难度不大.15.(4分)已知a.b.c是△ABC的三边长.a.b满足|a﹣7|+(b﹣1)2=0.c为奇数.则c=7.【分析】根据非负数的性质列式求出a、b的值.再根据三角形的任意两边之和大于第三边.两边之差小于第三边求出c的取值范围.再根据c是奇数求出c的值.【解答】解:∵a.b满足|a﹣7|+(b﹣1)2=0.∴a﹣7=0.b﹣1=0.解得a=7.b=1.∵7﹣1=6.7+1=8.∴6<c<8.又∵c为奇数.∴c=7.故答案是:7.【点评】本题考查配方法的应用、非负数的性质:偶次方.解题的关键是明确题意.明确配方法和三角形三边的关系.16.(4分)如图.一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n.﹣4).则关于x的不等式组的解集为﹣2<x<2.【分析】先将点P(n.﹣4)代入y=﹣x﹣2.求出n的值.再找出直线y=2x+m落在y=﹣x﹣2的下方且都在x轴下方的部分对应的自变量的取值范围即可.【解答】解:∵一次函数y=﹣x﹣2的图象过点P(n.﹣4).∴﹣4=﹣n﹣2.解得n=2.∴P(2.﹣4).又∵y=﹣x﹣2与x轴的交点是(﹣2.0).∴关于x的不等式2x+m<﹣x﹣2<0的解集为﹣2<x<2.故答案为﹣2<x<2.【点评】本题考查了一次函数与一元一次不等式.体现了数形结合的思想方法.准确确定出n 的值.是解答本题的关键.17.(4分)如图.分别以等边三角形的每个顶点为圆心、以边长为半径在另两个顶点间作一段圆弧.三段圆弧围成的曲边三角形称为勒洛三角形.若等边三角形的边长为a.则勒洛三角形的周长为πa.【分析】首先根据等边三角形的性质得出∠A=∠B=∠C=60°.AB=BC=CA=a.再利用弧长公式求出的长=的长=的长==.那么勒洛三角形的周长为×3=πa.【解答】解:如图.∵△ABC是等边三角形.∴∠A=∠B=∠C=60°.AB=BC=CA=a.∴的长=的长=的长==.∴勒洛三角形的周长为×3=πa.故答案为πa.【点评】本题考查了弧长公式:l=(弧长为l.圆心角度数为n.圆的半径为R).也考查了等边三角形的性质.18.(4分)如图.是一个运算程序的示意图.若开始输入x的值为625.则第2018次输出的结果为1.【分析】依次求出每次输出的结果.根据结果得出规律.即可得出答案.【解答】解:当x=625时.x=125.当x=125时.x=25.当x=25时.x=5.当x=5时.x=1.当x=1时.x+4=5.当x=5时.x=1.当x=1时.x+4=5.当x=5时.x=1.…(2018﹣3)÷2=1007.5.即输出的结果是1.故答案为:1【点评】本题考查了求代数式的值.能根据求出的结果得出规律是解此题的关键.三、解答题(一);本大题共5小题.共38分.解答应写出必要的文字说明.证明过程或演算步骤19.(6分)计算:÷(﹣1)【分析】先计算括号内分式的减法.再计算除法即可得.【解答】解:原式=÷(﹣)=÷=•=.【点评】本题主要考查分式的混合运算.解题的关键是掌握分式混合运算顺序和运算法则.20.(6分)如图.在△ABC中.∠ABC=90°.(1)作∠ACB的平分线交AB边于点O.再以点O为圆心.OB的长为半径作⊙O;(要求:不写做法.保留作图痕迹)(2)判断(1)中AC与⊙O的位置关系.直接写出结果.【分析】(1)首先利用角平分线的作法得出CO.进而以点O为圆心.OB为半径作⊙O即可;(2)利用角平分线的性质以及直线与圆的位置关系进而求出即可.【解答】解:(1)如图所示:;(2)相切;过O点作OD⊥AC于D点.∵CO平分∠ACB.∴OB=OD.即d=r.∴⊙O与直线AC相切.【点评】此题主要考查了复杂作图以及角平分线的性质与作法和直线与圆的位置关系.正确利用角平分线的性质求出是解题关键.21.(8分)《九章算术》是中国古代数学专著.在数学上有其独到的成就.不仅最早提到了分数问题.也首先记录了“盈不足”等问题.如有一道阐述“盈不足”的问题.原文如下:今有共买鸡.人出九.盈十一;人出六.不足十六.问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡.如果每人出9文钱.就会多11文钱;如果每人出6文钱.又会缺16文钱.问买鸡的人数、鸡的价格各是多少?请解答上述问题.【分析】设合伙买鸡者有x人.鸡的价格为y文钱.根据“如果每人出9文钱.就会多11文钱;如果每人出6文钱.又会缺16文钱”.即可得出关于x、y的二元一次方程组.解之即可得出结论.【解答】解:设合伙买鸡者有x人.鸡的价格为y文钱.根据题意得:.解得:.答:合伙买鸡者有9人.鸡的价格为70文钱.【点评】本题考查了二元一次方程组的应用.找准等量关系.正确列出二元一次方程组是解题的关键.22.(8分)随着中国经济的快速发展以及科技水平的飞速提高.中国高铁正迅速崛起.高铁大大缩短了时空距离.改变了人们的出行方式.如图.A.B两地被大山阻隔.由A地到B地需要绕行C地.若打通穿山隧道.建成A.B两地的直达高铁可以缩短从A地到B地的路程.已知:∠CAB=30°.∠CBA=45°.AC=640公里.求隧道打通后与打通前相比.从A地到B地的路程将约缩短多少公里?(参考数据:≈1.7.≈1.4)【分析】过点C作CD⊥AB于点D.利用锐角三角函数的定义求出CD及AD的长.进而可得出结论.【解答】解:过点C作CD⊥AB于点D.在Rt△ADC和Rt△BCD中.∵∠CAB=30°.∠CBA=45°.AC=640.∴CD=320.AD=320.∴BD=CD=320.不吃20.∴AC+BC=640+320≈1088.∴AB=AD+BD=320+320≈864.∴1088﹣864=224(公里).答:隧道打通后与打通前相比.从A地到B地的路程将约缩短224公里.【点评】本题考查的是解直角三角形的应用﹣方向角问题.解题的关键是学会添加常用辅助线.构造直角三角形解决问题.需要熟记锐角三角函数的定义.23.(10分)如图.在正方形方格中.阴影部分是涂黑3个小正方形所形成的图案.(1)如果将一粒米随机地抛在这个正方形方格上.那么米粒落在阴影部分的概率是多少?(2)现将方格内空白的小正方形(A.B.C.D.E.F)中任取2个涂黑.得到新图案.请用列表或画树状图的方法求新图案是轴对称图形的概率.【分析】(1)直接利用概率公式计算可得;(2)列表得出所有等可能结果.从中找到新图案是轴对称图形的结果数.利用概率公式计算可得.【解答】解:(1)∵正方形网格被等分成9等份.其中阴影部分面积占其中的3份.∴米粒落在阴影部分的概率是=;(2)列表如下:A B C D E FA (B.A)(C.A)(D.A)(E.A)(F.A)B (A.B)(C.B)(D.B)(E.B)(F.B)C (A.C)(B.C)(D.C)(E.C)(F.C)D (A.D)(B.D)(C.D)(E.D)(F.D)E (A.E)(B.E)(C.E)(D.E)(F.E)F (A.F)(B.F)(C.F)(D.F)(E.F)由表可知.共有30种等可能结果.其中是轴对称图形的有10种.故新图案是轴对称图形的概率为=.【点评】此题考查了列表法与树状图法.用到的知识点为:概率=所求情况数与总情况数之比.四、解答题(二):本大题共5小题.共50分。
2013—2014学年度第一学期期末检测八年级数学试卷题号一二三四总分得分一、选择题(每小题3分,共30分,每小题只有一个正确选项,将其字母代号填入括号内)1.下列图案是几家银行的标志,其中轴对称图形有()A.1个B.2个 C.3个 D.4个2.下列运算正确的是( )A.44()a a-= B. x10÷x5=x2 C.x-3·x=x-3 D.933)(aa=.3.下列等式从左到右变形是因式分解的是()A、6a2b=2a23b;B、x2-3x-4=x(x-3)-4;C、ab2-2ab=ab(b-2)D、(2-a)(2+a)=4- a2.4.如果把yxxy+中x、y的值都扩大10倍,那么这个代数式的值( )A. 不变;B. 扩大10倍;C.扩大20倍;D.缩小为原来的十分之一5.若分式242+-xx的值为零,则x的值为()A.2或-2;B. 2C. -2D. 06.等腰但不等边的三角形的角平分线、高线、中线的总条数是().A.3 B.5 C.7 D.97.在△ABC和△A'B'C'中,①AB=A'B',②BC=B'C',③AC=A'C',④∠A=∠A',⑤∠B=∠B',⑥∠C=∠C',则下列条件组不能保证△ABC≌A'B'C'的是().A.①②③B.①②⑤C.②④⑤D.①③⑤8.下列关于分式方程解的检验方法:①代入原方程;②代入最简公分母;③代入去分母之后的整式方程.其中正确的是()评卷人得分A 、①②;B 、①③;C 、②③;D 、 ①②③.9.在边长为a 的正方形中挖去一个边长为b 的小正方形(a >b )(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证( )A .2222)(b ab a b a ++=+ B .2222)(b ab a b a +-=-C .))((22b a b a b a -+=- D .222))(2(b ab a b a b a -+=-+10. 若))(3(152n x x mx x ++=-+,则m 的值为( )A 、-5;B 、-2 ;C 、5 ;D 、2二、填空题(每小题3分,共24分,把答案写在题中的横线上。
2014-2015学年甘肃省定西市漳县三中九年级(上)期中数学试卷一、选择题(每题3分,共36分)1.(3分)将叶片图案旋转180°后,得到的图形是()A.B.C.D.2.(3分)如图,在等腰直角△ABC中,∠B=90°,将△ABC绕顶点A逆时针方向旋转60°后得到△AB′C′,则∠BAC′=()A.60°B.105°C.120° D.1353.(3分)在下列四个图案中,既是轴对称图形,又是中心对称图形是()A.B.C.D.4.(3分)下列关系式中,属于二次函数的是(x为自变量)()A.y=x2B.y=C.y=D.y=a2x25.(3分)函数y=x2﹣2x+3的图象的顶点坐标是()A.(1,﹣4)B.(﹣1,2)C.(1,2) D.(0,3)6.(3分)已知二次函数y=ax2+bx+c的图象如图所示,则下列结论正确的是()A.ab>0,c>0 B.ab>0,c<0 C.ab<0,c>0 D.ab<0,c<07.(3分)如图,若一次函数y=ax+b的图象经过二、三、四象限,则二次函数y=ax2+bx的图象可能是()A.B.C.D.8.(3分)把抛物线y=﹣2x2+4x+1的图象向左平移2个单位,再向上平移3个单位,所得的抛物线的函数关系式是()A.y=﹣2(x﹣1)2+6 B.y=﹣2(x﹣1)2﹣6 C.y=﹣2(x+1)2+6 D.y=﹣2(x+1)2﹣69.(3分)如果一元二次方程x2+(m+1)x+m=0的两个根是互为相反数,那么有()A.m=0 B.m=﹣1C.m=1 D.以上结论都不对10.(3分)不解方程,2x2+3x﹣1=0的两个根的符号为()A.同号B.异号C.两根都为正D.不能确定11.(3分)若a为方程x2+x﹣5=0的解,则a2+a+1的值为()A.12 B.6 C.9 D.1612.(3分)某超市2005年一月份的营业额为200万元,三月份营业额为288万元,如果每月比上月增长的百分数相同,则平均每月的增长率是()A.10% B.15% C.20% D.25%二、填空题(每题4分,共32分)13.(4分)当m时,方程(m2﹣1)x2﹣mx+5=0不是一元二次方程,当m时,上述方程是一元二次方程.14.(4分)如果x1,x2是方程2x2﹣3x﹣6=0的两个根,那么x1+x2=;x1•x2=.15.(4分)若方程x2﹣3x+m=0有两个相等的实数根,则m=,两个根分别为.16.(4分)以﹣3和7为根且二次项系数为1的一元二次方程是.17.(4分)若将二次函数y=x2﹣2x+3配方为y=(x﹣h)2+k的形式,则y=.18.(4分)若抛物线y=x2﹣2x﹣3与x轴分别交于A,B两点,则AB的长为.19.(4分)抛物线y=x2+bx+c经过A(﹣1,0),B(3,0)两点,则这条抛物线的解析式为.20.(4分)已知二次函数y=ax2+bx+c的图象交x轴于A、B两点,交y轴于C点,且△ABC是直角三角形,请写出符合要求的一个二次函数的解析式:.21.(4分)请写出一个开口向上,对称轴为直线x=2,且与y轴的交点坐标为(0,3)的抛物线的解析式.22.(4分)已知抛物线y=x2+x+b2经过点(a,﹣)和(﹣a,y1),则y1的值是.三、解答下列各题(52分)23.(6分)如图,已知△ABC和△A″B″C″及点O.(1)画出△ABC关于点O对称的△A′B′C′;(2)若△A″B″C″与△A′B′C′关于点O′对称,请确定点O′的位置.24.(12分)选择适当方法解下列方程:(1)x2﹣5x+1=0(用配方法);(2)3(x﹣2)2=x(x﹣2);(3)2x2﹣2x﹣5=0(公式法);(4)(y+2)2=(3y﹣1)2.25.(4分)当m为何值时,一元二次方程x2+(2m﹣3)x+(m2﹣3)=0有两个不相等的实数根?26.(4分)已知方程x2+2(k﹣2)x+k2+4=0有两个实数根,且这两个实数根的平方和比两根的积大21,求k的值和方程的两个根.27.(5分)在直角坐标平面内,点O为坐标原点,二次函数y=x2+(k﹣5)x﹣(k+4)的图象交x轴于点A(x1,0)、B(x2,0),且(x1+1)(x2+1)=﹣8.(1)求二次函数解析式;(2)将上述二次函数图象沿x轴向右平移2个单位,设平移后的图象与y轴的交点为C,顶点为P,求△POC的面积.28.(7分)如图,在△ABC中,∠B=90°,点P从点A开始沿AB边向点B以1cm/s 的速度移动,Q从点B开始沿BC边向C点以2cm/s的速度移动,如果点P、Q 分别从A、B同时出发,几秒钟后,△PBQ的面积等于8cm2?29.(7分)已知:如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(﹣1,0),点C(0,5),另抛物线经过点(1,8),M为它的顶点.(1)求抛物线的解析式;.(2)求△MCB的面积S△MCB30.(7分)某商店销售一种商品,每件的进价为2.5元,根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.5元时,销售量为500件,而单价每降低1元,就可以多售出200件.请你分析,销售单价多少时,可以获利最大?2014-2015学年甘肃省定西市漳县三中九年级(上)期中数学试卷参考答案与试题解析一、选择题(每题3分,共36分)1.(3分)将叶片图案旋转180°后,得到的图形是()A.B.C.D.【解答】解:因为图形旋转180°后与原图形中心对称,观察四个图形可知,图D符合题意.故选D.2.(3分)如图,在等腰直角△ABC中,∠B=90°,将△ABC绕顶点A逆时针方向旋转60°后得到△AB′C′,则∠BAC′=()A.60°B.105°C.120° D.135【解答】解:在等腰直角△ABC中,∠BAC=45°,∵旋转角为60°,∴∠CAC′=60°,∴∠BAC′=∠BAC+∠CAC′=45°+60°=105°.故选:B.3.(3分)在下列四个图案中,既是轴对称图形,又是中心对称图形是()A.B.C.D.【解答】解:A、此图形沿一条直线对折后能够完全重合,∴此图形是轴对称图形,也是中心对称图形,故此选项正确;B、此图形沿一条直线对折后不能够完全重合,∴此图形不是轴对称图形,是中心对称图形,故此选项错误.C、此图形沿一条直线对折后能够完全重合,∴此图形是轴对称图形,旋转180°不能与原图形重合,不是中心对称图形,故此选项错误;D、此图形沿一条直线对折后不能够完全重合,∴此图形不是轴对称图形,是中心对称图形,故此选项错误.故选:A.4.(3分)下列关系式中,属于二次函数的是(x为自变量)()A.y=x2B.y=C.y=D.y=a2x2【解答】解:A、y=x2,是二次函数,正确;B、y=,被开方数含自变量,不是二次函数,错误;C、y=,分母中含自变量,不是二次函数,错误;D、a=0时,a2=0,不是二次函数,错误.故选:A.5.(3分)函数y=x2﹣2x+3的图象的顶点坐标是()A.(1,﹣4)B.(﹣1,2)C.(1,2) D.(0,3)【解答】解:∵y=x2﹣2x+3=x2﹣2x+1+2=(x﹣1)2+2,故顶点的坐标是(1,2).故选:C.6.(3分)已知二次函数y=ax2+bx+c的图象如图所示,则下列结论正确的是()A.ab>0,c>0 B.ab>0,c<0 C.ab<0,c>0 D.ab<0,c<0【解答】解:∵抛物线的开口向上,∴a>0,∵与y轴的交点为在y轴的正半轴上,∴c>0,∵对称轴为x=﹣<0,∴a、b同号,即b>0,∴ab>0,c>0,∴A正确.故选:A.7.(3分)如图,若一次函数y=ax+b的图象经过二、三、四象限,则二次函数y=ax2+bx的图象可能是()A.B.C.D.【解答】解:∵y=ax+b的图象经过二、三、四象限,∴a<0,b<0,∴抛物线开口方向向下,∵抛物线对称轴为直线x=﹣<0,∴对称轴在y轴的左边,纵观各选项,只有C选项符合.故选:C.8.(3分)把抛物线y=﹣2x2+4x+1的图象向左平移2个单位,再向上平移3个单位,所得的抛物线的函数关系式是()A.y=﹣2(x﹣1)2+6 B.y=﹣2(x﹣1)2﹣6 C.y=﹣2(x+1)2+6 D.y=﹣2(x+1)2﹣6【解答】解:原抛物线的顶点坐标为(1,3),向左平移2个单位,再向上平移3个单位得到新抛物线的顶点坐标为(﹣1,6).可设新抛物线的解析式为:y=﹣2(x﹣h)2+k,代入得:y=﹣2(x+1)2+6.故选C.9.(3分)如果一元二次方程x2+(m+1)x+m=0的两个根是互为相反数,那么有()A.m=0 B.m=﹣1C.m=1 D.以上结论都不对【解答】解:设该一元二次方程的两个根分别是x1、x2,则根据题意知x1+x2=﹣(m+1)=0,即m+1=0,解得,m=﹣1;故选:B.10.(3分)不解方程,2x2+3x﹣1=0的两个根的符号为()A.同号B.异号C.两根都为正D.不能确定【解答】解:∵一元二次方程2x2+3x﹣1=0的二次项系数a=2,常数项c=﹣1,∴x1•x2==﹣<0,∴一元二次方程2x2+3x﹣1=0的两个根x1、x2的符号是异号;故选:B.11.(3分)若a为方程x2+x﹣5=0的解,则a2+a+1的值为()A.12 B.6 C.9 D.16【解答】解:∵a为方程x2+x﹣5=0的解,∴a2+a﹣5=0,∴a2+a=5则a2+a+1=5+1=6.故选:B.12.(3分)某超市2005年一月份的营业额为200万元,三月份营业额为288万元,如果每月比上月增长的百分数相同,则平均每月的增长率是()A.10% B.15% C.20% D.25%【解答】解:设增长率为x,根据题意得200(1+x)2=288,解得x=﹣2.2(不合题意舍去),x=0.2,所以每月的增长率应为20%,故选:C.二、填空题(每题4分,共32分)13.(4分)当m=±1时,方程(m2﹣1)x2﹣mx+5=0不是一元二次方程,当m≠±1时,上述方程是一元二次方程.【解答】解:∵方程(m2﹣1)x2﹣mx+5=0不是一元二次方程,∴m2﹣1=0,∴m=±1;∵方程(m2﹣1)x2﹣mx+5=0是一元二次方程,∴m2﹣1≠0,∴m≠±1;故答案为=±1;≠±1.14.(4分)如果x1,x2是方程2x2﹣3x﹣6=0的两个根,那么x1+x2=;x1•x2=﹣3.【解答】解:根据题意得x1+x2=﹣=,x1•x2==﹣3.故答案为,3.15.(4分)若方程x2﹣3x+m=0有两个相等的实数根,则m=,两个根分别为x1=x2=,.【解答】解:∵方程x2﹣3x+m=0有两个相等实数根,∴△=b2﹣4ac=9﹣4m=0,解之得:m=.∴原方程为:x2﹣3x+=0解得:x1=x2=.故答案为:,x1=x2=.16.(4分)以﹣3和7为根且二次项系数为1的一元二次方程是x2﹣4x﹣21=0.【解答】解:∵﹣3+7=4,﹣3×7=﹣21,∴﹣3和7为根且二次项系数为1的一元二次方程为x2﹣4x﹣21=0.故答案为x2﹣4x﹣21=0.17.(4分)若将二次函数y=x2﹣2x+3配方为y=(x﹣h)2+k的形式,则y=(x ﹣1)2+2.【解答】解:y=x2﹣2x+3=(x2﹣2x+1)+2=(x﹣1)2+2故本题答案为:y=(x﹣1)2+2.18.(4分)若抛物线y=x2﹣2x﹣3与x轴分别交于A,B两点,则AB的长为4.【解答】解:二次函数y=x2﹣2x﹣3与x轴交点A、B的横坐标为一元二次方程x2﹣2x﹣3=0的两个根,求得x1=﹣1,x2=3,则AB=|x2﹣x1|=4.19.(4分)抛物线y=x2+bx+c经过A(﹣1,0),B(3,0)两点,则这条抛物线的解析式为y=x2﹣2x﹣3.【解答】解:∵抛物线经过A(﹣1,0),B(3,0)两点,∴,∴抛物线解析式为y=x2﹣2x﹣3.20.(4分)已知二次函数y=ax2+bx+c的图象交x轴于A、B两点,交y轴于C点,且△ABC是直角三角形,请写出符合要求的一个二次函数的解析式:y=﹣x2+1.【解答】解:根据如果三角形一边上的中线等于这边的一半,那么这个是直角三角形,所以可以取C(0,1),A(﹣1,0),B(1,0)三点,设抛物线的表达式是y=ax2+1,抛物线过(1,0),所以a+1=0,a=﹣1.抛物线是:y=﹣x2+1.21.(4分)请写出一个开口向上,对称轴为直线x=2,且与y轴的交点坐标为(0,3)的抛物线的解析式y=(x﹣2)2﹣1.【解答】解:因为开口向上,所以a>0∵对称轴为直线x=2,∴﹣=2∵y轴的交点坐标为(0,3),∴c=3.答案不唯一,如y=x2﹣4x+3,即y=(x﹣2)2﹣1.22.(4分)已知抛物线y=x2+x+b2经过点(a,﹣)和(﹣a,y1),则y1的值是.【解答】解:已知抛物线y=x2+x+b2经过点(a,﹣),则有a2+a+b2=﹣;化简可得:(a+)2+b2=0;所以原函数式为:y=x2+x,点(﹣a,y1)即为(,y1),把x=代入y=x2+x中,得y1=.三、解答下列各题(52分)23.(6分)如图,已知△ABC和△A″B″C″及点O.(1)画出△ABC关于点O对称的△A′B′C′;(2)若△A″B″C″与△A′B′C′关于点O′对称,请确定点O′的位置.【解答】解:24.(12分)选择适当方法解下列方程:(1)x2﹣5x+1=0(用配方法);(2)3(x﹣2)2=x(x﹣2);(3)2x2﹣2x﹣5=0(公式法);(4)(y+2)2=(3y﹣1)2.【解答】解:(1)x2﹣5x=﹣1,x2﹣5x+()2=﹣1+()2,(x﹣)2=,x﹣=±,所以x1=,x2=;(2)3(x﹣2)2﹣x(x﹣2)=0,(x﹣2)(3x﹣6﹣x)=0,所以x1=2,x2=3;(3)△=(﹣2)2﹣4×2×(﹣5)=48x===,所以x1=,x2=;(4)(y+2)2﹣(3y﹣1)2=0,(y+2+3y﹣1)(y+2﹣3y+1)=0,y+2+3y﹣1=0或y+2﹣3y+1=0,所以y1=﹣,y2=.25.(4分)当m为何值时,一元二次方程x2+(2m﹣3)x+(m2﹣3)=0有两个不相等的实数根?【解答】解:根据题意得△=(2m﹣3)2﹣4(m2﹣3)>0,解得m<,所以当m<时,一元二次方程x2+(2m﹣3)x+(m2﹣3)=0有两个不相等的实数根.26.(4分)已知方程x2+2(k﹣2)x+k2+4=0有两个实数根,且这两个实数根的平方和比两根的积大21,求k的值和方程的两个根.【解答】解:∵方程x2+2(k﹣2)x+k2+4=0有两个实数根,∴△=4(k﹣2)2﹣4(k2+4)≥0,∴k≤0,设方程的两根分别为x1、x2,∴x1+x2=﹣2(k﹣2)…①,x1•x2=k2+4…②,∵这两个实数根的平方和比两根的积大21,即x12+x22=x1•x2+21,即(x1+x2)2﹣3x1•x2=21,把①、②代入得,4(k﹣2)2﹣3(k2+4)=21,∴k=17(舍去)或k=﹣1,∴k=﹣1,∴原方程可化为x2﹣6x+5=0,解得x1=1,x2=5.27.(5分)在直角坐标平面内,点O为坐标原点,二次函数y=x2+(k﹣5)x﹣(k+4)的图象交x轴于点A(x1,0)、B(x2,0),且(x1+1)(x2+1)=﹣8.(1)求二次函数解析式;(2)将上述二次函数图象沿x轴向右平移2个单位,设平移后的图象与y轴的交点为C,顶点为P,求△POC的面积.【解答】解:(1)由已知x1,x2是x2+(k﹣5)x﹣(k+4)=0的两根,∴又∵(x1+1)(x2+1)=﹣8∴x1x2+(x1+x2)+9=0∴﹣(k+4)﹣(k﹣5)+9=0∴k=5∴y=x2﹣9为所求;(2)由已知平移后的函数解析式为:y=(x﹣2)2﹣9,且x=0时y=﹣5∴C(0,﹣5),P(2,﹣9)∴S=×5×2=5.△POC28.(7分)如图,在△ABC中,∠B=90°,点P从点A开始沿AB边向点B以1cm/s 的速度移动,Q从点B开始沿BC边向C点以2cm/s的速度移动,如果点P、Q 分别从A、B同时出发,几秒钟后,△PBQ的面积等于8cm2?【解答】解:设x秒钟后,△PBQ的面积等于8cm2,其中0<x<6,由题意可得:2x(6﹣x)÷2=8解得x1=2,x2=4.经检验均是原方程的解.答:2或4秒钟后,△PBQ的面积等于8cm2.29.(7分)已知:如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(﹣1,0),点C(0,5),另抛物线经过点(1,8),M为它的顶点.(1)求抛物线的解析式;.(2)求△MCB的面积S△MCB【解答】解:(1)依题意:,解得∴抛物线的解析式为y=﹣x2+4x+5(2)令y=0,得(x﹣5)(x+1)=0,x1=5,x2=﹣1,∴B(5,0).由y=﹣x2+4x+5=﹣(x﹣2)2+9,得M(2,9)作ME⊥y轴于点E,可得S=S梯形MEOB﹣S△MCE﹣S△OBC=(2+5)×9﹣×4×2﹣×5×5=15.△MCB30.(7分)某商店销售一种商品,每件的进价为2.5元,根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.5元时,销售量为500件,而单价每降低1元,就可以多售出200件.请你分析,销售单价多少时,可以获利最大?【解答】解:设每件商品降价x元,商品的售价就是(13.5﹣x)元,单个的商品的利润是(13.5﹣x﹣2.5)元,这时商品的销售量是(500+200x)件.设总利润为y元,则y=(13.5﹣x﹣2.5)(500+200x)=﹣200x2+1700x+5500,∵﹣200<0,∴y有最大值;∴当x=﹣=4.25时,y 最大值==9112.5,即当每件商品降价4.25元,即售价为13.5﹣4.25=9.25时,可取得最大利润9112.5元.赠送初中数学几何模型【模型二】半角型:图形特征:45°4321A1FDAB正方形ABCD 中,∠EAF =45° ∠1=12∠BAD 推导说明:1.1在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且∠FAE =45°,求证:EF =BE +DF45°DEa +b-a45°A1.2在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且EF =BE +DF ,求证:∠FAE =45°E-aa B E挖掘图形特征:a+bx-aa 45°DBa+b-a45°A运用举例:1.正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=FM(2)当AE=1时,求EF的长.E2.如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,且∠BDC=120°.以D为顶点作一个60°角,使其两边分别交AB于点M,交AC于点N,连接MN,求△AMN的周长.ND CABM3.如图,梯形ABCD中,AD∥BC,∠C=90°,BC=CD=2AD=4,E为线段CD上一点,∠ABE=45°.(1)求线段AB的长;(2)动点P从B出发,沿射线..BE运动,速度为1单位/秒,设运动时间为t,则t为何值时,△ABP为等腰三角形;(3)求AE-CE的值.变式及结论:4.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图1),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图2),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图3),请你直接写出线段EF,BE,DF之间的数量关系.F第21页(共21页)。
定西市数学中考评价检测试卷(一)姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) -2013的绝对值是A . 2013B . -2013C .D .2. (2分)(2017·徐州) 肥皂泡的泡壁厚度大约是0.00000071米,数字0.00000071用科学记数法表示为()A . 7.1×107B . 0.71×10﹣6C . 7.1×10﹣7D . 71×10﹣83. (2分)如图,放置的一个机器零件(图1),若其主视图如(图2)所示,则其俯视图为()A .B .C .D .4. (2分) (2018八上·许昌期末) 下列运算正确的是()A .B .C .D .5. (2分) (2017七下·莆田期末) 下列调查中,适合进行普查的是()A . 《新闻联播》电视栏目的收视率B . 我国中小学生喜欢上数学课的人数C . 一批灯泡的使用寿命D . 一个班级学生的体重6. (2分)某农场开挖一条长480米的渠道,开工后,每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖x米,那么求x时所列方程正确的是()A .B .C .D .7. (2分)(2019·新宾模拟) 方程的根的情况是()A . 有两个不相等的实数根B . 没有实数根C . 有两个相等的实数根D . 有一个实数根8. (2分) (2019九上·兰州期末) 小芳和小丽是乒乓球运动员,在一次比赛中,每人只允许报“双打”或“单打”中的一项,那么至少有一人报“单打”的概率为()A .B .C .D .9. (2分)(2014·湖州) 如图,已知在Rt△ABC中,∠ABC=90°,点D是BC边的中点,分别以B、C为圆心,大于线段BC长度一半的长为半径画弧,两弧在直线BC上方的交点为P,直线PD交AC于点E,连接BE,则下列结论:①ED⊥BC;②∠A=∠EBA;③EB平分∠AED;④ED= AB中,一定正确的是()A . ①②③B . ①②④C . ①③④D . ②③④10. (2分)如图,在平面直角坐标系中,A(0,4),B(2,0),点C在第一象限,若以A、B、C为顶点的三角形与△AOB相似(不包括全等),则点C的个数是()A . 1B . 2C . 3D . 4二、填空题 (共5题;共6分)11. (1分) (2019七下·巴南月考) +- =________.12. (1分)若点p(a+1,a﹣2)在第四象限,则a的取值范围为________.13. (1分)(2013·徐州) 如图,点A、B、C在⊙O上,若∠C=30°,则∠AOB的度数为________°.14. (2分)如图,AB是⊙O的直径,点C在⊙O上,∠AOC=40°,D是BC弧的中点,则∠ACD=________.15. (1分)(2016·遵义) 如图,AC⊥BC,AC=BC,D是BC上一点,连接AD,与∠ACB的平分线交于点E,连接BE.若S△ACE= ,S△BDE= ,则AC=________.三、解答题 (共8题;共27分)16. (5分)先化简,再求值:,其中x=﹣1.5,y=2.17. (7分)(2018·江城模拟) 国家规定“中小学生每天在校体育活动时间不低于1小时”.为此,我区就“你每天在校体育活动时间是多少”的问题随机调查了区内300名初中学生.根据调查结果绘制成的统计图(部分)如图所示,其中分组情况是:A组:t<0.5h B组:0.5h≤t<1h C组:1h≤t<1.5h D组:t≥1.5h请根据上述信息解答下列问题:(1) C组的人数是________.(2)本次调查数据的中位数落在________组内;(3)若我区有5400名初中学生,请你估计其中达国家规定体育活动时间的人约有多少?18. (2分) (2017八下·定安期末) 如图,四边形ABCD为正方形.点A的坐标为(0,2),点B的坐标为(0,﹣3),反比例函数y= 的图象经过点C,一次函数y=ax+b的图象经过点A、C,(1)求反比例函数与一次函数的解析式;(2)求点P是反比例函数图象上的一点,△OAP的面积恰好等于正方形ABCD的面积,求P点的坐标.19. (2分)(2018·朝阳模拟) 如图,BD是□ABCD的对角线,AB⊥BD,BD=8cm,AD=10cm,动点P从点D出发,以5cm/s的速度沿DA运动到终点A,同时动点Q从点B出发,沿折线BD—DC运动到终点C,在BD、DC上分别以8cm/s、6cm/s的速度运动.过点Q作QM⊥AB,交射线AB于点M,连接PQ,以PQ与QM为边作□PQMN.设点P的运动时间为t(s)(t>0),□PQMN与□ABCD重叠部分图形的面积为S(cm2).(1) AP=________cm(同含t的代数式表示).(2)当点N落在边AB上时,求t的值.(3)求S与t之间的函数关系式.(4)连结NQ,当NQ与△ABD的一边平行时,直接写出t的值.20. (5分)(2018·烟台) 汽车超速行驶是交通安全的重大隐患,为了有效降低交通事故的发生,许多道路在事故易发路段设置了区间测速如图,学校附近有一条笔直的公路l,其间设有区间测速,所有车辆限速40千米/小时数学实践活动小组设计了如下活动:在l上确定A,B两点,并在AB路段进行区间测速.在l外取一点P,作PC⊥l,垂足为点C.测得PC=30米,∠APC=71°,∠BPC=35°.上午9时测得一汽车从点A到点B用时6秒,请你用所学的数学知识说明该车是否超速.(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,sin71°≈0.95,cos71°≈0.33,tan71°≈2.90)21. (2分) (2015八下·成华期中) 如图,点A的坐标是(﹣2,0),点B的坐标是(6,0),点C在第一象限内且△OBC为等边三角形,直线BC交y轴于点D,过点A作直线AE⊥BD,垂足为E,交OC于点F.(1)求直线BD的函数表达式;(2)求线段OF的长;(3)连接BF,OE,试判断线段BF和OE的数量关系,并说明理由.22. (2分)(2019·武汉模拟) 如图,在矩形ABCD中,E为CD的中点,F为BE上的一点,连结CF并延长交AB于点M,MN⊥CM交射线AD于点N.(1)当F为BE中点时,求证:AM=CE;(2)若 =2,求的值;(3)若 =n,当n为何值时,MN∥BE?23. (2分)如图,在平面直角坐标系中,抛物线y=mx2﹣8mx+4m+2(m>0)与y轴的交点为A,与x轴的交点分别为B(x1 , 0),C(x2 , 0),且x2﹣x1=4,直线AD∥x轴,在x轴上有一动点E(t,0)过点E作平行于y轴的直线l与抛物线、直线AD的交点分别为P、Q.(1)求抛物线的解析式;(2)当0<t≤8时,求△APC面积的最大值;(3)当t>2时,是否存在点P,使以A、P、Q为顶点的三角形与△AOB相似?若存在,求出此时t的值;若不存在,请说明理由.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共6分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共8题;共27分)16-1、17-1、17-2、17-3、18-1、18-2、19-1、19-2、19-3、20-1、21-1、21-2、21-3、22-1、22-2、22-3、23-1、23-2、23-3、。
定西市中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) 3的倒数是()A . 3B . -3C .D .2. (2分) (2016七下·蒙阴期中) 下列实数中,是无理数的为()A . ﹣3.567B . 0.101001C .D .3. (2分)如图,AB//CD ,EF⊥AB于E , EF交CD于F ,已知∠1=63°,则∠2=()A . 63°B . 53°C . 37°D . 27°4. (2分)下列运算正确的是()A .B .C .D .5. (2分) (2017八下·青龙期末) 下列调查中,最适合采用普查方式的是()A . 对我县青龙河流城水质情况的调查B . 对乘坐飞机的旅客是否携带违禁物品的调查C . 对一批节能灯管使用寿命的调查D . 对全县八年级学生视力情况的调查6. (2分) (2016七上·连州期末) 如图,由两块长方体叠成的几何体,从正面看它所得到的平面图形是()A .B .C .D .7. (2分)(2019·海珠模拟) 下列图形中是中心对称图形的是()A .B .C .D .8. (2分)(2020·新乡模拟) 若将函数y=2x2的图象向右平行移动1个单位,再向上平移3个单位,得到的抛物线是()A . y=2(x+5)2﹣1B . y=2(x+5)2+1C . y=2(x﹣1)2+3D . y=2(x+1)2﹣39. (2分) (2019八上·梅里斯达斡尔族月考) 如图,在△ABC,∠C=90°,按以下步骤作图:①以点A为圆心,小于AC的长为半径画弧,分别交AB,AC于点E、F;②分别以点E,F为圆心,大于 EF的长为半径画弧,两弧相交于点G;③作射线AG交BC边于点D,若CD=6, AB=15则△ABD的面积为()A . 45B . 30C . 15D . 6010. (2分)如图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若AC=6,BC=5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到如图2所示的“数学风车”,则这个风车的外围周长是()A . 76B . 72C . 68D . 52二、填空题 (共6题;共6分)11. (1分) (2018七上·翁牛特旗期末) 光年是天文学中的距离单位,1光年大约是95000亿 km,这个数据用科学记数法表示是________km12. (1分) (2019七上·潮安期末) 方程的解是________.13. (1分)若关于x的不等式组有解,且关于x的方程有非负整数解,则符合条件的所有整数k的积为________.14. (1分)一个口袋里放有三枚除颜色外都相同的棋子,其中有两枚是白色的,一枚是红色的.从中随机摸出一枚记下颜色,放回口袋搅匀,再从中随机摸出一枚记下颜色,两次摸出棋子颜色不同的概率是________ .15. (1分) (2020九下·哈尔滨月考) 如图,在菱形ABCD中,BD为对角线,点N为BC边上一点,连接AN,交BD于点L,点R为CD边上一点,连接AR、LR,若tan∠BLN=2,∠ARL=45°,AR=10 ,CR=10,则AL=________ 。
的算术平方根是(±C D定西模拟)试估计的大小范围是(384 400 000米的月球.这中,自变量B)与反比例函数,在同一直角坐标系中的图象如图所示,若y1>y2,则x的取值范围是﹣2<x<0或x>120户家庭的月用水量,结果如则关于这20户家庭的月用水量,下列说法错误的是()9.(2014•定西模拟)某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份平均每月的增长率为x,那么x满足的方程是()﹣6x+5的图象的顶点坐标是()二、填空题:(每小题3分,共8小题,共24分)11.(2014•定西模拟)计算:sin230°+sin260°+|﹣2|﹣3(3﹣π)0+2cos45°= .12.(2014•定西模拟)若x、y为实数,且,则x+y=.13.(2014•定西模拟)底面半径为1,高为的圆锥的侧面积等于.14.(2014•定西模拟)若单项式2x2y m与﹣3x n y3是同类项,则m+n的值是.15.(2014•定西模拟)若不等式组的解集是﹣1<x<2,则(a+b)2013=.16.(2014•定西模拟)已知小明同学身高1.5米,经太阳光照射,在地面的影长为2米,若此时测得一塔在同一地面的影长为60米,则塔高应为米.17.(2014•定西模拟)如图,一个圆形转盘被等分成八个扇形区域,上面分别标有数字1、2、3、4,转盘指针的位置固定,转动转盘后任其自由停止.转动转盘一次,当转盘停止转动时,记指针指向标有“3”所在区域的概率为P(3),指针指向标有“4”所在区域的概率为P(4),则P(3)P(4)(填“>”或“=”或“<”).18.(2014•定西模拟)如图所示,观察下列图形它们是按一定规律构造的,依照此规律,第n个图形中共有个三角形.三、解答题(一):(共5小题,共26分)19.(5分)(2014•定西模拟)先化简,再求值,其中a=2.20.(5分)(2014•定西模拟)《全民健身条例》于2009年10月1日起施行.《条例》指出,学校应当在课余时间和节假日向学生开放体育设施.为此泰顺七中对七年级(1)班“最喜欢的体育活动”进行调查(每位同学只选一个项目),得到一组数据.下图是根据这组数据绘制的条形统计图和扇形统计图.请结合统计图回答下列问题:(1)七年级(1)班总共有人;(2)扇形统计图中,篮球部分所对应的圆心角等于度;(3)①请补全条形统计图;②结合统计图,写出一条与(1)、(2)不同的信息:.21.(5分)(2014•定西模拟)如图,小明在楼上点A处观察旗杆BC,测得旗杆顶部B的仰角为30°,测得旗杆底部C的俯角为60°,已知点A距地面的高AD 为12m.求旗杆的高度.22.(5分)(2014•定西模拟)在达成铁路复线工程中,某路段需要铺轨.先由甲工程队独做2天后,再由乙工程队独做3天刚好完成这项任务.已知乙工程队单独完成这项任务比甲工程队单独完成这项任务多用2天,求甲、乙工程队单独完成这项任务各需要多少天?23.(6分)(2014•定西模拟)如图,在正方形网格中,△ABC 的三个顶点都在格点上,结合所给的平面直角坐标系解答下列问题:)将△ABC 向右平移5个单位长度,画出平移后的△A 1B 1C 1; )画出△ABC 关于x 轴对称的△A 2B 2C 2; )将△ABC 绕原点O 旋转180°,画出旋转后的△A 3B 3C 3; )在△A 1B 1C 1、△A 2B 2C 2、△A 3B 3C 3中,△ 与△ 成轴对称;△ 与△ 成中心对称. :(共5小题,共40分) (7分)(2014•定西模拟)某公司为希望小学捐赠甲、乙两种品牌的体育器材,甲品牌有A 、B 、C 三种型号,乙品牌有D 、E 两种型号,现要从甲、乙两种 )写出所有的选购方案(用列表法或树状图); )如果在上述选购方案中,每种方案被选中的可能性相同,那么A 型器材被选中的概率是多少? (7分)(2014•定西模拟)已知:y 是x 一次函数,且当x=2时,y=﹣3;且当x=﹣2时,y=1 )试求y 与x 之间的函数关系式; )当x 取何值时,y=5?26.(8分)(2014•定西模拟)如图,AB 是⊙O 直径,CB 是⊙O 的切线,切点为B ,OC 平行于弦AD .求证:DC 是⊙O 的切线.27.(8分)(2014•定西模拟)如图,一块矩形耕地长162m ,宽64m ,要在这块土地上沿东西和南北方向分别挖4条和2条水渠,如果水渠的宽相等,而且要保证余下的可耕地面积为9600m 2,那么水渠应挖多宽?28.(10分)(2014•定西模拟)如图,已知二次函数y=的图象与y轴交于点A,与x轴交于B、C两点,其对称轴与x轴交于点D,连接AC.(1)点A的坐标为,点C的坐标为;(2)线段AC上是否存在点E,使得△EDC为等腰三角形?若存在,求出所有符合条件的点E的坐标;若不存在,请说明理由;(3)点P为x轴上方的抛物线上的一个动点,连接PA、PC,若所得△PAC的面积为S,则S取何值时,相应的点P有且只有2个?。
2024年甘肃定西中考数学试题及答案考生注意:本试卷满分为150分,考试时间为120分钟.所有试题均在答题卡上作答,否则无效.一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1. 下列各数中,比2-小的数是( )A. 1-B. 4-C. 4D. 12. 如图所示,该几何体的主视图是( )A. B. C. D.3. 若55A ∠=︒,则A ∠的补角为( )A. 35︒B. 45︒C. 115︒D. 125︒4. 计算:4222a b a b a b -=--( )A. 2 B. 2a b - C. 22a b - D. 2a ba b--5. 如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,60ABD ∠=︒,2AB =,则AC 的长为( )A. 6B. 5C. 4D. 36. 如图,点A ,B ,C 在O 上,AC OB ⊥,垂足为D ,若35A ∠=︒,则C ∠的度数是( )A. 20︒B. 25︒C. 30︒D. 35︒7. 如图1,“燕几”即宴几,是世界上最早的一套组合桌,由北宋进士黄伯思设计.全套“燕几”一共有七张桌子,包括两张长桌、两张中桌和三张小桌,每张桌面的宽都相等.七张桌面分开可组合成不同的图形.如图2给出了《燕几图》中名称为“回文”的桌面拼合方式,若设每张桌面的宽为x 尺,长桌的长为y 尺,则y 与x 的关系可以表示为( )A. 3y x =B. 4y x =C. 31y x =+D.41y x =+8. 近年来,我国重视农村电子商务发展.下面的统计图反映了2016—2023年中国农村网络零售额情况.根据统计图提供的信息,下列结论错误的是( )A. 2023年中国农村网络零售额最高的B. 2016年中国农村网络零售额最低C 2016—2023年,中国农村网络零售额持续增加D. 从2020年开始,中国农村网络零售额突破20000亿元9. 敦煌文书是华夏民族引以为傲的艺术瑰宝,其中敦煌《算经》中出现的《田积表》部分如图1所示,它以表格形式将矩形土地的面积直观展示,可迅速准确地查出边长10步到60步的矩形田地面积,极大地提高了农田面积的测量效率.如图2是复原的部分《田积表》,表中对田地的长和宽都用步来表示,A 区域表示的是长15步,宽16步的田地面积为一亩,用有序数对记为()15,16,那么有序数对记为()12,17对应的田地面积为( )A. 一亩八十步B. 一亩二十步C. 半亩七十八步D. 半亩八十四步10. 如图1,动点P 从菱形ABCD 的点A 出发,沿边AB BC →匀速运动,运动到点C 时停止.设点P 的运动路程为x ,PO 的长为y ,y 与x 的函数图象如图2所示,当点P 运动到BC 中点时,PO 的长为( ).A 2 B. 3D. 二、填空题:本大题共6小题,每小题4分,共24分.11. 因式分解:228x -=________.12. 已知一次函数24y x =-+,当自变量2x >时,函数y 的值可以是________(写出一个合理的值即可).13. 定义一种新运算*,规定运算法则为:*n m n m mn =-(m ,n 均为整数,且0m ≠).例:32*32232=-⨯=,则(2)*2-=________.14. 围棋起源于中国,古代称为“弈”.如图是两位同学的部分对弈图,轮到白方落子,观察棋盘,白方如果落子于点________的位置,则所得的对弈图是轴对称图形.(填写A ,B ,C ,D 中的一处即可,A ,B ,C ,D 位于棋盘的格点上)15. 如图1为一汽车停车棚,其棚顶的横截面可以看作是抛物线的一部分,如图2是棚顶的竖直高度y (单位:m )与距离停车棚支柱AO 的水平距离x (单位:m )近似满足函数关系20.020.3 1.6y x x =-++的图象,点()62.68B ,在图象上.若一辆箱式货车需在停车棚下避雨,货车截面看作长4m CD =,高 1.8m DE =的矩形,则可判定货车________完全停到车棚内(填“能”或“不能”).16. 甘肃临夏砖雕是一种历史悠久的古建筑装饰艺术,是第一批国家级非物质文化遗产.如.图1是一块扇面形的临夏砖雕作品,它的部分设计图如图2,其中扇形OBC 和扇形OAD 有相同的圆心O ,且圆心角100O ∠=︒,若120OA =cm ,60OB =cm ,则阴影部分的面积是______ 2cm .(结果用π表示)三、解答题:本大题共6小题,共46分.解答时,应写出必要的文字说明、证明过程或演算步骤.17..18. 解不等式组:()223122x x x x ⎧-<+⎪⎨+<⎪⎩19. 先化简,再求值:()()()22222a b a b a b b ⎡⎤+-+-÷⎣⎦,其中2a =,1b =-.20. 马家窑文化以发达的彩陶著称于世,其陶质坚固,器表细腻,红、黑、白彩共用,彩绘线条流畅细致,图案繁缛多变,形成了绚丽典雅的艺术风格,创造了一大批令人惊叹的彩陶艺术精品,体现了古代劳动人民的智慧.如图1的彩陶纹样呈现的是三等分圆周,古人用等边三角形三点定位的方法确定圆周的三等分点,这种方法和下面三等分圆周的方法相通.如图2,已知O 和圆上一点M .作法如下:①以点M 为圆心,OM 长为半径,作弧交O 于A ,B 两点;②延长MO 交O 于点C ;即点A ,B ,C 将O 的圆周三等分.(1)请你依据以上步骤,用不带刻度的直尺和圆规在图2中将O的圆周三等分(保留作加油!有志者事竟成答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
甘肃省定西市安定区公园路中学2014届九年级下学期第一次月考数学试题一、选择题(共10道小题,每小题3分,共30分) 1. 如果向东走2km 记作+2km ,那么-3km 表示( ). A.向东走3km B.向南走3km C.向西走3km D.向北走3km 2. 如图所示的机器零件的左视图是( )3.若方程x 2-5x =0的一个根是a ,则a 2-5a +2的值为( ) A .-2 B .0C .2D .44.如图,⊙O 的半径OA 等于5,半径OC 与弦AB 垂直,垂足为D ,若OD =3,则弦AB 的长为( ) A .10 B .8 C .6D .45.已知圆锥的母线长为6cm ,底面圆的半径为3cm ,则此圆锥侧面展开图的面积为( ) A.18πcm 2 B.36πcm 2 C.12πcm 2 D.9πcm 26.如图,AD ⊥CD ,AB =13,BC =12,CD =3,AD =4,则sinB=( )A 、513B 、1213 C、35 D、457.直线y=kx-1一定经过点( ) A.(1,0) B.(1,k) C.(0,k) D.(0,-1)8.如图,位似图形由三角尺与其灯光照射下的中心投影组成,相似比为2:5,且三角尺的一边长为8cm ,则投影三角形的对应边长为( )A.8 cmB.20 cmC.3.2 cmD.10 cm9.如图,PA 、PB 与⊙O 相切,切点分别为A 、B ,PA =3,∠P =60°,若AC 为⊙O 的直径,则图中阴影部分的面积为( )A .2πB .6π3C .3π3D .π10.已知二次函数)0(2≠++=a c bx ax y 的图象如图所示, 对称轴为直线21-=x ,下列结论中,正确的是( )A .0>abcB .0=+b aC .02>+c bD .b c a 24<+二、填空题(共8道小题,每小题3分,共24分,)11. 若两圆的半径分别是2cm 和3cm ,圆心距为5cm ,则这两圆的位置关系是 12.若△ABC ∽△DEF ,且对应边BC 与EF 的比为2∶3,则△ABC 与△DEF 的面积等于______.13.如图,⊙O 的直径是AB ,CD 是⊙O 的弦,∠D =70°,则∠ABC 等于______. 14. 国家决定对某药品价格分两次降价,若设平均每次降价的百分率为x ,该药品原价为18元,降价后的价格为y 元,则y 与x 之间的函数关系式为 . 15.把抛物线y =x 2先向右平移4个单位,再向下平移2个单位所得的抛物线的解析式是____________ .16.一个多边形每个外角都是30°,这个多边形的边数是 ,它的内角和是 。
2014年数学试卷及答案一、选择题(每小题3分,共24分)1.下列各数中,最小的数是()(A). 0 (B).13(C).-13(D).-32. 据统计,2013年河南省旅游业总收入达到3875.5亿元.若将3875.5亿用科学计数法表示为3.8755×10n,则n等于()(A) 10 (B) 11 (C).12 (D).133.如图,直线AB、CD相交于O,射线OM平分∠AOC,O N⊥OM,若∠AOM =350,则∠CON的度数为()(A) .350(B). 450(C) .550(D). 6504.下列各式计算正确的是()(A)a +2a =3a2(B)(-a3)2=a6(C)a3·a2=a6(D)(a+b)2=a2 + b25.下列说法中,正确的是()(A)“打开电视,正在播放河南新闻节目”是必然事件(B)某种彩票中奖概率为10%是指买十张一定有一张中奖(c)神州飞船发射前钻要对冬部件进行抽样检查(D)了解某种节能灯的使用寿命适合抽样调查6:将两个长方体如图放皿,到所构成的几何体的左视田可能是()7.如图, ABCD 的对角线AC 与BD 相交于点O,AB ⊥AC.若AB =4,AC =6,则BD 的长是( ) (A)8 (B) 9 (C)10 (D )118.如图,在Rt △ABC 中,∠C=900,AC=1cm ,BC=2cm ,点P 从A 出发,以1cm/s 的速沿折线AC CB BA 运动,最终回到A 点。
设点P 的运动时间为x (s ),线段AP 的长度为y (cm ),则能反映y 与x 之间函数关系的图像大致是 ( )二、填空题(每小题3分,共21分) 9.计算:2-= . 10.不等式组3x 6042x 0+≥⎧⎨-⎩>的所有整数解的和是.11.在△ABC 中,按以下步骤作图:①分别以B 、C 为圆心,以大于12BC 的长为半径作弧,两弧相交于两点M 、N ;②作直线MN 交AB 于点D ,连接CD. 若CD=AC ,∠B=250,则∠ACB 的度数为 .12.已知抛物线y=ax 2+bx+c(a ≠0)与x 轴交于A 、B 两点.若点A 的坐标为(-2,0),抛物线的对称轴为直线x=2.则线段AB 的长为 .13.一个不进明的袋子中装有仅颇色不同的2个红球和2个白球,两个人依次从袋子中随机摸出一个小球不放回,到第一个人摸到红球且第二个人摸到白球的概率是 .14.如图,在菱形ABCD 中,AB =1,∠DAB=600,把菱形ABCD 绕点A 顺时针旋转300得到菱形AB'C'D',其中点C 的运动能路径为/CC,则图中阴影部分的面积为 .15.如图,矩形ABCD 中,AD=5,AB=7.点E 为DC 上一个动点,把△ADE 沿AE 折叠,当点D 的对应点D /落在∠ABC 的角平分线上时,DE 的长为 .三、解答题(本大题共8个,满分75分) 16.(8分)先化简,再求值:222x 1x 12x x x ⎛⎫-+÷+ ⎪-⎝⎭,其中117.(9分)如图,CD 是⊙O 的直径,且CD=2cm ,点P 为CD 的延长线上一点,过点P 作⊙O 的切线PA 、PB ,切点分别为点A 、B.(1)连接AC,若∠APO =300,试证明△ACP 是等腰三角形; (2)填空:①当DP= cm 时,四边形AOBD 是菱形; ②当DP= cm 时,四边形AOBP 是正方形.18.(9分)某兴趣小组为了解本校男生参加课外体育锻炼情况,随机抽取本校300名男生进行了问卷调查,统计整理并绘制了如下两幅尚不完整的统计图.请根据以上信息解答下列问题:(1)课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为 ; (2)请补全条形统计图;(3)该校共有1200名男生,请估什全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数;(4)小明认为“全校所有男生中,课外最喜欢参加的运动项目是乒乓球的人数约为1200×27300=108”,请你判断这种说法是否正确,并说明理由.19.(9分)在中俄“海上联合—2014”反潜演习中,我军舰A测得潜艇C的俯角为300.位于军舰A正上方1000米的反潜直升机B侧得潜艇C的俯角为680.试根据以上数据求出潜艇C离开海平面的下潜深度.(结果保留整数。
甘肃省定西市中考数学试卷及答案(本试卷满分为150分,考题时间为120分钟)A 卷(满分100分)一、选择题(本大题共10小题,每小题4分,共40分.每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来.) 1.图中几何体的主视图是2.下列运算中,计算结果正确的是A .x 2·x 3=x 6B .x 2n ÷x n -2=x n +2C .(2x 3)2=4x 9D .x 3+x 3=x3.如果两圆的半径分别为2和1,圆心距为3,那么能反映这两圆位置关系的图是4.多项式2a 2-4ab +2b 2分解因式的结果正确的是A .2(a 2-2ab +b 2)B .2a (a -2b )+2b 2C .2(a -b ) 2D .(2a -2b ) 25.如图,将三角板的直角顶点放在两条平行线a 、b 中的直线b 上,如果∠1=40°,则∠2的度数是 A .30° B .45° C .40° D .50°6.在a 2□4a □4的空格中,任意填上“+”或“-”,在所得到的代数式中,可以构成完全平方式的概率是 A .12 B .13 C .14 D .1 7.将二次函数y =x 2-2x +3化为y =(x -h )2+k 的形式,结果为A .y =(x +1)2+4B .y =(x -1)2+4C .y =(x +1)2+2D .y =(x -1)2+2 8.样本数据3、6、a 、4、2的平均数是5,则这个样本的方差是 A .8B .5C .2 2D .39.一个圆锥的侧面展开图是半径为1的半圆,则该圆锥的底面半径是 A .13 B .12 C .34D .1 10.如图,有一块矩形纸片ABCD ,AB =8,AD =6.将纸片折叠,使得AD 边落在AB 边上,折痕为AE ,再将△AED 沿DE 向右翻折,AE 与BC 的交点为F ,则CF 的长为a b 1C . B . A .D .正面A .6B .4C .2D .1二、填空题(本大题共8小题,每小题4分,共32分.只要求填写最后结果.) 11.计算8-12=_ ▲ . 12.若x +y =3,xy =1,则x 2+y 2=_ ▲ .13.为了测量校园内一棵不可攀的树的高度,学校数学应用实践小组做了如下的探索:根据光的反射定律,利用一面镜子和皮尺,设计如图所示的测量方案:把镜子放在离树(AB )8.7m 的点E 处,然后观测考沿着直线BE 后退到点D ,这时恰好在镜子里看到树梢顶点A ,再用皮尺量得DE =2.7m ,观测者目高CD =1.6m ,则树高AB 约是_ ▲ .(精确到0.1m )14.如图(1),在宽为20m ,长为32m 的矩形耕地上修建同样宽的三条道路(横向与纵向垂直),把耕地分成若干小矩形块,作为小麦试验田国,假设试验田面积为570m 2,求道路宽为多少?设宽为x m ,从图(2)的思考方式出发列出的方程是_ ▲ .15.如图,点A 、B 在数轴上,它们所对应的数分别是-4与2x +23x -5,且点A 、B 到原点的距离相等.则x =_ ▲ .16.计算:sin 230°+tan44°tan46°+sin 260°=_ ▲ .17.抛物线y =-x 2+bx +c 的部分图象如图所示,若函数y >0值时,则x 的取值范围是_▲ .(1)(2)EB D CE18.如图,在梯形ABCD 中,AB ∥CD ,∠BAD =90°,AB =6,对角线AC 平分∠BAD ,点E 在AB 上,且AE =2(AE <AD ),点P 是AC 上的动点,则PE +PB 的最小值是_ ▲ .三、解答题(本大题共3小题,其中19题9分,20题6分,21题13分,共28分.)解答时写出必要的文字说明及演算过程.19.本题共9分(其中第Ⅰ小题4分,第Ⅱ小题5分)Ⅰ.先化简(,再从-2、-1、0、1、2中选一个你认为适合的数作为x 的值代入求值.Ⅱ.已知l 1:直线y =-x +3和l 2:直线y =2x ,l 1与x 轴交点为A .求: (1)l 1与l 2的交点坐标.(2)经过点A 且平行于l 2的直线的解析式20.已知,如图E 、F 是四边形ABCD 的对角线AC 上的两点,AF =CE ,DF =BE ,DF ∥BE ,四边形ABCD 是平行四边形吗?请说明理由.21.本题共13分(其中第Ⅰ小题6分,第Ⅱ小题7分)Ⅰ.爱养花的李先生为选择一个合适的时间去参观西安世界园艺博览会,他查阅了5月10日至16日是(星期一至星期日)每天的参观人数,得到图(1)、图(2)所示的统计图.其中图(1)是每天参观人数的统计图,图(2)是5月15日是(星期六)这一天上午、BAED F中午、下午和晚上四个时段参观人数的扇形统计图,请你根据统计图解答下面的问题: (1)5月10日至16日这一周中,参观人数最多的是日是_ ▲ ,有_ ▲ 万人,参观人数最少的是日是_ ▲ ,有_ ▲ 万人,中位数是_ ▲ .(2)5月15日是(星期六)这一天,上午的参观人数比下午的参观人数多多少人?(精确到1万人)(3)如果李先生想尽可能选择参观人数较少的时间参观世园会,你认为选择什么时间较合适?Ⅱ.如图在等腰Rt △OBA 和Rt △BCD 中,∠OBA =∠BCD =90°,点A 和点C 都在双曲线y =4x(k >0)上,求点D 的坐标.B 卷(满分50分)四、解答题(本大题共50分,解答时写出必要的演算步骤过程及推理过程.) 22.(8分)如图,在平面直角坐标系中,O 为坐标原点,每个小方格的边长为1个单位长度.正方形ABCD 顶点都在格点上,其中,点A 的坐标为 (1,1).(1)若将正方形ABCD 绕点A 顺时针方向旋转,点B 到达点B 1,点C 到达点C 1,点D 到达点D 1,求点B 1、C 1、D 1的坐标.(2)若线段AC 1的长度..与点D 1的横坐标...的差.恰好是一元二次方程x 2+ax +1=0的一个根,求a 的值.第220题A BC D Ox y ABCD Oxyy =4x23.(10分)某校开展的一次动漫设计大赛,杨帆同学运用了数学知识进行了富有创意的图案设计,如图(1),他在边长为1的正方形ABCD 内作等边△BCE ,并与正方形的对角线交于点F 、G ,制作如图(2)的图标,请我计算一下图案中阴影图形的面积.24.(10分)某电脑公司各种品牌、型号的电脑价格如下表,育才中学要从甲、乙两种品牌电脑中各选择一种型号的电脑.(1)写出所有选购方案(利用树状图或列表方法表示).如果各种选购方案被选中的可能性相同,那么A 型号电脑被选中的概率是多少?(2)该中学预计购买甲、乙两种品牌电脑共36台,其中甲品牌电脑只选了A 型号,学校规定购买费用不能高于10万元,又不低于9.2万元,问购买A 型号电脑可以是多少台?甲乙型号 ABCDE单价(元/台)6000400025005000200025.(10分)在△ABC 中,AB =AC ,点O 是△ABC 的外心,连接AO 并延长交BC 于D ,交△ABC的外接圆于E ,过点B 作⊙O 的切线交AO 的延长线于Q ,设OQ =92,BQ =32.(1)求⊙O 的半径;(2)若DE =35,求四边形ACEB 的周长.26.(10分)在梯形OABC 中,CB ∥OA ,∠AOC =60°,∠OAB =90°,OC =2,BC =4,以点O为原点,OA 所在的直线为x 轴,建立平面直角坐标系,另有一边长为2的等边△DEF ,DE 在x 轴上(如图(1)),如果让△DEF 以每秒1个单位的速度向左作匀速直线运动,开始时点D 与点A 重合,当点D 到达坐标原点时运动停止.(1)设△DEF 运动时间为t ,△DEF 与梯形OABC 重叠部分的面积为S ,求S 关于t 的函数关系式.(2)探究:在△DEF 运动过程中,如果射线DF 交经过O 、C 、B 三点的抛物线于点G ,是否存在这样的时刻t ,使得△OAG 的面积与梯形OABC 的面积相等?若存在,求出t 的值;若不存在,请说明理由.A B C QED OA B CDE GF O (1)AD E GF (2)数学试题参照答案及评分标准A卷(满分100分)一、选择题(满分40分)评分标准:答对一题得4分,不答或答错均得0分1.D 2.B 3.B 4.C 5.D 6.A 7.D 8.A 9.B10.C二、填空题(满分32分)评分标准:在每小题后的横线上填上最终结果,答对一题得4分,不答或答错和不是最终结果均得0分.11.7 13.5.2 14.(322)(2)570x x x--= 15.112.25或16.2 17.31x-<< 18.三、解答题(满分28分)19.Ⅰ.原式=2(1)(1)1x x xx--++·21xx-.=11x+·(1)(1)x xx+-=1xx-当2x=-时,原式=32(或当x==22)Ⅱ.解:(1)设直线1l与2l的交点为M,则由32y xy x=-+⎧⎨=⎩解得1,2.x y =⎧⎨=⎩∴(12)M ,.(2)设经过点A 且平行于2l 的直线的解析式为2.y x b =+ ∵直线1l 与x 轴的交点(30)A , ∴60b +=, ∴ 6.b =-则:所求直线的解析式为2 6.y x =-20.解:结论:四边形ABCD 是平行四边形. 证明:∵DF ∥BE . ∴∠AFD =∠CEB .又∵AF CE DF BE ==,, ∴△AFD ≌△CEB (SAS ). ∴AD CB =,∠DAF =∠BCE . ∴AD ∥CB .∴四边形ABCD 是平行四边形.说明:其它证法可参照上面的评分标准评分.21.Ⅰ.①15,34;10,16;22万; ②34(74%-6%)≈23(万人)③答案不唯一,只要符合题意均可得分. Ⅱ.解:点A 在双曲线4y x=上,且在△OBA 中,AB OB =,∠90OBA =°则4OB AB =. ∴2AB OB ==过点C 作CE ⊥x 轴于E CF ,⊥y 轴于F .设BE x =. 由在BCD △中90BC CD BCD ==,∠°.则CE x =. 又点C 在双曲线4y x=上 (2) 4.x x ∴+=解得10x x =>,,1.21)x OD ∴=∴=+=∴点D .B 卷(满分50分)四、解答题(本大题共50分,解答时写出必要的演算步骤及推理过程)22.解:(1)由已知111(21)(40)(32)B C D -,,,,, (2)由勾股定理得:AC =则3)是方程210x ax ++=的一根,设另一根为0x ,则0x 3)=1.03x ==3)3)]a ∴=-+=-另解:23)3)10a a ++==,23.解:连接FG 并延长交AB 于M AC ,于N , BCE △和四边形ABCD 分别是正三角形和正方形..4530MN AB MN CD BAC ABE ∴⊥⊥=︒=︒,∠,∠∴设MF x =,则 1.x +=122.BCE ABF x S S S S ∴==∴--△△阴影正方形=112==另解:14BCDF S S S =-阴影正方形四边形1111()(12)4222264=---⨯-=24.解:(1)树状图如下:共有6种选购方案:(,)A D 、(B ,D )、(C ,D )、(A ,E )、(B ,E )、(C ,E ).1(.3P A 型号被选中)=(2) 设购买A 型号x 台,由(1)知当选用方案(,)A D 时:由已知9200060005000(36)100000x x +-≤≤得8880x --≤≤,不符合题意.当选用方案()A E ,时,由已知:9200060002000(36)100000x x +-≤≤ 得57.x ≤≤答:购买A 型号电脑可以是5台,6台或7台. 25.(1)连接OB BQ ,切O 于B ..OB BQ ∴⊥在Rt OBQ △中,92OQ BQ ==,32OB ∴==. 即O 的半径是32.(2)延长BO 交AC 于F .AB BC =则.AB BC BF AC =∴⊥,又AE 是O 的直径,90ACE ABE ∴==︒∠∠.BF CE ∴∥(另解:DBF OBA OAB DCE =∠=∠=∠∠) ..33521.3325BOD CED BO ODCE DEDE BO CE OD ∴∴=⨯∴===-△∽△∴在Rt ACE △中,3,1AE CE ==,则AC =又O 是AE 的中点,1122OF CF ∴==,则 2.BF = ∴在Rt ABF △中,12AF AC ==AB ∴=在Rt ABE △,BE =(如用ABQ BEQ △∽△及解Rt ABE △得AB BE ,,计算正确也得分) 故:四边形ACEB的周长是:1+26.解:(1)DEF △是边长为2OABC 中,2460OC BC COA AB x ===︒⊥,,∠,轴5,OA AB ∴==依题意:①当201t <≤时 ②222122)(2)422t S t t <<=--=--+时,③当25t S =≤≤时(2)由已知点(00)(1(5O C B ,,,设过点O 、C 、B 的抛物线的解析式为2.y ax bx =+则255a b a b =+=+,, 解得5a b ⎧=-⎪⎪⎨⎪=⎪⎩∴该抛物线的解析式为:255y x x =-+. ∴若存在点G ,使得DCA OABC S S =△梯形;此时,设点G 的坐标为2().55x x x -+,射线DF 与抛物线的交点在x 轴上方.2115()(54)22x ∴⨯⨯=⨯+化简得2690x x -+=,解得 3.x =则此时点(3G GH x ⊥,作轴于H ,则9cot 605DH GH =︒== ∴此时9192)55t =+=(秒 故:存在时刻195t =(秒)时,OAG △与梯形OABC 的面积相等.。
2014年陕西中考数学试卷第Ⅰ卷(选择题 共30分)一.选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.4的算术平方根是( B )A .-2 B.2 C.21- D. 21考点: 算术平方根.分析: 根据算术平方根的定义进行解答即可.解答: 解:∵22=4,∴4的算术平方根是2.点评: 本题考查了算术平方根的定义,熟记定义是解题的关键.2.下面是一个正方体被截去一个直三棱柱得到的几何体,则该几何体的左视图是( A )考点: 简单几何体的三视图;截一个几何体.分析: 根据三视图的特点,知道左视图从图形的左边向右边看,看到一个正方形的面,在面上有一条实线,得到结果.解答: 解:左视图从图形的左边向右边看,看到一个正方形的面,在面上有一条实线,点评: 本题考查空间图形的三视图,本题是一个基础题,正确把握三视图观察角度是解题关键.3.若点A (-2,m )在正比例函数y=21-x 的图像上,则m 的值是( C ) A .41 B. 41- C.1 D. -1 考点: 一次函数图象上点的坐标特征.分析: 利用待定系数法代入正比例函数y =﹣x 可得m 的值.解答: 解:∵点A (﹣2,m )在正比例函数y =﹣x 的图象上,∴m =﹣×(﹣2)=1,点评: 此题主要考查了一次函数图象上点的坐标特点,关键是掌握凡是函数图象经过的点必能满足解析式.4.小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是(A )A .101 B. 91 C. 61 D. 51 考点: 概率公式.分析: 由一共有10种等可能的结果,小军能一次打开该旅行箱的只有1种情况,直接利用概率公式求解即可求得答案.解答: 解:∵一共有10种等可能的结果,小军能一次打开该旅行箱的只有1种情况,∴小军能一次打开该旅行箱的概率是:.点评: 此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.5.把不等式组的解集表示在数轴上,正确的是(D )考点: 在数轴上表示不等式的解集;解一元一次不等式组.分析: 先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可解答:解:解得,点评: 把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6.某区10名学生参加市级汉字听写大赛,他们得分情况如下表:人数3 4 2 1 得分 80 85 90 95那么这10名学生所得分数的平均数和众数分别是( B )A.80和82.5B.85.5和85C.85和85D.85.5和80考点: 众数;中位数.分析: 根据众数及平均数的定义,即可得出答案.解答: 解:这组数据中85出现的次数最多,故众数是85;平均数=(80×3+085×4+90×2+95×1)=85.点评: 本题考查了众数及平均数的知识,掌握各部分的概念是解题关键.7.如图,AB ∥CD ,∠A=45°,∠C=28°,则∠AEC 的大小为(D )A.17°B.62°C.63°D.73°考点: 平行线的性质.分析: 首先根据两直线平行,内错角相等可得∠ABC =∠C =28°,再根据三角形内角与外角的性质可得∠AEC =∠A +∠ABC .解答: 解:∵AB ∥CD ,∴∠ABC =∠C =28°,∵∠A =45°,∴∠AEC =∠A +∠ABC =28°+45°=73°,点评: 此题主要考查了平行线的性质,以及三角形内角与外角的性质,关键是掌握两直线平行,内错角相等,三角形的外角等于与它不相邻的两个内角之和.8.若x=-2是关于x 的一元二次方程02522=+-a ax x 的一个根,则a 的值为 ( B ) A.1或4 B. -1或-4 C. -1或4 D. 1或-4考点: 一元二次方程的解.分析: 将x =﹣2代入关于x 的一元二次方程x 2﹣ax +a 2=0,再解关于a 的一元二次方程即可.解答: 解:∵x =﹣2是关于x 的一元二次方程x 2﹣ax +a 2=0的一个根,∴4+5a +a 2=0,∴(a +1)(a +4)=0,解得a 1=﹣1,a 2=﹣4,点评: 本题主要考查了一元二次方程的解的定义,解题关键是把x 的值代入,再解关于a 的方程即可.9.如图,在菱形ABCD 中,AB=5,对角线AC=6,若过点A 作AE ⊥BC ,垂足为E ,则AE 的长为( C )A .4 B. 512 C. 524 D.5 考点: 菱形的性质.分析: 连接BD ,根据菱形的性质可得AC ⊥BD ,AO =AC ,然后根据勾股定理计算出BO长,再算出菱形的面积,然后再根据面积公式BC •AE =AC •BD 可得答案.解答:解:连接BD ,∵四边形ABCD 是菱形, ∴AC ⊥BD ,AO =AC ,BD =2BO ,∴∠AOB =90°,∵AC =6,∴AO =3,∴B 0==4,∴DB =8,∴菱形ABCD 的面积是×AC •DB =×6×8=24,∴BC •AE =24,AE =,点评: 此题主要考查了菱形的性质,以及菱形的性质面积,关键是掌握菱形的对角线互相垂直且平分.10.二次函数)0(2≠++=a c bx ax y 的图像如图所示,则下列结论中正确的是( )A .c >-1 B.b >0 C.2a+b ≠0 D. 92a +c >3b考点: 二次函数图象与系数的关系.专题: 数形结合.分析: 由抛物线与y 轴的交点在点(0,﹣1)的下方得到c <﹣1;由抛物线开口方向得a >0,再由抛物线的对称轴在y 轴的右侧得a 、b 异号,即b <0;由于抛物线过点(﹣2,0)、(4,0),根据抛物线的对称性得到抛物线对称轴为直线x =﹣=1,则2a +b =0;由于当x =﹣3时,y <0,所以9a ﹣3b +c >0,即9a +c >3b .解答: 解:∵抛物线与y 轴的交点在点(0,﹣1)的下方.∴c <﹣1;∵抛物线开口向上,∴a >0,∵抛物线的对称轴在y 轴的右侧,∴x =﹣>0, ∴b <0;∵抛物线过点(﹣2,0)、(4,0),∴抛物线对称轴为直线x =﹣=1,∴2a +b =0;∵当x =﹣3时,y <0,∴9a ﹣3b +c >0,即9a +c >3b .故选D .点评: 本题考查了二次函数的图象与系数的关系:二次函数y =ax 2+bx +c (a ≠0)的图象为抛物线,当a >0,抛物线开口向上;对称轴为直线x =﹣;抛物线与y 轴的交点坐标为(0,c );当b 2﹣4ac >0,抛物线与x 轴有两个交点;当b 2﹣4ac =0,抛物线与x轴有一个交点;当b 2﹣4ac <0,抛物线与x 轴没有交点.第Ⅱ卷(非选择题 共90分)二.填空题(共6小题,每小题3分,计18分)11.计算:2)31(--=___9___.考点: 负整数指数幂.专题: 计算题.分析: 根据负整数指数幂的运算法则进行计算即可.解答: 解:原式===9. 点评: 本题考查的是负整数指数幂,即负整数指数幂等于该数对应的正整数指数幂的倒数.12.因式分解:m(x-y)+n(x-y)=_ (x ﹣y )(m +n )____________.考点: 因式分解-提公因式法.分析: 直接提取公因式(x ﹣y ),进而得出答案.解答: 解:m (x ﹣y )+n (x ﹣y )=(x ﹣y )(m +n ).点评: 此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.13.请从以下两个小题中任选一个....作答,若多选,则按所选做的第一题计分. A.一个正五边形的对称轴共有___5__条.B.用科学计算器计算:︒+56tan 331≈__10.02 ______.(结果精确到0.01)考点: 轴对称的性质.分析: 过正五边形的五个顶点作对边的垂线,可得对称轴.解答: 解:如图,正五边形的对称轴共有5条.故答案为:5.点评: 本题考查了轴对称的性质,熟记正五边形的对称性是解题的关键.14.如图,在正方形ABCD 中,AD=1,将△ABD 绕点B 顺时针旋转45°得到△A ′BD ′,此时A ′D ′与CD 交于点E ,则DE 的长度为_2﹣.______.考点: 旋转的性质.分析: 利用正方形和旋转的性质得出A ′D =A ′E ,进而利用勾股定理得出BD 的长,进而利用锐角三角函数关系得出DE 的长即可.解答: 解:由题意可得出:∠BDC =45°,∠DA ′E =90°,∴∠DEA ′=45°,∴A ′D =A ′E ,∵在正方形ABCD 中,AD =1,∴AB =A ′B =1,∴BD =, ∴A ′D =﹣1,∴在Rt △DA ′E 中,DE ==2﹣.点评: 此题主要考查了正方形和旋转的性质以及勾股定理、锐角三角函数关系等知识,得出A ′D 的长是解题关键.15.已知),(111y x P ,),(222y x P 是同一个反比例函数图像上的两点.若212+=x x ,且 211112+=y y ,则这个反比例函数的表达式为___ y =______. 考点: 反比例函数图象上点的坐标特征.分析: 设这个反比例函数的表达式为y =,将P 1(x 1,y 1),P 2(x 2,y 2)代入得x 1•y 1=x 2•y 2=k ,所以=,=,由=+,得(x 2﹣x 1)=,将x 2=x 1+2代入,求出k =4,得出这个反比例函数的表达式为y =.解答: 解:设这个反比例函数的表达式为y =,∵P 1(x 1,y 1),P 2(x 2,y 2)是同一个反比例函数图象上的两点,∴x 1•y 1=x 2•y 2=k ,∴=,=, ∵=+,∴=+,∴(x 2﹣x 1)=,∵x 2=x 1+2,∴×2=,∴k =4,∴这个反比例函数的表达式为y =.点评: 本题考查了反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积应等于比例系数.同时考查了式子的变形.16.如图,⊙O的半径是2,直线l与⊙O相交于A、B两点,M、N是⊙O上两个动点,且在直线l的异侧,若∠AMB=45°,则四边形MANB面积的最大值是__4______.考点:垂径定理;圆周角定理.专题:计算题.分析:过点O作OC⊥AB于C,交⊙O于D、E两点,连结OA、OB、DA、DB、EA、EB,根据圆周角定理得∠AOB=2∠AMB=90°,则△OAB为等腰直角三角形,所以AB=OA=2,由于S四边形MANB=S△MAB+S△NAB,而当M点到AB的距离最大,△MAB的面积最大;当N点到AB的距离最大时,△NAB的面积最大,即M点运动到D点,N点运动到E点,所以四边形MANB面积的最大值=S四边形=S△DAB+S△EAB=AB•CD+AB•CE=AB(CD+CE)=AB•DE=×2×4=4.DAEB解答:解:过点O作OC⊥AB于C,交⊙O于D、E两点,连结OA、OB、DA、DB、EA、EB,如图,∵∠AMB=45°,∴∠AOB=2∠AMB=90°,∴△OAB为等腰直角三角形,∴AB=OA=2,∵S四边形MANB=S△MAB+S△NAB,∴当M点到AB的距离最大,△MAB的面积最大;当N点到AB的距离最大时,△NAB的面积最大,即M点运动到D点,N点运动到E点,此时四边形MANB面积的最大值=S四边形DAEB=S△DAB+S△EAB=AB•CD+AB•CE=AB(CD +CE )=AB •DE =×2×4=4.点评: 本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了圆周角定理.三.解答题(共9小题,计72分.解答应写出过程)17.(本题满分5分)先化简,再求值: 11222+--x x x x ,其中x=21-. 考点: 分式的化简求值.专题: 计算题.分析: 原式通分并利用同分母分式的减法法则计算得到最简结果,将x 的值代入计算即可求出值.解答:解:原式=﹣==, 当x =﹣时,原式==.点评: 此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.18.(本题满分6分)如图,在Rt △ABC 中,∠ABC=90°,点D 在边AB 上,使DB=BC ,过点D 作EF ⊥AC ,分别交AC 于点E 、CB 的延长线于点F.求证:AB=BF.考点:全等三角形的判定与性质.专题:证明题.分析:根据EF⊥AC,得∠F+∠C=90°,再由已知得∠A=∠F,从而AAS证明△FBD≌△ABC,则AB=BF.解答:证明:∵EF⊥AC,∴∠F+∠C=90°,∵∠A+∠C=90°,∴∠A=∠F,在△FBD和△ABC中,,∴△FBD≌△ABC(AAS),∴AB=BF.点评:本题考查了全等三角形的判定和性质,是基础知识要熟练掌握.19.(本题满分7分)根据《2013年陕西省国民经济和社会发展统计公报》提供的大气污染物(A—二氧化硫,B—氮氧化物,C—化学需氧量,D—氨氮)排放量的相关数据,我们将这些数据用条形统计图和扇形统计考点:条形统计图;扇形统计图.专题:图表型.分析:(1)用A的排放量除以所占的百分比计算求出2013年总排放量,然后求出C的排放量,再根据各部分所占的百分比之和为1求出D的百分比,乘以总排放量求出D的排放量,然后补全统计图即可;(2)用A、C的排放量乘以减少的百分比计算即可得解.解答:解:(1)2013年总排放量为:80.6÷37.6%≈214.4万吨,C的排放量为:214.4×24.2%≈51.9万吨,D的百分比为1﹣37.6%﹣35.4%﹣24.2%=2.8%,排放量为214.4×2.8%≈6.0万吨;(2)由题意得,(80.6+51.9)×2%≈2.7万吨,答:陕西省2014年二氧化硫、化学需氧量的排放量供需减少约2.7万吨.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.图统计如下:根据以上统计图提供的信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)国务院总理李克强在十二届全国人大二次会议的政府工作报告中强调,建设美好家园、加大节能减排力度,今年二氧化硫、化学需氧量的排放量在去年基础上都要减少2%.按此指示精神,求出陕西省2014年二氧化硫、化学需氧量的排放量共需减少约多少万吨?(结果精确到0.1)20.(本题满分8分)某一天,小明和小亮来到一河边,想用遮阳帽和皮尺测量这条河的大致宽度,两人在确保无安全隐患的情况下,先在河岸边选择了一点B(点B与河对岸岸边上的一棵树的底部点D所确定的直线垂直于河岸).①小明在B点面向树的方向站好,调整帽檐,使视线通过帽檐正好落在树的底部点D处,如图所示,这时小亮测得小明眼睛距地面的距离AB=1.7米;②小明站在原地转动180°后蹲下,并保持原来的观察姿态(除身体重心下移外,其他姿态均不变),这时视线通过帽檐落在了DB延长线上的点E处,此时小亮测得BE=9.6米,小明的眼睛距地面的距离CB=1.2米.根据以上测量过程及测量数据,请你求出河宽BD是多少米?考点:相似三角形的应用.分析:根据题意求出∠BAD=∠BCE,然后根据两组角对应相等,两三角形相似求出△BAD 和△BCE相似,再根据相似三角形对应边成比例列式求解即可.解答:解:由题意得,∠BAD=∠BCE,∵∠ABD=∠CBE=90°,∴△BAD∽△BCE,∴=,即=,解得BD=13.6米.答:河宽BD是13.6米.点评:本题考查了相似三角形的应用,读懂题目信息得到两三角形相等的角并确定出相似三角形是解题的关键,也是本题的难点.21.(本题满分8分)小李从西安通过某快递公司给在南昌的外婆寄一盒樱桃,快递时,他了解到这个公司除收取每次6元的包装费外,樱桃不超过1kg收费22元,超过1kg,则超出部分按每千克10元加收费用.设该公司从西安到南昌快寄樱桃的费用为y(元),所寄樱桃为x(kg).(1)求y与x之间的函数关系式;(2)已知小李给外婆快寄了2.5kg樱桃,请你求出这次快寄的费用是多少元?考点:一次函数的应用.分析:(1)根据快递的费用=包装费+运费由分段函数就,当0<x≤1和x>1时,可以求出y与x的函数关系式;(2)由(1)的解析式可以得出x=2.5>1代入解析式就可以求出结论.解答:解:(1)由题意,得当0<x≤1时,y=22+6=28;当x>1时y=28+10(x﹣1)=10x+18;∴y=;(2)当x=2.5时,y=10×2.5+18=43.∴这次快寄的费用是43元.点评:本题考查了分段函数的运用,一次函数的解析式的运用,由自变量的值求函数值的运用,解答时求出函数的解析式是关键.22.(本题满分8分)小英与她的父亲、母亲计划外出旅游,初步选择了延安、西安、汉中、安康四个城市.由于时间仓促,他们只能去其中一个城市,到底去哪一个城市三人意见不统一.在这种情况下,小英父亲建议,用小英学过的摸球游戏来决定.规则如下:①在一个不透明的袋子中装一个红球(延安)、一个白球(西安)、一个黄球(汉中)和一个黑球(安康),这四个球除颜色不同外,其余完全相同;②小英父亲先将袋中球摇匀,让小英从袋中随机摸出一球,父亲记录下其颜色,并将这个球放回袋中摇匀,然后让小英母亲从袋中随机摸出一球,父亲记录下它的颜色;③若两人所摸出球的颜色相同,则去该球所表示的城市旅游,否则,前面的记录作废,按规则②重新摸球,直到两人所摸出球的颜色相同为止.按照上面的规则,请你解答下列问题:(1)已知小英的理想旅游城市是西安,小英和母亲随机各摸球一次,均摸出白球的概率是多少?(2)已知小英母亲的理想旅游城市是汉中,小英和母亲随机各摸球一次,至少有一人摸出黄球的概率是多少?考点:列表法与树状图法.分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小英和母亲随机各摸球一次,均摸出白球的情况,再利用概率公式即可求得答案;(2)由(1)得:共有16种等可能的结果,小英和母亲随机各摸球一次,至少有一人摸出黄球的有7种情况,然后利用概率公式求解即可求得答案.解答:解:(1)画树状图得:∵共有16种等可能的结果,小英和母亲随机各摸球一次,均摸出白球的只有1种情况,∴小英和母亲随机各摸球一次,均摸出白球的概率是:;(2)由(1)得:共有16种等可能的结果,小英和母亲随机各摸球一次,至少有一人摸出黄球的有7种情况,∴小英和母亲随机各摸球一次,至少有一人摸出黄球的概率是:.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.23.(本题满分8分)如图,⊙O的半径为4,B是⊙O外一点,连接OB,且OB=6.过点B作⊙O的切线BD,切点为D,延长BO交⊙O于点A,过点A作切线BD的垂线,垂足为C.(1)求证:AD平分∠BAC;(2)求AC的长.考点:切线的性质;相似三角形的判定与性质.分析:(1)首先连接OD,由BD是⊙O的切线,AC⊥BD,易证得OD∥AC,继而可证得AD平分∠BAC;(2)由OD∥AC,易证得△BOD∽△BAC,然后由相似三角形的对应边成比例,求得AC的长.解答:(1)证明:连接OD , ∵BD 是⊙O 的切线,∴OD ⊥BD ,∵AC ⊥BD ,∴OD ∥AC ,∴∠2=∠3,∵OA =OD ,∴∠1=∠3,∴∠1=∠2,即AD 平分∠BAC ;(2)解:∵OD ∥AC ,∴△BOD ∽△BAC , ∴, ∴,解得:AC =.点评: 此题考查了切线的性质以及相似三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.24.(本题满分10分)已知抛物线C:c bx x y ++-=2经过A (-3,0)和B (0,3)两点.将这条抛物线的顶点记为M ,它的对称轴于x 轴的交点记为N.(1)求抛物线C 的表达式;(2)求点M 的坐标;(3将抛物线C平移到C′,抛物线C′的顶点记为M′,它的对称轴于x轴的交点记为N′.如果以点M、N、M′、N′为顶点的四边形是面积为16的平行四边形,那么应将抛物线C怎样平移?为什么?考点:二次函数图象与几何变换;二次函数的性质;待定系数法求二次函数解析式;平行四边形的性质.分析:(1)直接把A(﹣3,0)和B(0,3)两点代入抛物线y=﹣x2+bx+c,求出b,c的值即可;(2)根据(1)中抛物线的解析式可得出其顶点坐标;(3)根据平行四边形的定义,可知有四种情形符合条件,如解答图所示.需要分类讨论.解答:解:(1)∵抛物线y=﹣x2+bx+c经过A(﹣3,0)和B(0,3)两点,∴,解得,故此抛物线的解析式为:y=﹣x2﹣2x+3;(2)∵由(1)知抛物线的解析式为:y=﹣x2﹣2x+3,∴当x=﹣=﹣=﹣1时,y=4,∴M(﹣1,4).(3)由题意,以点M、N、M′、N′为顶点的平行四边形的边MN的对边只能是M′N′,∴MN∥M′N′且MN=M′N′.∴MN•NN′=16,∴NN′=4.i)当M、N、M′、N′为顶点的平行四边形是▱MNN′M′时,将抛物线C向左或向右平移4个单位可得符合条件的抛物线C′;ii)当M、N、M′、N′为顶点的平行四边形是▱MNM′N′时,将抛物线C先向左或向右平移4个单位,再向下平移8个单位,可得符合条件的抛物线C′.∴上述的四种平移,均可得到符合条件的抛物线C′.点评:本题考查了抛物线的平移变换、平行四边形的性质、待定系数法及二次函数的图象与性质等知识点.第(3)问需要分类讨论,避免漏解.25.(本题满分12分)问题探究(1)如图①,在矩形ABCD中,AB=3,BC=4.如果BC边上存在点P,使△APD为等腰三角形,那么请画出满足条件的一个..等腰△APD,并求出此时BP的长;(2)如图②,在△ABC中,∠ABC=60°,BC=12,AD是BC边上的高,E、F分别为边AB、AC的中点.当AD=6时,BC边上存在一点Q,使∠EQF=90°,求此时BQ的长;问题解决(3)有一山庄,它的平面图为如图③的五边形ABCDE,山庄保卫人员想在线段CD上选一点M安监控装置,用来监视边AB.现只要使∠AMB大约为60°,就可以让监控装置的效果达到最佳.已知∠A=∠E=∠D=90°,AB=270m,AE=400m,ED=285m,CD=340m.问在线段CD上是否存在点M,使∠AMB=60°?若存在,请求出符合条件的DM的长;若不存在,请说明理由.图①图②图③考点:圆的综合题;全等三角形的判定与性质;等边三角形的性质;勾股定理;三角形中位线定理;矩形的性质;正方形的判定与性质;直线与圆的位置关系;特殊角的三角函数值.专题:压轴题;存在型.分析:(1)由于△PAD是等腰三角形,底边不定,需三种情况讨论,运用三角形全等、矩形的性质、勾股定理等知识即可解决问题.(2)以EF为直径作⊙O,易证⊙O与BC相切,从而得到符合条件的点Q唯一,然后通过添加辅助线,借助于正方形、特殊角的三角函数值等知识即可求出BQ长.(3)要满足∠AMB=60°,可构造以AB为边的等边三角形的外接圆,该圆与线段CD 的交点就是满足条件的点,然后借助于等边三角形的性质、特殊角的三角函数值等知识,就可算出符合条件的DM长.解答:解:(1)①作AD的垂直平分线交BC于点P,如图①,则PA=PD.∴△PAD是等腰三角形.∵四边形ABCD是矩形,∴AB=DC,∠B=∠C=90°.∵PA=PD,AB=DC,∴Rt△ABP≌Rt△DCP(HL).∴BP=CP.∵BC=4,∴BP=CP=2.②以点D为圆心,AD为半径画弧,交BC于点P′,如图①,.则DA=DP′.∴△P′AD是等腰三角形.∵四边形ABCD是矩形,∴AD=BC,AB=DC,∠C=90°.∵AB=3,BC=4,∴DC=3,DP′=4.∴CP′==.∴BP′=4﹣.③点A为圆心,AD为半径画弧,交BC于点P″,如图①,则AD=AP″.∴△P″AD是等腰三角形.同理可得:BP″=.综上所述:在等腰三角形△ADP中,若PA=PD,则BP=2;若DP=DA,则BP=4﹣;若AP=AD,则BP=.(2)∵E、F分别为边AB、AC的中点,∴EF∥BC,EF=BC.∵BC=12,∴EF=6.以EF为直径作⊙O,过点O作OQ⊥BC,垂足为Q,连接EQ、FQ,如图②.∵AD⊥BC,AD=6,∴EF与BC之间的距离为3.∴OQ=3∴OQ=OE=3.∴⊙O与BC相切,切点为Q.∵EF为⊙O的直径,∴∠EQF=90°.过点E作EG⊥BC,垂足为G,如图②.∵EG⊥BC,OQ⊥BC,∴EG∥OQ.∵EO∥GQ,EG∥OQ,∠EGQ=90°,OE=OQ,∴四边形OEGQ是正方形.∴GQ=EO=3,EG=OQ=3.∵∠B=60°,∠EGB=90°,EG=3,∴BG=.∴BQ=GQ+BG=3+.∴当∠EQF=90°时,BQ的长为3+.(3)在线段CD上存在点M,使∠AMB=60°.理由如下:以AB为边,在AB的右侧作等边三角形ABG,作GP⊥AB,垂足为P,作AK⊥BG,垂足为K.设GP与AK交于点O,以点O为圆心,OA为半径作⊙O,过点O作OH⊥CD,垂足为H,如图③.则⊙O是△ABG的外接圆,∵△ABG是等边三角形,GP⊥AB,∴AP=PB=AB.∵AB=270,∴AP=135.∵ED=285,∴OH=285﹣135=150.∵△ABG是等边三角形,AK⊥BG,∴∠BAK=∠GAK=30°.∴OP=AP•tan30°=135×=45.∴OA=2OP=90.∴OH<OA.∴⊙O与CD相交,设交点为M,连接MA、MB,如图③.∴∠AMB=∠AGB=60°,OM=OA=90..∵OH⊥CD,OH=150,OM=90,∴HM===30.∵AE=400,OP=45,∴DH=400﹣45.若点M在点H的左边,则DM=DH+HM=400﹣45+30.∵400﹣45+30>340,∴DM>CD.∴点M不在线段CD上,应舍去.若点M在点H的右边,则DM=DH﹣HM=400﹣45﹣30.∵400﹣45﹣30<340,∴DM<CD.∴点M在线段CD上.综上所述:在线段CD上存在唯一的点M,使∠AMB=60°,此时DM的长为(400﹣45﹣30)米.点评:本题考查了垂直平分线的性质、矩形的性质、等边三角形的性质、正方形的判定与性质、直线与圆的位置关系、圆周角定理、三角形的中位线定理、全等三角形的判定与性质、勾股定理、特殊角的三角函数值等知识,考查了操作、探究等能力,综合性非常强.而构造等边三角形及其外接圆是解决本题的关键.。
2014年初中毕业升学考试(甘肃白银、定西、平凉、酒泉、临夏卷)地理(带解析)1、下图中甲、乙、丙、丁中既位于南半球又位于热带的是A.甲B.乙C.丙D.丁【答案】C【解析】试题分析:南北半球分界线是赤道,以北为北半球,以南为南半球;东西半球分界线是20°W和160°E组成的经线圈,20°W以东、160°E以西为东半球,20°W以西、160°E以东为西半球;人们根据太阳热量在地表的分布状况,把地球表面划分为热带、北温带、南温带、北寒带和南寒带五个温度带,热带的纬度范围是23.5°N-23.5°S,北温带的纬度范围是23.5°N-66.5°N,北寒带的纬度范围是66.5°N-90°N,南温带的纬度范围是23.5°S-66.5°S,南寒带的纬度范围是66.5°S-90°S。
2、判断下列叙述正确的是A.乙地位于60°N,40°W B.甲地位于乙地的正东方向C.乙地日出时刻总比甲地早D.甲、丙两地都位于中纬度【答案】C【解析】试题分析:从经纬网图可以看出,乙地位于60°E,40°N;甲地位于乙地的正西方向,所以乙地日出时刻总比甲地早;甲地位于中纬度,丙地位于低纬度。
考点:该题考查经纬网的判读。
3、读图2中①、②、③、④四处,坡度最大的是A.①处B.②处C.③处D.④处【解析】试题分析:在等高线地形图上,等高线闭合且等高线数值中间高四周低则为山顶;两山顶之间相对低洼的部位为鞍部;高线闭合且等高线数值中间低四周高则为盆地;等高线向海拔低处凸为山脊;等高线向海拔高处凸为山谷.在等高线地形图上,等高线越密集,表示坡度越陡,等高线越稀疏,表示的坡度越缓。
4、沿③附近虚线若发育河流,其流向大致是A.自东向西B.自南向北C.自东南向西北D.自西北向东南【答案】D【解析】试题分析:指向标箭头所指的方向是北方,与它相对的方向是南方,顺着南北方向,上北下南,左西右东,读图可得,图中③附近的河段,河流都是由海拔高处流向海拔低处,即流向是自西北向东南流。
甘肃省定西市中考数学试题及答案D考生注意:本试卷满分为120分,考试时间为120分钟.所有试题均在答题卡上作答,否则无效. 一.选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项,将此选项的字母填在答题卡上.1.下列图形中,是中心对称图形的是【 】2.在1,-2,0,35这四个数中,最大的数是【 】 A.2 B.0 C.35D.13.在数轴上表示不等式01<-x 的解集,正确的是【 】4.下列根式中是最简二次根式的是【 】12.9.3.32.D C B A5.已知点),0(m P 在y 轴的负半轴上,则点M )1,(+--m m 在【 】 A.第一象限 B.第二象限 C.第三象限 D.第四象限6.如图,AB ∥CD,DE ⊥CE,∠1=34°,则∠DCE 的度数为【 】 A .34° B.54° C.66° D.56°7.如果两个相似三角形的面积比是1∶4,那么它们的周长比是【 】 A.1∶16 B.1∶4 C.1∶6 D.1∶28.某工厂现在平均每天比原计划每天多生产50台机器,现在生产800台机器所需时间与原计划生产600台机器所需时间相同.设原计划平均每天生产x 台机器.根据题意,下面所列方程正确的是【 】.50600800.;50600800.;60050800.;60050800.A -=+==-=+x x D x x C x x x x B9.若,0442=-+x x 则)1)(1(6)2(32-+--x x x 的值为【 】第6题图A.-6B.6C.18D.3010.如图,△ABC 是等腰直角三角形,∠A=90°,BC=4,点P 是△ABC 边上一动点,沿B →A →C 的路径移动,过点P 作PD ⊥BC 于点D,设BD=x ,△BDP 的面积为y ,则下列能大致反映y 与x 函数关系的图象是【 】二、填空题:本大题共8小题,每小题3分,共24分. 11.因式分解:.___________822=-x 12.计算:=-⋅-)8()5(24ab a ___________.13.如图,点A(3,t )在第一象限,射线OA 与x 轴所夹的锐角为α,,23tan =α则t 的值是________.14.如果单项式2222+-+m n n m y x与75y x 是同类项,那么m n 的值是________.15.三角形的两边长分别是3和4,第三边长是方程040132=+-x x 的根,则该三角形的周长为____.16.如图,在⊙O 中,弦AC=32,点B 是圆上一点,且∠ABC=45°,则⊙O 的半径R=_______. 17.将一张矩形纸片折叠成如图所示的图形,若AB=6cm,则AC=_______cm.18.古希腊数学家把数1,3,6,10,15,21,…,叫做三角形数,它有一定的规律性.若把第一个三角形数记为,1x第二个三角形数记为,2x …,第n 个三角形数记为n x ,则1++n n x x =_________.三.解答题(一):本大题共5小题,共26分.解答应写出必要的文字说明,证明过程或演算步骤:第13题图第16题图 第17题图19.(4分)计算:.)3-(-160sin 231--210-2+︒++⎪⎭⎫⎝⎛20.(4分)如图,在平面直角坐标系中,△ABC 的顶点A(0,1),B(3,2),C(1,4)均在正方形的网格的格点上. (1)画出△ABC 关于x 轴的对称图形;△111C B A (2)将111C B A △沿x 轴方向向左平移3个单位后得到222C B A △,写出顶点222C B A ,,的坐标.21.(6分)已知关于x 的方程022=-++m mx x . (1)若此方程的一个根为1,求m 的值;(2)求证:不论m 取何实数,此方程都有两个不相等的实数根.22.(6分)图①是小明在健身器材上进行仰卧起坐锻炼时的情景.图②是小明锻炼时上半身由ON 位置运动到与地面垂直的OM 位置时的示意图.已知AC=0.66米,BD=0.26米,α=20°.(参考数据:sin20°≈0.342,cos20°≈0.940,tan20°≈0.364).(1)求AB 的长(精确到0.01米);(2)若测得ON=0.8米,试计算小明头顶由N 点运动到M 点的路径的长度(结果保留π)23.(6分)在甲、乙两个不透明的布袋里,都装有3个大小、材质完全相同的小球,其中甲袋中的小球上分别标有数字0,1,2;乙袋中的小球上分别标有数字-1,-2,0.现从甲袋中任意摸出第20题图第22题图第25题图第27题图一个小球,记其标有的数字为x ,再从乙袋中任意摸出一个小球,记其标有的数字为y ,以此确定点M 的坐标(x ,y ).(1)请你用画树状图或列表的方法,写出点M 所有可能的坐标; (2)求点M (x ,y )在函数xy 2-=的图象上的概率. 四、解答题(二):本大题共5小题,共40分.解答应写出必要的文字说明、证明过程或演算步骤.24.(7分)2016年《政府工作报告》中提出了十大新词汇.为了解同学们对新词汇的关注度,某数学兴趣小组选取其中的A :“互联网+政务服务”,B :“工匠精神”,C :“光网城市”,D :“大众旅游时代”四个热词在全校学生中进行了抽样调查,要求被调查的每位同学只能从中选择一个我最关注的热词.根据调查结果,该小组绘制了如下的两幅不完整的统计图. 请你根据统计图提供的信息,解答下列问题: (1)本次调查中,一共调查了多少名同学? (2)条形统计图中,m =_______,n =_____.(3)扇形统计图中,热词B 所在扇形的圆心角是多少度?25.(7分)如图,函数41+-=x y 的图象与函数)0(2>=x xky 的图象交于),1(),1,(n B m A 两点. (1)求k ,m ,n 的值;(2)利用图象写出当1≥x 时,21y y 与的大小关系. 26.(8分)如图,已知EC ∥AB,∠EDA=∠ABF. (1)求证:四边形ABCD 为平行四边形; (2)求证:.OF OE OA 2⋅=第24题图第26题图27.(8分)如图,在△ABC 中,AB=AC,点D 在BC 上,BD=DC,过点D 作DE ⊥AC,垂足为E,⊙O 经过A,B,D 三点.(1)求证:AB 是⊙O 的直径;(2)判断DE 与⊙O 的位置关系,并加以证明; (3)若⊙O 的半径为3,∠BAC=60°,求DE 的长.28.(10分)如图,已知抛物线c bx x y ++-=2经过A(3,0),B(0,3)两点. (1)求此抛物线的解析式和直线AB 的解析式;(2)如图①,动点E 从O 点出发,沿着OA 方向以1个单位/秒的速度向终点A 匀速运动,同时,动点F 从A 点出发,沿着AB 方向以2个单位/秒的速度向终点B 匀速运动,当E,F 中任意一点到达终点时另一点也随之停止运动.连接EF,设运动时间为t 秒.当t 为何值时,△AEF 为直角三角形?(3)如图②,取一根橡皮筋,两端点分别固定在A,B 处.用铅笔拉着这根橡皮筋使笔尖P 在直线AB 上方的抛物线上移动,动点P 与A,B 两点构成无数个三角形,在这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时点P 的坐标;如果不存在,请简要说明理由.第28题图数学试题参考答案及评分标准一、选择题:本大题共10小题,每小题3分,共30分.二、填空题:本大题共8小题,每小题3分,共24分. 11.2(2)(2)x x +-;12.5240a b ;13.92;14.13;15.12 ;16.6;17. 6 ;18.2(1)n +或n2+2n+1.三、解答题(一):本大题共5小题,共26分.解答应写出必要的文字说明,证明过程或演算步骤.19.(4分)解:原式=22-(3-1)+2×3+1 2分 =4-3+1+3+1 3分 =6 4分 20.(4分)解:(1)△A1B1C1为所作; 2分 (2)A2(-3,-1),B2(0,-2),C2(-2,-4). 4分21.(6分)(1)解:把x =1代入方程 220x mx m ++-=得 1m m ++ 解得 m =12. 2分 (2)证明:△=24(2)m m -- 3分题号 1 2 3 4 5 6 7 8 9 10 答案ACCBADDABByxO ABCB 1C 1A 12(2)4m =-+ 4分 ∵ 2(2)m -≥0,∴ 2(2)4m -+>0, 即 △>0, 5分 ∴ 此方程有两个不相等的实数根. 6分22.(6分)解:(1) 过点B 作BF ⊥AC 于点F . 1分 ∴ AF=AC -BD=0.4(米), 2分 ∴B=AF ÷sin20°≈1.17(米); 3分 (2)∵∠MON=90°+20°=110°, 4分 ∴ 1100.82218045MN ⨯π==π(米). 6分23.(6分)解:(1)画树状图:方法一: 方法二:2分 所以点M (x, y )共有9种可能:(0,-1),(0,-2),(0,0),(1,-1),(1,-2),(1,0),(2,-1),(2,-2),(2,0); 4分(2)∵只有点(1,-2),(2,-1)在函数2y x=-的图象上, 5分 ∴点M (x ,y )在函数2y x =-的图象上的概率为29. 6分四、解答题(二):本大题共5小题,共40分.解答应写出必要的文字说明、证明过程或演算步骤.(注:解法合理,答案正确均可得分)24.(7分)解:(1)105÷35%=300(人).答:共调查了300名学生; 1分 (2)n =300×30%=90(人),m =300-105-90-45=60(人). 故答案为:60,90;(每空2分) 5分 (3)60300×360°=72°.答:B 所在扇形的圆心角是72°. 7分 (0, 0) (0, -1)(0, -2) (1, -1) (1, -2) (1, 0) (2, -2)(2, -1)1 0 2-1-2 0 乙袋甲袋结果(2, 0)25.(7分)解:(1)把点A (m,1)代入14y x =-+,得m=3, 2分 则 A (3,1),∴k =3×1=3; 3分 把点B (1,n )代入2ky x=,得出n=3; 4分 (2)如图,由图象可知:①当1<x <3时,1y >2y ; 5分②当x =1或x =3时,1y =2y ; 6分(注:x 的两个值各占0.5分) ③当x >3时,1y <2y . 7分 26.(8分)(1)证明:∵EC ∥AB, ∴∠C=∠ABF . 1分 又∵∠EDA=∠ABF,∴∠C=∠EDA . 2分 ∴AD ∥BC, 3分 ∴四边形ABCD 是平行四边形. 4分 (2)证明:∵EC ∥AB, ∴OA OB OEOD=. 5分又∵AD ∥BC, ∴OF OB OA OD =, 6分 ∴OA OF OEOA=, 7分∴2OA OE OF =⋅. 8分 27.(8分)(1)证明:如图①,连接AD, ∵在△ABC 中, AB=AC,BD=DC, ∴AD ⊥BC 1分∴∠ADB=90°,AB 是⊙O 的直径; 2分 (2)DE 与⊙O 的相切. 3分 证明:如图②,连接OD, ∵AO=BO,BD=DC, ∴OD 是△BAC 的中位线,图②ABCD E O图①AB CD E O∴OD ∥AC, 4分 又∵DE ⊥AC ∴DE ⊥OD,∴DE 为⊙O 的切线; 5分 (3)解:如图③,∵AO=3,∴AB=6, 又∵AB=AC,∠BAC=60°, ∴△ABC 是等边三角形, ∴AD=33, 6分 ∵AC ∙DE=CD ∙AD,∴6∙DE=3×33, 7分 解得 DE =332. 8分 28.(10分)解:(1)设直线AB 的解析式为y kx m =+, 1分 把A(3,0),B(0,3)代入,得 330m k m =⎧⎨+=⎩, 解得13k m =-⎧⎨=⎩ ∴直线AB 的解析式为3y x =-+ 2分 把A(3,0),B(0,3) 代入 2y x bx c =-++中,得 9303b c c -++=⎧⎨=⎩,解得23b c =⎧⎨=⎩∴抛物线的解析式为 223y x x =-++. 3分 (2)∵OA=OB=3,∠BOA=90°,∴∠EAF=45°. 设运动时间为t 秒,则AF=2t,AE=3-t . 4分 (i )当∠EFA=90°时,如图①所示: 在Rt △EAF 中,cos45°22AF AE ==,即2232t t =-. 解得 t =1. 5分(ii) 当∠FEA=90°时,如图②所示:在Rt △AEF 中,cos45°22AE AF ==, AB CDEO图③图①OyAxBEF图②yOA BE F即222t=. 解得t =32. 综上所述,当t =1或t =32时,△AEF 是直角三角形. 6分 (3)存在. 如图③,过点P 作PN ∥y 轴,交直线AB 于点N,交x 轴于点D. 过点B 作BC ⊥PN 交PN 于点C .设点P (x ,223x x -++),则点N (x ,3x -+)∴PN=2223(3)3x x x x x -++--+=-+. 7分 ∴ABP BPN APN S S S ∆∆∆=+=1122PN BC PN AD ⋅+⋅ 8分=2211(3)(3)(3)22x x x x x x -+⋅+-+- =23327228x ⎛⎫--+ ⎪⎝⎭ 9分当32x =时,△ABP 的面积最大,最大面积为278. 此时点P(32,154). 10分yx O xA x xB AP图③NC MD M。
:2016年定西中考数学试题及答案-中考总结:话题作文与学期梳理课程特色:以写作问题为纲,以解决中高考语文写作问题和讲授踩分词为主,每节课仍会讲解2—3篇阅读题,作为对应练习和提高。
学习时,要求学生熟记理解每一讲的”地图内容”,以便考试时融会运用。
适合学员想扎实写作基础,稳固提高作文水平的初中生赠送《中学语文知识地图—中学必考文学常识一本通》第十五章:学期课程融汇与升华课程特色:以解决阅读问题为纲,融会踩分词和阅读答题要求,进行专题训练,侧重点分为两个方面,一是结合《中学语文知识地图踩分词》进行阅读答题运用,二是答题结构与题型,每节课中以阅读概括能力、理解表述能力、判定分析能力和鉴赏能力题为引导进行学习。
适合学员现代文阅读答题技巧掌握不够全面,想稳固提高的初中生赠送《中学语文知识地图—中学文言文必考140字》课程特色:全面地检测与分析学生考试丢分的问题,让学生清楚自己问题在哪,并且怎样改,通过思维训练,加以解决,重点教会学生如何凭借一张知识地图,去解决所有的语文阅读写作问题。
适合学员想夯实语文基础知识,成绩稳步提高的初中生赠送《学生优秀作品及点评指导(2.0版)》第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
该课程两个重心:一是各类题型答题方法和技巧的分析,特别是易错点的点评;另一个方面是对概括能力、理解能力,表述能力的训练。
适合学员阅读能力迅速提升的5—7级学生赠送《语文阅读得高分策略与技巧》(小学版)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
2014年定西市中考
数学试卷
题号 一 二 三 总分 得分
一、选择题(共10个小题,每小题3分,共30分)
1. ﹣3的绝对值是( )
A.3
B.-3
C.3
1
- D.31
2. 节约是一种美德,节约是一种智慧.据不完全统计,全国每年浪费食物总量折合粮食可养活约3亿5千万人.350 000 000用科学记数法表示为( )
A.7105.3⨯
B.8105.3⨯
C.9105.3⨯
D.10105.3⨯ 3. 如图的几何体是由一个正方体切去一个小正方体形成的,它的主视图是( )
A. B.
C.
D.
4. 下列计算错误的是( )
A.632=⋅
B.532=+
C.2312=÷
D.228= 5. 将直角三角尺的直角顶点靠在直尺上,且斜边与这根直尺平行,那么,在形成的这个图中与∠α互余的角共有( )
A.4个
B.3个
C.2个
D.1个 6. 下列图形中,是轴对称图形又是中心对称图形的是( ) A.
B.
C.
D.
7. 已知⊙O 的半径是6cm ,点O 到同一平面内直线l 的距离为5cm ,则直线l 与⊙O 的位置关系是( )
A.相交
B.相切
C.相离
D.无法判断
8. 用10米长的铝材制成一个矩形窗框,使它的面积为6平方米.若设它的一条边长为x 米,则根据题意可列出关于x 的方程为( )
A.6)5(=+x x
B.6)5(=-x x
C.6)10(=-x x
D.6)210(=-x x 9. 二次函数c bx x y ++=2,若0=+c b ,则它的图象一定过点( )
A.(﹣1,﹣1)
B.(1,﹣1)
C.(﹣1,1)
D.(
1,1) 10. 如图,边长为1的正方形ABCD 中,点E 在CB 延长线上,连接ED 交AB 于点F ,)(8.02.0≤≤=x x AF ,y EC =.则在下面函数图象中,大致能反映y 与x 之闻函数关系的是( )
A.
B.
C.
D.
二、填空题(共8小题,每小题3分,共24分) 11.分解因式:2422+-a a = .
12.化简:
=-+-x
x x 24
22 . 13.等腰△ABC 中,cm AC AB 10==,cm BC 12=,则BC 边上的高是 cm . 14.一元二次方程01)1(22=-+-+a ax x a 的一个根为0,则a = . 15.△ABC 中,∠A 、∠B 都是锐角,若2
3
sin =
A ,21cos =
B ,则∠C= 60° .
16.已知
y x 、为实数,且49922+---=x x y ,则=-y x . 17.如图,四边形ABCD 是菱形,O 是两条对角线的交点,过O 点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为 .
18.观察下列各式: 2311= 233321=+ 23336321=++
23333104321=+++ …
猜想=+⋅⋅⋅+++333310321 .
三、解答题(共10小题,共66分)
19.(5分) 计算: 60tan |3
1
|)2014(31)2(203+--+⨯+-π.
20.(5分) 阅读理解: 我们把
d c b a 称作二阶行列式,规定他的运算法则为bc ad d
c b
a -= .如=2×5﹣
3×4=﹣2.如果有
x
x 1-23 >0,求x 的解集.
21.(5分) 如图,△ABC 中,∠C =90°,∠A =30°.
(1)用尺规作图作AB 边上的中垂线DE ,交AC 于点D ,交AB 于点E .(保留作图痕迹,不要求写作法和证明);
(2)连接BD ,求证:BD 平分∠CBA .
22.(5分) 为倡导“低碳生活”,人们常选择以自行车作为代步工具、图(1)所示的是一辆自行车的实物图.图(2)是这辆自行车的部分几何示意图,其中车架档AC 与CD 的长分别为45cm 和60cm ,且它们互相垂直,座杆CE 的长为20cm .点A 、C 、E 在同一条只显示,且∠CAB =75°.(参考数据:sin75°=0.966,cos75°=0.259,tan75°=3.732)
(1)求车架档AD 的长;
(2)求车座点E 到车架档AB 的距离(结果精确到1cm ).
如图,在直角坐标系xOy 中,直线y=mx 与双曲线x
n
y =相交于A (﹣1,a )、B
两点,BC ⊥x 轴,垂足为C ,△AOC 的面积是1. (1)求m 、n 的值;
(2)求直线AC 的解析式.
24.(7分)在一个不透明的布袋里装有4个标号为1、2、3、4的小球,它们的材质、形状、大小完全相同,小凯从布袋里随机取出一个小球,记下数字为x,小敏
从剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点P的坐标)
(y
x,.
(1)请你运用画树状图或列表的方法,写出点P所有可能的坐标;
(2)求点)
(y
x,在函数5
+
-
=x
y图象上的概率.
25.(7分)某校课外小组为了解同学们对学校“阳光跑操”活动的喜欢程度,抽取部分学生进行调查,被调查的每个学生按A(非常喜欢)、B(比较喜欢)、C(一般)、D(不喜欢)四个等级对活动评价,图1和图2是该小组采集数据后绘制的两幅统计图,经确认扇形统计图是正确的,而条形统计图尚有一处错误且并不完整.请你根据统计图提供的信息.解答下列问题:
(1)此次调查的学生人数为;
(2)条形统计图中存在错误的是(填A、B、C、D中的一个),并在图中加以改正;
(3)在图2中补画条形统计图中不完整的部分;
(4)如果该校有600名学生,那么对此活动“非常喜欢”和“比较喜欢”的学生共有多少人?26.(8分)D、E分别是不等边三角形ABC(即AB≠BC≠AC)的边AB、AC的中点.O 是△ABC所在平面上的动点,连接OB、OC,点G、F分别是OB、OC的中点,顺次连接点D、G、F、E.
(1)如图,当点O在△ABC的内部时,求证:四边形DGFE是平行四边形;(2)若四边形DGFE是菱形,则OA与BC应满足怎样的数量关系?(直接写出答案,不需要说明理由.)
27.(8分)如图,Rt△ABC中,∠ABC=90°,以AB为直径作半圆⊙O交A C与点D,点E为BC的中点,连接DE.
(1)求证:DE是半圆⊙O的切线.
(2)若∠BAC=30°,DE=2,求AD的长.28.(10分)如图,在平面直角坐标系xOy中,顶点为M的抛物线是由抛物线3
2-
=x
y向右平移一个单位后得到的,它与y轴负半轴交于点A,点B在该抛物线上,且横坐标为3.
(1)求点M、A、B坐标;
(2)联结AB、AM、BM,求∠ABM的正切值;
(3)点P是顶点为M的抛物线上一点,且位于对称轴的右侧,设PO与x正半轴的夹角为α,当α=∠AB M时,求P点坐标.。