最新高考物理带电粒子在无边界匀强磁场中运动专项训练100(附答案)
- 格式:doc
- 大小:1.01 MB
- 文档页数:26
高考物理带电粒子在无边界匀强磁场中运动专项训练100(附答案)一、带电粒子在无边界匀强磁场中运动1专项训练1.如图所示,水平放置的两块长直平行金属板a 、b 相距为d ,a 、b 间加有电压, b 板下方空间存在着方向垂直纸面向里的匀强磁场,磁感应强度大小为B .一质量为m 、电荷量为q 的带正电的粒子(不计重力),从贴近a 板的左端以v 0的初速度水平射入匀强电场,刚好从狭缝P 处穿过b 板进入匀强磁场,最后粒子打到b 板的Q 处(图中未画出)被吸收.已知P 到b 板左端的距离为2d ,求:(1)进入磁场时速度的大小和方向; (2)P 、Q 之间的距离;(3)粒子从进入板间到打到b 板Q 处的时间.【答案】(1)002,45v (2)02mv Bq(3)022d m v Bq π+ 【解析】 【分析】 【详解】(1)粒子在两板间做类平抛运动,则:v 0t=2d12y v t =d , 所以,v 0=v y v p =22002yv v v +=,0tan y v v θ==1,θ=45°(2)粒子在磁场中做匀速圆周运动,圆心为O ,半径为r ,如图;2p p mv Bqv R=,得:p mv R Bq=左手定则,判断出粒子轨迹,022PQ mv x R Bq==(3)在电场中的时间102d t v =磁场中的周期2mT qBπ=2142m t T qBπ== ,则12022d mt t t v qBπ=+=+ 【点睛】此题关键是搞清粒子的运动特点:在电场中做类平抛运动,在磁场中做匀速圆周运动,画出粒子的运动轨迹图即可解答.2.如图所示,某同学没计了一个屏蔽高能粒子辐射的装置,圆环形区域内有垂直纸面向里的匀强磁场,磁感应强度为B 。
将辐射源放在圆心O 处,辐射源在纸面内向外辐射质量为m 电荷量为q 的粒子,粒子速度大小不同,已知环形区域内圆半径为R ,外圆半径为3R ,辐射源放出的粒子恰好均不能从磁场外边界射出,求:(1)辐射源射出粒子的最大速度值;(2)从O 点以最大速度射出的粒子第一次回到O 点的时间。
高考物理带电粒子在无边界匀强磁场中运动专项训练及答案一、带电粒子在无边界匀强磁场中运动1专项训练1.如图所示,在x 轴上方有一匀强磁场,磁感应强度为B 。
x 轴下方有一匀强电场,电场强度为E 。
屏MN 与y 轴平行且相距L ,一质量为m ,电荷量为e 的电子,在y 轴上某点A 自静止释放,如果要使电子垂直打在屏MN 上,那么: (1)电子释放位置与原点O 点之间的距离s 需满足什么条件? (2)电子从出发点到垂直打在屏上需要多长时间?【答案】(1)()222s 221eL B Em n =+ (n =0,1,2,3…);(2)()212BL m t n E eBπ=++ (n =0,1,2,3…) 【解析】 【分析】 【详解】(1)在电场中电子从A →O 过程,由动能定理可得2012eEs mv =在磁场中电子偏转,洛伦兹力提供向心力,有200v qv B m r=可得mv r qB=根据题意有(2n +1)r =L所以解得()222221eL B s Em n =+ (n =0,1,2,3…)(2)电子在电场中做匀变速直线运动的时间与在磁场中做部分圆周运动的时间之和为电子运动的总时间,即)2(2214s TT t n n a ++⋅=+ 由公式 eE ma =可得eEa m=由公式 20v qvB m r = 和 02r T v π=可得2mT eBπ=综上整理可得()212BL m t n E eBπ=++ (n =0,1,2,3…)2.“太空粒子探测器”是由加速、偏转和收集三部分组成,其原理可简化如下:如图1所示,辐射状的加速电场区域边界为两个同心平行半圆弧面,圆心为O ,外圆弧面AB 的电势为2L()o ϕ>,内圆弧面CD 的电势为φ,足够长的收集板MN 平行边界ACDB ,ACDB 与MN 板的距离为L .假设太空中漂浮着质量为m ,电量为q 的带正电粒子,它们能均匀地吸附到AB 圆弧面上,并被加速电场从静止开始加速,不计粒子间的相互作用和其它星球对粒子的影响,不考虑过边界ACDB 的粒子再次返回.(1)求粒子到达O 点时速度的大小;(2)如图2所示,在PQ (与ACDB 重合且足够长)和收集板MN 之间区域加一个匀强磁场,方向垂直纸面向内,则发现均匀吸附到AB 圆弧面的粒子经O 点进入磁场后最多有23能打到MN 板上,求所加磁感应强度的大小;(3)如图3所示,在PQ (与ACDB 重合且足够长)和收集板MN 之间区域加一个垂直MN 的匀强电场,电场强度的方向如图所示,大小4E Lφ=,若从AB 圆弧面收集到的某粒子经O 点进入电场后到达收集板MN 离O 点最远,求该粒子到达O 点的速度的方向和它在PQ 与MN 间运动的时间. 【答案】(1)2q v mϕ=;(2)12m B L q ϕ=;(3)060α∴= ;22m L q ϕ【解析】 【分析】 【详解】试题分析:解:(1)带电粒子在电场中加速时,电场力做功,得:2102qU mv =-2U ϕϕϕ=-=2q v mϕ=(2)从AB 圆弧面收集到的粒子有23能打到MN 板上,则上端刚好能打到MN 上的粒子与MN 相切,则入射的方向与OA 之间的夹角是60︒,在磁场中运动的轨迹如图甲,轨迹圆心角060θ=.根据几何关系,粒子圆周运动的半径:2R L =由洛伦兹力提供向心力得:2v qBv m R=联合解得:12m B L qϕ=(3)如图粒子在电场中运动的轨迹与MN 相切时,切点到O 点的距离最远, 这是一个类平抛运动的逆过程. 建立如图坐标.212qE L t m=222mL mt L qE q ϕ==22x Eq qEL q v t m m m ϕ===若速度与x 轴方向的夹角为α角 cos xv v α=1cos 2α=060α∴=3.在磁感应强度为B 的匀强磁场中,一个静止的放射性原子核发生了一次α衰变.放射出α粒子(42He )在与磁场垂直的平面内做圆周运动,其轨道半径为R .以m 、q 分别表示α粒子的质量和电荷量.(1)放射性原子核用 A Z X 表示,新核的元素符号用Y 表示,写出该α衰变的核反应方程.(2)α粒子的圆周运动可以等效成一个环形电流,求圆周运动的周期和环形电流大小. (3)设该衰变过程释放的核能都转为为α粒子和新核的动能,新核的质量为M ,求衰变过程的质量亏损△m .【答案】(1)放射性原子核用 A Z X 表示,新核的元素符号用Y 表示,则该α衰变的核反应方程为4422AA Z Z X Y H --→+ ;(2)α粒子的圆周运动可以等效成一个环形电流,则圆周运动的周期为 2m Bq π ,环形电流大小为 22Bq mπ ;(3)设该衰变过程释放的核能都转为为α粒子和新核的动能,新核的质量为M ,则衰变过程的质量亏损△m 为损2211()()2BqR m M c + . 【解析】(1)根据核反应中质量数与电荷数守恒可知,该α衰变的核反应方程为4422X Y He A A ZZ --→+(2)设α粒子在磁场中做圆周运动的速度大小为v ,由洛伦兹力提供向心力有2v qvB m R=根据圆周运动的参量关系有2πRT v=得α粒子在磁场中运动的周期2πmT qB=根据电流强度定义式,可得环形电流大小为22πq q BI T m==(3)由2v qvB m R =,得qBR v m=设衰变后新核Y 的速度大小为v ′,核反应前后系统动量守恒,有Mv ′–mv =0 可得mv qBR v M M='=根据爱因斯坦质能方程和能量守恒定律有2221122mc Mv mv '∆=+ 解得22()()2M m qBR m mMc +∆=说明:若利用44A M m -=解答,亦可. 【名师点睛】(1)无论哪种核反应方程,都必须遵循质量数、电荷数守恒.(2)α衰变的生成物是两种带电荷量不同的“带电粒子”,反应前后系统动量守恒,因此反应后的两产物向相反方向运动,在匀强磁场中,受洛伦兹力作用将各自做匀速圆周运动,且两轨迹圆相外切,应用洛伦兹力计算公式和向心力公式即可求解运动周期,根据电流强度的定义式可求解电流大小.(3)核反应中释放的核能应利用爱因斯坦质能方程求解,在结合动量守恒定律与能量守恒定律即可解得质量亏损.4.如图1所示,在ABCD 矩形区域里存在垂直于纸面方向的磁场(磁场边界有磁场),规定垂直纸面向里为磁场正方向,磁感应强度B 如图2所示的变化。
高中物理带电粒子在无边界匀强磁场中运动专项训练100(附答案)一、带电粒子在无边界匀强磁场中运动1专项训练1.如图所示,在x 轴上方有一匀强磁场,磁感应强度为B 。
x 轴下方有一匀强电场,电场强度为E 。
屏MN 与y 轴平行且相距L ,一质量为m ,电荷量为e 的电子,在y 轴上某点A 自静止释放,如果要使电子垂直打在屏MN 上,那么: (1)电子释放位置与原点O 点之间的距离s 需满足什么条件? (2)电子从出发点到垂直打在屏上需要多长时间?【答案】(1)()222s 221eL B Em n =+ (n =0,1,2,3…);(2)()212BL m t n E eBπ=++ (n =0,1,2,3…) 【解析】 【分析】 【详解】(1)在电场中电子从A →O 过程,由动能定理可得2012eEs mv =在磁场中电子偏转,洛伦兹力提供向心力,有200v qv B m r=可得mv r qB=根据题意有(2n +1)r =L所以解得()222221eL B s Em n =+ (n =0,1,2,3…)(2)电子在电场中做匀变速直线运动的时间与在磁场中做部分圆周运动的时间之和为电子运动的总时间,即2(214T T t n n +⋅=+ 由公式 eE ma =可得eEa m=由公式 20v qvB m r = 和 02r T v π=可得2mT eBπ=综上整理可得()212BL m t n E eBπ=++ (n =0,1,2,3…)2.在磁感应强度为B 的匀强磁场中,一个静止的放射性原子核发生了一次α衰变.放射出α粒子(42He )在与磁场垂直的平面内做圆周运动,其轨道半径为R .以m 、q 分别表示α粒子的质量和电荷量.(1)放射性原子核用 A Z X 表示,新核的元素符号用Y 表示,写出该α衰变的核反应方程.(2)α粒子的圆周运动可以等效成一个环形电流,求圆周运动的周期和环形电流大小. (3)设该衰变过程释放的核能都转为为α粒子和新核的动能,新核的质量为M ,求衰变过程的质量亏损△m .【答案】(1)放射性原子核用 A Z X 表示,新核的元素符号用Y 表示,则该α衰变的核反应方程为4422AA Z Z X Y H --→+ ;(2)α粒子的圆周运动可以等效成一个环形电流,则圆周运动的周期为 2m Bq π ,环形电流大小为 22Bq mπ ;(3)设该衰变过程释放的核能都转为为α粒子和新核的动能,新核的质量为M ,则衰变过程的质量亏损△m 为损2211()()2BqR m M c + . 【解析】(1)根据核反应中质量数与电荷数守恒可知,该α衰变的核反应方程为4422X Y He A A ZZ --→+(2)设α粒子在磁场中做圆周运动的速度大小为v ,由洛伦兹力提供向心力有2v qvB m R=根据圆周运动的参量关系有2πRT v=得α粒子在磁场中运动的周期2πmT qB=根据电流强度定义式,可得环形电流大小为22πq q BI T m==(3)由2v qvB m R =,得qBR v m=设衰变后新核Y 的速度大小为v ′,核反应前后系统动量守恒,有Mv ′–mv =0 可得mv qBR v M M='=根据爱因斯坦质能方程和能量守恒定律有2221122mc Mv mv '∆=+ 解得22()()2M m qBR m mMc +∆=说明:若利用44A M m -=解答,亦可. 【名师点睛】(1)无论哪种核反应方程,都必须遵循质量数、电荷数守恒.(2)α衰变的生成物是两种带电荷量不同的“带电粒子”,反应前后系统动量守恒,因此反应后的两产物向相反方向运动,在匀强磁场中,受洛伦兹力作用将各自做匀速圆周运动,且两轨迹圆相外切,应用洛伦兹力计算公式和向心力公式即可求解运动周期,根据电流强度的定义式可求解电流大小.(3)核反应中释放的核能应利用爱因斯坦质能方程求解,在结合动量守恒定律与能量守恒定律即可解得质量亏损.3.在xOy 坐标中,有随时间周期性变化的电场和磁场(磁场持续t 1后消失;紧接着电场出现,持续t 2时间后消失,接着磁场......如此反复),如图所示,磁感应强度方向垂直纸面向里,电场强度方向沿y 轴向下,有一质量为m ,带电量为+q 的带电粒子,在t =0时刻,以初速v 0从0点沿x 轴正方向出发,在t 1时刻第一次到达y 轴上的M (0,L )点,t 1+t 2时刻第一次回到x 轴上的 N (-2L ,0)点,不计粒子重力,t 1、t 2均未知。
一、带电粒子在无边界匀强磁场中运动1专项训练1.如图所示,虚线为两磁场的边界,虚线左侧存在着半径为R 的半圆形匀强磁场,磁感应强度为B ,方向垂直纸面向里,圆心O 为虚线上的一点,虚线右侧存在着宽度为R 的匀强磁场,方向垂直纸面向外。
质量为m 、电荷量为q 的带负电的粒子,从圆周上的A 点以某一初速度沿半径方向射入半圆形磁场区域,恰好从D 点射出,AO 垂直OD 。
若将带电粒子从圆周上的C 点,以相同的初速度射入磁场,已知∠AOC =53°,粒子刚好能从虚线右侧磁场区域射出,不计粒子重力,sin53°=0.8,cos53°=0.6,求: (1)带电粒子的初速度及其从A 到D 的运动时间;(2)粒子从C 点入射,第一次运动到两磁场的边界时速度的方向及其离O 点的距离; (3)虚线右侧磁场的磁感应强度。
【答案】(1)0qBR v m=,2m t qB π=;(2)速度的方向与磁场边界的夹角为53°,0.6R ;(3)2 1.6B B = 【解析】 【分析】 【详解】(1)粒子从A 点进磁场D 点出磁场,作出轨迹如图由几何关系得轨道半径1r R =洛伦兹力提供匀速圆周运动的向心力,有200mv qv Bm= 解得0qBRv m =粒子在磁场中运动的圆心角为90°,有4T t =而周期为12r T v π=解得2mt qBπ=(2)粒子从C 点入射,作出轨迹如图由几何知识得EF 的长度L EF =R cos53°在三角形EFO 1中,有sin 0.6EFL Rθ== 即粒子转过的圆心角37θ=︒,则速度的方向与磁场边界的夹角为53° 而CE 的长度cos37CE L R R =-︒OF 的长度为sin 53OF CE L R L =︒-联立解得0.6OF L R =(3)粒子在右侧磁场的半径为2r ,由几何关系有22sin 37r r R ︒+=由向心力公式得2022mvqv Br=联立解得21.6B B=2.如图所示,圆心为O、半径为R的圆形磁场区域中存在垂直纸面向外的匀强磁场,以圆心O为坐标原点建立坐标系,在y=-3R 处有一垂直y轴的固定绝缘挡板,一质量为m、带电量为+q的粒子,与x轴成 60°角从M 点(-R,0)以初速度v0斜向上射入磁场区域,经磁场偏转后由N点离开磁场(N点未画出)恰好垂直打在挡板上,粒子与挡板碰撞后原速率弹回,再次进入磁场,最后离开磁场.不计粒子的重力,求:(1)磁感应强度B的大小;(2)N点的坐标;(3)粒子从M点进入磁场到最终离开磁场区域运动的总时间.【答案】(1)0mvqR(2)31(,)2R R- (3)(5)Rvπ+【解析】(1)设粒子在磁场中运动半径为r,根据题设条件画出粒子的运动轨迹:由几何关系可以得到:r R=由洛伦兹力等于向心力:2vqv B mr=,得到:0mvBqR=.(2)由图几何关系可以得到:3sin60x R R==,1cos602y R R=-=-N点坐标为:31,2 R R⎛⎫-⎪⎪⎝⎭.(3)粒子在磁场中运动的周期2mTqBπ=,由几何知识得到粒子在磁场在中运动的圆心角共为180,粒子在磁场中运动时间:12Tt=,粒子在磁场外的运动,由匀速直线运动可以得到:从出磁场到再次进磁场的时间为:22stv=,其中132s R R==,粒子从M点进入磁场到最终离开磁场区域运动的总时间12t t t=+解得:()5Rtvπ+=.3.“太空粒子探测器”是由加速、偏转和收集三部分组成,其原理可简化如下:如图1所示,辐射状的加速电场区域边界为两个同心平行半圆弧面,圆心为O,外圆弧面AB的电势为2L()oϕ>,内圆弧面CD的电势为φ,足够长的收集板MN平行边界ACDB,ACDB与MN板的距离为L.假设太空中漂浮着质量为m,电量为q的带正电粒子,它们能均匀地吸附到AB圆弧面上,并被加速电场从静止开始加速,不计粒子间的相互作用和其它星球对粒子的影响,不考虑过边界ACDB的粒子再次返回.(1)求粒子到达O点时速度的大小;(2)如图2所示,在PQ(与ACDB重合且足够长)和收集板MN之间区域加一个匀强磁场,方向垂直纸面向内,则发现均匀吸附到AB圆弧面的粒子经O点进入磁场后最多有23能打到MN板上,求所加磁感应强度的大小;(3)如图3所示,在PQ(与ACDB重合且足够长)和收集板MN之间区域加一个垂直MN的匀强电场,电场强度的方向如图所示,大小4ELφ=,若从AB圆弧面收集到的某粒子经O点进入电场后到达收集板MN离O点最远,求该粒子到达O点的速度的方向和它在PQ 与MN间运动的时间.【答案】(1)2q v mϕ=;(2)12m B L q ϕ=;(3)060α∴= ;22m L q ϕ【解析】 【分析】 【详解】试题分析:解:(1)带电粒子在电场中加速时,电场力做功,得:2102qU mv =-2U ϕϕϕ=-=2q v mϕ=(2)从AB 圆弧面收集到的粒子有23能打到MN 板上,则上端刚好能打到MN 上的粒子与MN 相切,则入射的方向与OA 之间的夹角是60︒,在磁场中运动的轨迹如图甲,轨迹圆心角060θ=.根据几何关系,粒子圆周运动的半径:2R L =由洛伦兹力提供向心力得:2v qBv m R=联合解得:12m B L qϕ=(3)如图粒子在电场中运动的轨迹与MN 相切时,切点到O 点的距离最远, 这是一个类平抛运动的逆过程. 建立如图坐标.212qE L t m=222mL mt L qE q ϕ== 22x Eq qEL q v t m m m ϕ===若速度与x 轴方向的夹角为α角 cos xv v α=1cos 2α=060α∴=4.如图甲所示,在直角坐标系中的0≤x≤L 区域内有沿y 轴正方向的匀强电场,右侧有以点(2L ,0)为圆心、半径为L 的圆形区域,与x 轴的交点分别为M 、N ,在xOy 平面内,从电离室产生的质量为m 、带电荷量为e 的电子以几乎为零的初速度从P 点飘入电势差为U 的加速电场中,加速后经过右侧极板上的小孔Q 点沿x 轴正方向进入匀强电场,已知O 、Q 两点之间的距离为2L,飞出电场后从M 点进入圆形区域,不考虑电子所受的重力。
高考物理带电粒子在无边界匀强磁场中运动专项训练100(附答案)及解析一、带电粒子在无边界匀强磁场中运动1专项训练1.在科学研究中,可以通过施加适当的磁场来实现对带电粒子运动的控制.在如图所示的平面坐标系x0y 内,矩形区域(-3d<x<d ,-3d<y<3d)外存在范围足够大的匀强磁场.一质量为m 、电奇量为+q 的粒子从P(0,3d)点沿y 轴正方向射入磁场.当入射速度为0v 时,粒子从(-2d ,3d)处进入无场区. (1)求磁场的磁感应强度B 的大小.(2)求粒了离开P 点后经多长时间第一次回到P 点.(3)若仅将入射速度变为20v ,其它条件不变,求粒于离开P 点后运动多少路程经过P 点.【答案】(1)0mv qd(2)00243d dv π+ (3)2(433)s k d d π=+,其中k =1、2、3… 或()8'234333d s d k d d ππ⎡⎤=+++⎢⎥⎣⎦,其中k =0、1、2、3 【解析】 【分析】(1)找出半径,根据洛伦兹力提供向心力进行求解即可;(2)画出粒子运动轨迹,求出在磁场中运动时间和在无磁场中运动的时间; (3)画出粒子运动轨迹,注意讨论粒子运动的方向不同; 【详解】(1)由题条件可判断粒子做圆周运动半径为:R d =粒子在磁场中2v qvB m R=,得到:0mv B qd =;(2)粒子运动轨迹如图所示:粒子在磁场中运动时间:102dt vπ=粒子在无场区运动时间:2043dt = 粒子再次回到P 点时间:12t t t =+ 得到:00243d dt v π=+ (3)粒子运动轨迹如图所示:粒子速度变为02v ,则在磁场中运动半径为:2R d '=由P 点沿圆弧运动到C 点时间:3002224323dd t v v ππ⨯⨯== 由C 点沿直线运动到D 点时间:4002332d dt v v ==①粒子以2v 0沿y 轴正向经过P则粒子运动时间:34(33)t k t t =+,其中k =1、2、3… 粒子运动距离:02s v t =得到:2(433)s k d d π=+,其中k =1、2、3… ②粒子以02v 大小与-y 方向成60°经过P则:34342(33)t t t k t t '=+++,其中k =0、1、2、3… 粒子运动距离为:02s v t ''= 得到:()8'234333d s d k d d ππ⎡⎤=++⎢⎥⎣⎦,其中k =0、1、2、3… 【点睛】带电粒子在磁场中的运动,关键是找出半径和圆心,利用洛伦兹力提供向心力进行求解即可,同时还要准确地画出轨迹.2.如图所示,两个边长均为l的正方形区域ABCD和EFGH内有竖直向上的匀强电场,DH 上方有足够长的竖直向下的匀强电场.一带正电的粒子,质量为m,电荷量为q,以速度v从B点沿BC方向射入匀强电场,已知三个区域内的场强大小相等,且,今在CDHE区域内加上合适的垂直纸面向里的匀强磁场,粒子经过该磁场后恰能从DH的中点竖直向上射入电场,粒子的重力不计,求:(1)所加磁场的宽度DH;(2)所加磁场的磁感应强度大小;(3)粒子从B点射入到从EFGH区域电场射出所经历的总时间.【答案】(1) (2) (3)【解析】(1)粒子在ABCD区域电场中做类平抛运动,射出该电场时沿电场方向偏转距离为d由Eq=ma得a=由l=vt得t=故d=at2=l粒子射出ABCD区域电场时沿场强方向速度为v y=at=v速度偏向角为tanθ==1解得θ=粒子从DH中点竖直向上射入电场,由几何关系知得得(2)射入磁场的速度大小为v′=v由洛伦兹力提供向心力qv′B=m解得B=(3)粒子在左侧电场中偏转的运动时间t1=粒子在磁场中向上偏转运动时间t2=T其中T=在上方电场中运动减速到零的时间为t3=粒子运动轨迹如图所示,根据对称性可知粒子运动总时间为t=2(t1+t2+t3)得或t=点睛:本题考查了粒子在电场与磁场中的运动,粒子运动过程复杂,分析清楚粒子运动过程、作出粒子运动轨迹是解题的前提,作出粒子运动轨迹后,应用类平抛运动规律与牛顿第二定律可以解题,解题时注意几何知识的应用.3.在磁感应强度为B的匀强磁场中,一个静止的放射性原子核发生了一次α衰变.放射He)在与磁场垂直的平面内做圆周运动,其轨道半径为R.以m、q分别表出α粒子(42示α粒子的质量和电荷量.(1)放射性原子核用AX表示,新核的元素符号用Y表示,写出该α衰变的核反应方Z程.(2)α粒子的圆周运动可以等效成一个环形电流,求圆周运动的周期和环形电流大小. (3)设该衰变过程释放的核能都转为为α粒子和新核的动能,新核的质量为M ,求衰变过程的质量亏损△m .【答案】(1)放射性原子核用 A Z X 表示,新核的元素符号用Y 表示,则该α衰变的核反应方程为4422AA Z Z X Y H --→+ ;(2)α粒子的圆周运动可以等效成一个环形电流,则圆周运动的周期为 2m Bq π ,环形电流大小为 22Bq mπ ;(3)设该衰变过程释放的核能都转为为α粒子和新核的动能,新核的质量为M ,则衰变过程的质量亏损△m 为损2211()()2BqR m M c + . 【解析】(1)根据核反应中质量数与电荷数守恒可知,该α衰变的核反应方程为4422X Y He A A ZZ --→+(2)设α粒子在磁场中做圆周运动的速度大小为v ,由洛伦兹力提供向心力有2v qvB m R=根据圆周运动的参量关系有2πRT v=得α粒子在磁场中运动的周期2πmT qB=根据电流强度定义式,可得环形电流大小为22πq q BI T m==(3)由2v qvB m R =,得qBR v m=设衰变后新核Y 的速度大小为v ′,核反应前后系统动量守恒,有Mv ′–mv =0 可得mv qBR v M M='=根据爱因斯坦质能方程和能量守恒定律有2221122mc Mv mv '∆=+ 解得22()()2M m qBR m mMc+∆= 说明:若利用44A M m -=解答,亦可. 【名师点睛】(1)无论哪种核反应方程,都必须遵循质量数、电荷数守恒.(2)α衰变的生成物是两种带电荷量不同的“带电粒子”,反应前后系统动量守恒,因此反应后的两产物向相反方向运动,在匀强磁场中,受洛伦兹力作用将各自做匀速圆周运动,且两轨迹圆相外切,应用洛伦兹力计算公式和向心力公式即可求解运动周期,根据电流强度的定义式可求解电流大小.(3)核反应中释放的核能应利用爱因斯坦质能方程求解,在结合动量守恒定律与能量守恒定律即可解得质量亏损.4.在xOy 坐标中,有随时间周期性变化的电场和磁场(磁场持续t 1后消失;紧接着电场出现,持续t 2时间后消失,接着磁场......如此反复),如图所示,磁感应强度方向垂直纸面向里,电场强度方向沿y 轴向下,有一质量为m ,带电量为+q 的带电粒子,在t =0时刻,以初速v 0从0点沿x 轴正方向出发,在t 1时刻第一次到达y 轴上的M (0,L )点,t 1+t 2时刻第一次回到x 轴上的 N (-2L ,0)点,不计粒子重力,t 1、t 2均未知。
【物理】 物理带电粒子在无边界匀强磁场中运动专题练习(及答案)一、带电粒子在无边界匀强磁场中运动1专项训练1.如图所示,在x 轴上方有一匀强磁场,磁感应强度为B 。
x 轴下方有一匀强电场,电场强度为E 。
屏MN 与y 轴平行且相距L ,一质量为m ,电荷量为e 的电子,在y 轴上某点A 自静止释放,如果要使电子垂直打在屏MN 上,那么:(1)电子释放位置与原点O 点之间的距离s 需满足什么条件?(2)电子从出发点到垂直打在屏上需要多长时间?【答案】(1)()222s 221eL B Em n =+ (n =0,1,2,3…);(2)()212BL m t n E eBπ=++ (n =0,1,2,3…) 【解析】【分析】【详解】 (1)在电场中电子从A →O 过程,由动能定理可得2012eEs mv = 在磁场中电子偏转,洛伦兹力提供向心力,有200v qv B m r= 可得0mv r qB=根据题意有 (2n +1)r =L所以解得()222221eL B s Em n =+ (n =0,1,2,3…)(2)电子在电场中做匀变速直线运动的时间与在磁场中做部分圆周运动的时间之和为电子运动的总时间,即 )2(2214s T T t n n a ++⋅=+ 由公式 eE ma =可得 eE a m =由公式 20v qvB m r = 和 02r T v π=可得 2m T eBπ=综上整理可得 ()212BL m t n E eBπ=++ (n =0,1,2,3…)2.如图所示,圆心为O 、半径为R 的圆形磁场区域中存在垂直纸面向外的匀强磁场,以圆心O 为坐标原点建立坐标系,在y=-3R 处有一垂直y 轴的固定绝缘挡板,一质量为m 、带电量为+q 的粒子,与x 轴成 60°角从M 点(-R,0) 以初速度v 0斜向上射入磁场区域,经磁场偏转后由N 点离开磁场(N 点未画出)恰好垂直打在挡板上,粒子与挡板碰撞后原速率弹回,再次进入磁场,最后离开磁场.不计粒子的重力,求:(1)磁感应强度B 的大小;(2)N 点的坐标;(3)粒子从M 点进入磁场到最终离开磁场区域运动的总时间.【答案】(1)0mv qR (2) 31,)2R R - (3)0(5)R v π+ 【解析】(1)设粒子在磁场中运动半径为r ,根据题设条件画出粒子的运动轨迹:由几何关系可以得到:r R = 由洛伦兹力等于向心力:200v qv B m r=,得到:0mv B qR =. (2)由图几何关系可以得到:3sin 60x R R ==o ,1cos602y R R o =-=- N 点坐标为:31,2R R ⎫-⎪⎪⎝⎭. (3)粒子在磁场中运动的周期2m T qBπ=,由几何知识得到粒子在磁场在中运动的圆心角共为180o ,粒子在磁场中运动时间:12T t =,粒子在磁场外的运动,由匀速直线运动可以得到:从出磁场到再次进磁场的时间为:202s t v =,其中132s R R ==,粒子从M 点进入磁场到最终离开磁场区域运动的总时间12t t t =+解得:()05Rt v π+=.3.在科学研究中,可以通过施加适当的磁场来实现对带电粒子运动的控制.在如图所示的平面坐标系x0y 内,矩形区域(-3d<x<d ,33外存在范围足够大的匀强磁场.一质量为m 、电奇量为+q 的粒子从P(03点沿y 轴正方向射入磁场.当入射速度为0v 时,粒子从(-2d 3处进入无场区.(1)求磁场的磁感应强度B 的大小.(2)求粒了离开P 点后经多长时间第一次回到P 点.(3)若仅将入射速度变为20v ,其它条件不变,求粒于离开P 点后运动多少路程经过P 点.【答案】(1)0mv qd (2)00243d d v π+ (3)2(433)s k d d π=+,其中k =1、2、3… 或()8'234333d s d k d d ππ⎡⎤=+++⎢⎥⎣⎦,其中k =0、1、2、3 【解析】【分析】(1)找出半径,根据洛伦兹力提供向心力进行求解即可;(2)画出粒子运动轨迹,求出在磁场中运动时间和在无磁场中运动的时间; (3)画出粒子运动轨迹,注意讨论粒子运动的方向不同;【详解】(1)由题条件可判断粒子做圆周运动半径为:R d =粒子在磁场中20v qvB m R =,得到:0mv B qd =; (2)粒子运动轨迹如图所示:粒子在磁场中运动时间:102d t v π= 粒子在无场区运动时间:2043 d t = 粒子再次回到P 点时间:12t t t =+得到:00243d d t v v π=+ (3)粒子运动轨迹如图所示:粒子速度变为02v ,则在磁场中运动半径为:2R d '=由P 点沿圆弧运动到C 点时间:3002224323d d t v v ππ⨯⨯== 由C 点沿直线运动到D 点时间:400233d d t == ①粒子以2v 0沿y 轴正向经过P则粒子运动时间:34(33)t k t t =+,其中k =1、2、3…粒子运动距离:02s v t = 得到:2(433)s k d d π=+,其中k =1、2、3…②粒子以02v 大小与-y 方向成60°经过P则:34342(33)t t t k t t '=+++,其中k =0、1、2、3…粒子运动距离为:02s v t ''= 得到:()8'234333d s d k d d ππ⎡⎤=++⎢⎥⎣⎦,其中k =0、1、2、3… 【点睛】带电粒子在磁场中的运动,关键是找出半径和圆心,利用洛伦兹力提供向心力进行求解即可,同时还要准确地画出轨迹.4.如图所示,平面直角坐标系xoy 被三条平行的分界线分为I 、II 、III 、IV 四个区域,每条分界线与x 轴所夹30º角,区域I 、II 分界线与y 轴的交点坐标(0,l ),区域I 中有方向垂直纸面向里、大小为B 的匀强磁场;区域 II 宽度为d ,其中有方向平行于分界线的匀强电场;区域III 为真空区域;区域IV 中有方向垂直纸面向外、大小为2B 的匀强磁场.现有不计重力的两粒子,粒子l 带正电,以速度大小v 1从原点沿x 轴正方向运动;粒子2带负电,以一定大小的速度从x 轴正半轴一点A 沿x 轴负向与粒子1同时开始运动,两粒子恰在同一点垂直分界线进入区域II ;随后粒子1以平行于x 轴的方向进入区域III ;粒子2以平行于y 轴的方向进入区域III ,最后两粒子均在第二次经过区城III 、IV 分界线时被引出.(1)求A 点与原点距离;(2)求区域II 内电场强度E 的大小和方向;(3)求粒子2在A 的速度大小;(4)若两粒子在同一位置处被引出,区城III 宽度应设计为多少?【答案】(1)23OA l =(2)13Blv E =(3)21v v =(4)32d S l =- 【解析】(1)因为粒子1和粒子2在同一点垂直分界线进入区域Ⅱ,所以粒子1在区域Ⅰ运动半径为R 1=l 粒子2在区域Ⅰ运动半径为R 2由几何关系知22132R R l =+ 23R l =33323OA l l l =-=(2)要满足题设条件,区域Ⅱ中电场方向必须平行于分界线斜向左下方两粒子进入电场中都做类平抛运动,区域Ⅱ的宽度为d ,出电场时,对粒子1沿电场方向的运动有 1313tan 30E v v v ==︒11113q E d v m v =⋅又 21111v q v B m l= 所以111q v m Bl =1E d= (3)粒子2经过区域Ⅱ电场加速获得的速度大小为24E tan 60v v ==︒对粒子2在电场中运动有2222q E d m v =⋅ 又 222223v q v B m l = 所以2223Blq v m = 所以 21v v = (4)粒子1经过区域Ⅲ时的速度大小为1312sin 30v v v ==︒ 有 2313132v Bq v m R = 3R l = 粒子2经过区域Ⅲ时的速度大小为24cos30v v ==︒有 2424242v Bq v m R =4R =两粒子要在区域IV 运动后到达同一点引出,O 3圆对应的圆心角为60゜,O 4圆对应的圆心角为120゜3E 4E 34122cos30++tan 30tan 6022v v S S d d R R v v +︒=⋅+⋅︒︒2d S =- 点睛:带电粒子在组合场中的运动问题,首先要运用动力学方法分析清楚粒子的运动情况,再选择合适方法处理.对于匀变速曲线运动,常常运用运动的分解法,将其分解为两个直线的合成,由牛顿第二定律和运动学公式结合求解;对于磁场中圆周运动,要正确画出轨迹,由几何知识求解半径.5.相距为L 的平行金属板 M 、N ,板长也为L ,板间可视为匀强电场,两板的左端与虚线 EF 对齐,EF 左侧有水平匀强电场,M 、N 两板间所加偏转电压为 U ,PQ 是两板间的中轴线.一质量为 m 、电量大小为+q 的带电粒子在水平匀强电场中 PQ 上 A 点由静止释放,水平电场强度与M 、N 之间的电场强度大小相等,结果粒子恰好从 N 板的右边緣飞出,立即进入垂直直面向里的足够大匀强磁场中 ,A 点离 EF 的距离为 L /2;不计粒子的重力,求: (1)磁感应强度B 大小(2)当带电粒子运动到 M 点后,MN 板间偏转电压立即变为−U ,(忽略电场变化带来的影响)带电粒子最终回到 A 点,求带电粒子从出发至回到 A 点所需总时间.【答案】(12mU L q 2)344L m L qUπ+()【解析】【详解】 (1)由题意知:对粒子在水平电场中从点A 到点O :有:21022U l qmv L =-……………① 在竖直向下的电场中从点O 到N 右侧边缘点B :水平方向: 0L v t =……………②竖直方向:2122L qU t mL=……………③ 在B 点设速度v 与水平初速度成θ角有:2tan 21LLθ=⨯=……………④ 粒子在磁场中做匀速圆周运动由几何关系可得:2R =……………⑤ 又: 2v qvB m R=……………⑥ 联解①②③④⑤⑥得:2L mU B q=……………⑦(2)粒子在磁场中运动的圆心角32πα=22R mTv qBππ==在磁场中运动时间:2t Tαπ'=在水平电场中运动时间:00v vtqUamL==''……………⑧总的时间:22t t t t'='++'总……………⑨联解得:344L mt LqUπ=+总()……………⑩6.如图所示,在屏蔽装置底部中心位置O点放一医用放射源,可通过细缝沿扇形区域向外辐射速率为v=3.2×106m的α粒子.已知屏蔽装置宽AB=9cm,缝长AD=18cm,α粒子的质量m=6.64×10-27kg,电量q=3.2×10-19C.若在屏蔽装置右侧条形区域内加一匀强磁场来隔离辐射,磁感应强度B=0.332 T,方向垂直于纸面向里,整个装置放于真空环境中.(1)若所有的α粒子均不能从条形磁场隔离区的右侧穿出,则磁场的宽度d至少是多少?(2)若条形磁场的宽度d =20cm ,则射出屏蔽装置的α粒子在磁场中运动的最长时间和最短时间各是多少?(结果保留2位有效数字)【答案】(1)0.34cm ;(2)72.010s -⨯;86.510s -⨯.【解析】【分析】【详解】(1)由题意:AB =9cm ,AD =18cm ,可得:∠BAO =∠ODC =45°所有α粒子在磁场中做匀速圆周运动的半径相同,设为R , 根据牛顿第二定律有2v qvB m R =,解得R =0.2m =20cm 由题意及几何关系可知:若条形磁场区域的右边界与沿OD 方向进入磁场的α粒子的圆周轨迹相切,则所有α粒子均不能从条形磁场隔离区右侧穿出,如图(1)所示.设此时磁场宽度为d 0,由几何关系得()045201020.34d R Rcos cm m ︒+≈=+=(2)设α粒子在磁场内做匀速圆周运动的周期为T ,则62108m T s qB ππ-==⨯ 设速度方向垂直于AD 进入磁场区域的α粒子的入射点为E ,如图所示.因磁场宽度d =20cm <d 0,且R =20cm ,则在∠EOD 间出射进入磁场区域的α粒子均能穿出磁场右边界,在∠EOA 间出射进入磁场区域的α粒子均不能穿出磁场右边界,所以沿OE 方向进入磁场区域的α粒子运动轨迹与磁场右边界相切,在磁场中运动时间最长. 设在磁场中运动时间最长为max t ,则6710 2.010216max T t s s π--==⨯≈⨯ 若α粒子在磁场中做匀速圆周运动对应的圆弧轨迹的弦最短,则α粒子穿过磁场时间最短.最短的弦长为磁场宽度d .设在磁场中运动的最短时间为min t ,轨迹如图所示.因R =d ,则圆弧对应圆心角为60°,则6810 6.510648min T ts s π--==⨯≈⨯ 【点睛】当粒子(速度一定)在有界磁场中轨迹是劣弧时,粒子在磁场中运动轨迹的弦最短,粒子在磁场中运动时间最短.7.如图1所示为平面坐标系xOy ,在第一象限内的虚曲线和y 轴之间存在着垂直纸面向里的匀强磁场,磁感应强度大小为B ;在第二象限内的虚直线(63x a =-)和y 轴之间存在着如图2所示的交变磁场(以垂直纸面向外为磁场的正方向).在A (2a ,0)点的放射源发出质量为m 、带电量为q +的粒子,粒子速度大小为00aqB v m=,速度方向与x 轴负方向的夹角为θ(090θ<<︒),所有粒子都能垂直穿过y 轴后进入第二象限.不计粒子重力和粒子间相互作用.(1)求夹角45θ=︒的粒子经过y 轴时的坐标; (2)求第一象限内虚曲线的曲线方程()y x ;(3)假设交变磁场在0时刻,某粒子刚好经过y 轴上的B (0,a )点,则 ①要求该粒子不回到第一象限,交变磁场的变化周期T 应满足什么条件?②要求该粒子在C (63a -,a )点垂直虚直线水平射出磁场,求粒子在交变磁场中运动时间t 与磁场变化周期T 的比值k 的最小值?并求出在这种情况下粒子在交变磁场中的运动时间.【答案】(1)(32)y a =-;(2)22y a x =-(3)①0103m T qB π≤;②04mqB π【解析】 【详解】(1)粒子在磁场中做匀速圆周运动,轨迹半径为r ,则:2000v qv B m r=解得:r a =,如图1所示,当入射角为45︒时,根据几何关系可得:y 轴坐标22))(32)222y a a a a a =-+-=-(( (2)如图2所示,入射角为任意角θ,进入磁场入射点坐标为(x ,y ),根据几何关系可得:tan 2ya xθ=- 22tan a x θ=-得222x a x y a x-=-(0x a <<)(3)①粒子不回到第一象限,临界情况为轨迹与y 轴相切,如图3所示;设粒子在磁场中运动的周期为0T ,两圆心连线与y 轴夹角为β,则:002mT qB π=1sin 2β=所以30β=︒且满足01504360T T ︒=︒得103mT qB π=要求该粒子不回到第一象限,交变磁场的变化周期T 应满足103mT qB π≤; ②粒子在交变磁场中运动的时间t 与磁场变化的周期T 的比值为k ,即tk T= 如图4所示根据几何关系可得:4sin BC r k L β⨯=33sin β=由于sin 1β≤,所以k 最小等于3,即3sin β=当60β=︒,如图4所示,粒子运动时间100602433604mq m t qB B ππ︒=⨯⨯⨯=o 当β=120°时,如图5所示,粒子运动时间220012028443360m mt t qB qB ππ︒=⨯=⨯⨯⨯=o8.在方向垂直纸面的匀强磁场中,静止的21084Po 核沿与磁场垂直的方向放出42He 核后变成Pb 的同位素粒子。
一、带电粒子在无边界匀强磁场中运动1专项训练1.如图所示,在x 轴上方有一匀强磁场,磁感应强度为B 。
x 轴下方有一匀强电场,电场强度为E 。
屏MN 与y 轴平行且相距L ,一质量为m ,电荷量为e 的电子,在y 轴上某点A 自静止释放,如果要使电子垂直打在屏MN 上,那么: (1)电子释放位置与原点O 点之间的距离s 需满足什么条件? (2)电子从出发点到垂直打在屏上需要多长时间?【答案】(1)()222s 221eL B Em n =+ (n =0,1,2,3…);(2)()212BL m t n E eBπ=++ (n =0,1,2,3…) 【解析】 【分析】 【详解】(1)在电场中电子从A →O 过程,由动能定理可得2012eEs mv =在磁场中电子偏转,洛伦兹力提供向心力,有200v qv B m r=可得mv r qB=根据题意有(2n +1)r =L所以解得()222221eL B s Em n =+ (n =0,1,2,3…)(2)电子在电场中做匀变速直线运动的时间与在磁场中做部分圆周运动的时间之和为电子运动的总时间,即)2(2214sT T t n n a ++⋅=+ 由公式 eE ma =可得eEa m=由公式 20v qvB m r = 和 02r T v π=可得2mT eBπ=综上整理可得()212BL m t n E eBπ=++ (n =0,1,2,3…)2.如图所示,虚线为两磁场的边界,虚线左侧存在着半径为R 的半圆形匀强磁场,磁感应强度为B ,方向垂直纸面向里,圆心O 为虚线上的一点,虚线右侧存在着宽度为R 的匀强磁场,方向垂直纸面向外。
质量为m 、电荷量为q 的带负电的粒子,从圆周上的A 点以某一初速度沿半径方向射入半圆形磁场区域,恰好从D 点射出,AO 垂直OD 。
若将带电粒子从圆周上的C 点,以相同的初速度射入磁场,已知∠AOC =53°,粒子刚好能从虚线右侧磁场区域射出,不计粒子重力,sin53°=0.8,cos53°=0.6,求: (1)带电粒子的初速度及其从A 到D 的运动时间;(2)粒子从C 点入射,第一次运动到两磁场的边界时速度的方向及其离O 点的距离; (3)虚线右侧磁场的磁感应强度。
(物理)高考物理带电粒子在磁场中的运动专项训练100(附答案)及解析一、带电粒子在磁场中的运动专项训练1.如图所示,MN为绝缘板,CD为板上两个小孔,AO为CD的中垂线,在MN的下方有匀强磁场,方向垂直纸面向外(图中未画出),质量为m电荷量为q的粒子(不计重力)以某一速度从A点平行于MN的方向进入静电分析器,静电分析器内有均匀辐向分布的电场(电场方向指向O点),已知图中虚线圆弧的半径为R,其所在处场强大小为E,若离子恰好沿图中虚线做圆周运动后从小孔C垂直于MN进入下方磁场.()1求粒子运动的速度大小;()2粒子在磁场中运动,与MN板碰撞,碰后以原速率反弹,且碰撞时无电荷的转移,之后恰好从小孔D进入MN上方的一个三角形匀强磁场,从A点射出磁场,则三角形磁场区域最小面积为多少?MN上下两区域磁场的磁感应强度大小之比为多少?()3粒子从A点出发后,第一次回到A点所经过的总时间为多少?【答案】(1EqRm(2)212R;11n+;(3)2πmREq【解析】【分析】【详解】(1)由题可知,粒子进入静电分析器做圆周运动,则有:2mvEqR=解得:EqR vm =(2)粒子从D到A匀速圆周运动,轨迹如图所示:由图示三角形区域面积最小值为:22R S= 在磁场中洛伦兹力提供向心力,则有:2mv Bqv R= 得:mv R Bq=设MN 下方的磁感应强度为B 1,上方的磁感应强度为B 2,如图所示:若只碰撞一次,则有:112R mv R B q== 22mvR R B q==故2112B B = 若碰撞n 次,则有:111R mv R n B q==+ 22mvR R B q==故2111B B n =+ (3)粒子在电场中运动时间:1242R mRt v Eqππ== 在MN 下方的磁场中运动时间:211122n m mRt R R v EqR Eqπππ+=⨯⨯== 在MN 上方的磁场中运动时间:232142R mRt v Eq ππ=⨯=总时间:1232mRt t t t Eqπ=++=2.如图所示,半径r =0.06m 的半圆形无场区的圆心在坐标原点O 处,半径R =0.1m ,磁感应强度大小B =0.075T 的圆形有界磁场区的圆心坐标为(0,0.08m ),平行金属板MN 的极板长L =0.3m 、间距d =0.1m ,极板间所加电压U =6.4x102V ,其中N 极板收集到的粒子全部中和吸收.一位于O 处的粒子源向第一、二象限均匀地发射速度为v 的带正电粒子,经圆形磁场偏转后,从第一象限出射的粒子速度方向均沿x 轴正方向,已知粒子在磁场中的运动半径R 0=0.08m ,若粒子重力不计、比荷qm=108C/kg 、不计粒子间的相互作用力及电场的边缘效应.sin53°=0.8,cos53°=0.6. (1)求粒子的发射速度v 的大小;(2)若粒子在O 点入射方向与x 轴负方向夹角为37°,求它打出磁场时的坐标: (3)N 板收集到的粒子占所有发射粒子的比例η.【答案】(1)6×105m/s ;(2)(0,0.18m );(3)29% 【解析】 【详解】(1)由洛伦兹力充当向心力,即qvB =m 2v R可得:v=6×105m/s;(2)若粒子在O点入射方向与x轴负方向夹角为37°,作出速度方向的垂线与y轴交于一点Q,根据几何关系可得PQ=0.0637cos=0.08m,即Q为轨迹圆心的位置;Q到圆上y轴最高点的距离为0.18m-0.0637sin=0.08m,故粒子刚好从圆上y轴最高点离开;故它打出磁场时的坐标为(0,0.18m);(3)如上图所示,令恰能从下极板右端出射的粒子坐标为y,由带电粒子在电场中偏转的规律得:y=12at2…①a=qEm=qUmd…②t=Lv …③由①②③解得:y=0.08m设此粒子射入时与x轴的夹角为α,则由几何知识得:y=r sinα+R0-R0cosα可知tanα=43,即α=53°比例η=53180×100%=29%3.在水平桌面上有一个边长为L的正方形框架,内嵌一个表面光滑的绝缘圆盘,圆盘所在区域存在垂直圆盘向上的匀强磁场.一带电小球从圆盘上的P点(P为正方形框架对角线AC与圆盘的交点)以初速度v0水平射入磁场区,小球刚好以平行于BC边的速度从圆盘上的Q点离开该磁场区(图中Q点未画出),如图甲所示.现撤去磁场,小球仍从P点以相同的初速度v0水平入射,为使其仍从Q点离开,可将整个装置以CD边为轴向上抬起一定高度,如图乙所示,忽略小球运动过程中的空气阻力,已知重力加速度为g.求:(1)小球两次在圆盘上运动的时间之比;(2)框架以CD为轴抬起后,AB边距桌面的高度.【答案】(1)小球两次在圆盘上运动的时间之比为:π:2;(2)框架以CD为轴抬起后,AB边距桌面的高度为222vg.【解析】【分析】【详解】(1)小球在磁场中做匀速圆周运动,由几何知识得:r2+r2=L2,解得:r=22L,小球在磁场中做圆周运的周期:T=2rvπ,小球在磁场中的运动时间:t1=14T=24Lvπ,小球在斜面上做类平抛运动,水平方向:x =r =v 0t 2, 运动时间:t 2=22L v, 则:t 1:t 2=π:2;(2)小球在斜面上做类平抛运动,沿斜面方向做初速度为零的匀加速直线运动,位移:r =2212at ,解得,加速度:a =222v L,对小球,由牛顿第二定律得:a =mgsin mθ=g sinθ, AB 边距离桌面的高度:h =L sinθ=222v g;4.空间中存在方向垂直于纸面向里的匀强磁场,磁感应强度为B ,一带电量为+q 、质量为m 的粒子,在P 点以某一初速开始运动,初速方向在图中纸面内如图中P 点箭头所示.该粒子运动到图中Q 点时速度方向与P 点时速度方向垂直,如图中Q 点箭头所示.已知P 、Q 间的距离为L .若保持粒子在P 点时的速度不变,而将匀强磁场换成匀强电场,电场方向与纸面平行且与粒子在P 点时速度方向垂直,在此电场作用下粒子也由P 点运动到Q 点.不计重力.求:(1)电场强度的大小.(2)两种情况中粒子由P 运动到Q 点所经历的时间之比.【答案】22B qLE m=;2B E t t π= 【解析】 【分析】 【详解】(1)粒子在磁场中做匀速圆周运动,以v 0表示粒子在P 点的初速度,R 表示圆周的半径,则有20v qv B m R= 由于粒子在Q 点的速度垂直它在p 点时的速度,可知粒子由P 点到Q 点的轨迹为14圆周,故有2R =以E 表示电场强度的大小,a 表示粒子在电场中加速度的大小,t E 表示粒子在电场中由p点运动到Q 点经过的时间,则有qE ma = 水平方向上:212E R at =竖直方向上:0E R v t =由以上各式,得 22B qL E m= 且E mt qB = (2)因粒子在磁场中由P 点运动到Q 点的轨迹为14圆周,即142B t T m qB π==所以2B E t t π=5.在平面直角坐标系x0y 中,第I 象限内存在垂直于坐标平面向里的匀强磁场,在A (L ,0)点有一粒子源,沿y 轴正向发射出速率分别为υ、5υ、9υ的同种带电粒子,粒子质量为m ,电荷量为q .在B (0,L )、C (0,3L )、D (0,5L )放一个粒子接收器,B 点的接收器只能吸收来自y 轴右侧到达该点的粒子,C 、D 两点的接收器可以吸收沿任意方向到达该点的粒子.已知速率为υ的粒子恰好到达B 点并被吸收,不计粒子重力.(1)求第I 象限内磁场的磁感应强度B 1;(2)计算说明速率为5v 、9v 的粒子能否到达接收器;(3)若在第Ⅱ象限内加上垂直于坐标平面的匀强磁场,使所有粒子均到达接收器,求所加磁场的磁感应强度B 2的大小和方向. 【答案】(1)1mvB qL=(2)故速率为v 5的粒子被吸收,速率为9v 的粒子不能被吸收(3)2217'(173)m B qL=-2(17317)'4mvB qL +=),垂直坐标平面向外【解析】 【详解】(1)由几何关系知,速率为v 的粒子在第Ⅰ象限内运动的半径为R L =①由牛顿运动定律得21v qvB m R=②得1mv B qL=③(2)由(1)中关系式可得速率为v 5、9v 的粒子在磁场中的半径分别为5L 、9L . 设粒子与y 轴的交点到O 的距离为y ,将5R L =和9R L =分别代入下式222()R L y R -+=④得这两种粒子在y 轴上的交点到O 的距离分别为3L、17L ⑤ 故速率为v 5的粒子被吸收,速率为9v 的粒子不能被吸收.⑥(3)若速度为9v 的粒子能到达D 点的接收器,则所加磁场应垂直坐标平面向外⑦ 设离子在所加磁场中的运动半径为1R ,由几何关系有15172917L L R L L-= 又221(9)9v q vB m R ⋅=⑨解得2217(517)mv B qL=-(或2(51717)4mvB qL =)⑩若粒子到达C 点的接收器,所加磁场应垂直于坐标平面向里同理:21732917L LR L L-=222(9)9'v q vB m R ⋅=解得2217'(173)m B qL=-2(17317)'4mvB qL +=)6.如图所示,在第一象限内存在匀强电场,电场方向与x 轴成45°角斜向左下,在第四象限内有一匀强磁场区域,该区域是由一个半径为R 的半圆和一个长为2R 、宽为2R的矩形组成,磁场的方向垂直纸面向里.一质量为m 、电荷量为+q 的粒子(重力忽略不计)以速度v 从Q(0,3R)点垂直电场方向射入电场,恰在P(R ,0)点进入磁场区域.(1)求电场强度大小及粒子经过P点时的速度大小和方向;(2)为使粒子从AC边界射出磁场,磁感应强度应满足什么条件;(3)为使粒子射出磁场区域后不会进入电场区域,磁场的磁感应强度应不大于多少?【答案】(1)22mvE=;2v,速度方向沿y轴负方向(2)82225mv mvBqR qR≤≤(3)()22713mvqR-【解析】【分析】【详解】(1)在电场中,粒子沿初速度方向做匀速运动132cos4522cos45RL R R=-︒=︒1L vt=沿电场力方向做匀加速运动,加速度为a22sin452L R R=︒=2212L at=qEam=设粒子出电场时沿初速度和沿电场力方向分运动的速度大小分别为1v、2v,合速度v'1v v =、2v at =,2tan v vθ=联立可得224mv E qR=进入磁场的速度22122v v v v =+='45θ=︒,速度方向沿y 轴负方向(2)由左手定则判定,粒子向右偏转,当粒子从A 点射出时,运动半径12Rr =由211mv qv B r =''得122mvB qR=当粒子从C 点射出时,由勾股定理得()222222R R r r ⎛⎫-+= ⎪⎝⎭解得258r R =由222mv qv B r =''得2825mvB qR=根据粒子在磁场中运动半径随磁场减弱而增大,可以判断,当82225mv mvB qR qR≤≤时,粒子从AC 边界射出(3)为使粒子不再回到电场区域,需粒子在CD 区域穿出磁场,设出磁场时速度方向平行于x 轴,其半径为3r ,由几何关系得222332R r r R ⎛⎫+-= ⎪⎝⎭解得()3714R r =由233mv qv B r =''得)322713mv B qR= 磁感应强度小于3B ,运转半径更大,出磁场时速度方向偏向x 轴下方,便不会回到电场中7.如图,空间某个半径为R 的区域内存在磁感应强度为B 的匀强磁场,与它相邻的是一对间距为d ,足够大的平行金属板,板间电压为U 。
一、带电粒子在无边界匀强磁场中运动1专项训练1.如图所示,xOy 平面处于匀强磁场中,磁感应强度大小为B ,方向垂直纸面向外.点3,0P L ⎛⎫ ⎪ ⎪⎝⎭处有一粒子源,可向各个方向发射速率不同、电荷量为q 、质量为m 的带负电粒子.不考虑粒子的重力.(1)若粒子1经过第一、二、三象限后,恰好沿x 轴正向通过点Q (0,-L ),求其速率v 1;(2)若撤去第一象限的磁场,在其中加沿y 轴正向的匀强电场,粒子2经过第一、二、三象限后,也以速率v 1沿x 轴正向通过点Q ,求匀强电场的电场强度E 以及粒子2的发射速率v 2;(3)若在xOy 平面内加沿y 轴正向的匀强电场E o ,粒子3以速率v 3沿y 轴正向发射,求在运动过程中其最小速率v.某同学查阅资料后,得到一种处理相关问题的思路:带电粒子在正交的匀强磁场和匀强电场中运动,若所受洛伦兹力与电场力不平衡而做复杂的曲线运动时,可将带电粒子的初速度进行分解,将带电粒子的运动等效为沿某一方向的匀速直线运动和沿某一时针方向的匀速圆周运动的合运动. 请尝试用该思路求解. 【答案】(1)23BLq m (2221BLq32230B E E v B +⎛⎫ ⎪⎝⎭【解析】 【详解】(1)粒子1在一、二、三做匀速圆周运动,则2111v qv B m r =由几何憨可知:()222113r L r ⎫=-+⎪⎪⎝⎭得到:123BLqv m=(2)粒子2在第一象限中类斜劈运动,有:13L v t=,212qE h t m = 在第二、三象限中原圆周运动,由几何关系:12L h r +=,得到289qLB E m=又22212v v Eh =+,得到:2v =(3)如图所示,将3v 分解成水平向右和v '和斜向的v '',则0qv B qE '=,即0E v B'=而v ''=所以,运动过程中粒子的最小速率为v v v =''-'即:0E v B =2.在磁感应强度为B 的匀强磁场中,一个静止的放射性原子核发生了一次α衰变.放射出α粒子(42He )在与磁场垂直的平面内做圆周运动,其轨道半径为R .以m 、q 分别表示α粒子的质量和电荷量.(1)放射性原子核用 A Z X 表示,新核的元素符号用Y 表示,写出该α衰变的核反应方程.(2)α粒子的圆周运动可以等效成一个环形电流,求圆周运动的周期和环形电流大小. (3)设该衰变过程释放的核能都转为为α粒子和新核的动能,新核的质量为M ,求衰变过程的质量亏损△m .【答案】(1)放射性原子核用 A Z X 表示,新核的元素符号用Y 表示,则该α衰变的核反应方程为4422AA Z Z X Y H --→+ ;(2)α粒子的圆周运动可以等效成一个环形电流,则圆周运动的周期为 2m Bq π ,环形电流大小为 22Bq mπ ;(3)设该衰变过程释放的核能都转为为α粒子和新核的动能,新核的质量为M ,则衰变过程的质量亏损△m 为损2211()()2BqR m M c + . 【解析】(1)根据核反应中质量数与电荷数守恒可知,该α衰变的核反应方程为4422X Y He A A ZZ --→+(2)设α粒子在磁场中做圆周运动的速度大小为v ,由洛伦兹力提供向心力有2v qvB m R=根据圆周运动的参量关系有2πRT v=得α粒子在磁场中运动的周期2πmT qB=根据电流强度定义式,可得环形电流大小为22πq q BI T m==(3)由2v qvB m R =,得qBR v m=设衰变后新核Y 的速度大小为v ′,核反应前后系统动量守恒,有Mv ′–mv =0 可得mv qBR v M M='=根据爱因斯坦质能方程和能量守恒定律有2221122mc Mv mv '∆=+ 解得22()()2M m qBR m mMc +∆=说明:若利用44A M m -=解答,亦可. 【名师点睛】(1)无论哪种核反应方程,都必须遵循质量数、电荷数守恒.(2)α衰变的生成物是两种带电荷量不同的“带电粒子”,反应前后系统动量守恒,因此反应后的两产物向相反方向运动,在匀强磁场中,受洛伦兹力作用将各自做匀速圆周运动,且两轨迹圆相外切,应用洛伦兹力计算公式和向心力公式即可求解运动周期,根据电流强度的定义式可求解电流大小.(3)核反应中释放的核能应利用爱因斯坦质能方程求解,在结合动量守恒定律与能量守恒定律即可解得质量亏损.3.如图甲所示,在直角坐标系中的0≤x≤L 区域内有沿y 轴正方向的匀强电场,右侧有以点(2L ,0)为圆心、半径为L 的圆形区域,与x 轴的交点分别为M 、N ,在xOy 平面内,从电离室产生的质量为m 、带电荷量为e 的电子以几乎为零的初速度从P 点飘入电势差为U 的加速电场中,加速后经过右侧极板上的小孔Q 点沿x 轴正方向进入匀强电场,已知O 、Q 两点之间的距离为2L,飞出电场后从M 点进入圆形区域,不考虑电子所受的重力。
高考物理带电粒子在无边界匀强磁场中运动专项训练及答案含解析一、带电粒子在无边界匀强磁场中运动1专项训练1.空间中存在方向垂直于纸面向里的匀强磁场,磁感应强度为B ,一带电量为q +、质量为m 的粒子,在P 点以某一初速开始运动,初速方向在图中纸面内如图中P 点箭头所示。
该粒子运动到图中Q 点时的速度方向与P 点时速度方向垂直,如图中Q 点箭头所示。
已知P 、Q 间的距离为l 。
若保持粒子在P 点时的速度不变,而将匀强磁场换成匀强电场,电场方向与纸面平行且与粒子在P 点时速度方向垂直,在此电场作用下粒子也由P 点运动到Q 点。
不计重力。
求:(1)电场强度的大小。
(2)两种情况中粒子由P 运动到Q 点所经历的时间之差。
【答案】(1)22qlB E m=;(2)(1)2m qB π-【解析】 【详解】(1)粒子在磁场中做匀速圆周运动,以0v 表示粒子在P 点的初速度,R 表示圆周半径,则有20v qv B m R= ①由于粒子在Q 点的速度垂直于它在4P 点时的速度,可知粒子由P 点到Q 点的轨迹是圆周的14,故有 2R =②联立①②得02v m③在电场中粒子做类平抛运动,分别以x 、y 、E 、a 、E t 表示射程、偏转位移、电场强度,加速度和运动时间,则qE ma = ④垂直0v 方向212E y R at == ⑤沿0v 方向0E x R v t == ⑥联立②③④⑤⑥各式可解得22qlB E =电场强度的大小为22qlB E m=(2)由分析知粒子在磁场中由P 运动到Q 点所经历的时间B t 为14周期,故0112442B R m t T v qBππ==⋅= 在电场中由P 运动到Q 点所经历的时间0E R mt v qB== 由P 运动到Q 点所经历的时间之差(1)2B E mt t qBπ-=-两种情况中粒子由P 运动到Q 点所经历的时间之差为(1)2mqBπ-2.“太空粒子探测器”是由加速、偏转和收集三部分组成,其原理可简化如下:如图1所示,辐射状的加速电场区域边界为两个同心平行半圆弧面,圆心为O ,外圆弧面AB 的电势为2L()o ϕ>,内圆弧面CD 的电势为φ,足够长的收集板MN 平行边界ACDB ,ACDB 与MN 板的距离为L .假设太空中漂浮着质量为m ,电量为q 的带正电粒子,它们能均匀地吸附到AB 圆弧面上,并被加速电场从静止开始加速,不计粒子间的相互作用和其它星球对粒子的影响,不考虑过边界ACDB 的粒子再次返回.(1)求粒子到达O 点时速度的大小;(2)如图2所示,在PQ (与ACDB 重合且足够长)和收集板MN 之间区域加一个匀强磁场,方向垂直纸面向内,则发现均匀吸附到AB 圆弧面的粒子经O 点进入磁场后最多有23能打到MN 板上,求所加磁感应强度的大小;(3)如图3所示,在PQ (与ACDB 重合且足够长)和收集板MN 之间区域加一个垂直MN 的匀强电场,电场强度的方向如图所示,大小4E Lφ=,若从AB 圆弧面收集到的某粒子经O 点进入电场后到达收集板MN 离O 点最远,求该粒子到达O 点的速度的方向和它在PQ 与MN 间运动的时间. 【答案】(1)2q v mϕ=;(2)12m B L q ϕ=;(3)060α∴= ;22m L q ϕ【解析】 【分析】 【详解】试题分析:解:(1)带电粒子在电场中加速时,电场力做功,得:2102qU mv =-2U ϕϕϕ=-=2q v mϕ=(2)从AB 圆弧面收集到的粒子有23能打到MN 板上,则上端刚好能打到MN 上的粒子与MN 相切,则入射的方向与OA 之间的夹角是60︒,在磁场中运动的轨迹如图甲,轨迹圆心角060θ=.根据几何关系,粒子圆周运动的半径:2R L =由洛伦兹力提供向心力得:2v qBv m R=联合解得:12m B L qϕ=(3)如图粒子在电场中运动的轨迹与MN 相切时,切点到O 点的距离最远,这是一个类平抛运动的逆过程. 建立如图坐标.212qE L t m=222mL mt L qE q ϕ== 22x Eq qEL q v t m m m ϕ===若速度与x 轴方向的夹角为α角 cos xv v α=1cos 2α=060α∴=3.如图1所示,在ABCD 矩形区域里存在垂直于纸面方向的磁场(磁场边界有磁场),规定垂直纸面向里为磁场正方向,磁感应强度B 如图2所示的变化。
一、带电粒子在无边界匀强磁场中运动1专项训练1.如图所示,虚线为两磁场的边界,虚线左侧存在着半径为R 的半圆形匀强磁场,磁感应强度为B ,方向垂直纸面向里,圆心O 为虚线上的一点,虚线右侧存在着宽度为R 的匀强磁场,方向垂直纸面向外。
质量为m 、电荷量为q 的带负电的粒子,从圆周上的A 点以某一初速度沿半径方向射入半圆形磁场区域,恰好从D 点射出,AO 垂直OD 。
若将带电粒子从圆周上的C 点,以相同的初速度射入磁场,已知∠AOC =53°,粒子刚好能从虚线右侧磁场区域射出,不计粒子重力,sin53°=0.8,cos53°=0.6,求: (1)带电粒子的初速度及其从A 到D 的运动时间;(2)粒子从C 点入射,第一次运动到两磁场的边界时速度的方向及其离O 点的距离; (3)虚线右侧磁场的磁感应强度。
【答案】(1)0qBR v m=,2m t qB π=;(2)速度的方向与磁场边界的夹角为53°,0.6R ;(3)2 1.6B B = 【解析】 【分析】 【详解】(1)粒子从A 点进磁场D 点出磁场,作出轨迹如图由几何关系得轨道半径1r R =洛伦兹力提供匀速圆周运动的向心力,有200mv qv Bm= 解得0qBRv m =粒子在磁场中运动的圆心角为90°,有4T t =而周期为12r T v π=解得2mt qBπ=(2)粒子从C 点入射,作出轨迹如图由几何知识得EF 的长度L EF =R cos53°在三角形EFO 1中,有sin 0.6EFL Rθ== 即粒子转过的圆心角37θ=︒,则速度的方向与磁场边界的夹角为53° 而CE 的长度cos37CE L R R =-︒OF 的长度为sin 53OF CE L R L =︒-联立解得0.6OF L R =(3)粒子在右侧磁场的半径为2r ,由几何关系有22sin 37r r R ︒+=由向心力公式得2022mvqv Br=联立解得21.6B B=2.如图,圆心为O、半径为r的圆形区域外存在匀强磁场,磁场方向垂直于纸面向外,磁感应强度大小为B。
最新高考物理带电粒子在无边界匀强磁场中运动专项训练及答案一、带电粒子在无边界匀强磁场中运动1专项训练1.如图所示,xOy 平面处于匀强磁场中,磁感应强度大小为B ,方向垂直纸面向外.点3,0P L ⎛⎫ ⎪ ⎪⎝⎭处有一粒子源,可向各个方向发射速率不同、电荷量为q 、质量为m 的带负电粒子.不考虑粒子的重力.(1)若粒子1经过第一、二、三象限后,恰好沿x 轴正向通过点Q (0,-L ),求其速率v 1;(2)若撤去第一象限的磁场,在其中加沿y 轴正向的匀强电场,粒子2经过第一、二、三象限后,也以速率v 1沿x 轴正向通过点Q ,求匀强电场的电场强度E 以及粒子2的发射速率v 2;(3)若在xOy 平面内加沿y 轴正向的匀强电场E o ,粒子3以速率v 3沿y 轴正向发射,求在运动过程中其最小速率v.某同学查阅资料后,得到一种处理相关问题的思路:带电粒子在正交的匀强磁场和匀强电场中运动,若所受洛伦兹力与电场力不平衡而做复杂的曲线运动时,可将带电粒子的初速度进行分解,将带电粒子的运动等效为沿某一方向的匀速直线运动和沿某一时针方向的匀速圆周运动的合运动. 请尝试用该思路求解. 【答案】(1)23BLq m (2221BLq32230B E E v B +⎛⎫ ⎪⎝⎭【解析】 【详解】(1)粒子1在一、二、三做匀速圆周运动,则2111v qv B m r =由几何憨可知:()2221133r L r L ⎛⎫=-+ ⎪ ⎪⎝⎭得到:123BLqv m=(2)粒子2在第一象限中类斜劈运动,有:133L v t=,212qE h t m = 在第二、三象限中原圆周运动,由几何关系:12L h r +=,得到289qLB E m=又22212v v Eh =+,得到:2221BLqv =(3)如图所示,将3v 分解成水平向右和v '和斜向的v '',则0qv B qE '=,即0E v B'= 而'223v v v ''=+ 所以,运动过程中粒子的最小速率为v v v =''-'即:22003E E v v B B ⎛⎫=+- ⎪⎝⎭2.如图所示,有一磁感强度39.110B T -=⨯的匀强磁场,C 、D 为垂直于磁场方向的同一平面内的两点,它们之间的距离l =0.1m ,今有一电子在此磁场中运动,它经过C 点的速度v 的方向和磁场垂直,且与CD 之间的夹角θ=30°。
高考物理带电粒子在磁场中的运动专项训练100(附答案)含解析一、带电粒子在磁场中的运动专项训练1.如图所示,在xOy 坐标系中,第Ⅰ、Ⅱ象限内无电场和磁场。
第Ⅳ象限内(含坐标轴)有垂直坐标平面向里的匀强磁场,第Ⅲ象限内有沿x 轴正向、电场强度大小为E 的匀强磁场。
一质量为m 、电荷量为q 的带正电粒子,从x 轴上的P 点以大小为v 0的速度垂直射入电场,不计粒子重力和空气阻力,P 、O两点间的距离为202mv qE。
(1)求粒子进入磁场时的速度大小v 以及进入磁场时到原点的距离x ;(2)若粒子由第Ⅳ象限的磁场直接回到第Ⅲ象限的电场中,求磁场磁感应强度的大小需要满足的条件。
【答案】(102v ;20mv qE (2)0(21)EB v ≥【解析】 【详解】(1)由动能定理有:2220011222mv qE mv mv qE ⋅=- 解得:v 2v 0设此时粒子的速度方向与y 轴负方向夹角为θ,则有cosθ=022v v =解得:θ=45° 根据tan 21xyθ=⋅=,所以粒子进入磁场时位置到坐标原点的距离为PO 两点距离的两倍,故20mv x qE=(2)要使粒子由第Ⅳ象限的磁场直接回到第Ⅲ象限的电场中,其临界条件是粒子的轨迹与x 轴相切,如图所示,由几何关系有:s=R+R sinθ又:2v qvB mR=解得:(21)EBv+=故(21)EBv+≥2.如图,光滑水平桌面上有一个矩形区域abcd,bc长度为2L,cd长度为1.5L,e、f分别为ad、bc的中点.efcd区域存在竖直向下的匀强磁场,磁感应强度为B;质量为m、电荷量为+q的绝缘小球A静止在磁场中f点.abfe区域存在沿bf方向的匀强电场,电场强度为26qB Lm;质量为km的不带电绝缘小球P,以大小为qBLm的初速度沿bf方向运动.P与A 发生弹性正碰,A的电量保持不变,P、A均可视为质点.(1)求碰撞后A球的速度大小;(2)若A从ed边离开磁场,求k的最大值;(3)若A从ed边中点离开磁场,求k的可能值和A在磁场中运动的最长时间.【答案】(1)A21k qBLvk m=⋅+(2)1(3)57k=或13k=;32mtqBπ=【解析】【分析】【详解】(1)设P、A碰后的速度分别为v P和v A,P碰前的速度为qBLvm=由动量守恒定律:P A kmv kmv mv =+ 由机械能守恒定律:222P A 111222kmv kmv mv =+ 解得:A 21k qBL v k m=⋅+(2)设A 在磁场中运动轨迹半径为R , 由牛顿第二定律得: 2A A mv qvB R= 解得:21kR L k =+ 由公式可得R 越大,k 值越大如图1,当A 的轨迹与cd 相切时,R 为最大值,R L = 求得k 的最大值为1k =(3)令z 点为ed 边的中点,分类讨论如下:(I )A 球在磁场中偏转一次从z 点就离开磁场,如图2有222()(1.5)2LR L R =+-解得:56L R = 由21k R L k =+可得:57k =(II )由图可知A 球能从z 点离开磁场要满足2LR ≥,则A 球在磁场中还可能经历一次半圆运动后回到电场,再被电场加速后又进入磁场,最终从z 点离开.如图3和如图4,由几何关系有:2223()(3)22L R R L =+-解得:58L R =或2LR = 由21k R L k =+可得:511k =或13k = 球A 在电场中克服电场力做功的最大值为2226m q B L W m=当511k =时,A 58qBL v m =,由于2222222A 12521286qB L q B L mv m m ⋅=>当13k =时,A 2qBL v m =,由于2222222A 1286qB L q B L mv m m⋅=<综合(I )、(II )可得A 球能从z 点离开的k 的可能值为:57k =或13k = A 球在磁场中运动周期为2mT qBπ= 当13k =时,如图4,A 球在磁场中运动的最长时间34t T = 即32mt qBπ=3.如图,区域I 内有与水平方向成45°角的匀强电场1E ,区域宽度为1d ,区域Ⅱ内有正交的有界匀强磁场B 和匀强电场2E ,区域宽度为2d ,磁场方向垂直纸面向里,电场方向竖直向下.一质量为m 、电量大小为q 的微粒在区域I 左边界的P 点,由静止释放后水平向右做直线运动,进入区域Ⅱ后做匀速圆周运动,从区域Ⅱ右边界上的Q 点穿出,其速度方向改变了30,重力加速度为g ,求:(1)区域I 和区域Ⅱ内匀强电场的电场强度12E E 、的大小. (2)区域Ⅱ内匀强磁场的磁感应强度B 的大小. (3)微粒从P 运动到Q 的时间有多长. 【答案】(1)12mg E =2mgE q =122m gd 121626d d gd gd π+ 【解析】 【详解】(1)微粒在区域I 内水平向右做直线运动,则在竖直方向上有:1sin45qE mg ︒= 求得:12mgE =微粒在区域II 内做匀速圆周运动,则重力和电场力平衡,有:2mg qE = 求得:2mgE q=(2)粒子进入磁场区域时满足:2111cos452qE d mv ︒=2v qvB m R=根据几何关系,分析可知:222sin30d R d ==︒整理得:122m gd B =(3)微粒从P 到Q 的时间包括在区域I 内的运动时间t 1和在区域II 内的运动时间t 2,并满足:211112a t d = 1tan45mg ma ︒=2302360Rt vπ︒=⨯︒经整理得:112121222612126gd d d d t t t gd g gd ππ+=+=+⨯=4.某控制带电粒子运动的仪器原理如图所示,区域PP′M′M 内有竖直向下的匀强电场,电场场强E =1.0×103V/m ,宽度d =0.05m ,长度L =0.40m ;区域MM′N′N 内有垂直纸面向里的匀强磁场,磁感应强度B =2.5×10-2T ,宽度D =0.05m ,比荷qm=1.0×108C/kg 的带正电的粒子以水平初速度v 0从P 点射入电场.边界MM′不影响粒子的运动,不计粒子重力.(1) 若v 0=8.0×105m/s ,求粒子从区域PP′N′N 射出的位置;(2) 若粒子第一次进入磁场后就从M′N′间垂直边界射出,求v 0的大小; (3) 若粒子从M′点射出,求v 0满足的条件.【答案】(1)0.0125m (2) 3.6×105m/s. (3) 第一种情况:v 0=54.00.8()10/21nm s n -⨯+ (其中n =0、1、2、3、4)第二种情况:v 0=53.20.8()10/21nm s n -⨯+ (其中n =0、1、2、3).【解析】 【详解】(1) 粒子以水平初速度从P 点射入电场后,在电场中做类平抛运动,假设粒子能够进入磁场,则竖直方向21··2Eq d t m= 得2mdt qE=代入数据解得t =1.0×10-6s 水平位移x =v 0t 代入数据解得x =0.80m因为x 大于L ,所以粒子不能进入磁场,而是从P′M′间射出, 则运动时间t 0=Lv =0.5×10-6s , 竖直位移201··2Eq y t m==0.0125m 所以粒子从P′点下方0.0125m 处射出.(2) 由第一问可以求得粒子在电场中做类平抛运动的水平位移x =v 0 2mdqE粒子进入磁场时,垂直边界的速度 v 1=qE m ·t =2qEd m设粒子与磁场边界之间的夹角为α,则粒子进入磁场时的速度为v =1v sin α在磁场中由qvB =m 2v R得R =mv qB 粒子第一次进入磁场后,垂直边界M′N′射出磁场,必须满足x +Rsin α=L 把x =v 02md qE 、R =mv qB 、v =1v sin α、12qEdv m =代入解得 v 0=L·2Eqmd-E B v 0=3.6×105m/s.(3) 由第二问解答的图可知粒子离MM′的最远距离Δy =R -Rcosα=R(1-cosα)把R =mv qB 、v =1v sin α、12qEdv m=代入解得12(1cos )12tan sin 2mEd mEd y B q B q ααα-∆==可以看出当α=90°时,Δy 有最大值,(α=90°即粒子从P 点射入电场的速度为零,直接在电场中加速后以v 1的速度垂直MM′进入磁场运动半个圆周回到电场)1max 212mv m qEd mEdy qB qB m B q∆=== Δy max =0.04m ,Δy max 小于磁场宽度D ,所以不管粒子的水平射入速度是多少,粒子都不会从边界NN′射出磁场.若粒子速度较小,周期性运动的轨迹如下图所示:粒子要从M′点射出边界有两种情况,第一种情况:L=n(2v0t+2Rsinα)+v0t把2mdtqE=、R=mvqB、v1=vsinα、12qEdvm=代入解得221221L qE n Evn md n B=-⋅++v0=4.00.821nn-⎛⎫⎪+⎝⎭×105m/s(其中n=0、1、2、3、4)第二种情况:L=n(2v0t+2Rsinα)+v0t+2Rsinα把2mdtqE=、R=mvqB、v1=vsinα、12qEdvm=代入解得2(1)21221L qE n Evn md n B+=-⋅++v0=3.20.821nn-⎛⎫⎪+⎝⎭×105m/s(其中n=0、1、2、3).5.如图所示,在两块长为3L、间距为L、水平固定的平行金属板之间,存在方向垂直纸面向外的匀强磁场.现将下板接地,让质量为m、电荷量为q的带正电粒子流从两板左端连线的中点O以初速度v0水平向右射入板间,粒子恰好打到下板的中点.若撤去平行板间的磁场,使上板的电势φ随时间t的变化规律如图所示,则t=0时刻,从O点射人的粒子P经时间t0(未知量)恰好从下板右边缘射出.设粒子打到板上均被板吸收,粒子的重力及粒子间的作用力均不计.(1)求两板间磁场的磁感应强度大小B.(2)若两板右侧存在一定宽度的、方向垂直纸面向里的匀强磁场,为了使t=0时刻射入的粒子P经过右侧磁场偏转后在电场变化的第一个周期内能够回到O点,求右侧磁场的宽度d 应满足的条件和电场周期T的最小值T min.【答案】(1)0mvBqL=(2)223cos2d R a R L≥+=;min(632)3LTvπ=【解析】【分析】【详解】(1)如图,设粒子在两板间做匀速圆周运动的半径为R 1,则012qv B m v R =由几何关系:222113()()2L L R R =+- 解得0mv B qL=(2)粒子P 从O 003L v t =01122y L v t = 解得03y v =设合速度为v ,与竖直方向的夹角为α,则:0tan 3yv v α== 则=3πα0023sin v v α== 粒子P 在两板的右侧匀强磁场中做匀速圆周运动,设做圆周运动的半径为R 2,则212sin L R α=, 解得23L R =右侧磁场沿初速度方向的宽度应该满足的条件为223cos d R R L α≥+=; 由于粒子P 从O 点运动到下极板右侧边缘的过程与从上板右边缘运动到O 点的过程,运动轨迹是关于两板间的中心线是上下对称的,这两个过程经历的时间相等,则:2min 0(22)2R T t vπα--=解得()min6323L T v π+=【点睛】带电粒子在电场或磁场中的运动问题,关键是分析粒子的受力情况和运动特征,画出粒子的运动轨迹图,结合几何关系求解相关量,并搞清临界状态.6.如图所示,坐标原点O 左侧2m 处有一粒子源,粒子源中,有带正电的粒子(比荷为qm=1.0×1010C/kg)由静止进人电压U= 800V 的加速电场,经加速后沿x 轴正方向运动,O 点右侧有以O 1点为圆心、r=0.20m 为半径的圆形区域,内部存在方向垂直纸面向里,磁感应强度大小为B=1.0×10-3T 的匀强磁场(图中未画出)圆的左端跟y 轴相切于直角坐标系原点O ,右端与一个足够大的荧光屏MN 相切于x 轴上的A 点,粒子重力不计。
高考物理带电粒子在无边界匀强磁场中运动专项训练及答案含解析一、带电粒子在无边界匀强磁场中运动1专项训练1.在科学研究中,可以通过施加适当的磁场来实现对带电粒子运动的控制.在如图所示的平面坐标系x0y 内,矩形区域(-3d<x<d ,-3d<y<3d)外存在范围足够大的匀强磁场.一质量为m 、电奇量为+q 的粒子从P(0,3d)点沿y 轴正方向射入磁场.当入射速度为0v 时,粒子从(-2d ,3d)处进入无场区. (1)求磁场的磁感应强度B 的大小.(2)求粒了离开P 点后经多长时间第一次回到P 点.(3)若仅将入射速度变为20v ,其它条件不变,求粒于离开P 点后运动多少路程经过P 点.【答案】(1)0mv qd(2)00243d dv π+ (3)2(433)s k d d π=+,其中k =1、2、3… 或()8'234333d s d k d d ππ⎡⎤=+++⎢⎥⎣⎦,其中k =0、1、2、3 【解析】 【分析】(1)找出半径,根据洛伦兹力提供向心力进行求解即可;(2)画出粒子运动轨迹,求出在磁场中运动时间和在无磁场中运动的时间; (3)画出粒子运动轨迹,注意讨论粒子运动的方向不同; 【详解】(1)由题条件可判断粒子做圆周运动半径为:R d =粒子在磁场中2v qvB m R=,得到:0mv B qd =;(2)粒子运动轨迹如图所示:粒子在磁场中运动时间:102dt vπ=粒子在无场区运动时间:2043dt = 粒子再次回到P 点时间:12t t t =+ 得到:00243d dt v π=+ (3)粒子运动轨迹如图所示:粒子速度变为02v ,则在磁场中运动半径为:2R d '=由P 点沿圆弧运动到C 点时间:3002224323dd t v v ππ⨯⨯== 由C 点沿直线运动到D 点时间:4002332d dt v v ==①粒子以2v 0沿y 轴正向经过P则粒子运动时间:34(33)t k t t =+,其中k =1、2、3… 粒子运动距离:02s v t =得到:2(433)s k d d π=+,其中k =1、2、3… ②粒子以02v 大小与-y 方向成60°经过P则:34342(33)t t t k t t '=+++,其中k =0、1、2、3… 粒子运动距离为:02s v t ''= 得到:()8'234333d s d k d d ππ⎡⎤=++⎢⎥⎣⎦,其中k =0、1、2、3… 【点睛】带电粒子在磁场中的运动,关键是找出半径和圆心,利用洛伦兹力提供向心力进行求解即可,同时还要准确地画出轨迹.2.如图所示,在竖直分界线MN 的左侧有垂直纸面的匀强磁场,竖直屏与MN 之间有方向向上的匀强电场。
高考物理带电粒子在磁场中的运动专项训练100(附答案)一、带电粒子在磁场中的运动专项训练1.如图所示,两条竖直长虚线所夹的区域被线段MN 分为上、下两部分,上部分的电场方向竖直向上,下部分的电场方向竖直向下,两电场均为匀强电场且电场强度大小相同。
挡板PQ 垂直MN 放置,挡板的中点置于N 点。
在挡板的右侧区域存在垂直纸面向外的匀强磁场。
在左侧虚线上紧靠M 的上方取点A,一比荷qm=5×105C/kg 的带正电粒子,从A 点以v 0=2×103m/s 的速度沿平行MN 方向射入电场,该粒子恰好从P 点离开电场,经过磁场的作用后恰好从Q 点回到电场。
已知MN 、PQ 的长度均为L=0.5m ,不考虑重力对带电粒子的影响,不考虑相对论效应。
(1)求电场强度E 的大小; (2)求磁感应强度B 的大小;(3)在左侧虚线上M 点的下方取一点C ,且CM=0.5m ,带负电的粒子从C 点沿平行MN 方向射入电场,该带负电粒子与上述带正电粒子除电性相反外其他都相同。
若两带电粒子经过磁场后同时分别运动到Q 点和P 点,求两带电粒子在A 、C 两点射入电场的时间差。
【答案】(1) 16/N C (2) 21.610T -⨯ (3) 43.910s -⨯ 【解析】 【详解】(1)带正电的粒子在电场中做类平抛运动,有:L=v 0t2122L qE t m = 解得E=16N/C(2)设带正电的粒子从P 点射出电场时与虚线的夹角为θ,则:0tan v qE t mθ=可得θ=450粒子射入磁场时的速度大小为2v 0粒子在磁场中做匀速圆周运动:2v qvB m r=由几何关系可知2r L = 解得B=1.6×10-2T(3)两带电粒子在电场中都做类平抛运动,运动时间相同;两带电粒子在磁场中都做匀速圆周运动,带正电的粒子转过的圆心角为32π,带负电的粒子转过的圆心角为2π;两带电粒子在AC 两点进入电场的时间差就是两粒子在磁场中的时间差; 若带电粒子能在匀强磁场中做完整的圆周运动,则其运动一周的时间22r mT v qBππ==; 带正电的粒子在磁场中运动的时间为:4135.910s 4t T -==⨯; 带负电的粒子在磁场中运动的时间为:4212.010s 4t T -==⨯ 带电粒子在AC 两点射入电场的时间差为412 3.910t t t s -∆=-=⨯2.如图所示为电子发射器原理图,M 处是电子出射口,它是宽度为d 的狭缝.D 为绝缘外壳,整个装置处于真空中,半径为a 的金属圆柱A 可沿半径向外均匀发射速率为v 的电子;与A 同轴放置的金属网C 的半径为2a.不考虑A 、C 的静电感应电荷对电子的作用和电子之间的相互作用,忽略电子所受重力和相对论效应,已知电子质量为m ,电荷量为e.(1)若A 、C 间加速电压为U ,求电子通过金属网C 发射出来的速度大小v C ;(2)若在A 、C 间不加磁场和电场时,检测到电子从M 射出形成的电流为I ,求圆柱体A 在t 时间内发射电子的数量N.(忽略C 、D 间的距离以及电子碰撞到C 、D 上的反射效应和金属网对电子的吸收)(3)若A 、C 间不加电压,要使由A 发射的电子不从金属网C 射出,可在金属网内环形区域加垂直于圆平面向里的匀强磁场,求所加磁场磁感应强度B 的最小值. 【答案】(1)22e eU v vm=+4alt N ed π=(3) 43mv B ae = 【解析】 【分析】(1)根据动能定理求解求电子通过金属网C 发射出来的速度大小;(2)根据=neI t求解圆柱体A 在时间t 内发射电子的数量N ;(3)使由A 发射的电子不从金属网C 射出,则电子在 CA 间磁场中做圆周运动时,其轨迹圆与金属网相切,由几何关系求解半径,从而求解B. 【详解】(1)对电子经 CA 间的电场加速时,由动能定理得221122e e U mv mv =- 解得:22e eUv v m=+ (2)设时间t 从A 中发射的电子数为N ,由M 口射出的电子数为n , 则 =ne I t224d dNn N a aππ==⨯解得4altN edπ=(3)电子在 CA 间磁场中做圆周运动时,其轨迹圆与金属网相切时,对应的磁感应强度为B .设此轨迹圆的半径为 r ,则222(2)a r r a -=+2v Bev m r=解得:43mvB ae=3.如图所示,在平面直角坐标系xOy 的第二、第三象限内有一垂直纸面向里、磁感应强度为B 的匀强磁场区域△ABC ,A 点坐标为(0,3a ),C 点坐标为(0,﹣3a ),B 点坐标为(3a -,-3a ).在直角坐标系xOy 的第一象限内,加上方向沿y 轴正方向、场强大小为E=Bv 0的匀强电场,在x=3a 处垂直于x 轴放置一平面荧光屏,其与x 轴的交点为Q .粒子束以相同的速度v 0由O 、C 间的各位置垂直y 轴射入,已知从y 轴上y =﹣2a 的点射入磁场的粒子在磁场中的轨迹恰好经过O 点.忽略粒子间的相互作用,不计粒子的重力. (1)求粒子的比荷;(2)求粒子束射入电场的纵坐标范围;(3)从什么位置射入磁场的粒子打到荧光屏上距Q 点最远?求出最远距离.【答案】(1)0v Ba(2)0≤y≤2a (3)78y a =,94a【解析】 【详解】(1)由题意可知, 粒子在磁场中的轨迹半径为r =a 由牛顿第二定律得Bqv 0=m 2v r故粒子的比荷v q m Ba= (2)能进入电场中且离O 点上方最远的粒子在磁场中的运动轨迹恰好与AB 边相切,设粒子运动轨迹的圆心为O ′点,如图所示.由几何关系知O ′A =r ·ABBC=2a 则OO ′=OA -O ′A =a即粒子离开磁场进入电场时,离O 点上方最远距离为OD =y m =2a所以粒子束从y 轴射入电场的范围为0≤y ≤2a (3)假设粒子没有射出电场就打到荧光屏上,有3a =v 0·t 02019222qE y t a a m ==>, 所以,粒子应射出电场后打到荧光屏上粒子在电场中做类平抛运动,设粒子在电场中的运动时间为t ,竖直方向位移为y ,水平方向位移为x ,则 水平方向有x =v 0·t竖直方向有212qE y t m=代入数据得x设粒子最终打在荧光屏上的点距Q 点为H ,粒子射出电场时与x 轴的夹角为θ,则00tan y x qE x v m v v v θ⋅===有H =(3a -x )·tan θ=当=y =98a 时,H 有最大值 由于98a <2a ,所以H 的最大值H max =94a ,粒子射入磁场的位置为y =98a -2a =-78a4.科学家设想在宇宙中可能存在完全由反粒子构成的反物质.例如:正电子就是电子的反粒子,它跟电子相比较,质量相等、电量相等但电性相反.如图是反物质探测卫星的探测器截面示意图.MN 上方区域的平行长金属板AB 间电压大小可调,平行长金属板AB 间距为d ,匀强磁场的磁感应强度大小为B ,方向垂直纸面向里.MN 下方区域I 、II 为两相邻的方向相反的匀强磁场区,宽度均为3d ,磁感应强度均为B ,ef 是两磁场区的分界线,PQ 是粒子收集板,可以记录粒子打在收集板的位置.通过调节平行金属板AB 间电压,经过较长时间探测器能接收到沿平行金属板射入的各种带电粒子.已知电子、正电子的比荷是b ,不考虑相对论效应、粒子间的相互作用及电磁场的边缘效应.(1)要使速度为v 的正电子匀速通过平行长金属极板AB ,求此时金属板AB 间所加电压U ;(2)通过调节电压U 可以改变正电子通过匀强磁场区域I 和II 的运动时间,求沿平行长金属板方向进入MN 下方磁场区的正电子在匀强磁场区域I 和II 运动的最长时间t m ; (3)假如有一定速度范围的大量电子、正电子沿平行长金属板方向匀速进入MN 下方磁场区,它们既能被收集板接收又不重叠,求金属板AB 间所加电压U 的范围.【答案】(1)Bvd (2)Bb π(3)3B 2d 2b <U <221458B d b【解析】 【详解】(1)正电子匀速直线通过平行金属极板AB ,需满足 Bev=Ee因为正电子的比荷是b ,有 E=U d联立解得:u Bvd =(2)当正电子越过分界线ef 时恰好与分界线ef 相切,正电子在匀强磁场区域I 、II 运动的时间最长。
高考物理带电粒子在无边界匀强磁场中运动专项训练100(附答案)含解析一、带电粒子在无边界匀强磁场中运动1专项训练1.如图所示,在x 轴上方有一匀强磁场,磁感应强度为B 。
x 轴下方有一匀强电场,电场强度为E 。
屏MN 与y 轴平行且相距L ,一质量为m ,电荷量为e 的电子,在y 轴上某点A 自静止释放,如果要使电子垂直打在屏MN 上,那么:(1)电子释放位置与原点O 点之间的距离s 需满足什么条件?(2)电子从出发点到垂直打在屏上需要多长时间?【答案】(1)()222s 221eL B Em n =+ (n =0,1,2,3…);(2)()212BL m t n E eBπ=++ (n =0,1,2,3…) 【解析】【分析】【详解】 (1)在电场中电子从A →O 过程,由动能定理可得2012eEs mv = 在磁场中电子偏转,洛伦兹力提供向心力,有200v qv B m r= 可得0mv r qB=根据题意有 (2n +1)r =L所以解得()222221eL B s Em n =+ (n =0,1,2,3…)(2)电子在电场中做匀变速直线运动的时间与在磁场中做部分圆周运动的时间之和为电子运动的总时间,即 )2(2214s T T t nn a ++⋅=+ 由公式 eE ma =可得 eE a m =由公式 20v qvB m r = 和 02r T v π=可得 2m T eBπ=综上整理可得 ()212BL m t n E eB π=++ (n =0,1,2,3…)2.在科学研究中,可以通过施加适当的磁场来实现对带电粒子运动的控制.在如图所示的平面坐标系x0y 内,矩形区域(-3d<x<d ,-3d<y<3d)外存在范围足够大的匀强磁场.一质量为m 、电奇量为+q 的粒子从P(0,3d)点沿y 轴正方向射入磁场.当入射速度为0v 时,粒子从(-2d ,3d)处进入无场区.(1)求磁场的磁感应强度B 的大小.(2)求粒了离开P 点后经多长时间第一次回到P 点.(3)若仅将入射速度变为20v ,其它条件不变,求粒于离开P 点后运动多少路程经过P 点.【答案】(1)0mv qd(2)00243d d v v π+ (3)2(433)s k d d π=+,其中k =1、2、3… 或()8'234333d s d k d d ππ⎡⎤=+++⎢⎥⎣⎦,其中k =0、1、2、3 【解析】【分析】(1)找出半径,根据洛伦兹力提供向心力进行求解即可;(2)画出粒子运动轨迹,求出在磁场中运动时间和在无磁场中运动的时间;(3)画出粒子运动轨迹,注意讨论粒子运动的方向不同;【详解】(1)由题条件可判断粒子做圆周运动半径为:R d = 粒子在磁场中20v qvB m R =,得到:0mv B qd =; (2)粒子运动轨迹如图所示:粒子在磁场中运动时间:102d t v π= 粒子在无场区运动时间:2043 d t = 粒子再次回到P 点时间:12t t t =+ 得到:00243d d t v v π=+ (3)粒子运动轨迹如图所示:粒子速度变为02v ,则在磁场中运动半径为:2R d '=由P 点沿圆弧运动到C 点时间:3002224323d d t v v ππ⨯⨯== 由C 点沿直线运动到D 点时间:400233d d t == ①粒子以2v 0沿y 轴正向经过P则粒子运动时间:34(33)t k t t =+,其中k =1、2、3…粒子运动距离:02s v t =得到:2(433)sk d d π=+,其中k =1、2、3… ②粒子以02v 大小与-y 方向成60°经过P则:34342(33)t t t k t t '=+++,其中k =0、1、2、3…粒子运动距离为:02s v t ''=得到:()8'234333d s d k d d ππ⎡⎤=+++⎢⎥⎣⎦,其中k =0、1、2、3… 【点睛】带电粒子在磁场中的运动,关键是找出半径和圆心,利用洛伦兹力提供向心力进行求解即可,同时还要准确地画出轨迹.3.在xOy 坐标中,有随时间周期性变化的电场和磁场(磁场持续t 1后消失;紧接着电场出现,持续t 2时间后消失,接着磁场......如此反复),如图所示,磁感应强度方向垂直纸面向里,电场强度方向沿y 轴向下,有一质量为m ,带电量为+q 的带电粒子,在t =0时刻,以初速v 0从0点沿x 轴正方向出发,在t 1时刻第一次到达y 轴上的M (0,L )点,t 1+t 2时刻第一次回到x 轴上的 N (-2L ,0)点,不计粒子重力,t 1、t 2均未知。
一、带电粒子在无边界匀强磁场中运动1专项训练1.如图所示,虚线为两磁场的边界,虚线左侧存在着半径为R 的半圆形匀强磁场,磁感应强度为B ,方向垂直纸面向里,圆心O 为虚线上的一点,虚线右侧存在着宽度为R 的匀强磁场,方向垂直纸面向外。
质量为m 、电荷量为q 的带负电的粒子,从圆周上的A 点以某一初速度沿半径方向射入半圆形磁场区域,恰好从D 点射出,AO 垂直OD 。
若将带电粒子从圆周上的C 点,以相同的初速度射入磁场,已知∠AOC =53°,粒子刚好能从虚线右侧磁场区域射出,不计粒子重力,sin53°=0.8,cos53°=0.6,求: (1)带电粒子的初速度及其从A 到D 的运动时间;(2)粒子从C 点入射,第一次运动到两磁场的边界时速度的方向及其离O 点的距离; (3)虚线右侧磁场的磁感应强度。
【答案】(1)0qBR v m=,2m t qB π=;(2)速度的方向与磁场边界的夹角为53°,0.6R ;(3)2 1.6B B = 【解析】 【分析】 【详解】(1)粒子从A 点进磁场D 点出磁场,作出轨迹如图由几何关系得轨道半径1r R =洛伦兹力提供匀速圆周运动的向心力,有200mv qv Bm= 解得0qBRv m =粒子在磁场中运动的圆心角为90°,有4T t =而周期为12r T v π=解得2mt qBπ=(2)粒子从C 点入射,作出轨迹如图由几何知识得EF 的长度L EF =R cos53°在三角形EFO 1中,有sin 0.6EFL Rθ== 即粒子转过的圆心角37θ=︒,则速度的方向与磁场边界的夹角为53° 而CE 的长度cos37CE L R R =-︒OF 的长度为sin 53OF CE L R L =︒-联立解得0.6OF L R =(3)粒子在右侧磁场的半径为2r ,由几何关系有22sin 37r r R ︒+=由向心力公式得2022mvqv Br=联立解得21.6B B=2.如图所示,圆心为O、半径为R的圆形磁场区域中存在垂直纸面向外的匀强磁场,以圆心O为坐标原点建立坐标系,在y=-3R 处有一垂直y轴的固定绝缘挡板,一质量为m、带电量为+q的粒子,与x轴成 60°角从M 点(-R,0)以初速度v0斜向上射入磁场区域,经磁场偏转后由N点离开磁场(N点未画出)恰好垂直打在挡板上,粒子与挡板碰撞后原速率弹回,再次进入磁场,最后离开磁场.不计粒子的重力,求:(1)磁感应强度B的大小;(2)N点的坐标;(3)粒子从M点进入磁场到最终离开磁场区域运动的总时间.【答案】(1)0mvqR(2)31(,)2R R- (3)(5)Rvπ+【解析】(1)设粒子在磁场中运动半径为r,根据题设条件画出粒子的运动轨迹:由几何关系可以得到:r R=由洛伦兹力等于向心力:2vqv B mr=,得到:0mvBqR=.(2)由图几何关系可以得到:3sin60x R R==,1cos602y R R=-=-N点坐标为:31,2R R ⎛⎫-⎪⎪⎝⎭.(3)粒子在磁场中运动的周期2mTqBπ=,由几何知识得到粒子在磁场在中运动的圆心角共为180,粒子在磁场中运动时间:12Tt=,粒子在磁场外的运动,由匀速直线运动可以得到:从出磁场到再次进磁场的时间为:22stv=,其中132s R R==,粒子从M点进入磁场到最终离开磁场区域运动的总时间12t t t=+解得:()5Rtvπ+=.3.如图所示,容器A中装有大量的质量不同、电荷量均为+q的粒子,粒子从容器下方的小孔S1不断飘入加速电场(初速度可视为零)做直线运动,通过小孔S2后从两平行板中央垂直电场方向射入偏转电场。
高考物理带电粒子在磁场中的运动专项训练100(附答案)含解析一、带电粒子在磁场中的运动专项训练1.如图所示,两条竖直长虚线所夹的区域被线段MN 分为上、下两部分,上部分的电场方向竖直向上,下部分的电场方向竖直向下,两电场均为匀强电场且电场强度大小相同。
挡板PQ 垂直MN 放置,挡板的中点置于N 点。
在挡板的右侧区域存在垂直纸面向外的匀强磁场。
在左侧虚线上紧靠M 的上方取点A,一比荷qm=5×105C/kg 的带正电粒子,从A 点以v 0=2×103m/s 的速度沿平行MN 方向射入电场,该粒子恰好从P 点离开电场,经过磁场的作用后恰好从Q 点回到电场。
已知MN 、PQ 的长度均为L=0.5m ,不考虑重力对带电粒子的影响,不考虑相对论效应。
(1)求电场强度E 的大小; (2)求磁感应强度B 的大小;(3)在左侧虚线上M 点的下方取一点C ,且CM=0.5m ,带负电的粒子从C 点沿平行MN 方向射入电场,该带负电粒子与上述带正电粒子除电性相反外其他都相同。
若两带电粒子经过磁场后同时分别运动到Q 点和P 点,求两带电粒子在A 、C 两点射入电场的时间差。
【答案】(1) 16/N C (2) 21.610T -⨯ (3) 43.910s -⨯ 【解析】 【详解】(1)带正电的粒子在电场中做类平抛运动,有:L=v 0t2122L qE t m = 解得E=16N/C(2)设带正电的粒子从P 点射出电场时与虚线的夹角为θ,则:0tan v qE t mθ=可得θ=450粒子射入磁场时的速度大小为2v 0粒子在磁场中做匀速圆周运动:2v qvB m r=由几何关系可知2r L = 解得B=1.6×10-2T(3)两带电粒子在电场中都做类平抛运动,运动时间相同;两带电粒子在磁场中都做匀速圆周运动,带正电的粒子转过的圆心角为32π,带负电的粒子转过的圆心角为2π;两带电粒子在AC 两点进入电场的时间差就是两粒子在磁场中的时间差; 若带电粒子能在匀强磁场中做完整的圆周运动,则其运动一周的时间22r mT v qBππ==; 带正电的粒子在磁场中运动的时间为:4135.910s 4t T -==⨯; 带负电的粒子在磁场中运动的时间为:4212.010s 4t T -==⨯ 带电粒子在AC 两点射入电场的时间差为412 3.910t t t s -∆=-=⨯2.如图所示,一质量为m 、电荷量为+q 的粒子从竖直虚线上的P 点以初速度v 0水平向左射出,在下列不同情形下,粒子经过一段时间后均恰好经过虚线右侧的A 点.巳知P 、A 两点连线长度为l ,连线与虚线的夹角为α=37°,不计粒子的重力,(sin 37°=0.6,cos 37°=0.8).(1)若在虚线左侧存在垂直纸面向外的匀强磁场,求磁感应强度的大小B 1;(2)若在虚线上某点固定一个负点电荷,粒子恰能绕该负点电荷做圆周运动,求该负点电荷的电荷量Q (已知静电力常量为是);(3)若虚线的左侧空间存在垂直纸面向外的匀强磁场,右侧空间存在竖直向上的匀强电场,粒子从P 点到A 点的过程中在磁场、电场中的运动时间恰好相等,求磁场的磁感应强度的大小B 2和匀强电场的电场强度大小E .【答案】(1)0152mv B ql = (2)2058mv l Q kq = (3)0253mv B ql π= 220(23)9mv E qlππ-=【解析】【分析】【详解】(1)粒子从P到A的轨迹如图所示:粒子在磁场中做匀速圆周运动,设半径为r1由几何关系得112 cos25r l lα==由洛伦兹力提供向心力可得2011vqv B mr=解得:0152mvBql=(2)粒子从P到A的轨迹如图所示:粒子绕负点电荷Q做匀速圆周运动,设半径为r2由几何关系得252cos8lr lα==由库仑力提供向心力得2222vQqk mr r=解得:258mv lQkq=(3)粒子从P到A的轨迹如图所示:粒子在磁场中做匀速圆周运动,在电场中做类平抛运动 粒子在电场中的运动时间00sin 35l lt v v α== 根据题意得,粒子在磁场中运动时间也为t ,则2Tt = 又22mT qB π=解得0253mv B qlπ=设粒子在磁场中做圆周运动的半径为r ,则0v t r π= 解得:35l r π=粒子在电场中沿虚线方向做匀变速直线运动,21cos 22qE l r t mα-=⋅ 解得:220(23)9mv E qlππ-=3.如图,光滑水平桌面上有一个矩形区域abcd ,bc 长度为2L ,cd 长度为1.5L ,e 、f 分别为ad 、bc 的中点.efcd 区域存在竖直向下的匀强磁场,磁感应强度为B ;质量为m 、电荷量为+q 的绝缘小球A 静止在磁场中f 点.abfe 区域存在沿bf 方向的匀强电场,电场强度为26qB Lm;质量为km 的不带电绝缘小球P ,以大小为qBL m 的初速度沿bf 方向运动.P 与A发生弹性正碰,A 的电量保持不变,P 、A 均可视为质点.(1)求碰撞后A 球的速度大小;(2)若A 从ed 边离开磁场,求k 的最大值;(3)若A 从ed 边中点离开磁场,求k 的可能值和A 在磁场中运动的最长时间. 【答案】(1)A 21k qBL v k m =⋅+(2)1(3)57k =或13k =;32m t qB π=【解析】 【分析】 【详解】(1)设P 、A 碰后的速度分别为v P 和v A ,P 碰前的速度为qBL v m= 由动量守恒定律:P A kmv kmv mv =+ 由机械能守恒定律:222P A 111222kmv kmv mv =+ 解得:A 21k qBL v k m=⋅+(2)设A 在磁场中运动轨迹半径为R , 由牛顿第二定律得: 2A A mv qvB R= 解得:21kR L k =+ 由公式可得R 越大,k 值越大如图1,当A 的轨迹与cd 相切时,R 为最大值,R L = 求得k 的最大值为1k =(3)令z 点为ed 边的中点,分类讨论如下:(I )A 球在磁场中偏转一次从z 点就离开磁场,如图2有222()(1.5)2LR L R =+-解得:56L R = 由21k R L k =+可得:57k =(II )由图可知A 球能从z 点离开磁场要满足2LR ≥,则A 球在磁场中还可能经历一次半圆运动后回到电场,再被电场加速后又进入磁场,最终从z 点离开.如图3和如图4,由几何关系有:2223()(3)22L R R L =+- 解得:58L R =或2L R = 由21k R L k =+可得:511k =或13k = 球A 在电场中克服电场力做功的最大值为2226m q B L W m=当511k =时,A 58qBL v m =,由于2222222A 12521286qB L q B L mv m m ⋅=>当13k =时,A 2qBL v m =,由于2222222A 1286qB L q B L mv m m⋅=<综合(I )、(II )可得A 球能从z 点离开的k 的可能值为:57k =或13k =A球在磁场中运动周期为2m TqBπ=当13k=时,如图4,A球在磁场中运动的最长时间34t T=即32mtqBπ=4.如图甲所示,在直角坐标系中的0≤x≤L区域内有沿y轴正方向的匀强电场,右侧有以点(2L,0)为圆心、半径为L的圆形区域,与x轴的交点分别为M、N,在xOy平面内,从电离室产生的质量为m、带电荷量为e的电子以几乎为零的初速度从P点飘入电势差为U 的加速电场中,加速后经过右侧极板上的小孔Q点沿x轴正方向进入匀强电场,已知O、Q两点之间的距离为2L,飞出电场后从M点进入圆形区域,不考虑电子所受的重力。
高中物理带电粒子在磁场中的运动专项训练100(附答案)一、带电粒子在磁场中的运动专项训练1.如图所示,在两块水平金属极板间加有电 压U 构成偏转电场,一束比荷为510/qC kg m=的带正电的粒子流(重力不计),以速度v o =104m/s 沿 水平方向从金属极板正中间射入两板.粒子经电 场偏转后进入一具有理想边界的半圆形变化磁场 区域,O 为圆心,区域直径AB 长度为L =1m , AB 与水平方向成45°角.区域内有按如图所示规 律作周期性变化的磁场,已知B 0=0. 5T ,磁场方向 以垂直于纸面向外为正.粒子经偏转电场后,恰好从下极板边缘O 点与水平方向成45°斜向下射入磁场.求:(1)两金属极板间的电压U 是多大?(2)若T o =0.5s ,求t =0s 时刻射人磁场的带电粒子在磁场中运动的时间t 和离开磁场的位置.(3)要使所有带电粒子通过O 点后的运动过程中 不再从AB 两点间越过,求出磁场的变化周期B o ,T o 应满足的条件.【答案】(1)100V (2)t=5210s π-⨯,射出点在AB 间离O 点0.042m (3)5010s 3T π-<⨯【解析】试题分析:(1)粒子在电场中做类平抛运动,从O 点射出使速度代入数据得U=100V (2)粒子在磁场中经过半周从OB 中穿出,粒子在磁场中运动时间射出点在AB 间离O 点(3)粒子运动周期,粒子在t=0、….时刻射入时,粒子最可能从AB 间射出如图,由几何关系可得临界时 要不从AB 边界射出,应满足得考点:本题考查带电粒子在磁场中的运动2.如图所示,在平面直角坐标系xOy 的第二、第三象限内有一垂直纸面向里、磁感应强度为B 的匀强磁场区域△ABC ,A 点坐标为(0,3a ),C 点坐标为(0,﹣3a ),B 点坐标为(23a -,-3a ).在直角坐标系xOy 的第一象限内,加上方向沿y 轴正方向、场强大小为E=Bv 0的匀强电场,在x=3a 处垂直于x 轴放置一平面荧光屏,其与x 轴的交点为Q .粒子束以相同的速度v 0由O 、C 间的各位置垂直y 轴射入,已知从y 轴上y =﹣2a 的点射入磁场的粒子在磁场中的轨迹恰好经过O 点.忽略粒子间的相互作用,不计粒子的重力. (1)求粒子的比荷;(2)求粒子束射入电场的纵坐标范围;(3)从什么位置射入磁场的粒子打到荧光屏上距Q 点最远?求出最远距离.【答案】(1)0v Ba(2)0≤y≤2a (3)78y a =,94a【解析】 【详解】(1)由题意可知, 粒子在磁场中的轨迹半径为r =a 由牛顿第二定律得Bqv 0=m 20v r故粒子的比荷v q m Ba= (2)能进入电场中且离O 点上方最远的粒子在磁场中的运动轨迹恰好与AB 边相切,设粒子运动轨迹的圆心为O ′点,如图所示.由几何关系知O ′A =r ·ABBC=2a 则OO ′=OA -O ′A =a即粒子离开磁场进入电场时,离O 点上方最远距离为OD =y m =2a所以粒子束从y 轴射入电场的范围为0≤y ≤2a (3)假设粒子没有射出电场就打到荧光屏上,有3a =v 0·t 02019222qE y t a a m ==>, 所以,粒子应射出电场后打到荧光屏上粒子在电场中做类平抛运动,设粒子在电场中的运动时间为t ,竖直方向位移为y ,水平方向位移为x ,则 水平方向有x =v 0·t竖直方向有212qE y t m=代入数据得x 2ay设粒子最终打在荧光屏上的点距Q 点为H ,粒子射出电场时与x 轴的夹角为θ,则0 02tan yx qE xv m v yv v aθ⋅===有H=(3a-x)·tan θ=(32)2a y y-当322a y y-=时,即y=98a时,H有最大值由于98a<2a,所以H的最大值H max=94a,粒子射入磁场的位置为y=98a-2a=-78a3.科学家设想在宇宙中可能存在完全由反粒子构成的反物质.例如:正电子就是电子的反粒子,它跟电子相比较,质量相等、电量相等但电性相反.如图是反物质探测卫星的探测器截面示意图.MN上方区域的平行长金属板AB间电压大小可调,平行长金属板AB间距为d,匀强磁场的磁感应强度大小为B,方向垂直纸面向里.MN下方区域I、II为两相邻的方向相反的匀强磁场区,宽度均为3d,磁感应强度均为B,ef是两磁场区的分界线,PQ是粒子收集板,可以记录粒子打在收集板的位置.通过调节平行金属板AB间电压,经过较长时间探测器能接收到沿平行金属板射入的各种带电粒子.已知电子、正电子的比荷是b,不考虑相对论效应、粒子间的相互作用及电磁场的边缘效应.(1)要使速度为v的正电子匀速通过平行长金属极板AB,求此时金属板AB间所加电压U;(2)通过调节电压U可以改变正电子通过匀强磁场区域I和II的运动时间,求沿平行长金属板方向进入MN下方磁场区的正电子在匀强磁场区域I和II运动的最长时间t m;(3)假如有一定速度范围的大量电子、正电子沿平行长金属板方向匀速进入MN下方磁场区,它们既能被收集板接收又不重叠,求金属板AB间所加电压U的范围.【答案】(1)Bvd (2)Bb π(3)3B 2d 2b <U <221458B d b【解析】 【详解】(1)正电子匀速直线通过平行金属极板AB ,需满足 Bev=Ee因为正电子的比荷是b ,有 E=U d联立解得:u Bvd =(2)当正电子越过分界线ef 时恰好与分界线ef 相切,正电子在匀强磁场区域I 、II 运动的时间最长。
最新高考物理带电粒子在无边界匀强磁场中运动专项训练100(附答案)一、带电粒子在无边界匀强磁场中运动1专项训练1.如图所示,在一直角坐标系xoy 平面内有圆形区域,圆心在x 轴负半轴上,P 、Q 是圆上的两点,坐标分别为P (-8L ,0),Q (-3L ,0)。
y 轴的左侧空间,在圆形区域外,有一匀强磁场,磁场方向垂直于xoy 平面向外,磁感应强度的大小为B ,y 轴的右侧空间有一磁感应强度大小为2B 的匀强磁场,方向垂直于xoy 平面向外。
现从P 点沿与x 轴正方向成37°角射出一质量为m 、电荷量为q 的带正电粒子,带电粒子沿水平方向进入第一象限,不计粒子的重力。
求: (1)带电粒子的初速度;(2)粒子从P 点射出到再次回到P 点所用的时间。
【答案】(1)8qBLv m=;(2)41(1)45m t qB π=+ 【解析】 【详解】(1)带电粒子以初速度v 沿与x 轴正向成37o 角方向射出,经过圆周C 点进入磁场,做匀速圆周运动,经过y 轴左侧磁场后,从y 轴上D 点垂直于y 轴射入右侧磁场,如图所示,由几何关系得:5sin37o QC L =15sin37OOQO Q L ==在y 轴左侧磁场中做匀速圆周运动,半径为1R ,11R O Q QC =+21v qvB mR =解得:8qBLv m=; (2)由公式22v qvB m R =得:2mv R qB =,解得:24R L =由24R L =可知带电粒子经过y 轴右侧磁场后从图中1O 占垂直于y 轴射放左侧磁场,由对称性,在y 圆周点左侧磁场中做匀速圆周运动,经过圆周上的E 点,沿直线打到P 点,设带电粒子从P 点运动到C 点的时间为1t5cos37o PC L =1PCt v=带电粒子从C 点到D 点做匀速圆周运动,周期为1T ,时间为2t12mT qBπ=2137360oo t T = 带电粒子从D 做匀速圆周运动到1O 点的周期为2T ,所用时间为3t22·2m mT q B qBππ== 3212t T =从P 点到再次回到P 点所用的时间为t12222t t t t =++联立解得:41145mt qB π⎛⎫=+⎪⎝⎭。
2.如图纸面内的矩形 ABCD 区域存在相互垂直的匀强电场和匀强磁场,对边 AB ∥CD 、AD ∥BC ,电场方向平行纸面,磁场方向垂直纸面,磁感应强度大小为 B .一带电粒子从AB 上的 P 点平行于纸面射入该区域,入射方向与 AB 的夹角为 θ(θ<90°),粒子恰好做匀速直线运动并从 CD 射出.若撤去电场,粒子以同样的速度从P 点射入该区域,恰垂直 CD 射出.已知边长 AD=BC=d ,带电粒子的质量为 m ,带电量为 q ,不计粒子的重力.求:(1)带电粒子入射速度的大小;(2)带电粒子在矩形区域内作直线运动的时间; (3)匀强电场的电场强度大小.【答案】(1)cos qBd m θ(2)cos sin m qB θθ (3)2cos qB dm θ【解析】 【分析】画出粒子的轨迹图,由几何关系求解运动的半径,根据牛顿第二定律列方程求解带电粒子入射速度的大小;带电粒子在矩形区域内作直线运动的位移可求解时间;根据电场力与洛伦兹力平衡求解场强. 【详解】(1) 设撤去电场时,粒子在磁场中做匀速圆周运动的半径为R ,画出运动轨迹如图所示,轨迹圆心为O .由几何关系可知:cos d Rθ=洛伦兹力做向心力:200v qv B m R=解得0cos qBdv m θ=(2)设带电粒子在矩形区域内作直线运动的位移为x ,有sin d xθ= 粒子作匀速运动:x=v 0t 联立解得cos sin m t qB θθ=(3)带电粒子在矩形区域内作直线运动时,电场力与洛伦兹力平衡:Eq=qv 0B解得2qB dE mcos θ=【点睛】此题关键是能根据粒子的运动情况画出粒子运动的轨迹图,结合几何关系求解半径等物理量;知道粒子作直线运动的条件是洛伦兹力等于电场力.3.“太空粒子探测器”是由加速、偏转和收集三部分组成,其原理可简化如下:如图1所示,辐射状的加速电场区域边界为两个同心平行半圆弧面,圆心为O ,外圆弧面AB 的电势为2L()o ϕ>,内圆弧面CD 的电势为φ,足够长的收集板MN 平行边界ACDB ,ACDB 与MN 板的距离为L .假设太空中漂浮着质量为m ,电量为q 的带正电粒子,它们能均匀地吸附到AB 圆弧面上,并被加速电场从静止开始加速,不计粒子间的相互作用和其它星球对粒子的影响,不考虑过边界ACDB 的粒子再次返回.(1)求粒子到达O 点时速度的大小;(2)如图2所示,在PQ (与ACDB 重合且足够长)和收集板MN 之间区域加一个匀强磁场,方向垂直纸面向内,则发现均匀吸附到AB 圆弧面的粒子经O 点进入磁场后最多有23能打到MN 板上,求所加磁感应强度的大小;(3)如图3所示,在PQ (与ACDB 重合且足够长)和收集板MN 之间区域加一个垂直MN 的匀强电场,电场强度的方向如图所示,大小4E Lφ=,若从AB 圆弧面收集到的某粒子经O 点进入电场后到达收集板MN 离O 点最远,求该粒子到达O 点的速度的方向和它在PQ与MN 间运动的时间. 【答案】(1)2q v mϕ=;(2)12m B L q ϕ=;(3)060α∴= ;22m L q ϕ【解析】 【分析】 【详解】试题分析:解:(1)带电粒子在电场中加速时,电场力做功,得:2102qU mv =-2U ϕϕϕ=-=2q v mϕ=(2)从AB 圆弧面收集到的粒子有23能打到MN 板上,则上端刚好能打到MN 上的粒子与MN 相切,则入射的方向与OA 之间的夹角是60︒,在磁场中运动的轨迹如图甲,轨迹圆心角060θ=.根据几何关系,粒子圆周运动的半径:2R L =由洛伦兹力提供向心力得:2v qBv m R=联合解得:12m B L qϕ=(3)如图粒子在电场中运动的轨迹与MN 相切时,切点到O 点的距离最远, 这是一个类平抛运动的逆过程. 建立如图坐标.212qE L t m=222mL mt L qE q ϕ== 22x Eq qEL q v t m m m ϕ===若速度与x 轴方向的夹角为α角 cos xv v α=1cos 2α=060α∴=4.如图所示,地面某处有一粒子发射器A ,发射器尺寸忽略不计,可以竖直向上发射速度介于v 0~2v 0的电子。
发射器右侧距离A 为L 的O 处,有一足够长突光板OD ,可绕O 点 转动,使其与水平方向的夹角θ可调,且AOD 在同一平面内,其中OC 段长度也为L , 电子打到荧光板上时,可使荧光板发光。
在电子运动的范围内,加上垂直纸面向里的匀 强磁场。
设电子质量为m ,电荷量为e ,重力忽略不计。
初始θ=45°,若速度为2v 0的电子恰好垂直打在荧光板上C 点,求: (1)磁场的磁感应强度大小B ;(2)此时速率为1.5v 0的电子打到荧光板上的位置到0点的距离x ;(3)在单位时间内发射器A 发射N 个电子,保持磁感应强度B 不变,若打在荧光板上的电子数随速率均匀分布,且50%被板吸收,50%被反向弹回,弹回速率大小为打板前速率大小的0.5倍,求荧光板受到的平均作用力大小(只考虑电子与收集板的一次碰撞); (4)若磁感应强度在(B -△B )到(B +△B )之间小幅波动,将荧光板θ角调整到90°,要在探测板上完全分辨出速度为v 0和2v 0的两类电子,则BB∆的最大值为多少?【答案】(1) 02mv eL (2) 8L (3) 0158Nmv (4)13 【解析】 【详解】(1)由洛伦兹力提供向心力:qvB =m 2v r2v 0对应半径为L ,得B=2mv eL(2) 1.5v 0对应运动半径为0.75Lcosl35°=2220.25(0.75)20.25L x L L x+-⨯⨯()22102x x L L -= 解得:L 取(3)F 吸=0002350%24P mv m v N Nmv t ∆+⋅==∆吸F 反=0002950% 1.528P mv m v N Nmv t ∆+⋅=⨯=∆反() F 总=F 吸+F 反=0158Nmv (4)x 1x 2r 1=0()mv e B B -∆ r 2=02()m v e B B +∆ x 2>x 1得B B ∆ 最大值为135.如图所示,直角坐标系xOy 平面内有垂直于平面向外的匀强磁场,磁感应强度大小为B ,一个半径为R 的绝缘圆筒垂直于坐标平面放置,圆心P 在x 轴上,O 、P 间的距离为2R ,y 轴上各点处均可沿x 轴正方向发射质量为m 、电荷量为q 的同种带正电粒子,粒子的发射速度大小均为v 0=2qBRm,不计粒子的重力和粒子间的相互作用,求:(1)所有打到圆筒上的粒子中,在磁场中运动时间最短的粒子在磁场运动的时间及在y 轴上发射的位置坐标;(2)从y 轴上什么范围内发射的粒子能打在圆筒上?【答案】(1)(0,2-3R R )(2)(25)52R y R ≤≤() 【解析】 【详解】(1)粒子在磁场中做圆周运动,根据牛顿运动定律有:2v qvB m r=代入数据,解得:2r R =由题意可知,所有粒子在磁场中做圆周运动的圆心在y 轴上,做圆周运动的圆半径相等,根据224R RT v vππ⨯==得,粒子在匀强磁场运动的周期都相等,粒子在磁场中运动的时间2t T θπ=⋅,要使运动时间最短,则运动的弧长最短,圆心角θ最小,分析可知粒子打在圆筒与x 轴左侧交点所用的时间最短.由几何关系可知,这段圆弧所对圆心角θ满足:1sin 2R r θ==得到:6πθ=粒子在磁场中做圆周运动的周期:224R R T v vππ⨯==2mqB π= 则最短时间:1126mt T qBπ== 根据几何关系,发射点距坐标原点O 的距离为:()22cos 236y R R R π∆=-=-即对应粒子在y 轴上发射的位置坐标为(0,2-3R R )(2)设从圆筒上面恰好能打在圆筒上的粒子从y 轴上射出的位置在M 点,坐标为M (0,y 1)由几何关系可知,2212(3)(2)(25)y R R R R =-=设从圆筒下面恰好打在圆筒上的粒子从y 轴上射出的位置在Q 点,坐标为Q (0,y 2).由几何关系可知,222[(3)(2)2](25)y R R R R =---=-因此能打在圆筒上的粒子在y 轴上射出的范围是:(25)52)R y R -≤≤+(. 【点睛】粒子在磁场中做匀速圆周运动,能正确的画出运动轨迹,并根据几何关系确定各量之间的关系.6.如图甲所示,在坐标系xOy 平面内,y 轴的左侧有一个速度选择器,其中电场强度为E ,磁感应强度为B 0.粒子源不断地释放出沿x 轴正方向运动,质量均为m 、电量均为+q 、速度大小不同的粒子.在y 轴的右侧有一匀强磁场,磁感应强度大小恒为B ,方向垂直于xOy 平面,且随时间做周期性变化(不计其产生的电场对粒子的影响),规定垂直xOy 平面向里的磁场方向为正,如图乙所示.在离y 轴足够远的地方有一个与y 轴平行的荧光屏.假设带电粒子在y 轴右侧运动的时间达到磁场的一个变化周期之后,失去电荷变为中性粒子.(粒子的重力忽略不计)(1)从O 点射入右侧磁场的粒子速度多大;(2)如果磁场的变化周期恒定为T =m qBπ,要使不同时刻从原点O 进入变化磁场的粒子做曲线运动的时间等于磁场的一个变化周期,则荧光屏离开y 轴的距离至少多大; (3)荧光屏离开y 轴的距离满足(2)的前提下,如果磁场的变化周期T 可以改变,试求从t =0时刻经过原点O 的粒子打在荧光屏上的位置离x 轴的距离与磁场变化周期T 的关系.【答案】(1)0E B (2022mE3)T <53m qB π【解析】 【详解】(1)因为粒子在速度选择器中运动时受力平衡,即:qvB 0=qE ,解得:v =0EB ;(2)带电粒子进入y 轴右侧之后,在磁场中运动的半径为:r =mv qB =0mE qBB , 因为磁场的变化周期恒为:T =mqBπ,所以粒子在该磁场中运动半个周期所转过的角度为90°,任一时刻进入y 轴右侧磁场的粒子其运动轨迹如图甲所示:为使粒子在磁场中运动满一个变化周期,荧光屏离开y 轴的距离应该为: x =2r sinα+2r sin (90°-α)=2r sinα+2r cosα=22r sin (45°+α), 当α=45°时,x 的值最大,最大值为:x =22r =22mE; (3)因为带电粒子在两个磁感应强度大小相等的磁场中运动的时间相等, 所以其轨迹具有对称性,如图乙所示,其经过一个磁场变化周期之后的速度方向与x 轴方向平行, 且此时距x 轴的距离为:y =2r (1-cosα)式中的α为粒子在变化的磁场中运动半个周期所转过的角度, 其余周期T 的关系为:2T =m qB, 则:α=2qBTm, 所以经过一个周期后,距x 轴的距离为:y =20mE qBB (1-cos 2qBTm), 由于只有在y 轴的右侧才有变化的磁场,所以带电粒子最大转过的角度不会超过150°,如图丙所示,即磁场的变化周期有一个最大值,2mT =56m qB π,所以:T <T m =53m qB π;7.在方向垂直纸面的匀强磁场中,静止的21084Po 核沿与磁场垂直的方向放出42He 核后变成Pb 的同位素粒子。