蓄能液气泡钻井液流变性能研究
- 格式:pdf
- 大小:582.68 KB
- 文档页数:4
中国石油大学钻井液工艺原理实验报告实验日期:2011/4/26 成绩:班级:学号:姓名:教师:同组者:实验一钻井液流变性测定一 .实验目的1. 掌握六速旋转粘度计的应用方法。
2. 掌握如何判断钻井液的流型及对应流变参数的计算方法。
3. 比较各流变模式与实际流变曲线的吻合程度,弄清各种模式的特点。
4. 掌握钻井液增粘剂及降粘剂对钻井液流变性的影响。
二.实验原理1. 旋转粘度计工作原理电动机带动外筒旋转时,通过被测液体作用于内筒上的一个转矩,使与扭簧相连的内筒偏转一个角度。
根据牛顿内摩擦定律,一定剪功速率下偏转的角度与液体的粘度成正比。
于是,对液体粘度的测量就转换为内筒的角度测量。
2. 流变曲线类型、意义。
流变曲线是指流速梯度和剪切应力的关系曲线。
根据曲线的形式,它可以分为牛顿型、塑性流型、假塑性流型和膨胀性流型。
为了计算任何剪切速率下的剪切应力,常用的方法是使不同流变模式表示的理想曲线逼近实测流变曲线,这样,只需要确定两个流变参数,就可以绘出泥浆的流变曲线。
牛顿模式反映的牛顿液体,其数学表达式为:τ =η·D宾汉模式反映的是塑性液体,其数学表达式为:τ =τ 0 +ηp·D指数模式反映的是假塑性流体,其数学表达式为:τ =K·D n 或 Lgτ =lgK + n·lgD卡森模式反映的是一种理想液体,其数学表达式为:τ1/2 =τ1/2 c +η1/2∞ .D1/2实际流变曲线与那一种流变模式更吻合,就把实际液体看成那种流型的流体。
三. 实验仪器及药品实验仪器:ZNN-D6 型旋转粘度计;高速搅拌器。
实验仪器使用要点:1.检查好仪器,要求;①刻度盘对零。
若不对零,可松开固定螺钉调零后在拧紧。
②检查同心度。
高速旋转时,外筒不得有偏摆。
③内筒底与杯距不低于1.3cm。
2.校正旋转粘度计①倒350m1 水于泥浆杯中,置于托盘上,上升托盘,使液面与外筒刻度线对齐,拧紧托盘手轮。
石油钻井中钻井液流变性
钻井液流变性是指钻井液流动和变形的性质,这些性质主要通过剪切应力和剪切速率表征。
钻井液流变性与钻井液对井底的冲洗能力、对岩屑的携带和悬浮能力,对功率的传递能力和井壁稳定等直接相关。
1.流态
流体的流态可分为层流、紊流和塞流三种类型。
层流是指流体质点呈层状流动,流动的每一层的流速不等,但都与流动方向平行。
紊流是指流体质点完全呈不规则流动。
在整个流体体积内充满小漩涡,质点的宏观速度基本相同。
塞流是指流体的流动像塞状物一样移动,各质点流速相等。
2.剪切应力
当流体的流态处在层流时,相邻流动层的流速是不等的,因此它们之间存在内摩擦力即剪切力,若将剪切力除以相邻流动层的接触面积。
3.剪切速率
当流体的流态处在层流时,相邻流动层之间的速度差除以它们之间的垂直距离称为剪切速率。
4.牛顿粘度与表现粘度
钻井液的表现粘度随剪切速率变化,所以在评价钻井液性能时,
表观粘度通常指剪切速率为1020s-1时的表观粘度。
5.触变性
一些非牛顿流体在机械作用下变稀或者变稠的性质称为触变性。
石油钻井液流变特性的数值模拟研究一、引言石油是当今世界最重要的能源之一,而石油勘探开采中使用的钻井液是保证石油勘探开采顺利进行的关键因素之一。
目前,石油勘探开采中使用的钻井液质量越来越高,其中一个重要的目标就是要降低液体的黏度,这样才能保证由于黏度引起的流动阻力小,使得钻井液在井下工作时具有更好的流动性。
因此,本文将从钻井液流变特性的角度出发,通过数值模拟研究探讨如何降低钻井液黏度,提高其流动性。
二、流变学基础2.1 流变学定义流变学是研究物质对应力作用下产生形变的规律和性质的科学,主要关注于物质的形变行为及其中所涉及到的物理量,比如应力、应变、黏度、弹性模量等。
2.2 流变学的基本模型1. 线性模型线性流变学模型假设应力和应变成线性关系,适用于大多数流体的流变性质。
2. 非线性模型非线性模型适用于非牛顿性流体,可以更准确地预测流体的流变特性。
三、石油钻井液流变特性的数值模拟研究3.1 数值模拟方法采用有限元数值模拟方法,通过计算流体的流动速度、应力、应变和粘性等参数,来预测钻井液的流变特性。
同时,还需对其几何形状、物理性质和边界条件等进行仿真。
3.2 流变特性影响因素分析1. 温度温度是影响钻井液黏度最显著的因素之一。
随着温度升高,钻井液的黏度将会减小,而流动性则会增加。
2. 压力增加压力会导致液体黏度的增加。
因此在钻井过程中,如果液体黏度太大,就会对到井底或进行旋转等步骤带来很大的阻力。
3. 构成材料钻井液的构成材料不同,其流变特性也不同。
比如粘土类钻井液的弹性模量更高,而高分子类钻井液的平均黏度较高。
4. 剪切速率当液体施加于固体表面时,其黏度会随着剪切速率的增加而逐渐的下降。
3.3 流变特性的数值模拟结果根据数值模拟可以得到,当加入适量的聚合物或添加剂,可以大量减小钻井液的黏度,达到提高流动性的目的。
四、结论钻井液的黏度对钻井过程的稳定性直接有影响,所以对于提高其流动性具有十分重要的意义。
第六章钻井液的流变性钻井液的流变性是钻井液的一项最基本性能,它是指在外力作用下,钻井液发生流动变形的特性。
该特性通常用钻井液的流变曲线、表观粘度、塑性粘度、动切力、静切力等流变参数来进行描述的。
它在解决1、岩屑携带,保证井底和井眼清洁;2、悬浮岩屑和加重材料;3、保持井眼规则和保障井下安全;4、提高机械钻速等钻井问题时起着十分重要的作用。
另外,钻井液的某些流变参数还直接用于钻井环空水力学的有关计算。
对钻井液流变性的深入研究有利于对油气井钻井液流变参数的优化设计和合理调控。
一、流体流变性的概念1、流体流动的特点流体流动实际上是流体随时间连续变形的过程。
液体的流动变形是因为液体受到剪切作用引起的剪切变形。
既液体在大小相等、方向相反、而作用线相距很近的两个力作用下,液体内部指点发生相对错动。
以河水流动的速度分布为例,可以看到,越靠近河岸,流速越小,河中心处流速最大。
水在管道中流速分布与河水相似,管道中心流速最大,靠近管壁处速度为零。
可以想象,如果把管道内流动的水沿着管道半径的方向由内向外分成若干层,每一层流速是不同的。
如图6 —1所示。
液流中各层的流速不同这个现象,通常用剪切速率(或称速度梯度)这个物理量来描述。
图6-1在圆形管道中水的流速分布a —流速分布示意图b —流速分布曲线2、剪切速率和剪切应力如前所述,液体在管内流动时,在垂直于流速方向上,由内向外流速逐渐减小。
若液体液层之间的距离为dx,各液层的速度差为dv,则垂直于流速方向不同液层流速的变化可以表示为dv/dx,那么dv/dx叫速度梯度即剪切速率。
其物理意义是在垂直于流速方向上,单位距离流速的增量。
物理单位为S1钻井液在循环系统的不同位置剪切速率值如下:1沉砂池:10 —20 S -环形空间:50 —250 S -1钻杆内:100 —1000 S钻头喷嘴处:10 4—105S -1液体流动时表现出的速度梯度,是液体内存在内摩擦作用的结果。
石油钻井液流变学研究石油钻井液是一种用于钻井过程的重要溶液,其性质通常由其流变学特性所决定。
因此,石油钻井液的流变学研究对于钻井工程的进展与开展至关重要。
几十年来,石油钻井液流变学研究已成为了石油工业的一个重要领域,不断推动着石油工业的发展与进步。
石油钻井液的基本组成和类型石油钻井液通常由黏土、钡或铋等化合物的微细颗粒、有机聚合物、钻井液添加剂等材料组成。
根据情况不同,石油钻井液可分为水基钻井液、油基钻井液和气基钻井液三种基本类型。
流变学基本概念流变学是应用力学及物理学原理来研究物质流动、变形和应力的学科。
其重要原理主要是显性粘滞流动:所涉及物质的粘度与所作用的外界力之间的关系式往往包含不同类型的复杂度系数,并在粘度表达式中显示。
石油钻井液的流变学参数石油钻井液的流变学参数主要包括动力粘度、静力粘度、剪切应力、剪切速率、剪切应力指数等。
流变学测试技术流变学测试技术是石油钻井液流变学研究的核心内容之一。
流变性能测试通常由动态和静态两个方面组成。
动态测试指实验过程中材料的变形和应力的变化,剪切速率和剪切应力之间的关系,而静止测试则是通过应用永久型应力来评估材料的应力–应变行为,在每个特定的剪切速率下测试材料的变形。
石油钻井液流变学研究在钻井领域的应用石油钻井液流变学研究在钻井领域有着非常广泛的应用。
首先,流变学参数是评估石油钻井液性能的关键因素,因此在油气开采中广泛运用。
其次,合适的石油钻井液流变学特性能有效帮助泥浆在极端环境下获得最佳钻井效果。
石油钻井液流变学研究的发展趋势石油钻井液流变学研究的发展趋势主要体现在以下几个方面:一是应用流体力学数学模型,对石油钻井液流变学做出更为精准的预测。
二是石油钻井液流变学研究的快速高效化,以及对流变学监测和控制的进一步深入研究。
三是对石油钻井液组成及结构性质的研究,进一步细化液体体系,进一步探索新型钻井液体系的开发创新。
结语通过对石油钻井液流变学的研究,可以有效地优化油气开采过程中钻井泥浆的浆体组成和结构特征,提高钻井泥浆的性能,促进钻井工作效率的提高,这对于石油工业的未来发展具有十分重要的意义。