了样本均数的差别。称为“差别无显著性” 。 (2)分别所代表的总体均数不同。称为“差别有显著
性”。
6
2、假设检验的目的
判断是由于何种原因造成的不同, 以做出决策。
例题
例3.4 根据大量调查知道,一般健康成年男子 的脉搏均数为72次/分, 某医生在山区随机调查 了25名健康成年男子,其脉搏均数为74.2次/分, 标准差为6.5次/分,能否认为该山区成年男子的 脉搏高于一般人群?
如果|u|> u或| t |> t,ν ,则 P< ; 如果|u|< u或| t | < t,ν ,则P> 。
(5)作出推断结论
如果p>,认为在检验假设H0成立的条件下,得到 大于现有统计量u值或t值的可能性大于,不属于 小概率事件,则不拒绝H0,差别无统计学意义,结 论是不认为两总体均数不相等。
第三节 t 检验和u检验
20
在均数比较的假设检验中,以t检验和u检验 最常用
u检验的应用条件:①σ已知或②σ未知,n足 够大(n≥100)
t检验的应用条件:① σ未知,n 较小②样本来 自正态分布总体③两样本均数比较时,要求 两样本所属总体的方差齐。
&实际应用中,与上述条件稍有偏离,也 可应用。
21
一、样本均数与总体均数的比较
实质是一个未知总体与一个已知总体均数的比较
(一)、大样本 一般女性平均身高160.1 cm。某大学
随机抽取100名女大学生,测量其身高,身 高的均数是163.74cm,标准差是3.80cm。 请问某大学18岁女大学生身高是否与一般 女性不同。
22
▲目的:比较样本均数所代表的未知总体均数 与已知的总体均数有无差别
样本与总体的关系
N(μ0,σ02)