第十四章 整式的乘除和因式分解 单元检测
- 格式:doc
- 大小:196.00 KB
- 文档页数:4
《第十四章 整式的乘除与因式分解》单元测试卷(一)(满分120分,限时120分钟)一、选择题(共10小题,每小题3分,共30分)1. 计算a 10÷a 2(a≠0)的结果是( )A.a 5B.a -5C.a 8D.a -82. 下列计算中,正确的是( )A .(a 3)4= a 12B .a 3· a 5= a 15C .a 2+a 2= a 4D .a 6÷ a 2= a 33. 运用乘法公式计算(x +3)2的结果是( )A .x 2+9B .x 2-6x +9C .x 2+6x +9D .x 2+3x +94. 将下列多项式因式分解,结果中不含有因式1a +的是( )A .21a -B .2a a +C .22a a +-D .2(2)2(2)1a a +-++5. 下列运算正确的是( )A .(12)﹣1=﹣12 B .6×107=6000000C .(2a )2=2a 2D .a 3•a 2=a 56. 把x n+3+x n+1分解因式得( )A .x n+1(x 2+1)B .n 3x x +x ()C .x (n+2x +n x )D .x n+1(x 2+x ) 7. 若4x 2+axy+25y 2是一个完全平方式,则a=( )A .20B .﹣20C .±20D .±108. 将图(甲)中阴影部分的小长方形变换到图(乙)位置,根据两个图形的面积关系得到的数学公式是( )9. 20042-2003×2005的计算结果是( )A .1B .-1C .0D .2×20042-110. 将代数式2x +4x-1化成()2x+p +q 的形式为( )A .(x-2)2+3B .(x+2)2-4C .(x+2)2 -5D .(x+2)2+4二、填空题(共6小题,每小题3分,共18分)11. 因式分解:a 3-a=12. 计算:(-5a 4)•(-8ab 2)= . 13. 已知a m =3,a n =4,则a 3m-2n =__________14. 若3x =,则代数式269x x -+的值为__________.15. 若x +y =10,xy =1 ,则x 3y +xy 3= .16. 若整式22x ky +(k 为不等于零的常数)能在有理数范围内因式分解,则k 的值可以是 _______________(写出一个即可).三、解答题(共8题,共72分)17. (本题8分)计算:(a+b )2﹣b (2a+b )18. (本题8分)分解因式:2m (m ﹣n )2﹣8m 2(n ﹣m )19. (本题8分)如图(1),是一个长为2a 宽为2b (a >b )的矩形,用剪刀沿矩形的两条对角轴剪开,把它分成四个全等的小矩形,然后按图(2)拼成一个新的正方形,求中间空白部分的面积(用含a 、b 的式子表示 )20. (本题8分)计算(2126)3×(1314)4×(43)321. (本题8分)简便计算:1.992+1.99×0.0122. (本题10分)当a=3,b=-1时,求()()a b a b +-的值。
人教版八年级上册第十四章整式乘法与因式分解单元检测(含答案)一、单选题 1.计算结果正确的是()A.B.C.D.2.计算12x a a a a ⋅⋅=,则x 等于( ) A.10B.9C.8D.43.下列计算正确的是( ) A .326a a a ∙=B .()239a a = C .5510x x x += D .78y y y ∙=4.若m ,n 是正整数,且2232m n ⋅=,()m n =264,则mn m n ++的值为( ) A.10B.11C.12D.135.20192019532135⎛⎫⎛⎫-⨯-= ⎪ ⎪⎝⎭⎝⎭( )A .1-B .1C .0D .20036.如果(x-2)(x+3)=x 2+px+q ,那么p 、q 的值为( ) A .p=5,q=6B .p=1,q=-6C .p=1,q=6D .p=5,q=-6.7.( 22)221xy x y xy ÷=-+,括号内应填的多项式为( ) A .322324x y x y -B .12x y - C .3223242x y x y xy -+D .112x y -+ 8.下列多项式乘法中可以用平方差公式计算的是( ) A .(﹣a +b )(a ﹣b ) B .(x +2)(2+x )C .(3x +y )(y ﹣3x) D .(x ﹣2)(x +1) 9.用四个完全一样的长方形(长、宽分别设为x 、y )拼成如图所示的大正方形,已知大正方形的面积为36,中间空缺的小正方形的面积为4,则下列关系式中不正确的是( )A .x+y=6B .x ﹣y=2C .x•y=8D .x 2+y 2=3610.下列等式从左往右因式分解正确的是( ) A .()ab ac b a b c d ++=++B .()()23212x x x x -+=--C .()222121m n m mn n +-=++- D .()()2414141x x x -=+-11.下列多项式能分解因式的是( ) A .22xy +B .22x y xy -C .22x xy y ++D .244x x +-12.在多项式①-m 4-n 4,②a 2+b 2,③-16x 2+y 2,④9(a -b )2-4,⑤-4a 2+b 2中,能用平方差公式分解因式的有() A.1个 B.2个 C.3个 D.4个二、填空题13.分解因式:a 2-5a -14=________.14.若7m n +=,11mn =,则22m mn n -+的值是______. 15.()2320x y -++=,则x y 为 .16.如图,边长为a 的正方形中有一个边长为b 的小正方形,若将图1的阴影部分拼成一个长方形,如图2,比较图1和图2的阴影部分的面积,你能得到的公式是______________.三、解答题 17.计算:(13|(2)2342()()n n ⋅(3)23322(3)(4)(6)a b ab ⋅÷18.(1)计算:()1132π-⎛⎫-+ ⎪⎝⎭(2)化简:()()()32223x x y x y x yxy -++÷19.计算:(1)2(2)(1)(1)a b a a +--+(2)()43322223694(3)a b a b a bab -+÷-20.动手操作:如图①是一个长为2a ,宽为2b 的长方形,沿图中的虚线剪开分成四个大小相等的长方形,然后按照图②所示拼成一个正方形. 提出问题:(1)观察图②,请用两种不同的方法表示阴影部分的面积:_____________,_____________;(2)请写出三个代数式(a +b )2,(a -b )2,ab 之间的一个等量关系:___________________________;问题解决:根据上述(2)中得到的等量关系,解决下列问题:已知x +y =8,xy =7,求x -y 的值.21.把下列各式分解因式:(1)481a - (2)223242x y xy y -+22.乘法公式的探究及应用.小题1:如图1,可以求出阴影部分的面积是_______ (写成两数平方差的形式);小题2:如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是_______,长是______,面积是_________ (写成多项式乘法的形式).小题3:比较图 1,图2的阴影部分面积,可以得到乘法公式________ (用式子表达)答案 1.A 2.A 3.D 4.B 5.B 6.B 7.C 8.C 9.D 10.B 11.B 12.C 13.(a-7)(a+2) 14.16. 15.-816.a 2-b 2=(a+b )(a-b ).17.(1) 7-14n ;(3)1244a b18.(1)3;(2)25x ;19.(1)4ab+42b +1;(2)2449a b a -+20.(1) (a -b )2;(a +b )2-4ab;(2) (a +b )2-4ab =(a -b )2,问题解决: x -y =±621.(1)(a 2+9)(a+3)(a-3); (2)2y (x-y )2.22.小题1: 22a b -;小题2: -a b ,+a b ,()()a b a b +-;小题3: 22()()a b a b a b +-=-人教版八年级数学上册单元检测卷:第十四章整式的乘法与因式分解单元测试(word 版,含答案)一、填空题(本大题共4小题,每小题5分,满分20分)1.计算:-x 2·x 3=________;⎝ ⎛⎭⎪⎫12a 2b 3=________;⎝ ⎛⎭⎪⎫-122017×22016=________.2.因式分解:a -ab 2=______________.3.已知2a 2+2b 2=10,a +b =3,则ab =________.4.对于实数m ,n 定义如下的一种新运算“☆”:m ☆n =m 2-mn -3,下列说法:①0☆1=-3;②x ☆(x -2)=-2x -3;③方程(x +1) ☆(x -1)=0的解为x =12;④整式3x ☆1可进行因式分解.其中正确的说法是__________(填序号). 二、选择题(本大题共10小题,每小题4分,满分40分)5.计算(-2a )2的结果是( )A .-4a 2B .2a 2C .-2a 2D .4a 26.下列运算正确的是( )A .(x +y )2=x 2+y 2B .x 2·x 5=x 10C .x +y =2xyD .2x 3÷x =2x 27.下列四个多项式中,能因式分解的是( )A .a 2+b 2B .a 2-a +2C .a 2+3bD .(x +y )2-48.若(x -2)(x +3)=x 2-ax +b ,则a 、b 的值是( ) A .a =5,b =6 B .a =1,b =-6 C .a =-1,b =-6 D .a =5,b =-69.如果关于x 的代数式9x 2+kx +25是一个完全平方式,那么k 的值是( ) A .15 B .±5 C .30 D .±3010.已知x +y =-4,xy =2,则x 2+y 2的值为( ) A .10 B .11 C .12 D .1311.已知3a =5,9b =10,则3a +2b的值为( ) A .50 B .-50 C .500 D .-50012.若a 、b 、c 为一个三角形的三边长,则式子(a -c )2-b 2的值( ) A .一定为正数 B .一定为负数C .可能是正数,也可能是负数D .可能为013.图①是一个长为2a 、宽为2b (a >b )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图②那样拼成一个正方形,则中间空的部分的面积是( )A .abB .(a +b )2C .(a -b )2D .a 2-b 214.在求1+6+62+63+64+65+66+67+68+69的值时,小林发现:从第二个加数起每一个加数都是前一个加数的6倍,于是她设:S =1+6+62+63+64+65+66+67+68+69①,然后在①式的两边都乘以6,得6S =6+62+63+64+65+66+67+68+69+610②,②-①得6S -S =610-1,即5S =610-1,所以S =610-15.得出答案后,爱动脑筋的小林想:如果把“6”换成字母“a ”(a ≠0且a ≠1),能否求出1+a +a 2+a 3+a 4+…+a 2018的值?你的答案是( )A.a 2018-1a -1B.a 2019-1a -1C.a 2018-1aD .a 2018-1三、(本大题共2小题,每小题8分,满分16分) 15.计算:(1)x ·x 7; (2)a 2·a 4+(a 3)2;(3)(-2ab 3c 2)4; (4)(-a 3b )2÷(-3a 5b 2).16.化简:(1)(a +b -c )(a +b +c );(2)(2a +3b )(2a -3b )-(a -3b )2.四、(本大题共2小题,每小题8分,满分16分)17.若关于x的多项式(x2+x-n)(mx-3)的展开式中不含x2和常数项,求m,n的值.18.分解因式:(1)4x3y+xy3-4x2y2; (2)y2-4-2xy+x2.五、(本大题共2小题,每小题10分,满分20分)19.观察下列关于自然数的等式:32-4×12=5; ①52-4×22=9; ②72-4×32=13; ③……根据上述规律解决下列问题:(1)完成第四个等式:92-4×________2=________;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.20.小红家有一块L形菜地,把L形菜地按如图所示分成面积相等的两个梯形种上不同的蔬菜.已知这两个梯形的上底都是a米,下底都是b米,高都是(b-a)米.(1)请你算一算,小红家的菜地面积共有多少平方米?(2)当a=10,b=30时,面积是多少平方米?六、(本题满分12分) 21.先化简,再求值:(1)[(x -y )2+(x +y )(x -y )]÷2x ,其中x =3,y =1;(2)(m -n )(m +n )+(m +n )2-2m 2,其中m 、n 满足方程组⎩⎪⎨⎪⎧m +2n =1,3m -2n =11.七、(本题满分12分)22.(1)已知a -b =1,ab =-2,求(a +1)(b -1)的值;(2)已知(a +b )2=11,(a -b )2=7,求ab 的值;(3)已知x -y =2,y -z =2,x +z =5,求x 2-z 2的值.八、(本题满分14分)23.先阅读下列材料,再解答下列问题:材料:因式分解:(x+y)2+2(x+y)+1.解:将“x+y”看成整体,令x+y=A,则原式=A2+2A+1=(A+1)2.再将“A”还原,得原式=(x+y+1)2.上述解题用到的是“整体思想”,“整体思想”是数学解题中常用的一种思想方法,请你解答下列问题:(1)因式分解:1+2(x-y)+(x-y)2=__________;(2)因式分解:(a+b)(a+b-4)+4;(3)求证:若n为正整数,则式子(n+1)(n+2)(n2+3n)+1的值一定是某一个整数的平方.参考答案1.-x 518a 6b 3 -12 2.a (1+b )(1-b ) 3.2 4.①③④5-14:.D .D .D .C .D .C .A .B .C .B15.解:(1)原式=x 8.(2分)(2)原式=a 6+a 6=2a 6.(4分)(3)原式=16a 4b 12c 8.(6分)(4)原式=a 6b 2÷(-3a 5b 2)=-13a .(8分)16.解:(1)原式=(a +b )2-c 2=a 2+2ab +b 2-c 2.(4分)(2)原式=4a 2-9b 2-(a 2-6ab +9b 2)=3a 2+6ab -18b 2.(8分)17.解:原式=mx 3+(m -3)x 2-(3+mn )x +3n .(3分)∵展开式中不含x 2和常数项,得到m -3=0,3n =0,(6分)解得m =3,n =0.(8分)18.解:(1)原式=xy (2x -y )2.(4分)(2)原式=(x -y )2-4=(x -y +2)(x -y -2).(8分) 19.解:(1)4 17(3分)(2)第n 个等式为(2n +1)2-4n 2=4n +1.(5分)左边=(2n +1)2-4n 2=4n 2+4n +1-4n2=4n +1.右边=4n +1.左边=右边,∴(2n +1)2-4n 2=4n +1.(10分)20.解:(1)小红家的菜地面积共有2×12(a +b )(b -a )=(b 2-a 2)(平方米).(5分)(2)当a =10,b =30时,面积为900-100=800(平方米).(10分)21.解:(1)原式=(x 2-2xy +y 2+x 2-y 2)÷2x =(2x 2-2xy )÷2x =x -y .当x =3,y =1时,原式=3-1=2.(6分)(2)⎩⎪⎨⎪⎧m +2n =1①,3m -2n =11②,①+②,得4m =12,解得m =3.将m =3代入①,得3+2n =1,解得n =-1.(8分)原式=m 2-n 2+m 2+2mn +n 2-2m 2=2mn .当m =3,n =-1时,原式=2×3×(-1)=-6.(12分)22.解:(1)∵a -b =1,ab =-2,∴原式=ab -(a -b )-1=-2-1-1=-4.(4分)(2)∵(a +b )2=a 2+2ab +b 2=11①,(a -b )2=a 2-2ab +b 2=7②,∴①-②得4ab =4,∴ab =1.(8分)(3)由x -y =2,y -z =2,得x -z =4.又∵x +z =5,∴原式=(x +z )(x -z )=20.(12分)23.(1)(x -y +1)2(3分)(2)解:令A =a +b ,则原式=A (A -4)+4=A 2-4A +4=(A -2)2,再将A 还原,得原式=(a +b -2)2.(8分)(3)证明:(n +1)(n +2)(n 2+3n )+1=(n 2+3n )[(n +1)(n +2)]+1=(n 2+3n )(n 2+3n+2)+1.令n 2+3n =A ,则原式=A (A +2)+1=A 2+2A +1=(A +1)2,∴原式=(n 2+3n +1)2.∵n 为正整数,∴n 2+3n +1也为正整数,∴式子(n +1)(n +2)(n 2+3n )+1的值一定是某一个整数的平方.(14分)人教版八年级上册第十四章整式的乘法与因式分解单元测试题一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 , ) 一、 选择题 (本题共计 10 小题,每题 分,共计30分 , ) 1. 若,则等于( ) A. B.C.D.2. 把多项式分解因式得( )A.B. C. D.3. 多项式的公因式是( ) A.B.C.D.4.,且,则 、 的关系是( )A. B.C. D.5. 下列因式分解中,正确的个数为()①;②;③;④;⑤.A.个B.个C.个D.个6. 下列运算正确的是()A. B.C. D.7. 将下列各式分解因式,正确的是()A.B.C.D.8. 已知,,,则的值为()A. B. C. D.9. 下列计算错误的个数是()①;②;③;④.A. B. C. D.10. 如果的乘积中不含项,则为()A. B. C. D.二、填空题(本题共计6 小题,共计21分,)二、填空题(本题共计6 小题,每题分,共计21分,)11. (3分)已知,,则________.12. (3分)若是完全平方式,则________.13. (3分)若,,则________.14. (4分)已知,,则的值等于________.15. (4分)如图,正方形广场的边长为米,中央有一个正方形的水池,水池四周有一条宽度为的环形小路,那么水池的面积用含、的代数式可表示为________平方米.16. (4分)如图,从边长为的正方形纸片中剪去一个边长为的正方形,剩余部分沿虚线又剪拼成一个如图所示的长方形(不重叠无缝隙),则拼成的长方形的另一边长是________.三、解答题(本题共计6 小题,共计69分,)三、解答题(本题共计6 小题,每题分,共计69分,)17.(10分) 因式分解(2).18. (11分)已知在中,三边长、、满足,试判断的形状并加以说明.19. (12分)已知,,求代数式的值.20. (12分)当为整数时,能被整除吗?请说明理由.21.(12分) 若已知,,试求的值(2)的值.22. (12分)老师给了一个多项式,甲、乙、丙、丁四位同学分别对这个多项式进行描述,(甲):这是一个三次四项式;(乙):常数项系数为;(丙):这个多项式的前三项有公因式;(丁):这个多项式分解因式时要用到公式法;若这四个同学的描述都正确,请你构造两个同时满足这些描述的多项式,并将它因式分解.答案1. C2. C3. C4. C5. B6. C7. B8. B9. D10. A11.12.13.14.15. 或16.17. 解:原式;原式.18. 解:三角形是等腰三角形.,,,,则,,∴,则三角形是等腰三角形.19. 解:,∵,,∴原式.20. 解:,∵为整数, ∴为的整数倍,所以当为整数时,能被整除.21. 解:∵,;∴;∵,,∴.22. 解:人教版八年级上数学第14章整式的乘法与因式分解单元测试(解析)(3)一、选择题:1、如果(a n•b mb)3=a 9b 15,那么( ) A .m=4,n=3B .m=4,n=4C .m=3,n=4D .m=3,n=32、下列运算正确的是( ) A .x 2+x 2=x 4B .3a 3•2a 2=6a 6C .(﹣a 2)3=﹣a 6D .(a ﹣b )2=a 2﹣b 23、(2018·湖北随州)下列运算正确的是( )A .a 2•a 3=a 6B .a 3÷a ﹣3=1C .(a ﹣b )2=a 2﹣ab+b 2D .(﹣a 2)3=﹣a 64、已知长方形的面积为4a 2-4b 2,如果它的一边长为a+b ,则它的周长为( ) A. 10a-6b B. 10a+6b C. 5a-3b D. 5a+3b5、若k 为任意整数,且993﹣99能被k 整除,则k 不可能是( ) A .50 B .100 C .98 D .976、如图,从边长为(a+1)cm 的正方形纸片中剪去一个边长为(a ﹣1)cm 的正方形(a >1),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则该矩形的面积是( )A.2cm 2B.2acm 2C.4acm 2D.(a 2-1)cm27、下列各式:①(x-2y)(2y+x);②(x-2y)(-x-2y);③(-x-2y)(x+2y);④(x-2y)(-x+2y).其中能用平方差公式计算的是( ) A .①②B .①③C .②③D .②④8、(x 2﹣mx+6)(3x ﹣2)的积中不含x 的二次项,则m 的值是( ) A .0B .2/3C .﹣2/3D .﹣3/29、(2018•内蒙古包头市)如果2x a+1y 与x 2y b ﹣1是同类项,那么a/b 的值是()A .1/2B .3/2C .1D .310、观察下列两个多项式相乘的运算过程:根据你发现的规律,若(x+a )(x+b )=x 2﹣7x+12,则a ,b 的值可能分别是( ) A .﹣3,﹣4B .﹣3,4C .3,﹣4D .3,411、若4x 2+kx +25=(2x -5)2,那么k 的值是若4x 2+kx +25=(2x -5)2,那么k 的值是( ) A .﹣4B .﹣30C .﹣20D .012、若(x+m )(x 2-3x+n )的展开式中不含x 2和x 项,则m ,n 的值分别为( ) A.m=3,n=1 B.m=3,n=-9 C.m=3,n=9 D.m=-3,n=9 二、填空题:13、已知x 2+y 2=10,xy=3,则x+y=14、多项式x 2﹣9,x 2+6x+9的公因式是 . 15、若m+n=3,则2m 2+4mn+2n 2﹣6的值为 ;16、(2018•江苏苏州)若a+b=4,a ﹣b=1,则(a+1)2﹣(b ﹣1)2的值为 . 17、已知:a+b=4,则代数式(a+1)(b+1)﹣ab 值为18、若关于x 的式子x +m 与x -4的乘积中一次项是5x ,则常数项为 . 19、(2018•贵州安顺)若x 2+2(m-3)x+16是关于的完全平方式,则m= .20、已知一个圆的半径为Rcm ,若这个圆的半径增加2cm ,则它的面积增加 21、已知关于x 的一元二次方程x 2+7x ﹣a 2+5a+6=0的两个实数根一个大于1,另一个小于6,则a 的取值范围为22、(x 2+ax+8)(x 2﹣3x+b )展开式中不含x 3和x 2项,则a 、b 的值分别为a= ,b= . 三、解答题: 23、因式分解:(1)3a 2-27b 2; (2)x 2-8(x-2).24、(2018•乌鲁木齐)先化简,再求值: (x+1)(x ﹣1)+(2x ﹣1)2﹣2x (2x ﹣1), 其中x=√2+1.25、(2018•临安)阅读下列题目的解题过程:已知A.B.c 为△ABC 的三边,且满足a 2c 2﹣b 2c 2=a 4﹣b 4,试判断△ABC 的形状. 解:∵a 2c 2﹣b 2c 2=a 4﹣b 4(A ) ∴c 2(a 2﹣b 2)=(a 2+b 2)(a 2﹣b 2)(B ) ∴c 2=a 2+b 2(C )∴△ABC 是直角三角形 问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号: ;(2)错误的原因为: ;(3)本题正确的结论为:.26、如图,边长分别为a,b的两个正方形并排放在一起,请计算图中阴影部分面积,并求出当a+b=16,ab=60时阴影部分的面积.27、观察下列计算过程,发现规律,利用规律猜想并计算:1+2==3;1+2+3==6,1+2+3+4==10;1+2+3+4+5==15;…(1)猜想:1+2+3+4+…+n= .(2)利用上述规律计算:1+2+3+4+ (200)(3)尝试计算:3+6+9+12+…3n的结果.参考答案:一、选择题:1、A2、C3、D4、A5、D6、C7、A8、C9、A 10、A 11、C 12、C 二、填空题: 13、±4 14、x+3 15、12 16、12 17、5 18、-36 19、-1或7 20、(4R+4)cm 221、a <﹣2或a >7 22、a=3,b=1三、解答题:23、(1)3a 2-27b 2=3(a 2-9b 2)=3(a+3b)(a-3b);(2)x 2-8(x-2)=x 2-8x+16=(x-4)2. 24、原式=x 2﹣1+4x 2﹣4x+1﹣4x 2+2x =x 2﹣2x ,把x=√2+1代入,得: 原式=(√2+1)2﹣2(√2+1) =3+2√2﹣2√2﹣2 =1.25、C 没有考虑a =b 的情况 △ABC 是等腰三角形或直角三角形 26、=a ²+b ²/2﹣a ×(a +b )/2=(a²+b²﹣ab)/227、(1)1+2+3+4+…+n=;(2)1+2+3+4+…+200==20100.(3)3+6+9+12+…3n=3(1+2+3+4+…+n)=.。
《第14章整式的乘法与因式分解》一、填空题1.若x•x a•x b•x c=x2000,则a+b+c=.2.(﹣2ab)=,(﹣a2)3(﹣a32)=.3.如果(a3)2•a x=a24,则x=.4.计算:(1﹣2a)(2a﹣1)=.5.有一个长4×109mm,宽2.5×103mm,高6×103mm的长方体水箱,这个水箱的容积是mm2.6.通过计算几何图形的面积可表示一些代数恒等式(一定成立的等式),请根据图写出一个代数恒等式是:.7.已知(﹣x)3=a0+a1x+a2x2+a3x3,求(a0+a2)2﹣(a1+a3)2的值.8.已知:A=﹣2ab,B=3ab(a+2b),C=2a2b﹣2ab2,则3AB﹣AC=.9.用如图所示的正方形和长方形卡片若干张,拼成一个长为2a+b,宽为a+b的矩形,需要A类卡片张,B类卡片张,C类卡片张.10.我国北宋时期数学家贾宪的著作《开方作法本源》中的“开方作法本源图”如图所示,通过观察你认为图中的a=.二、选择题11.下列运算正确的是()A.x2•x3=x6B.x2+x2=2x4C.(﹣2x)2=﹣4x2D.(﹣3a3)•(﹣5a5)=15a812.如果一个单项式与﹣3ab的积为﹣a2bc,则这个单项式为()A.a2c B.ac C.a2c D.ac13.计算[(a+b)2]3•(a+b)3的正确结果是()A.(a+b)8 B.(a+b)9C.(a+b)10D.(a+b)1114.若x2﹣y2=20,且x+y=﹣5,则x﹣y的值是()A.5 B.4 C.﹣4 D.以上都不对15.若25x2+30xy+k是一个完全平方式,则k是()A.36y2B.9y2C.6y2D.y216.已知a+b=2,则a2﹣b2+4b的值是()A.2 B.3 C.4 D.617.计算(5x+2)(2x﹣1)的结果是()A.10x2﹣2 B.10x2﹣x﹣2 C.10x2+4x﹣2 D.10x2﹣5x﹣218.下列计算正确的是()A.(x+7)(x﹣8)=x2+x﹣56 B.(x+2)2=x2+4C.(7﹣2x)(8+x)=56﹣2x2D.(3x+4y)(3x﹣4y)=9x2﹣16y2三、解答题(共46分)19.利用乘法公式公式计算(1)(3a+b)(3a﹣b);(2)10012.20.计算:(x+1)2﹣(x﹣1)2.21.化简求值:(2a﹣3b)2﹣(2a+3b)(2a﹣3b)+(2a+3b)2,其中a=﹣2,b=.22.解方程:2(x﹣2)+x2=(x+1)(x﹣1)+x.23.如图,在矩形ABCD中,横向阴影部分是矩形,另一阴影部分是平行四边形,根据图中标注的数据,计算图中空白部分的面积.24.学习了整数幂的运算后,小明给小华出了这样一道题:试比较3555,4444,5333的大小?小华怎么也做不出来.聪明的读者你能帮小华解答吗?《第14章整式的乘法与因式分解》参考答案与试题解析一、填空题1.若x•x a•x b•x c=x2000,则a+b+c=.【考点】同底数幂的乘法.【分析】根据同底数幂的乘法:底数不变指数相加,可得答案.【解答】解:x•x a•x b•x c=x1+a+b+c=x2000,1+a+b+c=2000,a+b+c=1999,故答案为:1999.【点评】本题考查了同底数幂的乘法,同底数幂的乘法底数不变指数相加得出1+a+b+c=2000是解题关键.2.(﹣2ab)=,(﹣a2)3(﹣a32)=.【考点】单项式乘多项式;单项式乘单项式.【分析】根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.【解答】解:﹣2ab(a﹣b)=﹣2ab•a+2ab•b=﹣2a2b+2ab2,(﹣a2)3(﹣a32)=﹣a6•(﹣a32)=a38.故答案为:﹣2a2b+2ab2,a38.【点评】本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.3.如果(a3)2•a x=a24,则x=.【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】先根据幂的乘方进行计算,再根据同底数幂的乘法得出方程6+x=24,求出即可.【解答】解:∵(a3)2•a x=a24,∴a6•a x=a24,∴6+x=24,∴x=18,故答案为:18.【点评】本题考查了幂的乘方,同底数幂的乘法的应用,解此题的关键是得出方程6+x=24.4.计算:(1﹣2a)(2a﹣1)=.【考点】完全平方公式.【分析】先提取“﹣"号,再根据完全平方公式进行计算即可.【解答】解:(1﹣2a)(2a﹣1)=﹣(1﹣2a)2=﹣(1﹣4a+4a2)=﹣1+4a﹣4a2,故答案为:﹣1+4a﹣4a2.【点评】本题考查了完全平方公式的应用,能熟练地运用公式进行计算是解此题的关键.5.有一个长4×109mm,宽2.5×103mm,高6×103mm的长方体水箱,这个水箱的容积是mm2.【考点】单项式乘单项式.【分析】直接利用单项式乘以单项式运算法则求出即可.【解答】解:∵长4×109mm,宽2。
第十四章整式的乘除与因式分解单元测试人教版2024—2025学年八年级上册考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1.下列运算正确的是()A.x6•x2=x12B.(﹣3x)2=6x2C.x3+x3=x6D.(x5)2=x102.计算的结果为()A.B.﹣1C.﹣2D.23.下列由左到右的变形,属于因式分解的是()A.x2﹣4=(x+2)(x﹣2)B.x(x+1)=x2+xC.x2﹣4+3x=(x+2)(x﹣2)+3xD.x2+4x﹣2=x(x+4)﹣24.多项式4x3yz2﹣8x2yz4+12x4y2z3的公因式是()A.4x3yz2B.﹣8x2yz4C.12x4y2z3D.4x2yz25.若2x+y﹣3=0,则52x•5y=()A.15B.75C.125D.1506.如果(2x﹣m)与(x+6)的乘积中不含x的一次项,那么m的值为()A.12B.﹣12C.0D.67.如果4a2﹣kab+b2是一个完全平方式,那么k的值是()A.4B.﹣4C.±2D.±48.从边长为a的大正方形纸板正中央挖去一个边长为b的小正方形后,将其裁成四个大小和形状完全相同的四边形(如图1),然后拼成一个平行四边形(如图2),那么通过计算两个图形阴影部分的面积,可以验证成立的等式为()A.a2﹣b2=(a﹣b)2B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.a2﹣b2=(a+b)(a﹣b)9.如图所示,两个正方形的边长分别为a和b,如果a+b=12,ab=28,那么阴影部分的面积是()A.40B.44C.32D.5010.已知a,b,c是△ABC的三边长,且a2+2ab=c2+2bc,则△ABC是()A.直角三角形B.等边三角形C.等腰三角形D.等腰直角三角形二、填空题(每小题3分,满分18分)11.已知x2﹣2x﹣1=0,代数式(x﹣1)2+2024=.12.若m﹣n=﹣2,且m+n=5,则m2﹣n2=.13.若ab=3,a+b=2,则ab2+a2b﹣3ab=.14.3m=4,3n=5,则33m﹣2n的值为.14.如果(x﹣1)x+4=1成立,那么满足它的所有整数x的值是.16.如图,点C是线段AB上的一点,以AC、BC为边向两边作正方形,设AB =9,两正方形的面积和S1+S2=45,则图中阴影部分面积为.第十四章整式的乘除与因式分解单元测试人教版2024—2025学年八年级上册考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17.分解因式:(1)3a2﹣6ab+3b2;(2)25(m+n)2﹣(m﹣n)2;18.已知:a﹣b=3,ab=1,试求:(1)a2+3ab+b2的值;(2)(a+b)2的值.19.若关于x的代数式(x2+mx+n)(2x﹣1)的化简结果中不含x2的项和x的项,求m+n的值.20.在计算(2x+a)(x+b)时,甲错把a看成了﹣a,得到结果是:2x2﹣10x+12;乙由于漏抄了第一个多项式中x的系数,得到结果:x2+x﹣12.(1)求出a,b的值;(2)在(1)的条件下,计算(2x+a)(x+b)的结果.21.已知5m=4,5n=6,25p=9.(1)求5m+n的值;(2)求5m﹣2p的值;(3)写出m,n,p之间的数量关系.22.将边长为x的小正方形ABCD和边长为y的大正方形CEFG按如图所示放置,其中点D在边CE上.(1)若x+y=10,y2﹣x2=20,求y﹣x的值;(2)连接AG,EG,若x+y=8,xy=14,求阴影部分的面积.23.对于任意实数m,n,我们规定:F(m,n)=m2+n2,H(m,n)=﹣mn,例如:F(1,2)=12+22=5,H(3,4)=﹣3×4=﹣12.(1)填空:①F(﹣1,3)=;②若H(2,x)=﹣6,则x=;③若F(a,b)=H(a,2b),则a+b0.(填“>”,“<”或“=”)(2)若x+2y=5,且F(2x+3y,2x﹣3y)+H(7,x2+2y2)=13,求xy与(x ﹣2y)2的值;(3)若正整数x,y满足F(x,y)=k2+17,H(x,y)=﹣3k+4,求k的值.24.我们定义:如果两个多项式M与N的和为常数,则称M与N互为“对消多项式”,这个常数称为它们的“对消值”.如MF=2x2﹣x+6与N=﹣2x2+x﹣1互为“对消多项式”,它们的“对消值”为5.(1)下列各组多项式互为“对消多项式”的是(填序号):①3x2+2x与3x2+2;②x﹣6与﹣x+2;③﹣5x2y3+2xy与5x2y3﹣2xy﹣1.(2)多项式A=(x﹣a)2与多项式B=﹣bx2﹣2x+b(a,b为常数)互为“对消多项式”,求它们的“对消值”;(3)关于x的多项式C=mx2+6x+4与D=﹣m(x+1)(x+n)互为“对消多项式”,“对消值”为t.若a﹣b=m,b﹣c=mn,求代数式a2+b2+c2﹣ab﹣bc﹣ac+2t的最小值.25.【阅读理解】对一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式.例如,由图1可以得到完全平方公式:(x+y)2=x2+2xy+y2,这样的方法称为“面积法”.【解决问题】(1)如图2,利用上述“面积法”,可以得到数学等式:(a+b+c)2=.(2)利用(1)中所得到的等式,解决下面的问题:①已知a+b+c=8,ab+bc+ac=17.求a2+b2+c2的值.②若m、n满足如下条件:(n﹣2021)2+(2023﹣2n)2+(n+1)2=m2﹣2m﹣20,(n﹣2021)(2023﹣2n)+(n﹣2021)(n+1)+(2023﹣2n)(n+1)=2+m,求m的值.【应用迁移】如图3,△ABC中,AB=AC,点O为底边BC上任意一点,OM ⊥AB,ON⊥AC,CH⊥AB,垂足分别为M,N,H,连接AO.若OM=1.2,ON=2.5,利用上述“面积法”,求CH的长.。
《第十四章 整式的乘除与因式分解》单元测试卷(一)答题时间:100分钟 满分:120分一、选择题 (每题3分,共30分。
每题只有一个正确答案,请将正确答案的代号填在下面的表格中)1.下列判断中正确的是( ).A .与不是同类项B .不是整式C .单项式的系数是D .是二次三项式 2.下列计算正确的是( ).A .B .C .D . 3.已知,则m 的值为( ). A .8 B .16 C .32D .64 4.下列因式分解中,结果正确的是( ).A .B .C .D . 5.计算的结果是( ).A .B .C .0D .6.把多项式提取公因式后,余下的部分是( ). A . B . C . D . 7.两个三次多项式相加,结果一定是( )A 、三次多项式B 、六次多项式C 、零次多项式D 、不超过三次的多项式bc a 232bca -52n m 23y x -1-2253xy y x +-105532a a a =+632a a a =⋅532)(a a =8210a a a =÷()()2222816-=+-x m x x ()23222824m n n n m n -=-()()2422x x x -=+-222111144x x x x x ⎛⎫-+=-+ ⎪⎝⎭2299(33)(33)a b a b a b -=+-11(13)(31)9()()33x x x x +-+-+2182-x 2182x -28x ()()()111---+x x x ()1-x ()1+x ()1+-x x ()2+-x8.若a -b =8,a 2+b 2=82,则3ab 的值为 ( )A 、9B 、-9C 、27D 、-279.对于任何整数..,多项式的值都能( ). A .被整除 B .被整除 C .被20整除 D .被10整除和被整除10.(x 2+px+8)(x 2-3x+q)乘积中不含x 2项和x 3项,则p,q 的值 ( )A.p=0,q=0B.p=3,q=1C.p=–3,–9D.p=–3,q=1二、填空题(每题3分,共30)11.单项式与是同类项,则的值为 .12.在括号中填入适当的数或式子:=. 13.与和为的多项式是___________________.14.(1),(2).15.用完全平方公式填空:=. 16.人们以分贝为单位来表示声音的强弱,通常说话的声音是50分贝,它表示声音的强度是;摩托车发出的声音是110分贝,它表示声音的强度是,那么摩托车的声音强度是说话声音强度的_______倍。
人教版数学八年级上第十四章《整式的乘法与因式分解》单元检测卷(含答案)一、选择题(每题3分,共30分) 1.下列运算正确的是( )A .a 3+a 3=a 6B .2(a +1)=2a +1C .(ab )2=a 2b 2D .a 6÷a 3=a 22.(1+x 2)(x 2-1)的计算结果是( )A .x 2-1B .x 2+1C .x 4-1D .1-x 43.任意给定一个非零数m ,按下列程序计算,最后输出的结果是( )A .mB .m -2C .m +1D .m -14.下列计算正确的是( )A .-3x 2y ·5x 2y =2x 2yB .-2x 2y 3·2x 3y =-2x 5y 4C .35x 3y 2÷5x 2y =7xyD .(-2x -y )(2x +y )=4x 2-y 2 5.下列式子从左到右变形是因式分解的是( )A .a 2+4a -21=a (a +4)-21B .a 2+4a -21=(a -3)(a +7)C .(a -3)(a +7)=a 2+4a -21D .a 2+4a -21=(a +2)2-25 6.下列因式分解正确的是( )A .2x 2-2=2(x +1)(x -1)B .x 2+2x -1=(x -1)2C .x 2+1=(x +1)2D .x 2-x +2=x (x -1)+2 7.若(a +b )2=(a -b )2+A ,则A 为( )A .2abB .-2abC .4abD .-4ab8.计算(x 2-3x +n )(x 2+mx +8)的结果中不含x 2和x 3的项,则m ,n 的值为( )A .m =3,n =1B .m =0,n =0C .m =-3,n =-9D .m =-3,n =89.若a ,b ,c 是三角形的三边长,则代数式(a -b )2-c 2的值( )A .大于0B .小于0C .等于0D .不能确定10.7张如图1的长为a ,宽为b (a >b )的小长方形纸片,按图2的方式不重叠地放在长方形ABCD 内,未被覆盖的部分(两个长方形)用阴影表示,设左上角与右下角的阴影部分的面积的差为S ,当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,则a ,b 满足( )A .a =25b B .a =3b C .a =27bD .a =4b二、填空题(每题3分,共18分)11.计算:(m+1)2-m2=____.12.计算:|-3|+(π+1)0-4=____.13.已知x=y+4,则代数式x2-2xy+y2-25的值为____.14.若a=2,a-2b=3,则2a2-4ab的值为____.15.若6a=5,6b=8,则36a-b=____.16.利用1个a ×a 的正方形,1个b ×b 的正方形和2个a ×b 的长方形可拼成一个正方形(如图所示),从而可得到因式分解的公式____.三、解答题(共52分) 17.(16分)计算:(1)5x 2y ÷(-31xy )×(2xy 2)2;(2)9(a -1)2-(3a +2)(3a -2);(3)[(a -2b )2+(a -2b )(2b +a )-2a (2a -b )]÷2a ;(4)[a (a 2b 2-ab )-b (-a 3b -a 2)]÷a 2b .18.(9分)把下列各式因式分解:(1)x (m -x )(m -y )-m (x -m )(y -m );(2)ax 2+8ax +16a ;(3)x 4-81x 2y 2.19.(7分)已知xy =1,求代数式-31x (xy 2+y +x 3y 4)的值.20.(8分)如图,某市有一块长为(3a +b )米,宽为(2a +b )米的长方形地块,规划部门计划将阴影部分进行绿化,中间修建一座雕像,求绿化的面积是多少平方米?并求出当a =3,b =2时的绿化面积.21.(12分)观察下列等式: 12×231=132×21, 13×341=143×31, 23×352=253×32, 34×473=374×43, 62×286=682×26, …以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”.(1)根据上述各式反映的规律填空,使式子成为“数字对称等式”: ①52×=×25;②×396=693×.(2)设这类等式左边两位数的十位数字为a ,个位数字为b ,且2≤a +b ≤9,写出表示“数字对称等式”一般规律的式子(含a ,b ),并证明.参考答案1.C2.C3.C4.C5.B6.A7.C8.A9.B10.B11.2m +112.213.-914.122515.6416.a2+2ab+b2=(a+b)217.(1)原式=-60x3y4.(2)原式=-18a+13.(3)原式=-a-b.(4)原式=2ab.18.(1)原式=-(m-x)2(m-y). (2)原式=a(x+4)2. (3)原式=x2(x+9y)(x-9y)19.原式=-1.20.63平方米.21.(1)①275572②6336(2)“数字对称等式”一般规律的式子为:(10a+b)×[100b+10(a+b)+a]=[100a+10(a+b)+b]×(10b+a).人教版八年级上册第十四章整式的乘法与因式分解单元测试(3)一、选择题(共14 小题,每小题 3 分,共42 分)1.若,,则等于()A. B. C. D.2.把多项式因式分解的结果是()A. B.C. D.3.以下二次三项式在实数范围内一定不能分解因式的是()A. B.C. D.4.代数式与的公因式是()A. B. C. D.5.计算的结果是()A. B. C. D.6.若为整数,则一定能被()整除.A. B. C. D.7.下列多项式中,能运用公式法进行因式分解的是()A. B.C. D.8.下列运算中,正确的是()A. B.C. D.9.分解因式的正确结果是()A. B.C. D.10.如果的展开式中只含有这一项,那么的值为()A. B. C. D.不能确定11.设,如果,,,那么、、的大小关系为()A. B. C. D.不能确定12.若,那么的值是()A. B. C. D.13.下多项式中,在实数范围内能分解因式的是()A. B.C. D..14.若,且,则A. B. C. D.卷II(非选择题)二、填空题(共6 小题,每小题 3 分,共18 分)15.已知,,则________.16.已知,,则①________ ②________.17.若多项式是完全平方展开式,则________.18.要使多项式不含关于的二次项,则与的关系是________.19.如图,是一个长为,宽为的长方形,沿图中虚线用剪刀将其均分成四个完全相同的小长方形,然后按图的形状拼图.图中的图形阴影部分的边长为________;(用含、的代数式表示)请你用两种不同的方法分别求图中阴影部分的面积;方法一:________;方法二:________.观察图,请写出代数式、、之间的关系式:________.20.杨辉三角,又称贾宪三角,是二项式系数在三角形中的一种几何排列,如图,观察下面的杨辉三角:按照前面的规律,则________.三、解答题(共8 小题,共90 分)21.(11分) 计算:;.22.(11分) 因式分解:(1)(2)(3)23.(11分)关于的多项式分解因式后有一个因式是,试求的值.24.(11分)一个单项式加上多项式后等于一个整式的平方,试求这样的单项式并写出相应的等式(请写个)25.(11分)已知(、为整数)是及的公因式,求、的值.26.(11分)已知展开后的结果中不含、项.求的值.27.(11分)老师给了一个多项式,甲、乙、丙、丁四位同学分别对这个多项式进行描述,(甲):这是一个三次四项式;(乙):常数项系数为;(丙):这个多项式的前三项有公因式;(丁):这个多项式分解因式时要用到公式法;若这四个同学的描述都正确,请你构造两个同时满足这些描述的多项式,并将它因式分解.28.(13分)如图所示,某规划部门计划将一块长为米,宽为米的长方形地块进行改建,其中阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当,时的绿化面积.答案1.C2.D3.D4.A5.B6.A7.C8.D10.A11.A12.C13.D14.D15.16.17.18.相等19.20.21.解:;.22.解:(1);(2);(3).23.解:,.24.解:①加,则;②加,则;③加,则.25.解:∵二次三项式既是的一个因式,也是的一个因式,∴也必定是与差的一个因式,而,∴,∴,.26.解:因为展开后的结果中不含、项所以所以.27.解:28.解:(平方米),当,时,(平方米).人教版八年级上册第十四章整式乘法与因式分解单元检测(含答案)一、单选题1.计算结果正确的是()A.B.C.D.2.计算12x a a a a ⋅⋅=,则x 等于( ) A.10B.9C.8D.43.下列计算正确的是( ) A .326a a a •=B .()239a a = C .5510x x x += D .78y y y •=4.若m ,n 是正整数,且2232m n ⋅=,()m n =264,则mn m n ++的值为( ) A.10B.11C.12D.135.20192019532135⎛⎫⎛⎫-⨯-= ⎪ ⎪⎝⎭⎝⎭( )A .1-B .1C .0D .20036.如果(x-2)(x+3)=x 2+px+q ,那么p 、q 的值为( ) A .p=5,q=6B .p=1,q=-6C .p=1,q=6D .p=5,q=-6.7.( 22)221xy x y xy ÷=-+,括号内应填的多项式为( ) A .322324x y x y -B .12x y - C .3223242x y x y xy -+D .112x y -+ 8.下列多项式乘法中可以用平方差公式计算的是( ) A .(﹣a +b )(a ﹣b ) B .(x +2)(2+x )C .(3x +y )(y ﹣3x) D .(x ﹣2)(x +1) 9.用四个完全一样的长方形(长、宽分别设为x 、y )拼成如图所示的大正方形,已知大正方形的面积为36,中间空缺的小正方形的面积为4,则下列关系式中不正确的是( )A .x+y=6B .x ﹣y=2C .x•y=8D .x 2+y 2=3610.下列等式从左往右因式分解正确的是( ) A .()ab ac b a b c d ++=++ B .()()23212x x x x -+=--C .()222121m n m mn n +-=++-D .()()2414141x x x -=+-11.下列多项式能分解因式的是( ) A .22xy +B .22x y xy -C .22x xy y ++D .244x x +-12.在多项式①-m 4-n 4,②a 2+b 2,③-16x 2+y 2,④9(a -b )2-4,⑤-4a 2+b 2中,能用平方差公式分解因式的有() A.1个 B.2个 C.3个 D.4个二、填空题13.分解因式:a 2-5a -14=________.14.若7m n +=,11mn =,则22m mn n -+的值是______. 15.()2320x y -++=,则x y 为 .16.如图,边长为a 的正方形中有一个边长为b 的小正方形,若将图1的阴影部分拼成一个长方形,如图2,比较图1和图2的阴影部分的面积,你能得到的公式是______________.三、解答题 17.计算:(123(2)853|--(2)2342()()n n ⋅(3)23322(3)(4)(6)a b ab ⋅÷18.(1)计算:()1132π-⎛⎫-+ ⎪⎝⎭(2)化简:()()()32223x x y x y x yxy -++÷19.计算:(1)2(2)(1)(1)a b a a +--+(2)()43322223694(3)a b a b a bab -+÷-20.动手操作:如图①是一个长为2a ,宽为2b 的长方形,沿图中的虚线剪开分成四个大小相等的长方形,然后按照图②所示拼成一个正方形. 提出问题:(1)观察图②,请用两种不同的方法表示阴影部分的面积:_____________,_____________;(2)请写出三个代数式(a +b )2,(a -b )2,ab 之间的一个等量关系:___________________________;问题解决:根据上述(2)中得到的等量关系,解决下列问题:已知x +y =8,xy =7,求x -y 的值.21.把下列各式分解因式:(1)481a - (2)223242x y xy y -+22.乘法公式的探究及应用.小题1:如图1,可以求出阴影部分的面积是_______ (写成两数平方差的形式);小题2:如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是_______,长是______,面积是_________ (写成多项式乘法的形式).小题3:比较图 1,图2的阴影部分面积,可以得到乘法公式________ (用式子表达)答案 1.A 2.A 3.D 4.B 5.B 6.B 7.C 8.C 9.D 10.B 11.B 12.C 13.(a-7)(a+2) 14.16. 15.-816.a 2-b 2=(a+b )(a-b ).17.(1) 7-14n ;(3)1244a b18.(1)3;(2)25x ;19.(1)4ab+42b +1;(2)2449a b a -+20.(1) (a -b )2;(a +b )2-4ab;(2) (a +b )2-4ab =(a -b )2,问题解决: x -y =±6 21.(1)(a 2+9)(a+3)(a-3); (2)2y (x-y )2.22.小题1: 22a b -;小题2: -a b ,+a b ,()()a b a b +-;小题3: 22()()a b a b a b +-=-人教版八年级数学上册第14章整式的乘法与因式分解单元测试题 一、选择题1.下列各式由左边到右边的变形为因式分解的是( ) A.a 2-b 2+1=(a+b)(a-b)+1 B.m 2-4m+4=(m-2)2C.(x+3)(x-3)=x 2-9D.t 2+3t-16=(t+4)(t-4)+3t 2.分解因式:x 3-x,结果为( )(第10题图)A.x(x 2-1)B.x(x-1)2C.x(x+1)2D.x(x+1)(x-1)3.下列因式分解正确的是( )A.16m 2-4=(4m+2)(4m-2)B.m 4-1=(m 2+1)(m 2-1)C.m 2-6m+9=(m-3)2D.1-a 2=(a+1)(a-1) 4.下列多项式能因式分解的是( )A.m 2+n B .m 2-m+1 C .m 2-2m+1 D .m 2-n 5.计算(2x 3y )2的结果是( )A .4x 6y 2B .8x 6y 2C .4x 5y 2D .8x 5y 2 6.已知a+b=3,ab=2,计算:a 2b+ab 2等于( )A .5B .6C .9D .1 7、下列运算中结果正确的是( )A 、633·x x x =;B 、422523x x x =+;C 、532)(x x =;D 、222()x y x y +=+.8、ab 减去22b ab a +-等于 ( )。
第十四章《整式的乘法与因式分解》单元检测题题号 一 二三 总分21 22 23 24 25 26 27 28 分数一、选择题:(每小题3分,共30分)1.若3x =15,3y =5,则3x -y 等于( ).A .5B .3C .15D .10 2.若(x -3)(x+4)=x 2+px+q,那么p 、q 的值是( )A .p=1,q=-12B .p=-1,q=12C .p=7,q=12D .p=7,q=-12 3.下列各式从左到右的变形,正确的是( ).A.-x -y=-(x -y)B.-a+b=-(a+b)C.22)()(y x x y -=-D.33)()(a b b a -=- 4.下列多项式能因式分解的是( )A.m 2+n B .m 2-m+1 C .m 2-2m+1 D .m 2-n 5.把多项式x 2+ax+b 分解因式,得(x+1)(x ﹣3)则a ,b 的值分别是( ) A .a=2,b=3B .a=﹣2,b=﹣3C .a=﹣2,b=3D .a=2,b=﹣36.如果x 2+10x+ =(x+5)2,横线处填( )A .5B .10C .25D .±107.下列从左边到右边的变形,因式分解正确的是( ) A .2a 2﹣2=2(a+1)(a ﹣1)B .(a+3)(a ﹣3)=a 2﹣9C.﹣ab 2+2ab ﹣3b=﹣b(ab ﹣2a ﹣3) D .x 2﹣2x ﹣3=x(x ﹣2)﹣3 8.若m 2+m-1=0,则m 3+2m 2+2016的值为( ) A .2020B .2017C .2016D .20159.在边长为a 的正方形中挖去一个边长为b 的小正方形(a>b)(如图甲),把余下的部分拼成一个长方形(如图乙),根据两个图形中阴影部分的面积相等,可以验证( )A.(a+b)2=a2+2ab+b2B.(a-b)2=a2-2ab+b2C.a2-b2=(a+b)(a-b) D.(a+2b)(a-b)=a2+ab-2b210.若m=2200,n=2550,则m,n的大小关系是( )A.m>n B.m<n C.m=n D.无法确定二、填空题:(每小题3分,共30分)11.(1)计算:(2a)3·(-3a2)=____________;(2)若a m=2,a n=3,则a m+n=__________,a m-n=__________.12.已知x+y=5,x-y=1,则式子x2-y2的值是________.13.若(a2-1)0=1,则a的取值范围是________.14.计算:(16x3-8x2+4x)÷(-2x)= .15.已知x2+y2=10,xy=3,则x+y=16.已知长方形的面积为4a2-4b2,如果它的一边长为a+b,则它的周长为 .17.若二次三项式x2+(2m-1)x+4是一个完全平方式,则m= .18.已知2a2+2b2=10,a+b=3,则ab的值为________.19.若3m=2,3n=5,则32m+3n-1的值为________.20.请看杨辉三角①,并观察下列等式②:11 112 1133 11464 1…①(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4②根据前面各式的规律,则(a+b)6=______________________.三、解答题:(共60分)21.计算:(1)x·x7; (2)a2·a4+(a3)2;(3)(-2ab3c2)4; (4)(-a3b)2÷(-3a5b2).22.化简:(1)(a+b-c)(a+b+c);(2)(2a+3b)(2a-3b)-(a-3b)2.23.若关于x的多项式(x2+x-n)(mx-3)的展开式中不含x2和常数项,求m,n的值.24.分解因式:(1)4x3y+xy3-4x2y2; (2)y2-4-2xy+x2.25.观察下列关于自然数的等式:32-4×12=5; ①52-4×22=9; ②72-4×32=13; ③……根据上述规律解决下列问题:(1)完成第四个等式:92-4×________2=________;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.26.(10分)小红家有一块L形菜地,要把L形菜地按如图所示的那样分成面积相等的两个梯形种上不同的蔬菜.已知这两个梯形的上底都是a米,下底都是b 米,高都是(b-a)米.(1)请你算一算,小红家的菜地面积共有多少平方米;(2)当a=10,b=30时,菜地面积是多少?27.(10分)(1)填空:(a-b)(a+b)=____________________;(a-b)(a2+ab+b2)=____________________;(a-b)(a3+a2b+ab2+b3)=____________________.(2)猜想:(a-b)(a n-1+a n-2b+…+ab n-2+b n-1)=____________________(其中n为正整数,且n≥2).(3)利用(2)猜想的结论计算:29-28+27-…+23+22+2.参考答案一、选择题:(每小题3分,共30分)二、填空题:(每小题3分,共24分)11.(1)-24a5(2)6;2 312.513.a≠±114.答案为:-8x2+4x-215.答案为:±416.答案为:10a-6b17.答案为:2.5或-1.5.18.219.500320.a 6+6a 5b +15a 4b 2+20a 3b 3+15a 2b 4+6ab 5+b 6三、解答题:21.解:(1)原式=x 8.(2分)(2)原式=a 6+a 6=2a 6.(4分) (3)原式=16a 4b 12c 8.(6分)(4)原式=a 6b 2÷(-3a 5b 2)=-13a .(8分)22.解:(1)原式=(a +b )2-c 2=a 2+2ab +b 2-c 2.(4分)(2)原式=4a 2-9b 2-(a 2-6ab +9b 2)=3a 2+6ab -18b 2.(8分)23.解:原式=mx 3+(m -3)x 2-(3+mn )x +3n .(3分)∵展开式中不含x 2和常数项,得到m -3=0,3n =0,(6分)解得m =3,n =0.(8分) 24.解:(1)原式=xy (2x -y )2.(4分)(2)原式=(x -y )2-4=(x -y +2)(x -y -2).(8分) 25.解:(1)4 17(3分)(2)第n 个等式为(2n +1)2-4n 2=4n +1.(5分)左边=(2n +1)2-4n 2=4n 2+4n +1-4n 2=4n +1.右边=4n +1.左边=右边,∴(2n +1)2-4n 2=4n +1.(10分) 26. 解:(1)小红家的菜地面积共有:2×12(a +b)(b -a)=b 2-a 2 (2)当a =10,b=30时,原式=302-102=900-100=800(平方米)27. 解:(1)a 2-b 2,a 3-b 3,a 4-b 4 (2)a n -b n (3)29-28+27-…+23-22+2=13[2-(-1)][29+28×(-1)+27×(-1)2+…+21×(-1)8+(-1)9+1]=13[2-(-1)][29+28×(-1)+27×(-1)2+…+21×(-1)8+(-1)9]+1=13(210-1)+1=342。
章末综合检测(时间:90分钟满分:120分)一、选择题(每小题3分,共30分)1.下列运算正确的是( )A.(-4x 3)2=16x 6B.a 6÷a 2=a 3C.2x +6x =8x 2D.(x +3)2=x 2+92.2 0152-2 015一定能被( )整除A.2 010B.2 012C.2 013D.2 0143.如图14-1,阴影部分的面积是( )图14-1 A.xy 27 B.xy 29C.4xyD.6xy4.(山东滨州中考)把多项式x 2+ax +b 分解因式,得(x +1)(x -3),则a ,b 的值分别是()A.a =2,b =3B.a =-2,b =-3C.a =-2,b =3D.a =2,b =-35.下面是某同学在一次测验中的计算摘录,其中正确的有( )(1)3x 3·(-2x 2)=-6x 5;(2)4a 3b ÷(-2a 2b )=-2a ;(3)(a 3)2=a 5;(4)(-a )3÷(-a )=-a 2.A.1个B.2个C.3个D.4个6.式子(-5a 2+4b 2)( )=25a 4-16b 4中括号内应填( )A.5a 2+4b 2B.5a 2-4b 2C.-5a 2+4b 2D.-5a 2-4b 27.下列等式成立的是( )A.(-a-b )2+(a-b )2=-4abB.(-a-b )2+(a-b )2=a 2+b 2C.(-a-b )(a-b )=(a-b )2D.(-a-b )(a-b )=b 2-a 28.若x =1,y =12,则x 2+4xy +4y 2的值是( )A.2B.4C.32D.129.下列因式分解,正确的是()A.x 2y 2-z 2=x 2(y+z )(y-z )B.-x 2y +4xy -5y =-y (x 2+4x +5)C.(x+2)2-9=(x+5)(x-1)D.9-12a+4a2=-(3-2a)210.已知a,b,c分别是△ABC的三边长,且满足2a4+2b4+c4=2a2c2+2b2c2,则△ABC是()A.等腰三角形B.等腰直角三角形C.直角三角形D.等腰三角形或直角三角形二、填空题(每小题4分,共32分)11.将图14-2(1)中阴影部分的小长方形变换到图14-2(2)的位置,你能根据两个图形的面积关系得到的数学公式是.图14-212.若m2-n2=6,且m-n=3,则m+n=_______.13.如果4x2+ax+9是一个完全平方式,那么a的值为______.14.(四川内江中考)分解因式:ax2-ay2=______.15.已知a+b=5,ab=3,则a2+b2=______.16.(江苏南京中考)分解因式2a(b+c)-3(b+c)的结果是______.17.在我们所学的课本中,多项式与多项式相乘可以用几何图形的面积来表示.例如,(2a+b)(a+b)=2a2+3ab+b2就可以用图14-3(1)来表示.请你根据此方法写出图14-3(2)中图形的面积所表示的代数恒等式:.图14-318.若一个正整数能表示为两个正整数的平方差,则称这个正整数为“智慧数”(如3=22-12,16=52-32,则3和16是智慧数).已知按从小到大的顺序构成如下数列:3,5,7,8,9,11,12,13,15,16,17,19,20,21,23,24,25,…则第2 013个“智慧数”是______.三、解答题(共58分)19.(8分)如图14-4,郑某把一块边长为a m的正方形的土地租给李某种植,他对李某说:“我把你这块地的一边减少5 m,另一边增加5 m,继续租给你,你也没有吃亏,你看如何”.李某一听,觉得自己好像没有吃亏,就答应了.同学们,你们觉得李某有没有吃亏?请说明理由.图14-420.(8分)计算:(1)992-102×98; (2)[x(x2y2-xy)-y(x2-x3y)]÷x2y.21.(10分)(1)(山东济宁中考)先化简,再求值:a(a-2b)+(a+b)2,其中a=-1,b=2; (2)若x2-5x=3,求(x-1)(2x-1)-(x+1)2+1的值.22.(10分)已知化简(x2+px+8)(x2-3x+q)的结果中不含x2项和x3项.(1)求p,q的值.(2)x2-2px+3q是否是完全平方式?如果是,请将其分解因式;如果不是,请说明理由. 23.(10分)下面是某同学对多项式(x2-4x+2)(x2-4x+6)+4因式分解的过程.解:设x2-4x=y,则原式=(y+2)(y+6)+4(第一步)=y2+8y+16(第二步)=(y+4)2(第三步)=(x2-4x+4)2(第四步)解答下列问题:(1)该同学第二步到第三步运用了因式分解的方法是()A.提取公因式B.平方差公式C.两数和的完全平方公式D.两数差的完全平方公式(2)该同学因式分解的结果是否彻底?(填“彻底”或“不彻底”).若不彻底,请直接写出因式分解的最后结果.(3)请你模仿以上方法尝试对多项式(x2-2x)(x2-2x+2)+1进行因式分解.24.(12分)乘法公式的探究及应用.探究问题图14-5(1)是一张长方形纸条,将其剪成长短两条后刚好能拼成图14-5(2).(1)图14-5(1)中长方形纸条的面积可表示为(写成多项式乘法的形式).(2)拼成的图14-5(2)阴影部分的面积可表示为(写成两数平方差的形式).(1) (2)图14-5(3)比较两图阴影部分的面积,可以得到乘法公式:.结论运用(4)运用所得的公式计算:()()y x -+22y x =________;⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-21322132m m =________. 拓展运用:(5)计算:⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛⨯⨯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛22222201311201211411311211--···---答案一、1. A 解析:选项A 中积的乘方等于每个因式分别乘方,再把所得的幂相乘,故A 正确;选项B 是同底数幂的除法,结果应为a 4,故B 错误;选项C 是合并同类项,结果应为8x ,故C 错误;选项D 是两数和的平方,结果中遗漏了乘积项6x ,故D 错误.故选A.2. D 解析:2 0152-2 015=2 015×(2 015-1)=2 015×2 014,所以一定能被2 014整除.故选D.3. D 解析:S 阴影=3x ·4y -3y (3x-x )=12xy -6xy =6xy .故选D.4. B 解析:∵(x+1)(x-3)=x2-3x+x-3=x2-2x-3,∴x2+ax+b=x2-2x-3,∴a=-2,b=-3.故选B.5. B 解析:(1)是单项式乘单项式,3x3·(-2x2)=-6x5,正确;(2)是单项式除以单项式,4a3b÷(-2a2b)=-2a,正确;(3)是幂的乘方,(a3)2=a6,错误;(4)是同底数的幂相除,(-a)3÷(-a)=(-a)2=a2,错误.故选B.6. D 解析:∵(-5a2+4b2)(-5a2-4b2)=25a4-16b4,∴括号内应填-5a2-4b2.故选D.7. D 解析:∵(-a-b)2+(a-b)2=(a+b)2+(a-b)2=(a2+2ab+b2)+(a2-2ab+b2)=2a2+2b2,∴选项A与选项B错误;∵(-a-b)(a-b)=-(a+b)(a-b)=-(a2-b2)=b2-a2,∴选项C错误,选项D正确.故选D.8. B 解析:x2+4xy+4y2=(x+2y)2=211+22⎛⎫⨯⎪⎝⎭=4.故选B.9. C 解析:A.用平方差公式法,应为x2y2-z2=(xy+z)·(xy-z),故本选项错误;B.用提公因式法,应为-x2y+ 4xy-5y=- y(x2- 4x+5),故本选项错误;C.用平方差公式法,(x+2)2-9=(x+2+3)(x+2-3)=(x+5)(x-1),故本选项正确;D.用完全平方公式法,应为9-12a+4a2=(3-2a)2,故本选项错误.故选C.10. B 解析:∵2a4+2b4+c4=2a2c2+2b2c2,∴4a4-4a2c2+c4+4b4-4b2c2+c4=0,∴(2a2-c2)2+(2b2-c2)2=0,∴2a2-c2=0,2b2-c2=0,∴c=2a,c=2b,∴a=b,且a2+b2=c2,∴△ABC为等腰直角三角形.故选B.二、11. (a+b)(a-b)=a2-b212. 2 解析:∵m2-n2=(m+n)(m-n)=3(m+n)=6,∴m+n=2.13. ±12 解析:∵(2x±3)2=4x2±12x+9=4x2+a x+9,∴a=±12.14. a(x-y)(x+y)解析:原式=a(x2-y2)=a(x-y)(x+y).15. 19 解析:a2+b2=(a+b)2-2ab=52-2×3=19.16. (b+c)(2a-3)解析:2a(b+c)-3(b+c)=(b+c)(2a-3).17. (a+2b)(2a+b)=2a2+5ab+2b2 解析:根据图形列式(a+2b)(2a+b)=2a2+5ab+2b2.18. 2 687 解析:观察数的变化规律,可知全部“智慧数”从小到大可按每三个数分一组,从第2组开始每组的第一个数都是4的倍数,归纳可得,第n组的第一个数为4n(n≥2).因为2 013÷3=671,所以第2 013个“智慧数”是第671组中的第3个数,即为4×671+3=2 687.三、19. 解:李某吃亏了.理由如下:∵(a+5)(a-5)=a2-25<a2,∴李某少种了25 m2地,李某吃亏了.20.解:(1)原式=(100-1)2-(100+2)×(100-2)=(1002-200+1)-(1002-4)=-200+5=-195.(2)原式=[x2y(xy-1)-x2y(1-xy)]÷x2y=2x2y(xy-1)÷x2y=2(xy-1)=2xy-2.21.解:(1)原式=a2-2ab+a2+2ab+b2=2a2+b2.当a =-1,b =2+2=4.(2)原式=2x 2-3x +1-(x 2+2x +1)+1=x 2-5x +1=3+1=4.22. 解:(1)原式=x 4+(-3+p )x 3+(q -3p +8)x 2+(pq -24)x +8q .∵结果中不含x 2项和x 3项,∴ 30,380,p q p -+=⎧⎨-+=⎩ 解得3,1.p q =⎧⎨=⎩ (2)x 2-2px +3q 不是完全平方式.理由如下:把3,1.p q =⎧⎨=⎩代入x 2-2px +3q ,得x 2-2p x +3q =x 2-6x +3. ∵x 2-6x +9是完全平方式,∴x 2-6x +3不是完全平方式.23.解:(1)∵y 2+8y +16=(y +4)2,∴运用了两数和的完全平方公式.故选C.答案:C(2)∵(x 2-4x +4)2=[(x -2)2]2=(x -2)4,∴因式分解不彻底. 答案:不彻底 (x -2)4(3)设x 2-2x =y ,则原式=y (y +2)+1=y 2+2y +1=(y +1)2=(x 2-2x +1)2=[(x -1)2]2=(x -1)4.24. 解:(1)图14-5(1)是一张长方形纸条,将其剪成长短两条后刚好能拼成图14-5(2),长方形的长为a+b ,宽为a-b ,所以图14-5(1)中长方形纸条的面积可表示为(a+b )·(a-b ).(2)图14-5(2)中阴影部分的面积为大正方形的面积减去小正方形的面积,那么图14-5(2)中阴影部分的面积为a 2-b 2.(3)比较两图的阴影部分面积,可以得到的乘法公式为(a+b )(a-b )=a 2-b 2.(4)(2x +y )(2x -y )=(2x )2-y 2=4x 2-y 2,222221212121+3232323221=324114.9449m m m m m m m ⎛⎫⎛⎫⎛⎫⎛⎫---=- ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎡⎤⎛⎫⎛⎫--⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦⎛⎫=--=- ⎪⎝⎭ 111111-1+1-1+1223341111+11+4201220121111201320131324352011=22334420122013201220141007=.20122013201320153()原式⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⨯⨯⨯⨯-⨯ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫⨯⨯-⨯⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫-⨯+ ⎪ ⎪⎝⎭⎝⎭⨯⨯⨯⨯⨯⨯⨯⨯=⨯L L。
第十四章达标检测卷(120分,90分钟)题 号 一 二 三 总 分得 分一、选择题(每题3分,共30分) 1.计算(-a 3)2的结果是( ) A .a 5 B .-a 5 C .a 6 D .-a 6 2.下列运算正确的是( )A .x 2+x 2=x 4B .(a -b)2=a 2-b 2C .(-a 2)3=-a 6D .3a 2·2a 3=6a 6 3.下列从左边到右边的变形,是因式分解的是( ) A .(3-x)(3+x)=9-x 2 B .(y +1)(y -3)=-(3-y)(y +1) C .4yz -2y 2z +z =2y(2z -yz)+z D .-8x 2+8x -2=-2(2x -1)2 4.多项式a(x 2-2x +1)与多项式(x -1)(x +1)的公因式是( ) A .x -1 B .x +1 C .x 2+1 D .x 2 5.下列计算正确的是( )A .-6x 2y 3÷2xy 3=3xB .(-xy 2)2÷(-x 2y)=-y 3C .(-2x 2y 2)3÷(-xy)3=-2x 3y 3D .-(-a 3b 2)÷(-a 2b 2)=a 4 6.计算⎝⎛⎭⎫232 017×⎝⎛⎭⎫322 018×(-1)2 019的结果是( ) A .23 B .32 C .-23 D .-327.若a m =2,a n =3,a p =5,则a 2m +n -p的值是( )A .2.4B .2C .1D .08.若9x 2+kxy +16y 2是完全平方式,则k 的值为( ) A .12 B .24 C .±12 D .±249.把多项式-3x 2n -6x n 分解因式,结果为( )A .-3x n (x n +2)B .-3(x 2n +2x n )C .-3x n (x 2+2)D .3(-x 2n -2x n )10.如图,从边长为a 的正方形中去掉一个边长为b 的小正方形,然后将剩余部分剪开后拼成一个长方形,上述操作能验证的等式是( )(第10题)A .(a +b)(a -b)=a 2-b 2B .(a -b)2=a 2-2ab +b 2C .(a +b)2=a 2+2ab +b 2D .a 2+ab =a(a +b)二、填空题(每题3分,共30分)11.(1)计算:(2a)3·(-3a 2)=____________;(2)若a m =2,a n =3,则a m +n =__________,a m -n =__________. 12.已知x +y =5,x -y =1,则式子x 2-y 2的值是________. 13.若(a 2-1)0=1,则a 的取值范围是________. 14.计算2 017×2 019-2 0182=__________.15.若|a +2|+a 2-4ab +4b 2=0,则a =________,b =________. 16.若一个正方形的面积为a 2+a +14,则此正方形的周长为________.17.分解因式:m 3n -4mn =__________. 18.计算(1+a)(1-2a)+a(a -2)=________.19.将4个数a ,b ,c ,d 排成2行、2列,两边各加一条竖直线记成⎪⎪⎪⎪⎪⎪a b cd ,定义⎪⎪⎪⎪⎪⎪a b cd =ad -bc ,上述记号就叫做2阶行列式.若⎪⎪⎪⎪⎪⎪x +1 1-x 1-x x +1=8,则x =________. 20.根据(x -1)(x +1)=x 2-1,(x -1)(x 2+x +1)=x 3-1,(x -1)(x 3+x 2+x +1)=x 4-1,(x -1)(x 4+x 3+x 2+x +1)=x 5-1,…的规律,可以得出22 018+22 017+22 016+…+23+22+2+1的末位数字是________.三、解答题(21,22,24,25题每题6分,23,26题每题8分,27,28题每题10分,共60分)21.计算.(1)5a 2b÷⎝⎛⎭⎫-13ab ·(2ab 2)2; (2)(a -2b -3c)(a -2b +3c).22.先化简,再求值:(1)已知x=-2,求(x+5)(x-1)+(x-2)2的值.(2)已知x(x-1)-(x2-y)=-3,求x2+y2-2xy的值.23.把下列各式分解因式:(1)6ab3-24a3b;(2)x4-8x2+16;(3)a2(x+y)-b2(y+x); (4)4m2n2-(m2+n2)2.24.已知(x2+px+8)(x2-3x+q)的展开式中不含x2和x3项,求p,q的值.25.老师在黑板上布置了一道题:已知x=-2,求式子(2x-y)(2x+y)+(2x-y)(y-4x)+2y(y-3x)的值.小亮和小新展开了下面的讨论:小亮:只知道x的值,没有告诉y的值,这道题不能做;小新:这道题与y的值无关,可以求解;根据上述说法,你认为谁说的正确?为什么?26.已知a,b,c是△ABC的三边长,且a2+2b2+c2-2b(a+c)=0,你能判断△ABC 的形状吗?请说明理由.27.如图,边长分别为a,b的两个正方形并排放在一起,请计算图中阴影部分的面积,并求出当a+b=16,ab=60时阴影部分的面积.(第27题)28.已知x≠1,(1+x)(1-x)=1-x2,(1-x)(1+x+x2)=1-x3,(1-x)(1+x+x2+x3)=1-x4.(1)根据以上式子计算:①(1-2)×(1+2+22+23+24+25);②2+22+23+…+2n(n为正整数);③(x-1)(x99+x98+x97+…+x2+x+1).(2)通过以上计算,请你进行下面的探索:①(a-b)(a+b)=____________;②(a-b)(a2+ab+b2)=____________;③(a-b)(a3+a2b+ab2+b3)=____________.答案一、1.C 2.C 3.D 4.A 5.B 6.D 7.A 8.D 9.A 10.A二、11.(1)-24a 5 (2)6;23 12.5 13.a ≠±1 14.-1 15.-2;-116.|4a +2| 17.mn(m +2)(m -2) 18.-a 2-3a +1 19.220.7 点拨:由题意可知22 018+22 017+…+22+2+1=(2-1)×(22 018+22 017+…+22+2+1)=22 019-1,而21=2,22=4,23=8,24=16,25=32,26=64,…,可知2n (n 为正整数)的末位数字按2,4,8,6的顺序循环,而2 019÷4=504……3,所以22 019的末位数字是8,则22 019-1的末位数字是7.三、21.解:(1)原式=5a 2b÷⎝⎛⎭⎫-13ab ·4a 2b 4=-60a 3b 4. (2)原式=[(a -2b)-3c][(a -2b)+3c]=(a -2b)2-(3c)2=a 2-4ab +4b 2-9c 2. 22.解:(1)原式=x 2-x +5x -5+x 2-4x +4=2x 2-1. 当x =-2时,原式=2×(-2)2-1=7.(2)∵x(x -1)-(x 2-y)=-3,∴x 2-x -x 2+y =-3.∴x -y =3.∴x 2+y 2-2xy =(x -y)2=32=9.23.解:(1)原式=6ab(b 2-4a 2)=6ab(b +2a)(b -2a). (2)原式=(x 2-4)2=(x -2)2(x +2)2.(3)原式=(x +y)(a 2-b 2)=(x +y)(a +b)(a -b).(4)原式=(2mn +m 2+n 2)(2mn -m 2-n 2)=-(m +n)2(m -n)2. 24.解:(x 2+px +8)(x 2-3x +q)=x 4-3x 3+qx 2+px 3-3px 2+pqx +8x 2-24x +8q =x 4+(p -3)x 3+(q -3p +8)x 2+(pq -24)x +8q.因为展开式中不含x 2和x 3项, 所以p -3=0,q -3p +8=0, 解得p =3,q =1.25.解:小新的说法正确.∵(2x -y)(2x +y)+(2x -y)(y -4x)+2y(y -3x)=4x 2-y 2-8x 2+6xy -y 2+2y 2-6xy =-4x 2,∴小新的说法正确.26.解:△ABC 是等边三角形.理由如下:∵a 2+2b 2+c 2-2b(a +c)=0,∴a 2-2ab +b 2+b 2-2bc +c 2=0,即(a -b)2+(b -c)2=0.∴a -b =0,且b -c =0,即a =b =c.故△ABC 是等边三角形.27.解:S阴影=a 2+b 2-12a(a +b)-12b 2=12a 2-12ab +12b 2,当a +b =16,ab =60时,原式=12[(a +b)2-3ab]=12(162-180)=38.28.解:(1)①原式=-63; ②原式=2n +1-2; ③原式=x 100-1.(2)①a 2-b 2;②a 3-b 3;③a 4-b 4。
人教新版八年级上册《第14章整式的乘法与因式分解》单元测试卷(1)一.选择题(共10小题)1.多项式36a2bc﹣48ab2c+12abc的公因式是()A.24abc B.12abc C.12a2b2c2D.6a2b2c2 2.(mx+8)(2﹣3x)展开后不含x的一次项,则m为()A.3B.0C.12D.243.若3x=15,3y=5,则3x﹣y等于()A.5B.3C.15D.104.若4x2+axy+25y2是一个完全平方式,则a=()A.20B.﹣20C.±20D.±105.下列各式从左到右的变形中,属于因式分解的是()A.a(a+1)=a2+aB.a2+2a﹣1=a(a+2)﹣1C.4a2﹣2a=2a(2a﹣1)D.a2﹣4+4a=(a+2)(a﹣2)+4a6.已知x﹣y=3,xy=3,则(x+y)2的值为()A.24B.18C.21D.127.下列算式中,正确的是()A.a4•a4=2a4B.a6÷a3=a2C.a2b•a3b2=a5b2D.(﹣3a2b)2=9a4b28.如果代数式x2+mx+36是一个完全平方式,那么m的值为()A.6B.﹣12C.±12D.±69.若关于x的多项式(2x﹣m)与(3x+5)的乘积中,一次项系数为25,则m的值()A.5B.﹣5C.3D.﹣310.如图,两个正方形边长分别为a,b,如果a+b=10,ab=18,则阴影部分的面积为()A.21B.22C.23D.24二.填空题(共8小题)11.已知xy=,x﹣y=﹣3,则x2y﹣xy2=.12.计算(20x3﹣8x2+12x)÷4x=.13.若2m=a,32n=b,m,n为正整数,则23m+10n=.14.已知x+=5,那么x2+=.15.若3m•3n=1,则m+n=.16.已知(x2+px+8)(x2﹣3x+q)的展开式中不含x2项和x3项,则p+q的值=.17.分解因式:a2﹣4b2=.18.若2a﹣3b=﹣1,则代数式4a2﹣6ab+3b的值为.三.解答题(共4小题)19.计算:(1)﹣b2×(﹣b)2×(﹣b3)(2)(2﹣y)3×(y﹣2)2×(y﹣2)520.如果x2+Ax+B=(x﹣3)(x+5),求3A﹣B的值.21.下面是小华同学在笔记本上完成课堂练习的解题过程:(2x﹣3y)2﹣(x﹣2y)(x+2y)=4x2﹣6xy+3y2﹣x2﹣2y2第一步=3x2﹣6xy+y2第二步小禹看到小华的做法后,对她说:“你做错了,在第一步运用公式时出现了错误,你好好查一下.”小华仔细检查后发现,小禹说的是正确的.解答下列问题:(1)请你用标记符号“”在以上小华解答过程的第一步中圈出所有错误之处;(2)请重新写出完成此题的解答过程.22.已知a﹣b=1,a2+b2=13,求下列代数式的值:(1)ab;(2)a2﹣b2﹣8.人教新版八年级上册《第14章整式的乘法与因式分解》单元测试卷(1)参考答案与试题解析一.选择题(共10小题)1.多项式36a2bc﹣48ab2c+12abc的公因式是()A.24abc B.12abc C.12a2b2c2D.6a2b2c2【考点】公因式.【分析】根据确定公因式的方法定系数,①即确定各项系数的最大公约数;②定字母,即确定各项的相同字母因式(或相同多项式因式);③定指数,即各项相同字母因式(或相同多项式因式)的指数的最低次幂,进行计算即可得出答案.【解答】解:多项式36a2bc﹣48ab2c+12abc中,系数36、﹣48、12最大公约数是12,三项的字母部分都含有字母a、b、c,其中a的最低次数是1,b的最低次数是1,c的最低次数是1,因此公因式为12abc.故选:B.2.(mx+8)(2﹣3x)展开后不含x的一次项,则m为()A.3B.0C.12D.24【考点】多项式乘多项式.【分析】先根据多项式乘以多项式法则进行计算,合并同类项,根据已知得出方程2m﹣24=0,求出即可.【解答】解:(mx+8)(2﹣3x)=2mx﹣3mx2+16﹣24x=﹣3mx2+(2m﹣24)x+16,∵(mx+8)(2﹣3x)展开后不含x的一次项,∴2m﹣24=0,∴m=12.故选:C.3.若3x=15,3y=5,则3x﹣y等于()A.5B.3C.15D.10【考点】同底数幂的除法.【分析】根据同底数幂的除法,底数不变,指数相减,可得答案.【解答】解:3x﹣y=3x÷3y=15÷5=3,故选:B.4.若4x2+axy+25y2是一个完全平方式,则a=()A.20B.﹣20C.±20D.±10【考点】完全平方式.【分析】根据这里首末两项是2x和5y这两个数的平方,那么中间一项为加上或减去2x 和5y乘积的2倍,即可得出a的值.【解答】解:∵4x2+axy+25y2是一个完全平方式,∴(2x±5y)2=4x2±20xy+25y2,∴a=±20,故选:C.5.下列各式从左到右的变形中,属于因式分解的是()A.a(a+1)=a2+aB.a2+2a﹣1=a(a+2)﹣1C.4a2﹣2a=2a(2a﹣1)D.a2﹣4+4a=(a+2)(a﹣2)+4a【考点】因式分解的意义;因式分解﹣提公因式法.【分析】根据因式分解的定义判断即可.【解答】解:A.从左边到右边的变形不属于因式分解,故本选项不符合题意;B.从左边到右边的变形不属于因式分解,故本选项不符合题意;C.从左边到右边的变形属于因式分解,故本选项符合题意;D.从左边到右边的变形不属于因式分解,故本选项不符合题意;故选:C.6.已知x﹣y=3,xy=3,则(x+y)2的值为()A.24B.18C.21D.12【考点】完全平方公式.【分析】先根据完全平方公式进行变形得出(x+y)2=(x﹣y)2+4xy,再求出答案即可.【解答】解:∵x﹣y=3,xy=3,∴(x+y)2=(x﹣y)2+4xy=32+4×3=21,故选:C.7.下列算式中,正确的是()A.a4•a4=2a4B.a6÷a3=a2C.a2b•a3b2=a5b2D.(﹣3a2b)2=9a4b2【考点】单项式乘单项式;同底数幂的乘法;幂的乘方与积的乘方;同底数幂的除法.【分析】根据同底数幂的乘法法则、同底数幂的除法法则、单项式乘单项式的运算法则、积的乘方法则计算,判断即可.【解答】解:A、a4•a4=a4+4=a8,本选项计算错误;B、a6÷a3=a6﹣3=a3,本选项计算错误;C、a2b•a3b2=a5b3,本选项计算错误;D、(﹣3a2b)2=9a4b2,本选项计算正确;故选:D.8.如果代数式x2+mx+36是一个完全平方式,那么m的值为()A.6B.﹣12C.±12D.±6【考点】完全平方式.【分析】根据完全平方公式进行计算即可.【解答】解:∵x2+mx+36是一个完全平方式,∴x2+mx+36=(x±6)2,∴m=±12,故选:C.9.若关于x的多项式(2x﹣m)与(3x+5)的乘积中,一次项系数为25,则m的值()A.5B.﹣5C.3D.﹣3【考点】多项式乘多项式.【分析】先求出两个多项式的积,再根据一次项系数为25,得到关于m的一次方程,求解即可.【解答】解:(2x﹣m)(3x+5)=6x2﹣3mx+10x﹣5m=6x2+(10﹣3m)x﹣5m.∵积的一次项系数为25,∴10﹣3m=25.解得m=﹣5.故选:B.10.如图,两个正方形边长分别为a,b,如果a+b=10,ab=18,则阴影部分的面积为()A.21B.22C.23D.24【考点】完全平方公式的几何背景.【分析】表示出空白三角形的面积,用总面积减去两个空白三角形的面积即可,再将得到的等式变形后,利用整体代入求值即可.【解答】解:如图,三角形②的一条直角边为(a﹣b),另一条直角边为b,因此S△②=(a﹣b)b=ab﹣b2,S△①=a2,∴S阴影部分=S大正方形﹣S△①﹣S△②,=a2﹣ab+b2,=[(a+b)2﹣3ab],=(100﹣54)=23,故选:C.二.填空题(共8小题)11.已知xy=,x﹣y=﹣3,则x2y﹣xy2=﹣.【考点】因式分解﹣提公因式法.【分析】提公因式法分解因式后,再整体代入求值即可.【解答】解:x2y﹣xy2=xy(x﹣y)=×(﹣3)=﹣,故答案为:﹣.12.计算(20x3﹣8x2+12x)÷4x=5x2﹣2x+3.【考点】整式的除法.【分析】根据整式的除法运算法则即可求出答案.【解答】解:原式=20x3÷4x﹣8x2÷4x+12x÷4x=5x2﹣2x+3,故答案为:5x2﹣2x+3.13.若2m=a,32n=b,m,n为正整数,则23m+10n=a3b2.【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】根据幂的乘方和积的乘方的运算法则求解.【解答】解:32n=25n=b,则23m+10n=23m•210n=a3•b2=a3b2.故答案为:a3b2.14.已知x+=5,那么x2+=23.【考点】完全平方公式.【分析】所求式子利用完全平方公式变形后,将已知等式代入计算即可求出值.【解答】解:∵x+=5,∴x2+=(x+)2﹣2=25﹣2=23.故答案为:23.15.若3m•3n=1,则m+n=0.【考点】零指数幂;同底数幂的乘法.【分析】根据同底数幂的乘法法则及非0数的0次幂等于1进行计算.【解答】解:∵3m•3n=3m+n=1,16.已知(x2+px+8)(x2﹣3x+q)的展开式中不含x2项和x3项,则p+q的值=4.【考点】多项式乘多项式.【分析】根据多项式乘多项式的法则计算,然后根据不含x2项和x3项就是这两项的系数等于0列式,求出p和q的值,从而得出p+q.【解答】解:(x2+px+8)(x2﹣3x+q),=x4+(p﹣3)x3+(8﹣3p+q)x2+(pq﹣24)x+8q,∵(x2+px+8)(x2﹣3x+q)的展开式中不含x2项和x3项,∴,解得:,所以p+q=3+1=4.17.分解因式:a2﹣4b2=(a+2b)(a﹣2b).【考点】因式分解﹣运用公式法.【分析】直接用平方差公式进行分解.平方差公式:a2﹣b2=(a+b)(a﹣b).【解答】解:a2﹣4b2=(a+2b)(a﹣2b).故答案为:(a+2b)(a﹣2b).18.若2a﹣3b=﹣1,则代数式4a2﹣6ab+3b的值为1.【考点】因式分解的应用.【分析】由已知字母a、b的系数为2、﹣3,代数式中前二项的系数4、﹣6,提取此二项的公因式2a后,代入求值变形得﹣2a+3b,与已知条件互为相反数,可求出代数式的值为1.【解答】解:∵2a﹣3b=﹣1,∴4a2﹣6ab+3b=2a(2a﹣3b)+3b=2a×(﹣1)+3b=﹣2a+3b=﹣(2a﹣3b)=﹣(﹣1)=1三.解答题(共4小题)19.计算:(1)﹣b2×(﹣b)2×(﹣b3)(2)(2﹣y)3×(y﹣2)2×(y﹣2)5【考点】同底数幂的乘法.【分析】(1)直接利用同底数幂的乘法运算法则进而计算得出答案;(2)直接利用同底数幂的乘法运算法则进而计算得出答案.【解答】解:(1)﹣b2×(﹣b)2×(﹣b3)=b2×b2×b3=b7;(2)(2﹣y)3×(y﹣2)2×(y﹣2)5=﹣(y﹣2)3(y﹣2)7=﹣(y﹣2)10.20.如果x2+Ax+B=(x﹣3)(x+5),求3A﹣B的值.【考点】因式分解的意义.【分析】根据整式的乘法,可得相等的整式,根据相等整式中同类项的系数相等,可得答案.【解答】解:x2+Ax+B=(x﹣3)(x+5)=x2+2x﹣15,得A=2,B=﹣15.3A﹣B=3×2+15=21.21.下面是小华同学在笔记本上完成课堂练习的解题过程:(2x﹣3y)2﹣(x﹣2y)(x+2y)=4x2﹣6xy+3y2﹣x2﹣2y2第一步=3x2﹣6xy+y2第二步小禹看到小华的做法后,对她说:“你做错了,在第一步运用公式时出现了错误,你好好查一下.”小华仔细检查后发现,小禹说的是正确的.解答下列问题:(1)请你用标记符号“”在以上小华解答过程的第一步中圈出所有错误之处;(2)请重新写出完成此题的解答过程.【考点】平方差公式;完全平方公式.【分析】根据完全平方公式以及平方差公式解答即可.【解答】解:(1)如图所示:(2)(2x﹣3y)2﹣(x﹣2y)(x+2y)=4x2﹣12xy+9y2﹣x2+4y2=3x2﹣12xy+13y2.22.已知a﹣b=1,a2+b2=13,求下列代数式的值:(1)ab;(2)a2﹣b2﹣8.【考点】完全平方公式.【分析】(1)由(a﹣b)2=a2+b2﹣2ab及已知条件可求得答案;(2)(a+b)2=a2+b2+2ab及已知条件可求得a+b的值,进而得出a2﹣b2﹣8的值即可.【解答】解:(1)∵a﹣b=1,∴(a﹣b)2=a2+b2﹣2ab=1,∵a2+b2=13,∴13﹣2ab=1,∴ab=6;(2)∵a2+b2=13,ab=6,∴(a+b)2=a2+b2+2ab=13+12=25,∴a+b=5或﹣5,∵a2﹣b2﹣8=(a+b)(a﹣b)﹣8,∴当a+b=5时,(a+b)(a﹣b)﹣8=﹣3;当a+b=﹣5时,(a+b)(a﹣b)﹣8=﹣5﹣8=﹣13.。
人教版数学 八上 第14章 整式的乘法与因式分解单元精选能力测试卷一,选择题(共30分)5.在矩形内,将两张边长分别为和的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为,图2中阴影部分的面积为.当时,的值为( )A .B .C .D .6.已知图①是长为,宽为的小长方形纸片,图②是大长方形,且边,将7张如图①的小长方形纸片不重叠地放在大长方形ABCD ,如图③所示,未被覆盖两个长方形用阴影表示,设左上角与右下角的阴影部分面积之差为S ,若BC 的长度变化时,S 始终保持不变,则应该满足( )ABCD a ()b a b >1S 2S 3AD AB -=21S S -3a 3b 33a b -32a b-a ()b a b >3b AB a =+a b 、A .B .C .D .A .B .8.对于五个整式,:①若为正整数,则多项式,32a b =2a b =4a b =3a b=4A 2x y(2)若与互为“相反式”,则的值为;(3)当时,代数式(,,,是常数的值为10,则它的“相反式”的值为;(4)无论取何值,代数式的值总大于其“相反式”的值,则的取值范围为.其中正确的结论个数为( )A .1个B .2个C .3个D .4个二、填空题(共24分)11.如果2021m =7,2021n =2,那么20212m ﹣3n = .12.已知x +y =10,xy =1,则代数式x 2y +xy 2的值为_____14.如图,正方形卡片A 类,B 类和长方形卡片C 类若干张,如果要拼一个长为(a +2b),宽为(a +b)的大长方形,则需要C 类卡片________张.15.我们在学习许多代数公式时,可以用几何图形来推理验证.观察图.接下来,观察图.16.用表示十位数字为m ,个位数字为5的两位数,其中当时,表示的两位数是65当时,;22318x x m ---222x nx n +-2023()mn 1-2x =2111a x b x c ++10a ≠1a 1b 1c 10-x 224x x c -+c 2>c ()()()()211111a a a a a a -=-+-=-+5m 6m =5m 1m =2152251001225==⨯⨯+三、解答题(共66分)17.(6分)16.已知.(1)求:①的值; ②的值;(2)已知,求的值.18.(8分)计算:(1)(-1)2 018+(-12)2 -(3.14-π)0; (2)(2x 3y )2·(-2xy )+(-2x 3y )3÷2x 2;(3)(2x -3)2-(2x +3)(2x -3); (4)[(a -2b )2+(a -2b )(2b +a )-2a (2a -b )]÷2a .19.(8分).分解因式:(1)m 3n -9mn; (2)(x 2+4)2-16x 2;(3)x 2-4y 2-x +2y; (4)4x 3y +4x 2y 2+xy 3.20.(10分)关于运算能力的解释为:运算能力主要是指根据法则和运算律进行正确运算的能力,因此,我们面对没有学过的数学题时,方法可以创新,但在创新中要遵循法则和运算律,才能正确解答,下面介绍一种分解因式的新方法——拆项补项法:把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于已学过的方法进行分解.例题:用拆项补项法分解因式.解:添加两项.原式3,2m n a a ==m n a +32m n a -2728322x ⨯⨯=x 398x x -+22x x -+22398x x x x =-+-+22388x x x x x =-+--+()()()21181x x x x x =-+-+-()()218x x x =-+-22.(12分)已知:如图所示的大长方形是由四个不同的小长方形拼成,我们可以用两种不同的方法表示长方形的面积:①x2+px+qx+pq;②(x+p)(x+q),请据此回答下列问题:(1)因为:x2+(p+q)x+pq=x2+px+qx+pq,所以:x2+(p+q)x+pq=__________.(2)利用(1)中的结论,我们可以对特殊的二次三项进行因式分解①x2+3x+2=x2+(2+1)x+2×1=(x+2)(x+1);②x 2-4x -5=x 2+(1-5)x +1×(-5)=___________.(请将结果补充出来)(3)请利用上述方法将下列多项式分解因式:x 2-9x +20(写出分解过程).23.(12分).先阅读下面的内容,再解决问题.例题:若,求m 和n 的值.解:因为,所以,所以,所以,,所以,.问题:(1)若,求和的值;(2)已知,,是等腰的三边长,且,满足,求的周长2222690m mn n n ++-+=2222690m mn n n ++-+=2222690m mn n n n +++-+=22()(3)0m n n ++-=0m n +=30n -=3m =-3n =2225410x xy y y ++++=x y a b c ABC a b 2210841a b a b +=+-ABC人教版数学 八上 第14章 整式的乘法与因式分解单元精选能力测试卷(解析版)二,选择题(共30分)1.下列运算中,错误的个数是( )(1);(2);(3);(4)A .1个B .2个C .3个D .4个答案.D【详解】解:(1),故(1)错误;(2),故(2)错误;(3),故(3)错误;(4),故(4)错误,综上所述,错误的个数为4个,故选:D .2.若,,则( )A .5B .6C .7D .12答案.D【分析】直接根据幂的乘方和同底数幂乘法的逆运算进行计算即可【详解】解:∵,,∴,故选:D 3.下列运算中,正确的是( )A .B .C .D .答案.A【分析】根据同底数幂的乘法法则、幂的乘方运算法则、合并同类项法则对各选项逐一计算,然后再进行判断即可.224a a a +=236a a a ⋅=2n n n a a a ⋅=()448a a a --⋅=22242a a a a ≠+=2356a a a a ⋅≠=22n n n n a a a a ⋅≠=()4488a a a a ---⋅≠=2x a =3y a =2x y a +=2x a =3y a =()222234312x y x y a a a +=⋅=⨯=⨯=23a a a ⋅=()325a a =336a a a +=()22ab ab =5.在矩形内,将两张边长分别为和的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为,图2中阴影部分的面积为.当时,的值为( )B .B .C .D .答案B 6.已知图①是长为,宽为的小长方形纸片,图②是大长方形,且边,将7张如图①的小长方形纸片不重叠地放在大长方形ABCD ,如图③所示,未被覆盖两个长ABCD a ()b a b >1S 2S 3AD AB -=21S S -3a3b 33a b -32a b-a ()b a b >3b AB a =+方形用阴影表示,设左上角与右下角的阴影部分面积之差为S ,若BC 的长度变化时,S 始终保持不变,则应该满足( )A .B .C .D .答案DB .B .答案 D 【详解】解:设,由题意得:,a b 、32a b =2a b =4a b =3a b=4AB a =8832a b +=③若关于的多项式(为常数)不含的一次项,则该多项式的值一定大于.上述结论中,正确的个数是( )A .0B .1C .2D .3答案B【详解】解:①,当时,.故①是错误的;②当,即,∴,当时,或者.所以②是正确的.③∵,∵不含x 的一次项,∴,∴,∴,∴③是错误的;综上,只有②是正确的.故选:B .9.下列因式分解正确的是( )A .B .C .D .答案 A【分析】各式分解因式后,即可作出判断.【详解】解:A 、,正确,该选项符合题意;x ()3M A B m B C =-+⋅⋅m x M 3-2222(1)22B C A D E x x x y x y y y ⋅+++=-++++-=-=1y 0B C A D E ⋅+++=22A D E ++=-2222(2)2x y x y ++-=-222(1)(1)1x y ++-==1x -=0y =2y 3()M A B m B C =-+××23(21)(1)(2)x x m x x =--++⋅-2(62)(32)3m x m x =-+---M 320m --=1.5m =-2933M x =-³-()222442a ab b a b -+=-()()22444a b a b a b -=+-()24412221a a a a -+=-+()ab ac a a b c ++=+()222442a ab b a b -+=-,,解得,(4)正确;故正确结论有3个,故选C .三、填空题(共24分)11.如果2021m =7,2021n =2,那么20212m ﹣3n = .答案20212m ﹣3n =(2021m )2÷(2021n )3=72÷23=,故答案为:.12.已知x +y =10,xy =1,则代数式x 2y +xy 2的值为_____答案10解析:∵x 2−(m −1)x+36是一个完全平方式,∴m −1=±12,故m 的值为−11或13,故答案为:−11或13.14.如图,正方形卡片A 类,B 类和长方形卡片C 类若干张,如果要拼一个长为(a +2b),宽为(a +b)的大长方形,则需要C类卡片________张.答案.324(1)0x -≥ 240c ∴->2>c答案 【详解】解:将图2看作三个长方体相加时,可得式子:原式两边提取,可得原式()()()2111a a a a a -+-+-()(21a a -()()()()21111111a a a a a a a a ⨯⨯-+⨯⨯⨯--+⨯=-1a -()()211a a a =-++(故答案为:,8.三、解答题(共66分)18.(8分)计算:(1)(-1)2 018+(-12)2 -(3.14-π)0; (2)(2x 3y )2·(-2xy )+(-2x 3y )3÷2x 2;(3)(2x -3)2-(2x +3)(2x -3); (4)[(a -2b )2+(a -2b )(2b +a )-2a (2a -b )]÷2a .答案.解:(1)原式=1+14-1=14;(2)原式=4x 6y 2·(-2xy )-8x 9y 3÷2x 2=-8x 7y 3-4x 7y 3=-12x 7y 3;(3)原式=(2x -3)·[(2x -3)-(2x +3)]=(2x -3)·(-6)=-12x +18;(4)原式=(a 2-4ab +4b 2+a 2-4b 2-4a 2+2ab )÷2a =(-2a 2-2ab )÷2a =-a -b .19.(8分).分解因式:(1)m 3n -9mn; (2)(x 2+4)2-16x 2;()1m m +(3)x 2-4y 2-x +2y; (4)4x 3y +4x 2y 2+xy 3.答案.解:(1)原式=mn (m 2-9)=mn (m +3)(m -3);(2)原式=(x 2+4+4x )(x 2+4-4x )=(x +2)2(x -2)2;(3)原式=x 2-4y 2-(x -2y )=(x +2y )(x -2y )-(x -2y )=(x -2y )(x +2y -1);(4)原式=xy (4x 2+4xy +y 2)=xy (2x +y )2.20.(10分)关于运算能力的解释为:运算能力主要是指根据法则和运算律进行正确运算的能力,因此,我们面对没有学过的数学题时,方法可以创新,但在创新中要遵循法则和运算律,才能正确解答,下面介绍一种分解因式的新方法——拆项补项法:把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于已学过的方法进行分解.例题:用拆项补项法分解因式.解:添加两项.原式请你结合自己的思考和理解完成下列各题:(1)分解因式:;(2)分解因式;(3)分解因式:.答案.(1)(2)(3)【详解】(1)解:;(2)398x x -+22x x -+22398x x x x =-+-+22388x x x x x =-+--+()()()21181x x x x x =-+-+-()()218x x x =-+-2910x x +-23256x x x --+24352020x x x x ++--()()110x x -+()()()123x x x ---()()()22255x x x x -+++2910x x +-21010x x x =-+-()()1101x x x =-+-()()110x x =-+23256x x x --+(3)21.(10分)观察下列式子因式分解的方法:①②(第一步)(第二步)(第三步)(第四步)(第五步)③32266x x x x x =--+-+()()()21161x x x x x =-----()()216x x x =---()()21326x x x x =--+-()()()1323x x x x =----⎡⎤⎣⎦()()()123x x x =---24352020x x x x ++--4322271415301020x x x x x x x 3=-+-+-+-()()()()32272152102x x x x x x x =-+-+-+-()()32271510x x x x =-+++()32222510510x x x x x x ⎡⎤=-+++++⎣⎦()()()()2225252x x x x x x ⎡⎤=-+++++⎣⎦()()()22255x x x x =-+++21(1)(1)x x x -=-+3311x x x x -=-+-2(1)1x x x -+-(1)(1)(1)x x x x =-++-(1)[(1)1]x x x =-++2(1)(1)x x x =-++4411x x x x -=-+-3(1)1x x x =-+-2(1)(1)(1)x x x x x =-+++-2(1)[(1)1]x x x x =-+++32(1)(1)x x x x =-+++22.(12分)已知:如图所示的大长方形是由四个不同的小长方形拼成,我们可以用两种不同的方法表示长方形的面积:①x2+px+qx+pq;②(x+p)(x+q),请据此回答下列问题:(1)因为:x2+(p+q)x+pq=x2+px+qx+pq,所以:x2+(p+q)x+pq=__________.(2)利用(1)中的结论,我们可以对特殊的二次三项进行因式分解①x2+3x+2=x2+(2+1)x+2×1=(x+2)(x+1);②x2-4x-5=x2+(1-5)x+1×(-5)=___________.(请将结果补充出来)(3)请利用上述方法将下列多项式分解因式:x2-9x+20(写出分解过程).∴,,∵是等腰三角形,∴或4,分两种情况:当时,的周长为,当时,的周长为,所以的周长为13或145a =4b =ABC 5c =5c =ABC 55414++=4c =ABC 54413++=ABC。
《第十四章 整式的乘除与因式分解》单元测试卷(一)答题时间:100分钟 满分:120分一、选择题 (每题3分,共30分。
每题只有一个正确答案,请将正确答案的代号填在下面的表格中)1.下列判断中正确的是( ).A .与不是同类项B .不是整式C .单项式的系数是D .是二次三项式 2.下列计算正确的是( ).A .B .C .D . 3.已知,则m 的值为( ). A .8 B .16 C .32D .64 4.下列因式分解中,结果正确的是( ).A .B .C .D . 5.计算的结果是( ).A .B .C .0D .6.把多项式提取公因式后,余下的部分是( ). A . B . C . D . 7.两个三次多项式相加,结果一定是( )A 、三次多项式B 、六次多项式C 、零次多项式D 、不超过三次的多项式bc a 232bca -52n m 23y x -1-2253xy y x +-105532a a a =+632a a a =⋅532)(a a =8210a a a =÷()()2222816-=+-x m x x ()23222824m n n n m n -=-()()2422x x x -=+-222111144x x x x x ⎛⎫-+=-+ ⎪⎝⎭2299(33)(33)a b a b a b -=+-11(13)(31)9()()33x x x x +-+-+2182-x 2182x -28x ()()()111---+x x x ()1-x ()1+x ()1+-x x ()2+-x8.若a -b =8,a 2+b 2=82,则3ab 的值为 ( )A 、9B 、-9C 、27D 、-279.对于任何整数..,多项式的值都能( ). A .被整除 B .被整除 C .被20整除 D .被10整除和被整除10.(x 2+px+8)(x 2-3x+q)乘积中不含x 2项和x 3项,则p,q 的值 ( )A.p=0,q=0B.p=3,q=1C.p=–3,–9D.p=–3,q=1二、填空题(每题3分,共30)11.单项式与是同类项,则的值为 .12.在括号中填入适当的数或式子:=. 13.与和为的多项式是___________________.14.(1),(2).15.用完全平方公式填空:=. 16.人们以分贝为单位来表示声音的强弱,通常说话的声音是50分贝,它表示声音的强度是;摩托车发出的声音是110分贝,它表示声音的强度是,那么摩托车的声音强度是说话声音强度的_______倍。
人教版八年级上册第十四章整式的乘法与因式分解一、单选题1.(2020八下·丹东期末)下列各式中从左到右的变形中,是因式分解的是()A. m(a+b+c)=ma+mb+mcB. x2+6x+36=(x+6)2C. a2−b2+1=(a+b)(a−b)+1D. 10x2−5x=5x(2x−1)2.(2020七下·汉中月考)计算(-2a)2-3a2的结果是()A. -a2B. a2C. -5a2D. 5a23.(2020·河北)对于① x−3xy=x(1−3y),② (x+3)(x−1)=x2+2x−3,从左到右的变形,表述正确的是()A. 都是因式分解B. 都是乘法运算C. ①是因式分解,②是乘法运算D. ①是乘法运算,②是因式分解4.(2020七下·株洲开学考)下面式子从左边到右边的变形中是因式分解的是()A. (x+1)2=x2+2x+1B. x2+3x−16=x(x+3)−16C. (x+1)(x−1)=x2−1D. x2−16=(x+4)(x−4)5.(2021七下·阜南期末)计算a•a5−(2a3)2的结果为()A. a6−2a5B. −a6C. a6−4a5D. −3a66.(2020七下·汉中月考)下列计算正确的是()A. x2+3x2=4x4B. x2y⋅2x3=2x4yC. (6x2y2)÷(3x)=2x2D. (−3x)2=9x27.(2020七下·越城期中)已知2a=3,8b=6,22a﹣3b+1的值为()A. 3B. 32C. 2D. 58.(2019八下·鼓楼期末)计算3×((2018−√20182−12×20192×3)2﹣2018×(2018−√20182−12×20192×3)+1的结果等于()A. ﹣2017B. ﹣2018C. ﹣2019D. 20199.(2020七下·滨湖期中)任何一个正整数n都可以进行这样的分解:n=s×t(s、t是正整数,且s⩽t),如果p×q在n的所有这种分解中两因数之差的绝对值最小,我们就称p×q是n的最佳分解,并规定:F(n)=p q.例如18可以分解成1×18,2×9,3×6这三种,这时就有F(18)=3 6=12,给出下列关于F(n)的说法:① F(2)=12;② F(48)=13;③ F(n2+n)=nn+1;④若n是一个完全平方数,则F(n)=1,其中正确说法的个数是()A. 4B. 3C. 2D. 110.(2019七下·丹阳期中)已知实数x、y满足等式:3x2+4xy+4y2﹣4x+2=0,则x+y的值为()A. 2B. −12C. ﹣2 D. 12二、填空题11.(2020七下·泰兴期中)已知32×9m×27=321,求m=________.12.(2020七下·溧阳期末)(-2020)0=________.13.(2020·上虞模拟)因式分解:a²-9b²=________。
第14章整式的乘法与因式分解一、选择题1.下列何者是22x7﹣83x6+21x5的因式?()A.2x+3 B.x2(11x﹣7)C.x5(11x﹣3)D.x6(2x+7)2.把多项式x3﹣2x2+x分解因式,正确的是()A.(x﹣1)2B.x(x﹣1)2C.x(x2﹣2x+1)D.x(x+1)23.多项式ax2﹣4ax﹣12a因式分解正确的是()A.a(x﹣6)(x+2) B.a(x﹣3)(x+4) C.a(x2﹣4x﹣12)D.a(x+6)(x﹣2)二、填空题4.若x2+x+m=(x﹣3)(x+n)对x恒成立,则n=______.5.因式分解:ax2﹣7ax+6a=______.6.分解因式:(a+2)(a﹣2)+3a=______.7.因式分解:ab2﹣a=______.8.分解因式:2m3﹣8m=______.9.因式分解4x﹣x3=______.10.分解因式x3﹣xy2的结果是______.11.分解因式:2﹣2a2=______.12.分解因式:12m2﹣3n2=______.13.分解因式:5x2﹣20=______.14.分解因式:2x(x﹣3)﹣8=______.15.因式分解:a3﹣ab2=______.16.分解因式:2a2﹣8=______.17.分解因式:m3﹣4m=______.18.分解因式:ax2﹣4a=______.19.分解因式:ab2﹣4ab+4a=______.20.分解因式:2a3﹣8a2+8a=______.21.分解因式:3a2﹣12ab+12b2=______.22.分解因式:4x2﹣8x+4=______.23.把多项式4ax2﹣ay2分解因式的结果是______.24.把多项式分解因式:ax2﹣ay2=______.25.分解因式: =______.26.因式分解:x3﹣5x2+6x=______.27.分解因式:3x2﹣18x+27=______.28.分解因式:a3b﹣9ab=______.29.分解因式:x2+3x(x﹣3)﹣9=______.30.分解因式:x2y﹣4y=______.第14章整式的乘法与因式分解参考答案一、选择题1.C;2.B;3.A;二、填空题4.4;5.a(x-1)(x-6);6.(a-1)(a+4);7.a(b+1)(b-1);8.2m(m+2)(m-2);9.-x (x+2)(x-2);10.x(x+y)(x-y);11.2(1+a)(1-a);12.3(2m+n)(2m-n);13.5(x+2)(x-2);14.2(x-4)(x+1);15.a(a+b)(a-b);16.2(a+2)(a-2);17.m(m-2)(m+2);18.a(x+2)(x-2);19.a(b-2)2;20.2a(a-2)2;21.3(a-2b)2;22.4(x-1)2;23.a(2x+y)(2x-y);24.a(x+y)(x-y);25.-(3x-1)2;26.x(x-3)(x-2);27.3(x-3)2;28.ab(a+3)(a-3);29.(x-3)(4x+3);30.y(x+2)(x-2);。
人教版八年级数学上册第14章整式的乘法与因式分解单元测试卷一、选择题(本大题共8小题,共24分)1.计算的结果是A. B. C. D.2.计算的结果为A. B. C. D.3.运用乘法公式计算的结果是A. B. C. D.4.下列各式中,能用完全平方公式计算的是A. B.C. D.5.若,则A. 9B. 6C. 27D. 186.计算A. B.C. D.7.设,,,若,则的值是A. 16B. 12C. 8D. 48.若a,b,c是三角形三边的长,则代数式的值A. 大于零B. 小于零C. 大于或等于零D. 小于或等于零二、填空题(本大题共7小题,共21分)9.分解因式:______ .10.根据里氏震级的定义,若地震所释放的相对能量E与地震级数n的关系为:,那么9级地震所释放的相对能量是7级地震所释放的相对能量的倍11.因式分解:______ .12.因式分解:___.13.已知,,则______.14.分解因式:______ .15.分解因式:______.三、解答题(本大题共4小题,共55分)16.分解因式:.17.分解因式:.18.利用因式分解说明能被60整除.19.因式分解:答案和解析1.【答案】C【解析】解:.故选:C.根据幂的乘方和积的乘方的运算法则求解.本题考查了幂的乘方和积的乘方,掌握运算法则是解答本题关键.2.【答案】A【解析】【分析】本题主要考查积的乘方的性质,同底数幂的除法,单项式的除法法则,熟练掌握运算法则是解题的关键.根据积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘;单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式解答.【解答】解:.故选A.3.【答案】C【解析】【分析】本题考查了完全平方公式,解决本题的关键是熟记完全平方公式.根据完全平方公式,即可解答.【解答】解:.故选C.4.【答案】C【解析】解:A、,本选项不合题意;B、,本选项不合题意;C、,本选项符合题意;D、,本选项不合题意,故选C利用完全平方公式的特点判断即可得到结果.此题考查了完全平方公式,熟练掌握公式是解本题的关键.5.【答案】C【解析】【分析】此题主要考查了求代数式的值、幂的乘方,解题关键是掌握幂的乘方的运算法则.解题时,根据幂的乘方:底数不变,指数相乘,可得,最后整体代入即可求解.【解答】解:.故选C.6.【答案】D【解析】解:原式,故选D原式利用完全平方公式化简即可得到结果.此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.7.【答案】A【解析】【分析】本题考查了完全平方公式,本题关键是把变形为,注意整体思想的应用先把,,代入,得到,变形为,把看作一个整体,根据完全平方公式展开,得到关于的方程,解方程即可求解.【解答】解:,,,,,,,,又,.故选A.8.【答案】B【解析】【分析】此题考查了利用完全平方公式配方,利用平方差公式因式分解,三角形的三边关系,利用完全平方公式配方整理成两个因式乘积的形式是解题的关键.根据三角形中任意两边之和大于第三边.把代数式分解因式就可以进行判断.解:.,b,c是三角形的三边.,..故选B.9.【答案】【解析】解:,,.应先提取公因式m,再对余下的多项式利用平方差公式继续分解.本题考查了提公因式法,公式法分解因式,关键在于提取公因式后继续利用平方差公式进行因式分解.10.【答案】100【解析】【分析】本题考查了有理数混合运算和同底数幂的除法的应用,解题关键是能根据题意列出算式解题时,先根据题意得出,然后根据同底数幂的除法运算性质进行计算即可.【解答】解:.11.【答案】【解析】解:原式,故答案为:原式提取公因式即可得到结果.此题考查了因式分解提公因式法,熟练掌握提取公因式的方法是解本题的关键.12.【答案】【解析】分析根据因式分解就是把一个多项式变形成几个整式的积的形式的定义,利用提取公因式求解.详解解:点睛本题考查了因式分解解题的关键是掌握提取公因式法因式分解.13.【答案】5【解析】解:,,得:,则,故答案为:5利用完全平方公式计算即可求出所求.此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.14.【答案】【解析】解:原式,故答案为:原式利用完全平方公式分解即可.此题考查了因式分解运用公式法,熟练掌握完全平方公式是解本题的关键.15.【答案】九;3;10【解析】解:小英的学号是20120310,则小英现就读的班级是九年级3班,座位号是10号,故答案为:九,3,10.根据学号的表示:前四位是年级,56位是班级,七八位是座位号,可得答案.本题考查了用数字表示事件,利用了学号的表示方法:前四位是年级,56位是班级,七八位是座位号.16.【答案】【解析】解:.故答案为:.首先提取公因式x,进而利用平方差公式分解因式得出答案.此题主要考查了提取公因式法以及公式法分解因式,熟练应用平方差公式是解题关键.17.【答案】解:.【解析】原式后三项结合后提取变形,再利用完全平方公式及平方差公式分解即可.此题考查了因式分解分组分解法,用分组分解法进行因式分解的难点是采用两两分组还是三一分组.本题后三项可组成完全平方公式,可把后三项分为一组.18.【答案】原式【解析】本题主要考查的是分组分解法和运用公式法分解因式的有关知识,由题意先将给出的式子变形为,然后再进一步因式分解即可.19.【答案】证明:,能被60整除.【解析】本题考查了因式分解的应用,解决本题的关键是用因式分解法把所给式子整理为含有120的因数相乘的形式.,进而把整理成底数为5的幂的形式,然后提取公因式并整理为含有60的因数即可.20.【答案】;;;.【解析】【分析】提出公因式2ab即可;直接利用平方差公式进行分解即可;先提出公因式2x,然后利用完全平方公式分解,再利用平方差公式分解即可;先利用整式的乘法将原式转化为多项式的形式,然后利用完全平方公式分解即可.【详解】解:原式;原式;原式;原式.【点睛】此题综合考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.。
第十四章《整式的乘法与因式分解》单元检测题题号一二三总分21 22 23 24 25 26 27 28分数一、选择题:1.计算(-a3)2的结果是( )A.a5B.-a5C.a6D.-a62.下列运算正确的是( )A.x2+x2=x4B.(a-b)2=a2-b2C.(-a2)3=-a6D.3a2·2a3=6a6 3.下列从左边到右边的变形,是因式分解的是( )A.(3-x)(3+x)=9-x2B.(y+1)(y-3)=-(3-y)(y+1) C.4yz-2y2z+z=2y(2z-yz)+z D.-8x2+8x-2=-2(2x-1)24.多项式a(x2-2x+1)与多项式(x-1)(x+1)的公因式是( ) A.x-1 B.x+1 C.x2+1 D.x25.下列计算正确的是( )A.-6x2y3÷2xy3=3x B.(-xy2)2÷(-x2y)=-y3C.(-2x2y2)3÷(-xy)3=-2x3y3D.-(-a3b2)÷(-a2b2)=a46.若a>0且a x=2,a y=3,则a x-2y的值为()A.13B.-13C.23D.297.若a+b=3,a-b=7,则ab的值为()A.-10 B.-40 C.10 D.408.(2020·宜昌)小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a -b,x-y,x+y,a+b,x2-y2,a2-b2分别对应下列六个字:昌、爱、我、宜、游、美,现将(x2-y2)a2-(x2-y2)b2因式分解,结果呈现的密码信息可能是() A.我爱美B.宜昌游C.爱我宜昌D.美我宜昌9.分解因式x2+ax+b,甲看错了a的值,分解的结果是(x+6)(x-1),乙看错了b的值,分解的结果是(x-2)·(x+1),那么x2+ax+b分解因式的正确结果为() A.(x-2)(x+3) B.(x+2)(x-3) C.(x-2)(x-3) D.(x+2)(x+3)10.已知n是整数,则式子18[1-(-1)n](n2-1)的计算结果( )A.是0 B.总是奇数C.总是偶数 D.可能是奇数也可能是偶数二、填空题(共8小题,每小题3分,满分24分)11.已知a+b=3,a-b=5,则代数式a2-b2的值是________.12.分解因式:(1)x2y-4y=____________;(2)a2b-2ab+b=__________.13.多项式x2+mx+25恰好是另一个多项式的平方,则常数m=________. 14.若代数式2a2+3a+1的值为6,则代数式6a2+9a+5的值为.15.当x 时,(x﹣4)0等于1.16.若多项式x2+ax+b分解因式的结果为(x+1)(x﹣2),则a+b的值为.17.若|a﹣2|+b2﹣2b+1=0,则a= ,b= .18.已知a+=3,则a2+的值是.三、解答题(共5小题,满分46分)19.(12分)计算:(1)a2·a4+(a3)2; (2)(-a3b)2÷(-3a5b2);(3)(a+b-c)(a+b+c).20.(10分)分解因式:(1)-x4+1 (2)y2-4-2xy+x2.21.(10分)阅读下面求y 2+4y +8的最小值的解答过程.解:y 2+4y +8=y 2+4y +4+4=(y +2)2+4.∵(y +2)2≥0,∴(y +2)2+4≥4.∴y 2+4y +8的最小值为4.仿照上面的解答过程,求x 2-2x +3的最小值.22.已知2a =3,2b =6,2c =12,x =355,y =444,z =533.(1)求证:a +c =2b ;(2)判断x ,y ,z 的大小关系,并说明理由.23.先化简,再求值:(1)[(x -y )2+(x +y )(x -y )]÷2x ,其中x =3,y =1;(2)(m -n )(m +n )+(m +n )2-2m 2,其中m 、n 满足方程组⎩⎨⎧m +2n =1,3m -2n =11.七、(本题满分12分)24.(1)已知a-b=1,ab=-2,求(a+1)(b-1)的值;(2)已知(a+b)2=11,(a-b)2=7,求ab的值;(3)已知x-y=2,y-z=2,x+z=5,求x2-z2的值.25.先阅读下列材料,再解答下列问题:材料:因式分解:(x+y)2+2(x+y)+1.解:将“x+y”看成整体,令x+y=A,则原式=A2+2A+1=(A+1)2.再将“A”还原,得原式=(x+y+1)2.上述解题用到的是“整体思想”,“整体思想”是数学解题中常用的一种思想方法,请你解答下列问题:(1)因式分解:1+2(x-y)+(x-y)2=__________;(2)因式分解:(a+b)(a+b-4)+4;(3)求证:若n为正整数,则式子(n+1)(n+2)(n2+3n)+1的值一定是某一个整数的平方.《第14章整式乘法与因式分解》参考答案与试题解析一、选择题:1.C.2.C.3. D.4.A.5. B.6.D7.A.8. D.9.B.10.C.二、填空题(共8小题,每小题3分,满分24分)11.1512.y(x+2)(x-2) b(a-1)213.±1014.14.若代数式2a2+3a+1的值为6,则代数式6a2+9a+5的值为.【考点】代数式求值.【专题】计算题.【分析】由题意列出关系式,求出2a2+3a的值,将所求式子变形后,把2a2+3a的值代入计算即可求出值.【解答】解:∵2a2+3a+1=6,即2a2+3a=5,∴6a2+9a+5=3(2a2+3a)+5=20.故答案为:20.【点评】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.15.当x 时,(x﹣4)0等于1.【考点】零指数幂.【专题】计算题.【分析】根据0指数幂底数不能为0列出关于x的不等式,求出x的取值范围即可.【解答】解:∵(x﹣4)0=1,∴x﹣4≠0,∴x≠4.故答案为:≠4.【点评】本题考查的是0指数幂的定义,即任何非0数的0次幂等于1.16.若多项式x2+ax+b分解因式的结果为(x+1)(x﹣2),则a+b的值为.【考点】因式分解的意义.【分析】利用整式的乘法计算(x+1)(x﹣2),按二次项、一次项、常数项整理,与多项式x2+ax+b对应,得出a、b的值代入即可.【解答】解:(x+1)(x﹣2)=x2﹣2x+x﹣2=x2﹣x﹣2所以a=﹣1,b=﹣2,则a+b=﹣3.故答案为:﹣3.【点评】此题考查利用整式的计算方法,计算出的代数式与因式分解前代数式比较,得出结论,进一步解决问题.17.若|a﹣2|+b2﹣2b+1=0,则a= ,b= .【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】本题应对方程进行变形,将b2﹣2b+1化为平方数,再根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0”来解题.【解答】解:原方程变形为:|a﹣2|+(b﹣1)2=0,∴a﹣2=0或b﹣1=0,∴a=2,b=1.【点评】本题考查了非负数的性质,两个非负数相加,和为0,这两个非负数的值都为0.18.已知a+=3,则a2+的值是.【考点】完全平方公式.【专题】常规题型.【分析】把已知条件两边平方,然后整理即可求解.完全平方公式:(a±b)2=a2±2ab+b2.【解答】解:∵a+=3,∴a 2+2+=9, ∴a 2+=9﹣2=7.故答案为:7.三、解答题(共5小题,满分46分)19.解:(1)原式=a 6+a 6=2a 6.(4分) (2)原式=a 6b 2÷(-3a 5b 2)=-13a .(8分)(3)原式=(a +b )2-c 2=a 2+2ab +b 2-c 2.(12分) 20.解:(1)原式=-(x 2+4)(x +2)(x -2).(5分) (2)原式=(x -y )2-4=(x -y +2)(x -y -2).(10分)21.解:x 2-2x +3=x 2-2x +1+3-1=(x -1)2+2.(6分)∵(x -1)2≥0,∴(x -1)2+2≥2,(8分)∴x 2-2x +3的最小值为2.(10分)22.(1)证明:∵2a =3,2b =6,2c =12,∴2a ·2c =3×12=36=(2b )2,(2分)∴2a +c=22b ,∴a +c =2b .(4分)(2)解:y >x >z .(5分)理由如下:x =355=(35)11,y =444=(44)11,z =533=(53)11,而35=243,44=256,53=125.(7分)∵256>243>125,∴44>35>53,∴y >x >z .(9分)23.解:(1)原式=(x 2-2xy +y 2+x 2-y 2)÷2x =(2x 2-2xy )÷2x =x -y .当x =3,y =1时,原式=3-1=2.(6分)(2)⎩⎨⎧m +2n =1①,3m -2n =11②,①+②,得4m =12,解得m =3.将m =3代入①,得3+2n =1,解得n =-1.(8分)原式=m 2-n 2+m 2+2mn +n 2-2m 2=2mn .当m =3,n =-1时,原式=2×3×(-1)=-6.(12分)24.解:(1)∵a -b =1,ab =-2,∴原式=ab -(a -b )-1=-2-1-1=-4.(4分)(2)∵(a +b )2=a 2+2ab +b 2=11①,(a -b )2=a 2-2ab +b 2=7②,∴①-②得4ab =4,∴ab =1.(8分)(3)由x -y =2,y -z =2,得x -z =4.又∵x +z =5,∴原式=(x +z )(x -z )=20.(12分)25.(1)(x-y+1)2(3分)(2)解:令A=a+b,则原式=A(A-4)+4=A2-4A+4=(A-2)2,再将A还原,得原式=(a+b-2)2.(8分)(3)证明:(n+1)(n+2)(n2+3n)+1=(n2+3n)[(n+1)(n+2)]+1=(n2+3n)(n2+3n+2)+1.令n2+3n=A,则原式=A(A+2)+1=A2+2A+1=(A+1)2,∴原式=(n2+3n+1)2.∵n为正整数,∴n2+3n+1也为正整数,∴式子(n+1)(n+2)(n2+3n)+1的值一定是某一个整数的平方.(14分)。
第十四章 整式的乘法与因式分解周周测6一、选择题1.若x 2-x -m =(x -m )(x +1)且x ≠0,则m 等于A.-1B.0C.1D.22.(x +q )与(x +51)的积不含x 的一次项,猜测q 应是 A.5 B.51 C.-51 D.-5 3.下列四个算式:①4x 2y 4÷41xy =xy 3;②16a 6b 4c ÷8a 3b 2=2a 2b 2c ;③9x 8y 2÷3x 3y =3x 5y ; ④(12m 3+8m 2-4m )÷(-2m )=-6m 2+4m +2,其中正确的有A.0个B.1个C.2个D.3个4.设(x m -1y n +2)·(x 5m y 2)=x 5y 3,则m n 的值为A.1B.-1C.3D.-35.计算[(a 2-b 2)(a 2+b 2)]2等于A.a 4-2a 2b 2+b 4B.a 6+2a 4b 4+b 6C.a 6-2a 4b 4+b 6D.a 8-2a 4b 4+b 86.已知(a +b )2=11,ab =2,则(a -b )2的值是A.11B.3C.5D.197.若x 2-7xy +M 是一个完全平方式,那么M 是 A.27y 2 B.249y 2 C.449y 2 D.49y 28.若x ,y 互为不等于0的相反数,n 为正整数,你认为正确的是A.x n 、y n 一定是互为相反数B.(x 1)n 、(y1)n一定是互为相反数 C.x 2n 、y 2n 一定是互为相反数 D.x2n -1、-y 2n -1一定相等9.下列计算中,错误的有( ) ①(3a+4)(3a -4)=9a 2-4;②(2a 2-b )(2a 2+b )=4a 2-b 2;③(3-x )(x+3)=x 2-9;④(-x+y )·(x+y )=-(x -y )(x+y )=-x 2-y 2.A .1个B .2个C .3个D .4个10.若x 2-y 2=30,且x -y=-5,则x+y 的值是( )A .5B .6C .-6D .-511.a 4+(1-a)(1+a)(1+a 2)的计算结果是( )A.-1B.1C.2a4-1D.1-2a412.一个正方形的边长为,若边长增加 ,则新正方形的面积人增加了( ). A .B .C .D .以上都不对二、填空1、若a 2+b 2-2a +2b +2=0,则a 2004+b 2005=________.2、一个长方形的长为(2a +3b ),宽为(2a -3b ),则长方形的面积为________.3、5-(a -b )2的最大值是________,当5-(a -b )2取最大值时,a 与b 的关系是________.4.要使式子0.36x 2+41y 2成为一个完全平方式,则应加上________. 5.(4a m+1-6a m )÷2am -1=________. 6.29×31×(302+1)=________.7.已知x 2-5x +1=0,则x 2+21x=________. 8.已知(2005-a )(2003-a )=1000,请你猜想(2005-a )2+(2003-a )2=________.三、考查你的基本功1.计算(1)(a-2b+3c)2-(a+2b-3c)2;1b2)](-3a2b3);(2)[ab(3-b)-2a(b-2(3)-2100×0.5100×(-1)2005÷(-1)-5;(4)[(x+2y)(x-2y)+4(x-y)2-6x]÷6x.2.计算:(1);(2);(3);(4).(5)(6);(7)(8)3.(6分)解方程 x (9x -5)-(3x -1)(3x +1)=5.四.化简求值1、当代数式532++x x 的值为7时,求代数式2932-+x x 的值.2、已知4=+y x ,1=xy ,求代数式)1)(1(22++y x 的值3、已知2=x 时,代数式10835=-++cx bx ax ,求当2-=x 时,代数式835-++cx bx ax 的值五、探究拓展与应用已知x≠1,计算(1+x)(1-x)=1-x2,(1-x)(1+x+x2)=1-x3,(1-x)(•1+x+x2+x3)=1-x4.(1)观察以上各式并猜想:(1-x)(1+x+x2+…+x n)=______.(n为正整数)(2)根据你的猜想计算:①(1-2)(1+2+22+23+24+25)=______.②2+22+23+…+2n=______(n为正整数).③(x-1)(x99+x98+x97+…+x2+x+1)=_______.(3)通过以上规律请你进行下面的探索:①(a-b)(a+b)=_______.②(a-b)(a2+ab+b2)=______.③(a-b)(a3+a2b+ab2+b3)=______.别浪费一分一秒——如何利用零散时间学人们常说,时间是公平的,每个人的一天只有24个小时,所以应该珍惜时间去充实自己。
《第14章整式乘法与因式分解》一、选择题:1.下列计算正确的是()A.a2+b3=2a5B.a4÷a=a4C.a2•a3=a6D.(﹣a2)3=﹣a6 2.计算(a3)2的结果是()A.a5B.a6C.a8D.a93.下列计算中,正确的个数有()①3x3•(﹣2x2)=﹣6x5;②4a3b÷(﹣2a2b)=﹣2a;③(a3)2=a5;④(﹣a)3÷(﹣a)=﹣a2.A.1个B.2个C.3个D.4个4.计算2x3÷x2的结果是()A.x B.2x C.2x5D.2x65.下列各式是完全平方式的是()A.x2﹣x+ B.1+x2C.x+xy+1 D.x2+2x﹣16.下列各式中能用平方差公式是()A.(x+y)(y+x) B.(x+y)(y﹣x) C.(x+y)(﹣y﹣x)D.(﹣x+y)(y﹣x)7.如(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()A.﹣3 B.3 C.0 D.18.若3x=15,3y=5,则3x﹣y等于()A.5 B.3 C.15 D.109.若(x﹣3)(x+4)=x2+px+q,那么p、q的值是() A.p=1,q=﹣12 B.p=﹣1,q=12 C.p=7,q=12 D.p=7,q=﹣1210.下列各式从左到右的变形,正确的是()A.﹣x﹣y=﹣(x﹣y)B.﹣a+b=﹣(a+b)C.(y﹣x)2=(x ﹣y)2D.(a﹣b)3=(b﹣a)3二、填空题(共8小题,每小题3分,满分24分)11.计算:(﹣3x2y)•(xy2)=.12.计算:=.13.计算:()2007×(﹣1)2008=.14.若代数式2a2+3a+1的值为6,则代数式6a2+9a+5的值为.15.当x时,(x﹣4)0等于1.16.若多项式x2+ax+b分解因式的结果为(x+1)(x﹣2),则a+b 的值为.17.若|a﹣2|+b2﹣2b+1=0,则a=,b=.18.已知a+=3,则a2+的值是.三、解答题(共5小题,满分46分)19.计算:(1)(ab2)2•(﹣a3b)3÷(﹣5ab);(2)3a(2a2﹣9a+3)﹣4a(2a﹣1)20.分解因式:(1)m2﹣6m+9;(2)(x+y)2+2(x+y)+1;(3)3x﹣12x3;(4)9a2(x﹣y)+4b2(y﹣x).21.先化简,再求值:2(x﹣3)(x+2)﹣(3+a)(3﹣a),其中a=﹣2,x=1.22.若2x+5y﹣3=0,求4x•32y的值.23.已知:a,b,c为△ABC的三边长,且2a2+2b2+2c2=2ab+2ac+2bc,试判断△ABC的形状,并证明你的结论.《第14章整式乘法与因式分解》参考答案与试题解析一、选择题:1.下列计算正确的是()A.a2+b3=2a5B.a4÷a=a4C.a2•a3=a6D.(﹣a2)3=﹣a6【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数相除,底数不变指数相减;同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.【解答】解:A、a2与b3不是同类项,不能合并,故本选项错误;B、应为a4÷a=a3,故本选项错误;C、应为a3•a2=a5,故本选项错误;D、(﹣a2)3=﹣a6,正确.故选D.【点评】本题考查合并同类项,同底数幂的除法,同底数幂的乘法,幂的乘方的性质,熟练掌握运算性质是解题的关键.2.计算(a3)2的结果是()A.a5B.a6C.a8D.a9【考点】幂的乘方与积的乘方.【专题】计算题.【分析】根据幂的乘方,底数不变,指数相乘即可求.【解答】解:(a3)2=a6,故选B.【点评】本题考查了幂的乘方,解题的关键是熟练掌握幂的乘方公式.3.下列计算中,正确的个数有()①3x3•(﹣2x2)=﹣6x5;②4a3b÷(﹣2a2b)=﹣2a;③(a3)2=a5;④(﹣a)3÷(﹣a)=﹣a2.A.1个B.2个C.3个D.4个【考点】整式的混合运算.【专题】计算题.【分析】①原式利用单项式乘以单项式法则计算即可得到结果;②原式利用单项式除以单项式法则计算即可得到结果;③原式利用幂的乘方运算计算即可得到结果;④原式利用同底数幂的除法法则计算即可得到结果.【解答】解:①3x3•(﹣2x2)=﹣6x5,正确;②4a3b÷(﹣2a2b)=﹣2a,正确;③(a3)2=a6,错误;④(﹣a)3÷(﹣a)=(﹣a)2=a2,错误,则正确的个数有2个.故选B.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.4.计算2x3÷x2的结果是()A.x B.2x C.2x5D.2x6【考点】整式的除法;同底数幂的除法.【分析】根据单项式除单项式的法则,同底数幂相除,底数不变指数相减的性质,对各选项计算后选取答案.【解答】解:2x3÷x2=2x.故选B.【点评】本题比较容易,考查整式的除法和同底数幂的除法法则,熟练掌握运算法则是解题的关键.5.下列各式是完全平方式的是()A.x2﹣x+ B.1+x2C.x+xy+1 D.x2+2x﹣1【考点】完全平方式.【分析】完全平方公式:(a±b)2=a2±2ab+b2.最后一项为乘积项除以2,除以第一个底数的结果的平方.【解答】解:A、x2﹣x+是完全平方式;B、缺少中间项±2x,不是完全平方式;C、不符合完全平方式的特点,不是完全平方式;D、不符合完全平方式的特点,不是完全平方式.故选A.【点评】本题是完全平方公式的应用,熟记公式结构:两数的平方和,再加上或减去它们积的2倍,是解题的关键.6.下列各式中能用平方差公式是()A.(x+y)(y+x)B.(x+y)(y﹣x)C.(x+y)(﹣y﹣x) D.(﹣x+y)(y﹣x)【考点】平方差公式.【专题】计算题.【分析】利用平方差公式的结构特征判断即可得到结果.【解答】解:能用平方差公式是(x+y)(y﹣x)=y2﹣x2,故选B【点评】此题考查了平方差公式,熟练掌握公式是解本题的关键.7.如(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()A.﹣3 B.3 C.0 D.1【考点】多项式乘多项式.【分析】先用多项式乘以多项式的运算法则展开求它们的积,并且把m看作常数合并关于x的同类项,令x的系数为0,得出关于m的方程,求出m的值.【解答】解:∵(x+m)(x+3)=x2+3x+mx+3m=x2+(3+m)x+3m,又∵乘积中不含x的一次项,∴3+m=0,解得m=﹣3.故选:A.【点评】本题主要考查了多项式乘多项式的运算,根据乘积中不含哪一项,则哪一项的系数等于0列式是解题的关键.8.若3x=15,3y=5,则3x﹣y等于()A.5 B.3 C.15 D.10【考点】同底数幂的除法.【分析】根据同底数幂的除法,底数不变,指数相减,可得答案.【解答】解:3x﹣y=3x÷3y=15÷5=3,故选:B.【点评】本题考查了同底数幂的除法,底数不变,指数相减.9.若(x﹣3)(x+4)=x2+px+q,那么p、q的值是() A.p=1,q=﹣12 B.p=﹣1,q=12 C.p=7,q=12 D.p=7,q=﹣12【考点】多项式乘多项式.【分析】此题可以将等式左边展开和等式右边对照,根据对应项系数相等即可得到p、q的值.【解答】解:由于(x﹣3)(x+4)=x2+x﹣12=x2+px+q,则p=1,q=﹣12.故选A.【点评】本题考查了多项式乘多项式的法则,根据对应项系数相等求解是关键.10.下列各式从左到右的变形,正确的是()A.﹣x﹣y=﹣(x﹣y)B.﹣a+b=﹣(a+b)C.(y﹣x)2=(x﹣y)2D.(a﹣b)3=(b﹣a)3【考点】完全平方公式;去括号与添括号.【分析】A、B都是利用添括号法则进行变形,C、利用完全平方公式计算即可;D、利用立方差公式计算即可.【解答】解:A、∵﹣x﹣y=﹣(x+y),故此选项错误;B、∵﹣a+b=﹣(a﹣b),故此选项错误;C、∵(y﹣x)2=y2﹣2xy+x2=(x﹣y)2,故此选项正确;D、∵(a﹣b)3=a3﹣3a2b+3ab2﹣b3,(b﹣a)3=b3﹣3ab2+3a2b﹣a3,∴(a﹣b)3≠(b﹣a)3,故此选项错误.故选C.【点评】本题主要考查完全平方公式、添括号法则,熟记公式结构是解题的关键.完全平方公式:(a±b)2=a2±2ab+b2.括号前是“﹣”号,括到括号里各项都变号,括号前是“+”号,括到括号里各项不变号.二、填空题(共8小题,每小题3分,满分24分)11.计算:(﹣3x2y)•(xy2)=.【考点】单项式乘单项式;同底数幂的乘法.【分析】根据单项式的乘法法则,同底数幂的乘法的性质计算即可.【解答】解:(﹣3x2y)•(xy2),=(﹣3)××x2•x•y•y2,=﹣x2+1•y1+2,=﹣x3y3.【点评】本题主要考查单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式.12.计算:=.【考点】平方差公式.【分析】利用平方差公式a2﹣b2=(a+b)(a﹣b)进行计算即可.【解答】解:原式=﹣(n﹣m)(n+m)=﹣[n2﹣(m)2]=m2﹣n2.故答案是:m2﹣n2【点评】本题考查了平方差公式,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.13.计算:()2007×(﹣1)2008=.【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】先把原式化为()2007×(﹣1)2007×(﹣1),再根据有理数的乘方法则计算.【解答】解:()2007×(﹣1)2008=()2007×(﹣1)2007×(﹣1)=(﹣×1)2007×(﹣1)=﹣1×(﹣1)=.故答案为:.【点评】本题考查了有理数的乘方,解题时牢记法则是关键.14.若代数式2a2+3a+1的值为6,则代数式6a2+9a+5的值为.【考点】代数式求值.【专题】计算题.【分析】由题意列出关系式,求出2a2+3a的值,将所求式子变形后,把2a2+3a的值代入计算即可求出值.【解答】解:∵2a2+3a+1=6,即2a2+3a=5,∴6a2+9a+5=3(2a2+3a)+5=20.故答案为:20.【点评】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.15.当x时,(x﹣4)0等于1.【考点】零指数幂.【专题】计算题.【分析】根据0指数幂底数不能为0列出关于x的不等式,求出x的取值范围即可.【解答】解:∵(x﹣4)0=1,∴x﹣4≠0,∴x≠4.故答案为:≠4.【点评】本题考查的是0指数幂的定义,即任何非0数的0次幂等于1.16.若多项式x2+ax+b分解因式的结果为(x+1)(x﹣2),则a+b的值为.【考点】因式分解的意义.【分析】利用整式的乘法计算(x+1)(x﹣2),按二次项、一次项、常数项整理,与多项式x2+ax+b对应,得出a、b的值代入即可.【解答】解:(x+1)(x﹣2)=x2﹣2x+x﹣2=x2﹣x﹣2所以a=﹣1,b=﹣2,则a+b=﹣3.故答案为:﹣3.【点评】此题考查利用整式的计算方法,计算出的代数式与因式分解前代数式比较,得出结论,进一步解决问题.17.若|a﹣2|+b2﹣2b+1=0,则a=,b=.【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】本题应对方程进行变形,将b2﹣2b+1化为平方数,再根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0”来解题.【解答】解:原方程变形为:|a﹣2|+(b﹣1)2=0,∴a﹣2=0或b﹣1=0,∴a=2,b=1.【点评】本题考查了非负数的性质,两个非负数相加,和为0,这两个非负数的值都为0.18.已知a+=3,则a2+的值是.【考点】完全平方公式.【专题】常规题型.【分析】把已知条件两边平方,然后整理即可求解.完全平方公式:(a±b)2=a2±2ab+b2.【解答】解:∵a+=3,∴a2+2+=9,∴a2+=9﹣2=7.故答案为:7.【点评】本题主要考查了完全平方公式,利用公式把已知条件两边平方是解题的关键.三、解答题(共5小题,满分46分)19.计算:(1)(ab2)2•(﹣a3b)3÷(﹣5ab);(2)3a(2a2﹣9a+3)﹣4a(2a﹣1)【考点】整式的混合运算.【专题】计算题.【分析】(1)原式利用积的乘方与幂的乘方运算法则计算,再利用乘除法则计算即可得到结果;(2)原式先利用单项式乘多项式法则计算,去括号合并即可得到结果.【解答】解:(1)原式=a2b4•(﹣a9b3)÷(﹣5ab)=a10b6;(2)原式=6a3﹣27a2+9a﹣8a+4a=6a3﹣35a2+13a;【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.20.分解因式:(1)m2﹣6m+9;(2)(x+y)2+2(x+y)+1;(3)3x﹣12x3;(4)9a2(x﹣y)+4b2(y﹣x).【考点】提公因式法与公式法的综合运用.【分析】(1)利用完全平方公式即可分解;(2)利用完全平方公式即可分解;(3)首先提公因式3x,然后利用平方差公式分解即可;(4)首先提公因式(x﹣y),然后利用平方差公式分解.【解答】解:(1)m2﹣6m+9=(m﹣3)2;(2)(x+y)2+2(x+y)+1=(x+y+1)2.(3)3x﹣12x3=3x(1﹣4x2)=3x(1+2x)(1﹣2x);(4)9a2(x﹣y)+4b2(y﹣x)=9a2(x﹣y)﹣4b2(x﹣y)=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)•(3a﹣2b).【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.21.先化简,再求值:2(x﹣3)(x+2)﹣(3+a)(3﹣a),其中a=﹣2,x=1.【考点】整式的混合运算—化简求值.【分析】先根据多项式乘多项式的法则以及平方差公式计算,再去括号,然后合并,最后把a、x的值代入计算.【解答】解:原式=2(x2﹣x﹣6)﹣(9﹣a2)=2x2﹣2x+a2﹣21,当a=﹣2,x=1时,原式=2×12﹣2×1+(﹣2)2﹣21=﹣17.【点评】本题考查了整式的混合运算,解题的关键是去括号、合并同类项.22.若2x+5y﹣3=0,求4x•32y的值.【考点】同底数幂的乘法;幂的乘方与积的乘方.【分析】由方程可得2x+5y=3,再把所求的代数式化为同为2的底数的代数式,运用同底数幂的乘法的性质计算,最后运用整体代入法求解即可.【解答】解:4x•32y=22x•25y=22x+5y∵2x+5y﹣3=0,即2x+5y=3,∴原式=23=8.【点评】本题考查了同底数幂的乘法,幂的乘方,积的乘方,理清指数的变化是解题的关键.23.已知:a,b,c为△ABC的三边长,且2a2+2b2+2c2=2ab+2ac+2bc,试判断△ABC的形状,并证明你的结论.【考点】因式分解的应用.【专题】几何图形问题;探究型;因式分解.【分析】由2a2+2b2+2c2=2ab+2ac+2bc分组因式分解,利用非负数的性质得到三边关系,从而判定三角形形状.【解答】解:△ABC是等边三角形.证明如下:因为2a2+2b2+2c2=2ab+2ac+2bc,所以2a2+2b2+2c2﹣2ab﹣2ac﹣2bc=0,a2﹣2ab+b2+a2﹣2ac+c2+b2﹣2bc+c2=0,(a﹣b)2+(a﹣c)2+(b﹣c)2=0,所以(a﹣b)2=0,(a﹣c)2=0,(b﹣c)2=0,得a=b且a=c且b=c,即a=b=c,所以△ABC是等边三角形.【点评】此题是一道把等边三角形的判定、因式分解和非负数的性质结合求解的综合题.考查学生综合运用数学知识的能力.。
第十四章 整式的乘除与因式分解
一、选择题(每小题3分,共36分) 1. 计算()2
3
2-a 的结果是 ( )
A. 5
2a B. 5
4a C. 6
2a - D. 6
4a 2. 下列运算正确的是 ( )
A. ab b a 532=+
B. 1535a a a =⋅
C. ()33
62a a = D. 9
36a a a =+
3. 计算等于()3432--x x 等于 ( ) A. 2
3
912x x +- B. 2
3
912x x -- C. 2
2
912x x +- D. 2
2
912x x -- 4. 一个长方体的长、宽、高分别是,,2,4-3a a a ,它的体积等于 ( ) A. 2
3
43a a - B. 2
a C. 2
2
86a a - D. a a 862
- 5. 已知:a+b=m,ab=-4,化简(a-2)(b-2)的结果是 ( ) A. 6 B. 2m-8 C. 2m D. -2m
6. 已知k x a ++162是完全平方式,则常数k 等于 ( ) A. 64 B. 16± C. 32 D. 16
7. 下列各因式分解正确的是 ( ) A. )2)(2()2(22+-=-+-x x x B. ()2
2112-=-+x x x
C. ()2
212144-=+-x x x D. ()()2242
+-=-x x x x x
8. 下列多项式中,含有因式()1+y 的多项式是 ( ) A. 2
2
32x xy y -- B. ()()2
211--+y y
C. ()()
1122
--+y y D. ()()11212
++++y y
9. 把多项式()()()111++-+m m m 提取公因式后,余下的部分是( ) A. 1+m B. m C. 2 D. 2+m 10. 下列各式能用完全平方公式进行分解因式的是 ( ) A. 12
+x B. 122
-+x x C. 12
++x x D. 442
++x x
11.分解因式y x y xy x -++-222的结果是 ( ) A. ()()1+--y x y x B. ()()1---y x y x C. ()()1+-+y x y x D. ()()1--+y x y x
12.已知1=-b a ,则b b a 22
2--的值为
A. 4
B. 3
C. 1
D. 0
一、填空题(每小题3分,共18分) 13.分解因式:x x 10-22
= .
14.已知42
+-mx x 是一个完全平方式,则=m .
15.已知1,2-==+ab b a ,则=++b ab a 33 ; =+2
2
b a . 16.已知,3,4==n m
a a
,则=+n m a .
17. 观察图填空:各块图面积之和为2
2
23b ab a ++,分解因式为 . 18.已知,,142
2
2
c b a c b a +==++,则ac bc ab +-的值为 三、解答题(共66分) 19.(15分)计算:
(1) ()()
;3)2(2
2
2
x z xy y x ⋅-- (2) ()b a b a 32)53(-+
(3) ()()()y x y x y x 22322
+--+
第17题
20.(10分)因式分解
(1) ()x x -+-24)2(2 (2)()2
2)(9b a b a --+
21.(9分)化简:()()[]()()[]11112+--++-m m m m m m m m .若是任意整数,请观察化简后的结果,你发现原式表示一个什么数? 22.(10分)如图是一个长为2m 、宽为2n 的长方形,沿图中虚线用剪刀均匀分成四块小长方形,然后按图开头拼成一个正方形。
(1)你认为图中的阴影部分的正方形的边长等于多少? (2)观察图你能写出下列三个代数式之间的等量关系吗?
代数式:()().,,2
2
mn n m n m -+
(3)已知,6,7==+mn n m ,求()2
n m -的值。
m
n 图(2
)
n
n
图(1)
23.(10分)仔细阅读下面例题,解答问题:
例题:已知三次三项式m x x +-42
有一个因式是(3+x ),求另一个因式以及m 的值。
解:设另一个因式为()n x +,得m x x +-42
()()n x x ++=3,
则m x x +-42
()n x n x 332+++= ∴n m n 3,43=-=+
解得:.21,7-=-=m n ∴另一个因式为()m x ,7-的值为-21。
问题:(1)若三次三项式652
+-x x
可分解为()()a x x +-2,则=a .
(2)若二次三项式()
522-+bx x 可分解为()()512+-x x ,则=b 。
(3)仿照以上方法解答下面问题:已知三次三项式k x x -+522
有一个因式是()32-x ,求
另一个因式以及k 的值。
24.(12分)两位同学将一个二次三项式分解因式,一位同学因看错了一次项第数而分解成,
()()912--x x 另一位同学因看错了常数项而分解成()()422--x x ,请将原多项式分解因
式。