翅片管式冷凝器计算软件
- 格式:xls
- 大小:34.50 KB
- 文档页数:8
A热流介质T1=64.0→T2=####B冷流介质t1=30.0→T2=####A蒸汽流量W=800.0A蒸汽蒸汽潜热r=1100.0A的比热容C= 2.5水的比热容 4.2循环水用量Y=选取总传热系数K=500.0需换热面积S=m m/s kg/m3j/kg.℃kj/kg kj/kg.℃kj/kg.℃w/m2.℃二、选择换热器型号一、换热器换热面积初算对数平均温差△tm=kg/h 冷凝器热负荷Q=三、换热器传热系数核算1、管内传热系数ai核算管内流速u= 1.0管内水的黏度μ=(30℃-40℃)0.000727选取换热器的内径di=0.02流体密度p=1000.0水的比热容4200.0管内换热系数ai=w/m.℃kj/kg w/m.℃取4到8m kg/m3mPa.s管内水的热导系数λ=(30℃-40℃)0.62.壳程传热系数ao的核算(壳程流体为蒸汽,工业多为膜状冷凝)A热流蒸汽的冷凝热1100.0A在冷凝温度液态热导系数λ=0.2当管内流立式冷凝器壳程的传热系数ao=冷凝液密度р790.0液化温度的黏度Ч0.35重力加速度g 9.8饱和蒸汽温度与壳壁温度差⊿t5.03.总传热系数K的核算循环水阻垢系数Rsi=0.00034传热管长度L 3.0换热器总传热系数核算Ko=A热流蒸汽的阻垢系数Rso=0.00017换热管外径do 25.0换热管外径di20.027510.3大于10000为湍流w/m2.℃1543.91687.8w/m2.℃500.7w/m2.℃。
水处理设计中常用计算软件在水处理设计中,常用的计算软件有:1.AQUACHEM:AQUACHEM是一款广泛应用于水处理工程的软件,它可以用于计算和模拟水的化学平衡、水质分析、腐蚀控制、水垢和颗粒物沉积、脱气、气体和溶解氧过饱和、烟气净化和石油提炼等方面。
它提供了现代化的界面和直观的用户交互界面,可以轻松进行水处理设计、优化和管理。
2.WATSIM:WATSIM是模拟水流动和水质特性的计算软件。
它是一款用于输水系统设计和水质模拟能力强大的软件,可用于模拟和分析复杂的输水系统、计算输水管道压力和流量、优化输水系统设计等。
WATSIM还可以模拟水质变化、通风和氧化还原等动态过程。
3.EPANET:EPANET是一款广泛应用于水力分析和水质模拟的计算软件。
它可以用于计算供水系统中的水流、压力和水质变化,以评估系统的性能和效率。
EPANET提供了一套强大的工具,用于模拟不同的供水条件、优化水力设计和评估系统的安全和可靠性。
4.GPS-X:GPS-X是一款用于废水处理系统建模和模拟的软件。
它可以用于评估不同的处理选项、优化系统设计、模拟废水流量和质量的变化,并提供数据管理和结果分析功能。
GPS-X支持多种处理过程和反应方程,可以帮助设计师更好地理解和优化废水处理过程。
5. Minitab:Minitab是一款用于统计分析和数据可视化的软件。
在水处理设计中,Minitab可以用于分析和解释实验数据、评估水质参数之间的关系、制定最佳的处理方案等。
Minitab提供了一系列强大的统计工具,可以帮助设计师更好地理解和优化水处理过程。
总的来说,在水处理设计中,计算软件是设计过程中不可或缺的工具。
这些软件提供了强大的计算、模拟和分析功能,可以帮助设计师更好地理解和优化水处理系统的性能和效率。
通过使用这些软件,设计师可以更准确地估计处理器件的尺寸、流量和水质要求,提高系统的可靠性和效率。
翅片管式热交换器的ε-NTU法换热量计算公式以及在空调机开发中的应用陆东铭【摘要】本文列表给出了翅片管式换热器分别作为冷凝器(干面)和蒸发器(湿面)时的ε-NTU法换热量计算公式,并阐述了其在空调机开发中的两个实际应用.【期刊名称】《家电科技》【年(卷),期】2018(000)009【总页数】3页(P77-79)【关键词】空调;ε-NTU法;换热量【作者】陆东铭【作者单位】上海三菱电机·上菱空调机电器有限公司上海 200135【正文语种】中文1 引言热交换器是空调机的四大部件之一,是影响空调机性能的重要因素。
采用ε-NTU 法对热交换器换热性能进行预测,可以对比不同热交换器的性能;尤其在系列空调机的开发中,通过对比所有热交换器的性能,使用最恶劣条件进行评价的原则,选取相应的热交换器作为代表来评价,可以大幅节约开发时间,提高开发效率。
当制冷系统的变化比较小时,采用ε-NTU法可以对制冷系统的性能进行简易计算。
本论文给出了采用ε-NTU法计算翅片管式热交换器换热量的方法,并阐述了ε-NTU法在实际空调机开发中的两个主要应用。
2 采用ε-NTU法对翅片管式热交换器进行换热量计算的方法2.1 翅片管式空气-制冷剂热交换器的几何学构成要素标准的翅片管式空气-制冷剂热交换器如图1所示,管内侧流体为制冷剂,管外侧流体为空气。
以管外径为φ=9.52mm的某热交换器为例,其几何学构成要素如下:管外径do=9.52mm、管壁厚tp=0.28mm、扩管率dR=1.05;管内径(扩管后)di=dR•do-2•tp=9.436mm;管段数NT=20、管列数NR=2;管段距S1=25.4mm、管列距S2=22.0mm;翅片壁厚tF=0.095mm、翅片片距Fp=1.5mm、NF翅片片数565;翅片翻边直径dc=do•dR+2•tF=10.186mm;翅片高度L1=NT•S1=508mm;翅片宽度L2=NR•S2=44mm;翅片积幅L3=NF•Fp=847.5mm;管抽取数Pr为0根。
TRNSYS软件介绍中国建筑科学研究院2009-12-8主讲内容软件概述建筑物全年动态负荷模拟计算系统模拟计算软件操作-实例介绍1. 软件概述一、TRNSYS软件开发的背景 开发机构TRNSYS(Transient System Simulation)软件是瞬时系统模拟程序,最早由美国Wisconsin-Madison大学Solar Energy 实验室(SEL)开发,并在欧洲一些研究所(CSTB、TRANSSOLAR)的共同研究下逐步完善的。
另外,美国的Thermal Energy SystemsSpecialists(TESS)专门开发出针对暖通空调系统的各种模块。
TRNSYS软件的特点¾模块的源代码开放,用户根据各自的需要修改或编写新的模块并添加到程序库中;¾计算灵活,模块化开放式结构,用户可以根据需要任意建立连接,形成不同系统的计算程序;¾形成终端用户程序,为非TRNSYS用户提供方便;¾输出结果可在线输出100多个系统变量,可形成EXCEL 计算文件;¾与EnergyPlus、MATLAB等其它软件建立链接。
软件构成TRNSYS由一系列的软件构成,主要有:Trnsys Studio;TRNBuild;TRNEdit;TRNOPT等。
TRNSYS软件是模块化的动态仿真程序,所谓模块化,即认为所有系统均由若干个小的系统(即模块)组成,一个模块实现某一种特定的功能,因此,在对系统进行模拟分析时,只要调用实现这些特定功能的模块,给定输入条件,就可以对系统进行模拟分析。
某些模块在对其他系统进行模拟分析时同样用到,此时,无需再单独编制程序来实现这些功能,只要调用这些模块,给与其特定的输入条件就可以了。
Trnsys Studio各种模块各种模块TRNBuildTRNEditTRNEditTRNOPT软件的功能TRNSYS软件功能强大,涉及的范围较广,可对多种系统的运行状况进行动态仿真,主要有:z建筑物全年的逐时能耗;z优化空调系统方案,预测系统运行费用;z太阳能(太阳能光热和光伏系统)模拟计算;z地源热泵空调系统模拟计算;z地板辐射供暖、供冷系统模拟计算;z蓄冷、蓄热系统模拟计算;z冷热电联产系统模拟计算;z燃料电池系统模拟计算;2.建筑物全年动态负荷模拟计算TRNBuild¾具有常用的墙体、窗户数据库。
冷凝器设计计算冷凝器换热计算第一部分:设计计算、设计计算流程图由翅片管参数计算f f、f b、f t、肋化比B 重设"I * 计算风量V a,假设迎面风速3 f,求出3mxw一IAbs(t -1 ')/tw<0.01是____________ _____________计算传热系数K、传热温差A t-------------------------------- --------------------------------- m计算传热面积F、长A、宽B、高C、翅片重G F、铜管重G t是VAbs(3f-3f,)/3f<0.01计算风侧阻力APf冷媒侧压降△ P2卜~|翅片型式保存结果二、设计计算(以HLR 4 5S为例)1、已知参数换热参数:冷凝负荷:Q尸6 1 0 00W冷凝温度:t k=50°CK环境风温度:灼=3 5C冷凝器结构参数:铜管排列方式:正三角形叉排翅片型式:开窗片,亲水膜铜管型式:光管铜管水平间距:§=25.4m m铜管竖直方向间距:&=22m m紫铜光管外径:q=9.52m m铜管厚度:&t=0。
35m m翅片厚度:5f=0°115m m翅片间距:S f= 1.8m m冷凝器尺寸参数排数:N C=3排每排管数:N B=5 2排2、计算过程1)冷凝器的几何参数计算翅片管外径:d = d + 25 =9。
75 m m铜管内径:d = d -5 =8.82 mm当量直径:d =翌=4(S i —f―七)=3.04 mm eq U 2(S] -d b) + (S f -5,)单位长度翅片面积:f = 2(S S -^d bL)/S x 10-3 =0.5 37 m2/m f 1 2 4 f单位长度翅片间管外表面积:f b=N d b (S f -5 f)/s: 10-3 = 0 .0286 m2/m单位长度翅片管总面积:七=f f + f 广0。
冷凝器的功能是把由压缩机排出的高温高压制冷剂气体冷凝成液体,把制冷剂在蒸发器中吸收的热量(即制冷量)与压缩机耗功率相当的热量之和排入周围环境中。
因此,冷凝器是制冷装置的放热设备,其传热能力将直接影响到整台制冷设备的性能和运行的经济性。
冷凝器按其冷却介质可分为水冷式、空冷式和水/空气混合式。
由于空冷式冷凝器使用方便,尤其适合于缺水地区,在小型制冷装置(特别是家用空调)中得到广泛应用。
空冷式冷凝器可分为强制对流式和自然对流式两种。
自然对流式冷凝器传热效果差,只用在电冰箱或微型制冷机中。
下面仅讨论强制对流式冷凝器。
二、强制对流空气冷却式冷凝器的结构及特点强制对流空气冷却式冷凝器都采用铜管穿整体铝片的结构(因此又称管翅式冷凝器)。
其结构组成主要为——U形弯传热管、翅片、小弯头、分叉管、进(出)口管以及端板等(如图1),其加工工艺流程如图2。
一、空气流量环境温度Tair=35,35℃进出口温差ΔT=10℃,空气进口温度Ti=35℃,空气出口温度T0=45℃,冷凝器中的平均温度Tm=40℃;空气的密度ρm=1.092Kg/m3;空气的定压比热Cp=1.01E+03J/(KgK);冷凝器的热负荷Qk=77000W;空气的体积流量Vair=6.96E+00m3/S二、结构初步规划选定迎面风速Wf=2.5m/s沿气流方向的排数nl=3冷凝器采用正三角*排翅片厚度δf=0.190.19mm 翅片节距Sf=1.8;1.8mm翅片管的纵向距离S1=25mm;翅片管的横向距离S2=21.65mm;翅片管的基管直径Db=9.9mm;单位管长翅片面积Ff=0.515902389m2;单位管长翅片间基管面积Fb=0.0278047m2;单位管长翅片管的总面积F0=0.543707089m2;翅片管的中性面的直径Dm=9.1mm;单位管长内螺纹管的中性面表面积Fm=0.028574m2;翅片管的的内径Di=8.68mm;内螺纹管的内表面积Fi=0.0272552m2;翅化系数β=F0/Fi19.94874699 ;最小截面与迎面截面面积之比0.540244444;最小截面的风速Wmax=4.627534861m/s;冷凝器的当量直径Deq=2.909754638mm由冷凝器的平均温度Tm,查空气的物性参数动力粘度νf=1.75E-05m2/s导热系数λf=0.0264W/(Mk)密度ρf=1.0955m3/K g故雷偌数Ref=7.69E+02长径比L/Deq=22.32146971 对于平套片管空气的换热系数A=0.518-0.02315*L/Deq+0.000425*(L/Deq)^2-3E-6*(L/Deq)^3 A=0.179648497C=A*(1.36-0.24*Ref/1000)2.09E-01n=0.45+0.0066*L/Deq0.5973217m=-0.28+0.08*Ref/1000-2.18E-01 对于*排换热系数比顺排高10%则α0=1.1*0.02643*C*Refn/Deq*(L/Deq)^m5.62E+01W/(M2k) 对于*排管簇L=S125mmB=S221.65mmρ=B/Db2.186868687ρ'=1.27*ρ*(L/B-0.)^0.52.56768664h'=Db*(ρ'-1)*(1+0.35*lnρ')/20 .010321268m=(2α0/(λf*δf))^0.553.99064795故翅片的效率ηf=th(mh’)/mh0.907911856表面效率ηs=1-Ff/F0(1-ηf)0.912621162 计算管内的换热系数αi假设壁温Tw=50.5℃液膜平均温度Tm=52.25温度rs1/4Bm4020.19271.655019.81166.84Tm19.7252865.75775 管内换热系数αi=0.683*rs1/4*Bm/di1/4*(Tk-Tw)-1/4 忽略铜管管壁和接触热阻,由管内外热平衡:αi*3.14*di*(Tk-Tw)=ηs*α0*f0*(Tw-Tm)0.683*rs1/4*Bm/di1/4*(Tk-Tw)-1/4*3.14*di*(Tk-Tw)=ηs*α0*f0*(Tw-Tm)Tw'=4.97E+01℃Δ=|Tw'-Tw|/Tw8.19E-01取壁温Tw=5.05E+01℃则αi=2.12E+03W/(M2k)5计算传热系数及传热面积取污垢系数ri=0,r0-0.0086(M2k)/W 计算传热系数K0=1/((1/αi+ri)*f0/fi+δ/λ*f0/fm+1/(ηs*α0))3.46E+01传热温差Θm=(ta2-ta1)/ln((tk-ta1)/(tk-ta2))13.38303969℃所需传热面积F=Qk/(K0*Θm)1.66E+02m2翅片管的总长L=F/f03.06E+02m 确定冷凝器的结构尺寸,选取垂直方向的排数,沿气流方向的排数NL N=40则宽A=L/(N*NL*2)1.27E+00m取A=1.4m则传热面积A'=12.2103296m2则实际风速Wf=2.49E+00m/s 计算空气侧阻力气流流过横向整套片的阻力损失由于*排比顺排阻力要大20%Δpa=(1+0.2)*9.81*A*(L/Deq)*(ρ*νmax)1.746.89073292Pa风机的全压P=50.31417042Pa选两台CFE710-6T_-C10-S 风量大概15000*2重新计算压力13150m3/h迎面风速Wf=2.609127m/s迎面风速Wmax=4.82953m/sΔpa=(1+0.2)*9.81*A*(L/Deq)*(ρ*νmax)1.77.06E+01Pa蒸发器的校核计算热负荷Q0=54000W制冷剂流量g=354g/s内表面的热流量qi=4422.485041W/m2取质量流速g=150kg/(m2s)总流通面积A=0.00236m2每根管的有效流通面积Ai=5.91438E-05m2蒸发器的分路数Z=39.90275631取Z'=40每一分路R22流量Gd=0.00885kg/s查的B值B=1.38则αi=B*Gd^0.2*qi^0.6/di^0.61424.149983 2、确定空气在蒸发器的状态变化由进口的空气参数t1=7℃,ts1=6℃,查焓湿图得I1=20.56KJ/kgd1=5.368g/kg干空气的密度ρρ=1.2Kg/m3空气的定压比热容Cp=1.005KJ/(kg℃)水蒸气的定压比热容Cp=4.19KJ/(kg℃)出口的干球温度t2由能量守衡Q0=Cp*ρ*V*(t2-t1)t2=0.870949℃假设出口的干球温度为t2‘=2℃由能量守衡Q0=ρ*V*(I1-I2)I2=14.4003KJ/KgI=Cpg*t+(2500+Cpq*t)*dd=0.00494Kgts2=2.81℃Tw=1.75℃,Iw=12.47KJ/Kg,dw=4.274g/kgTw=1.75℃Iw=12.47KJ/kgdw=4.274g/kg干在蒸发器中空气的平均焓值Im=Iw+(I1-I2)/Ln((I1-Iw)/(I2-Iw))Im=16.76861KJ/kg由Tm可得Tm=4.6℃dm=4.833g/kg求析湿系ξ=1+2.46*(dm-dw)/(tm-tw)ξ=1.482505空气的气体常数Ra=287.4T!=280K进口状态的比容ν1=Ra*T1*(1+0.0016d1)/Pbν1=0.801058m3/kg故空气的体积流量空气侧的换热系数空气的迎面风速Wf=Wf=2.609127m/s则空气侧的换热系数α0=57.8W/(M2k)凝露工况下的翅片效率m=(2*α0*ξ/(λf*δf))^0.5m=47.78611则ηf=ηf=0.926096故凝露工况下的换热系数αj=αj=79.67994W/(M2k)设翅片侧热阻以及翅片与管壁热阻之和4.80E-03m2k/WK0=1/(f0/fi/αi+r+1/αj)3.19E+01传热温差Θm=(t1-t2)/ln((t1-t0)/(t2-t0))6.80519则传热量Q=K0*Θm*F3.61E+04哪有这么麻烦,最简单12平米/hp设计冷凝器,风量10度温差,蒸发器肯定够。
Aspen Plate Fin Exchanger 板翅式换热器软件介绍设计,校核,模拟-板翅式换热器 Aspen Plate Fin Exchanger 软件属于换热器软件套件 Aspen Exchanger Design & Rating (EDR)的一个子软件,专门用于板翅式换热器的设计,校核与模拟。
处理的板翅式换热器可以满 足多种现代工业气体过程的可盈利运营,同时还可以处理大型的 LNG 生产设计。
Aspen Plate Fin Exchanger 是 Aspen Tech 旗下 aspenONE Process Engineering 应用套件的核 心组件之一。
*从 aspenONE V8 之后,MUSE 产品将会完全被 Aspen Plate Fin Exchanger 替代。
软件主要优点如下: 基于强大的理论基础: 基于强大的理论基础:软件的核心模块和计算式都是基于拥有超过 35 年经验的 HTFS(英国传热 与流体协会)的实验研究成果,确保用户进行最为准确和可靠的设计; 物性数据计算: 物性数据计算:用户可以使用 B-JAC,COMThermol 和 Aspen Properties 三种物性数据库。
提供 超过 15000 种组分和 30 多种气液平衡计算方法,可处理单相或两相的计算; 一致的用户界面:继承了 MUSE 的计算引擎同时采用了 EDR 产品友好、方便、统一的界面; 一致的用户界面 导入数据: 从 HYSYS 导入数据:支持将 HYSYS 流程中的换热器流股和物性直接导入; 先进计算方法:为整体换热器、分布器、管口和封头进行准确的压降计算;支持设计、校核、 先进计算方法 stream by stream 和 layer by layer 模拟计算; 其它功能包括: 支持 SI, US 和 Metric 三种标准单位制和用户自定义单位制;支持最多 20 个流股;支持顺流,逆流 计算;处理复杂的进出口几何尺寸;支持平管、锯齿、波纹和穿孔翅片计算;对两相流体进行适当 的处理;根据用户输入数据生成换热器结构图;在 V8 版本中,将支持同 HYSYS 软件的集成。
收藏!翅片式蒸发器如何最简单的进行计算和仿真??前言:翅片式换热器是制冷系统中最最常用的换热器之一,换热方式是强制式风冷换热器,尤其是家用空调中的蒸发器和冷凝器采用的都是翅片式换热器,而换热器其实又是制冷系统设计中最难的一部分,因为压缩机的匹配和节流阀的匹配可以采用选型软件来完成;而两器的设计需要一定的经验以及一定的计算,难度还是比较大的,我们就利用最简单的方法Excel来进行翅片式蒸发器的设计选型;在制冷系统的设计中,换热的设计是一件非常麻烦的事情,一大堆的计算公式让很多同行望而却步,最郁闷的就是按照这些公式来计算后,发现根本就是不对的或者肯定是跟实际有偏差的;所以很多同行最后都放弃了;也有不少计算软件,但是计算结果准确的肯定是收费的,免费的软件计算出来的还不如自己拿笔来计算,今天我们就简单给各位同行分项下笔者在实际设计中的方法。
笔者的设计一般按照40的传热系数来计算,因为一般的翅片是换热器在额定工况下基本上是这个数据,你按照教科书的算法,算到最后也差不多是这个数值了。
我们做如下关于翅片换热器的结构参数计算表格:我们假如有以下系统的蒸发器需要我们设计:环境工况为7/6℃时候,出风温度4℃/90%,设计一个制冷系统;要求:制冷剂为R22,冷凝温度50℃,过冷度5℃,蒸发温度-1℃,过热度7.9℃,制冷量约为11.5KW;我们选择压缩机为比泽尔4FES-5,,根据压缩机选型软件和系统设计需求,如下参数:我们来看看Excel的计算结果:这里有几个小细节我们讲解下,因为有了压缩机的实际运行功率,我们很容易计算出压缩机的等熵效率,本系统为66.91%,计算出来的排气温度为102.6℃,与压缩机选型软件计算出来的102.1℃偏差也不大。
空气侧的进风温度是7℃/6℃;出风为4℃/90%;蒸发器的换热量=压缩机的制冷量=11790W;有计算公式:Q=K*A*Tm;我们可以假定换热系数为40,我们能得到以下的计算表格:计算出来的换热面积为47.1867m2;通过调整管长、单排管数和排数,我们得到了上述的计算结果,分别为:管长度=1400mm;单排管数量=32排;排数=2;下面我们来利用NIST另外一个非常牛逼的神器:EVAP-COND;来做蒸发器的仿真计算;方法如下:选择制冷剂:R22;蒸发器结构参数的设定:制冷剂参数和空气侧参数的设定:简单的流路设计:风量参数的设计:点击仿真开始,得到如下的结果:得到的流量偏小,我们可以适当缩短单根换热管的长度来减少蒸发器的压力,来提高制冷剂的流量;换热管有1400调整到1100,得到如下的结果:我们查看仿真结果的很多数据:包括制冷剂的进出口温度和压力等数值,这个软件非常方便。
AspenPlatefin板翅式换热器软件介绍Aspen Plate Fin Exchanger 板翅式换热器软件介绍设计,校核,模拟-板翅式换热器 Aspen Plate Fin Exchanger 软件属于换热器软件套件 Aspen Exchanger Design & Rating (EDR)的一个子软件,专门用于板翅式换热器的设计,校核与模拟。
处理的板翅式换热器可以满足多种现代工业气体过程的可盈利运营,同时还可以处理大型的LNG 生产设计。
Aspen Plate Fin Exchanger 是Aspen Tech 旗下 aspenONE Process Engineering 应用套件的核心组件之一。
*从 aspenONE V8 之后,MUSE 产品将会完全被 Aspen Plate Fin Exchanger 替代。
软件主要优点如下:基于强大的理论基础:基于强大的理论基础:软件的核心模块和计算式都是基于拥有超过 35 年经验的 HTFS(英国传热与流体协会)的实验研究成果,确保用户进行最为准确和可靠的设计;物性数据计算:物性数据计算:用户可以使用 B-JAC,COMThermol 和 Aspen Properties 三种物性数据库。
提供超过 15000 种组分和 30 多种气液平衡计算方法,可处理单相或两相的计算;一致的用户界面:继承了 MUSE 的计算引擎同时采用了EDR 产品友好、方便、统一的界面;一致的用户界面导入数据:从 HYSYS 导入数据:支持将 HYSYS 流程中的换热器流股和物性直接导入;先进计算方法:为整体换热器、分布器、管口和封头进行准确的压降计算;支持设计、校核、先进计算方法 stream by stream 和 layer by layer 模拟计算;其它功能包括:支持 SI, US 和 Metric 三种标准单位制和用户自定义单位制;支持最多 20 个流股;支持顺流,逆流计算;处理复杂的进出口几何尺寸;支持平管、锯齿、波纹和穿孔翅片计算;对两相流体进行适当的处理;根据用户输入数据生成换热器结构图;在 V8 版本中,将支持同 HYSYS 软件的集成。
EVAP-COND软件应用手册一.编制目的:对EVAP-COND软件进行详细应用介绍,使研发工程师学会使用该软件,在设计初期预估换热器的性能。
二.简介及用途1. 简介EVAP-COND是一个软件包,包含NIST的翅片管蒸发器和冷凝器的仿真模型。
EVAP-COND 的帮助菜单中提供了有关程序的功能和如何使用它的信息。
这些指令包括准备输入数据,执行程序,并检查模拟结果。
2.用途:管的管或管截面模拟一维的,非均匀的气流分布制冷剂分布的模拟制冷剂回路的优化冷凝器模型能够模拟临界点以上REFPROP8制冷剂性能11制冷剂和混合制冷剂:R22,R32,R134A,R290,R404A,R407C,R410A,R507A,R600A,R717,R744三.详细说明1.软件界面软件安装后的初始界面。
注:软件关闭后重启时,可能会重新安装一次,需保证安装文件在第一次安装时的目录。
2. 选择制冷剂点击点击图中圆圈所示位置,或选择菜单栏中“Edit—>Refrigerant Selection”选项,弹出制冷剂选择页面,选择合适的制冷剂。
3.换热器设计点击图中圆圈所示位置,或选择菜单栏中“Edit—>Coil Design”选项,弹出换热器设计对话框,输入换热器的各项参数。
将换热器参数输入完整之后,点击确定,弹出管路布置界面。
对于蒸发器而言,图示上部位制冷剂进口,下部为制冷剂出口,管路布置时从上往下布置,冷凝器相反。
将鼠标放到图中所示管路上,拖动至相邻的管上,即可完成管路排布,以G96E1000蒸发器为例,布置完成后如下图所示。
若想去除某段管路,双击这段管路的两端即可去除。
最多可算5排换热器,总共最多可算130根换热管,即最多5排26列公制、英制单位,默认公制铜管类型,可选光管和内螺纹管,我公司用内螺纹管翅片类型,可选平片、波纹片、开缝片和百叶窗片,我公司用平片风量和风机功率4.修正系数点击图中圆圈所示位置,或选择菜单栏中“Edit —>Correction Parameters ”选项,弹出修正系数对话框,可输入换热器的修正系数,一般默认为1不变。