功分器设计--基本理论
- 格式:ppt
- 大小:921.00 KB
- 文档页数:19
功分器现在有如下几种系列[11]:1、400MHz-500MHz 频率段二、三功分器,应用于常规无线电通讯、铁路通信以及450MHz 无线本地环路系统。
2、800MHz-2500MHz 频率段二、三、四微带系列功分器,应用于GSM /CDMA/PHS/WLAN 室内覆盖工程。
3、800MHz-2500MHz 频率段二、三、四腔体系列功分器,应用于GSM /CDMA/PHS/WLAN 室内覆盖工程。
4、1700MHz-2500MHz 频率段二、三、四腔体系列功分器,应用于PHS/WLAN 室内覆盖工程。
5、800MHz-1200MHz/1600MHz-2000MHz 频率段小体积设备内使用的微带二、三功分器。
这里介绍几种常见的功分器:一、威尔金森功分器 我们将两分支线长度由原来的4λ变为43λ,这样使分支线长度变长,但作用效果与4λ线相同。
在两分支线之间留出电阻尺寸大小的缝隙,做成如图1-1所示结构。
图1-1 威尔金森功分器二、变形威尔金森功分器将威尔金森功分器进行变形,做成如图1-2所示结构。
两圆弧长度由原来的4λ变为43λ,且将圆伸展开形成一个近似的半圆。
每个支路通过2λ传输线与隔离电阻相连,这样做虽然会减小电路的工作带宽,但使输出耦合问题得到了解决,而且可以用于不对称,功分比高的电路,隔离电阻的放置更加容易,且两支路间的距离足够大,在输出口可直接接芯片。
图1-2 变形威尔金森功分器三、混合环混合环又称为环形桥路,它也可作为一种功率分配器使用。
早期的混合环是由矩形波导及其4个E-T 分支构成的,由于体积庞大已被微带或带状线环形桥路所取代。
图1-3为制作在介质基片上的微带混合环的几何图形,环的平均周长为 23g λ,环上有四个输出端口,四个端口的中心间距均为4g λ。
环路各段归一化特性导纳分别为a, b, c ,四个分支特性导纳均为0Y 。
这种形式的功率分配器具有较宽的带宽,低的驻波比和高的输出功率。
功分器的设计制作与调试一、设计制作功分器的原理功分器,也称为功率分配器,是一种用来分配输入功率到多个输出端口的无源器件。
在无源器件中,当我们需要将输入功率按照一定比例分配到多个输出端口时,功分器就可以起到很好的作用。
标准的功分器是一个三端口元件,包括一个输入端口和两个输出端口。
功分器的输入功率将被均匀地分配到两个输出端口上,且输出端口之间相互隔离,不会有能量交流。
设计制作功分器的步骤如下:1.确定功分器的工作频率范围:功分器的设计需要根据具体的应用需求来确定工作频率范围。
功分器的频率范围可以从几百兆赫兹到几十吉赫兹不等。
2.选择功分器的阻抗:功分器的阻抗需要与输入输出系统的阻抗相匹配,通常选用50欧姆。
3.设计功分器的结构:功分器的结构大致可以分为两种,一是二分支结构,二是平衡树状结构。
a.二分支结构是指将输入驻波器通过阻抗转换,分为两个并行的输出通路,使得输入功率均匀地分配到两个输出端口。
b.平衡树状结构则是通过铁氧体等元件来实现功分,具有更高的功分精度和更宽的工作频率范围。
4.确定工艺流程:根据功分器的结构和应用需求,确定制作工艺,如集成电路制作技术或者微带线技术等。
5.制作功分器:根据确定的工艺流程,进行制作。
制作功分器的材料通常采用高频电路工艺中的常见材料,如铝、金、铜等。
6.调试功分器:将制作好的功分器与测试仪器连接,通过测试仪器测量功分器的性能指标,如功分精度、输入输出阻抗等。
调试功分器的步骤如下:1.通过测试仪器测量功分器的插入损耗:将功分器的输入和输出端口连接到测试仪器上,通过测试仪器测量功分器的插入损耗,即输入功率与输出功率之间的损耗。
2.测量功分器的测量精度:通过测试仪器测量功分器的功分精度,即两个输出端口之间的功分误差。
3.测量功分器的输入输出阻抗:通过测试仪器测量功分器的输入输出阻抗,保证功分器的阻抗与输入输出系统的阻抗相匹配。
4.优化功分器的性能:根据测试结果,对功分器的结构和参数进行优化,以提高功分器的性能指标。
⼀个1.1~1.6GHz的威尔⾦森功⼀分四功分器设计威尔⾦森功分器设计的理论知识如下:其中k为端⼝2与端⼝3的功率分配⽐,⼀般使⽤的情况,都是2,3端⼝功率相等。
所以k⼀般都为1.在实际使⽤中,⼀般端⼝都是取50欧姆。
所以为50欧姆, R2,R3也为50欧姆;⽽ , 为端⼝的分路并最终接地,所以他们为100欧姆。
则威尔⾦森功分器的关键的技术只是1/4波长传输线的阻抗变换技术。
因为已知 , 和R2,R3,所以,便可以根据公式计算出来为70.7欧姆。
然后隔离电阻R,可以计算得到为100欧姆。
另外⼀般在会在端⼝2,端⼝3引出⼀截适当长度的50欧姆微带线,⽤于焊接⽅便。
所以⼀般的功分器结构会是下图这样:设计步骤:1.选择相应的pcb,得到其厚度,介电常数,正切损耗⾓等参数。
2.使⽤ADS的line-cal软件,计算中⼼频率1.414GHz的50欧姆阻抗时,70.7欧姆阻抗时的宽度W1, 和W2 。
以及计算70.7欧姆,电⽓长度为90度(1/4波长)时对应的微带线长度。
这样使⽤这些数据便可以设计相应的⼀分⼆功分器了。
⼀分四功分器则在原来⼀分⼆的功分器基础上复制到输出端即可。
另外在布线的时候,需要注意线条的间距,不宜过近导致发⽣耦合问题。
建议每条微带线间应有2倍线宽或2倍板⼦厚度及以上的距离。
最后得到PCB图形如下:其性能在4个输出端⼝是⼀样的,所以这⾥只展⽰2端⼝如下:可以看出其每个端⼝的回损都有在-10以下,隔离度都在在-15dB以下。
传输损耗S21为6.6 。
性能说不好很好,但也能⽤。
另外其每个端⼝相位平衡度都重合,其⽤作合路器的时候,性能还算ok。
功分器的设计与仿真功分器是一种被广泛应用于射频和微波通信系统中的无源分配器件。
它能够将输入功率平均分配到多个输出端口上,同时保持较高的功率分配均匀度和良好的阻抗匹配特性。
功分器的设计与仿真是确保其性能和可靠性的关键步骤。
下面将介绍功分器的设计过程以及在仿真中所需要考虑的内容。
1.功分器设计的基本原理功分器的基本原理是将输入功率平均分配到多个输出端口上。
常见的功分器结构包括两分、三分和四分结构。
其中,两分结构包含一个输入端口和两个输出端口;三分结构包含一个输入端口和三个输出端口;四分结构包含一个输入端口和四个输出端口。
功分器的设计要满足以下几个基本要求:-分配均匀度:要求各输出端口上的功率分配尽可能均衡。
-阻抗匹配:要求输入端口和各输出端口的阻抗匹配,以减小功分器对系统整体的影响。
-衰减损耗:要求功分器的损耗尽可能小,以确保输入功率能够尽量传递给输出端口。
2.功分器设计的流程-确定工作频率:确定功分器所工作的频率范围。
-选择功分器结构:根据应用需求和系统限制选择合适的功分器结构,比如决定是采用两分、三分还是四分结构。
-确定端口阻抗:根据系统要求和端口特性,确定功分器的输入端口和输出端口的特性阻抗。
-计算功分器的设计参数:通过理论计算和仿真工具,计算出功分器的长度和宽度等关键参数。
-优化和调整参数:根据仿真结果,优化和调整功分器的设计参数,以满足系统要求。
-确定材料和工艺:根据功分器的设计参数和要求,选择合适的材料和工艺。
-制备并测试样品:根据设计要求制备功分器样品,并进行实验测试,优化设计。
3.功分器的仿真内容功分器的仿真是设计过程中十分重要的一步,可以通过仿真工具来验证设计效果和参数。
在功分器的仿真中,需要考虑以下内容:-功分器的S参数:通过仿真计算和分析功分器的S参数,包括S11、S21等参数,以评估功分器的性能和阻抗匹配特性。
-功分器的功率分配均匀度:通过仿真计算和分析各输出端口上的功率分配均匀度,以评估功分器的性能。
功分器现在有如下几种系列[11]:1、400MHz-500MHz 频率段二、三功分器,应用于常规无线电通讯、铁路通信以及450MHz 无线本地环路系统。
2、800MHz-2500MHz 频率段二、三、四微带系列功分器,应用于GSM /CDMA/PHS/WLAN 室内覆盖工程。
3、800MHz-2500MHz 频率段二、三、四腔体系列功分器,应用于GSM /CDMA/PHS/WLAN 室内覆盖工程。
4、1700MHz-2500MHz 频率段二、三、四腔体系列功分器,应用于PHS/WLAN 室内覆盖工程。
5、800MHz-1200MHz/1600MHz-2000MHz 频率段小体积设备内使用的微带二、三功分器。
这里介绍几种常见的功分器:一、威尔金森功分器我们将两分支线长度由原来的变为,这样使分支线长度变长,但作4λ43λ用效果与线相同。
在两分支线之间留出电阻尺寸大小的缝隙,做成如图1-14λ所示结构。
图1-1 威尔金森功分器二、变形威尔金森功分器将威尔金森功分器进行变形,做成如图1-2所示结构。
两圆弧长度由原来的变为,且将圆伸展开形成一个近似的半圆。
每个支路通过传输线与4λ43λ2λ隔离电阻相连,这样做虽然会减小电路的工作带宽,但使输出耦合问题得到了解决,而且可以用于不对称,功分比高的电路,隔离电阻的放置更加容易,且两支路间的距离足够大,在输出口可直接接芯片。
图1-2 变形威尔金森功分器三、混合环混合环又称为环形桥路,它也可作为一种功率分配器使用。
早期的混合环是由矩形波导及其4个E-T 分支构成的,由于体积庞大已被微带或带状线环形桥路所取代。
图1-3为制作在介质基片上的微带混合环的几何图形,环的平均周长为 ,环上有四个输出端口,四个端口的中心间距均为。
环路各段归一23g λ4g λ化特性导纳分别为a, b, c ,四个分支特性导纳均为。
这种形式的功率分配器0Y 具有较宽的带宽,低的驻波比和高的输出功率。
设计资料项目名称:微带功率分配器设计方法拟制:审核:会签:批准:二00六年一月微带功率分配器设计方法1. 功率分配器论述:1.1定义:功率分配器是一种将一路输入信号能量分成两路或多路信号能量输出的器件,也可反过来将多路信号能量合成一路输出,此时也可称为合路器。
1.2分类:1.2.1功率分配器按路数分为:2路、3路和4路及通过它们级联形成的多路功率分配器。
1.2.2功率分配器按结构分为:微带功率分配器及腔体功率分配器。
1.2.2根据能量的分配分为:等分功率分配器及不等分功率分配器。
1.2.3根据电路形式可分为:微带线、带状线、同轴腔功率分配器。
1.3概述:常用的功率分配器都是等功率分配,从电路形式上来分,主要有微带线、带状线、同轴腔功率分配器,几者间的区别如下:(1)同轴腔功分器优点是承受功率大,插损小,缺点是输出端驻波比大,而且输出端口间无任何隔离。
微带线、带状线功分器优点是价格便宜,输出端口间有很好的隔离,缺点是插损大,承受功率小。
(2)微带线、带状线和同轴腔的实现形式也有所不同:同轴腔功分器是在要求设计的带宽下先对输入端进行匹配,到输出端进行分路;而微带功分器先进行分路,然后对输入端和输出端进行匹配。
下面对微带线、带状线功率分配器的原理及设计方法进行分析。
2.设计原理:2.1分配原理:微带线、带状线的功分器设计原理是相同的,只是带状线的采用的是对称性空气填充或介质板填充,而微带线的主要采用的是非对称性部分介质填充和部分空气填充。
下面我们以一分二微带线功率分配的设计为例进行分析。
传输线的结构如下图所示,它是通过阻抗变换来实现的功率的分配。
图1:一分二功分器示意图在现有的通信系统中,终端负载均为50Ω,也就是说在分支处的阻抗并联后到阻抗结处应为50Ω。
如上图匹配网络,从输入端口看Ω==500Z Z in ,而Ω==50//21in in in Z Z Z ,且是等分的,所以1in Z =2in Z ,①处1in Z 、②处2in Z 的输入阻抗应为100Ω,这样由①、②处到输出终端50Ω需要通过阻抗变换来实现匹配。
功分器的设计基础学习知识原理功分器(power divider)是一种被广泛应用于射频与微波领域的无源滤波器元件,可以将一个输入信号分为若干个相等的输出信号。
在微波系统中,功分器主要用于将输入信号平均分配给若干个相同的输出端口,以实现无源网络的分配功率和信号分配。
本文将介绍功分器的设计基础学习知识原理。
功分器的基本原理是通过合理的布局和参数设计,使得输入信号在不同的传输线中以相等的功率进行传输。
功分器的基本结构包括平面微带线功分器、同轴线功分器和混合功分器等。
在平面微带线功分器中,常用的结构包括均匀分配型、反射抑制型和等相位型功分器。
均匀分配型功分器是将输入信号均匀地分配到每个输出端口,其基本结构是通过等长的传输线与耦合结构相连。
反射抑制型功分器是在均匀分配型的基础上引入反相器,以抑制反射信号,提高功分器的整体性能。
等相位型功分器是保持输入信号的相位平衡,使得各个输出端口上的信号具有相同的相位。
同轴线功分器是以同轴线为传输介质的功分器,常用的结构有同轴线变压器和同轴线融合型功分器。
同轴线变压器通过改变传输线的电气长度和宽度,实现信号的等分。
同轴线融合型功分器是将多个同轴线结构集成在一起,从而实现输入信号的分配。
混合功分器是由平面微带线和同轴线结构组合而成的功分器,常用的结构有广角功分器和均匀功分器。
广角功分器是通过引入交叉耦合结构,使得功分器具有宽带特性和较小的尺寸。
均匀功分器是通过调整微带线的宽度和长度,以实现输入信号的均匀分配。
在功分器的设计过程中,需要考虑多个参数,包括输入-输出的匹配、功分比、波导损耗、等效电路等。
通过合理的参数选择和设计优化,可以实现功分器的高效性能和稳定性。
总之,功分器的设计基础学习知识原理主要涉及功分器的基本结构和参数设计,以实现输入信号的均匀分配和相位平衡。
通过不同的结构和设计方法,可以实现功分器的特定要求和性能优化。
功分器的设计范文功分器是一种常见的无线通信电路元件,用于将输入信号分配到多个输出端口上,常用于天线阵列、无线信号接收和传输系统中。
功分器的设计需要结合具体的应用需求和性能指标,本文将从功分器的基本原理、设计流程和优化方法等方面进行详细探讨。
1.功分器的基本原理:功分器的基本原理是将输入信号经过特定的网络分配到多个输出端口上,使得每个输出端口上的功率尽可能相等。
常见的功分器有微带功分器和负荷耦合功分器两种类型。
微带功分器由微带线和阻抗变换网络组成,通过微带线上的特定尺寸和形状来实现不同端口的功率分配。
负荷耦合功分器则是通过负荷和相应的耦合元件来实现功率的分配。
2.功分器的设计流程:(1)确定应用需求:首先需要明确功分器的工作频率范围、输入和输出阻抗、功率分配比等参数,以确定功分器的基本设计要求。
(2)选择功分器类型:根据应用需求和性能指标选择合适的功分器类型,如微带功分器或负荷耦合功分器。
(3)设计网络参数:根据所选功分器类型,设计微带线或耦合元件的尺寸和参数。
(4)优化设计:通过仿真和实验等方法对功分器进行优化设计,使得功率分配更加均匀,并满足其他性能要求。
(5)制作和测试:根据设计完成PCB板的制作,并进行实测,验证设计的性能指标和工作频率范围。
3.功分器的优化方法:(1)耦合元件的优化:负荷耦合功分器中,耦合元件的参数对功率分配有较大影响,可以通过仿真和试错法来得到较优的耦合元件参数。
(2)反馈网络的设计:通过添加适当的反馈网络,可以改善功分器的频率响应和工作稳定性。
(3)多级结构的设计:将多个功分器级联,可以实现更细致的功率分配和增强功分器的带宽性能。
(4) 调控电路的设计:通过添加可调控的电路结构,如 PIN diode 或变容二极管等,可以实现功分器的可调功分功能。
(5)高精度制作工艺:利用先进的微加工技术和高精度制作工艺,如光刻和无线电频率电子束均匀在生长环境的真空中被扫描的实验技术(EBL),可以提高功分器的性能和稳定性。
威尔金森功分器设计威尔金森(Wilkinson)功分器是一种被广泛应用于微波和射频电路中的功率分配器。
它可以将输入功率均匀地分配到多个输出端口上,同时保持相对较低的插入损耗和反射损耗。
该设计是由威尔金森在1960年首次提出的,至今仍被广泛使用。
威尔金森功分器的基本原理是利用两个负载和两个耦合器来实现功率的分配。
它的结构简单,由一个中央传输线和两个分支传输线组成。
中央传输线被连接到输入端口,而分支传输线则与两个输出端口相连。
两个耦合器被用来连接中央传输线和分支传输线,以实现功率的分配。
在威尔金森功分器中,输入功率通过中央传输线传输到两个分支传输线上。
在分支传输线的连接点处,耦合器将一部分功率耦合到负载上,同时将另一部分功率传输到另一个分支传输线上。
这样,输入功率就被均匀地分配到两个输出端口上。
为了保持较低的插入损耗和反射损耗,威尔金森功分器要求分支传输线具有相同的特性阻抗,并且耦合器能够实现理想的功率分配。
在实际设计中,可以使用微带线、同轴电缆或波导等不同的传输线类型来实现威尔金森功分器。
威尔金森功分器的设计需要考虑多个参数,包括特性阻抗、分支传输线的长度和宽度、耦合器的设计等。
通过合理选择这些参数,可以实现所需的功率分配比例和频率响应。
尽管威尔金森功分器在功率分配方面表现出色,但它也存在一些限制。
首先,它只能实现功率的均匀分配,不能实现不同比例的功率分配。
其次,威尔金森功分器的设计需要考虑较多的参数,对于频率较高的应用来说,设计和制造的难度会增加。
总之,威尔金森功分器是一种常用的功率分配器,广泛应用于微波和射频电路中。
它的设计原理简单,通过合理选择参数可以实现所需的功率分配比例。
然而,设计师在使用威尔金森功分器时需要考虑一些限制,以确保其性能和可靠性。
功分器的设计制作与调试原功分器是一种用于分配输入功率到多个输出端口的无源器件。
它广泛应用于无线通信系统、雷达系统、卫星通信系统等领域。
1.需求分析:初步确定功分器的频率范围、输入功率和输出端口数目等参数。
根据实际需求,选择合适的设计方案。
2.设计理论:根据功分器的工作原理,通过理论计算和仿真,确定功分器的主要设计参数,如输入阻抗、输出阻抗、功分比等。
3.组件选取:根据设计理论确定的参数,选取合适的器件和元件,如功分器结构中的耦合器、衰减器、隔离器等。
4.布局设计:根据选取的器件和元件规格,进行功分器的布局设计。
在设计过程中要考虑排布的紧凑性、尽量减小端口之间的串扰和互相影响。
5.制作工艺:将布局设计图转化为PCB板图,并进行PCB板的制作。
在制作过程中,要保证板厚、质量符合要求,并注意PCB板的阻抗匹配和分布电容等问题。
6.组件安装:将设计好的器件和元件按照布局图的要求进行精确安装。
安装过程中要注意焊接质量和对器件的保护。
7.调试测试:完成功分器的制作后,需要进行调试测试。
通过网络分析仪等测试仪器,检测功分器的各个指标是否符合设计要求,如S参数、功率分配准确性、隔离度等。
8.故障排除:如果在调试测试中发现功分器存在问题,需要对问题进行分析和定位,进一步调整和优化。
可以采取改变元件参数、考虑布局优化或增加衰减器等措施。
9.性能评估:最后对完成的功分器进行性能评估,比较实际测试结果与设计指标的偏差,评估功分器的性能优劣。
需要注意的是,功分器的设计制作和调试是一个复杂的过程,需要掌握电磁场理论、微波传输线理论、PCB设计和封装、RF测试等知识和技能。
此外,对于高频、高功率的功分器设计,还需要特别注意功率损耗、温度和稳定性等问题,以保证功分器的可靠性和稳定性。
在实际的设计制作和调试过程中,还需要结合实际情况灵活调整,并进行各种验证和验证。
该过程需要良好的设计能力、实践经验和耐心。
功率分配器的设计与仿真学院:物理与电子工程学院专业:通信工程功分器设计实验报告一、实验目的通过设计功分器结构,了解功率分配器电路的原理及设计方法,学习使用软件进行微波电路的设计,优化,仿真。
掌握功率分配器的制作及调试方法。
二设计要求指标通带范围0.9-1.1GHZ。
双端输出,功分比1:1.。
通带内个端口反射系数小于-20dB。
俩个输出端口隔离度小于-20dB。
传输损耗小于3.1dB.三:功分器的基本原理:一分为二功分器是三端口网络结构,如图9-1所示。
信号输入端的功率为P1,而其他两个端口的功率分别为P2和P3。
由能量守恒定律可知:P1=P2+P3。
如果P2(dBm)=P3(dBm),三端口功率间的关系可写成:P2(dBm)=P3(dBm)=(dBm)-3dB。
当然,并不一定要等于P3,只是相等的情况在实际电路中最常用。
因此,功分器可分为等分型(P2=P3)和比例型(P2=kP3)两种类型。
功分器的主要技术指标包括频率范围、承受功率、主路到支路的分配损耗、I/O间的插入损耗、支路端口间的隔离带、每个端口的电压驻波比等。
1)频率范围:这是各种射频/微波电路的工作前提,功分器的设计结构与工作频率密切相关。
必须首先明确功分器的工作频率,才能进行下面的设计。
2)承受功率:在功分器/合成器中,电路元件所能承受的最大功率是核心指标,它决定了采用什么形式的传输线才能实现设计任务。
一股地,传输线承受功率由小到大的次序是微带线、带状线、同轴线、空气带状线、空气同轴线,要根据设计任务来选择用何种传输线。
3〕分配损耗:主路到支路的分配损耗实质上与功分器的主路分配比,Ad有关。
其定义为,式子中:Pin=kPout,例如:两等分功分器的分配损耗是3dB,四等分功分器的分配损耗是6dB。
4)插入损耗:1/0间的插入损耗是由于传输线(如微带线)的介质或导体不理想等因素产生的。
考虑输入端的驻波比所带来的损耗,插入损耗,Ai定义为:Ai=A-Ad。
功分器设计报告组员:指导老师:日期:2013年5月3日功分器基本原理功分器是一种将一路输入信号能量分成两路或多路输出相等或不相等能量的器件,也可反过来将多路信号能量合成一路输出,此时也可称为合路器,一个功分器的输出端口之间应保证一定的隔离度。
种类:功分器一般有二功分、三功分和四功分3种。
功分器从结构上分一般分为:微带和腔体2种。
腔体功分器内部是一条直径由粗到细程多个阶梯递减的铜杆构成,从而实现阻抗的变换,二微带的则是几条微带线和几个电阻组成,从而实现阻抗变换。
功分器通常备为能量的等值分配,通过阻抗变换线的级联与隔离电阻的选择,具有很宽的频带特性。
参数说明:插入损耗:器件直通损耗,其计算公式为所有的路数的输出功率之和与输入功率的比值,或单路的实际直通损耗减去理想的分配损耗,一般理想分配损耗由下式获得:理想分配损耗(dB)=10log(1/N)N为功分器路数N=2 3.0dBN=3 4.8dBN=4 6.0dB隔离度:当主路接匹配负载时,各分配支路之间的衰减量。
幅度平衡:指频带内所有输出端口之间的幅度误差最大值。
相位平衡:指频带内各输出端口之间相对于输入端口相移量的起伏程度。
图是二路功分器的原理图。
图中输入线的特性组抗为Z0,两路分支线的特性阻抗分别为Z02和Z03,线长为λ/4 , λ/4为中心频率时的带内波长。
图中R2,R3为负载阻抗,R为隔离阻抗。
对功分器的要求是:两输出口2和3的功率按一定比例分配,并且两口之间相互隔离,当两口接匹配负载时,1口无反射。
下面根据上述要求,确定Z02 、Z03、R2、R3及R的计算公式。
设2口、3口的输出功率分别为P2、P3 ,对应的电压为V2、V3 .根据对功分器的要求,则有:P3=K2P2 |V3|2/R3=K2|V2|2/R2式中K为比例系数。
为了使在正常工作时,隔离电阻R上不流过电流,则应V3=V2 于是得R2=K2R3若取R2=KZ0则R3=Z0/K因为分支线长为λe0/4,故在1口处的输入阻抗为:Zin2=Z022/R2 Zin3=Z032/R3为使1口无反射,则两分支线在1处的总输入阻抗应等于引出线的Z0,即Y0=1/Z0=R2/Z022+R3/Z032若电路无损耗,则|V1|2/Zin3=k2|V1|2/Zin2式中V1为1口处的电压所以Zin=K2Z03Z02=Z0[(1+K2)/K3]0.5Z03=Z0[(1+K2)K]0.5设计目标工作频率:1.5—2.5GHz插入损耗:≤1dB隔离度:≥20dB (3个端口)幅度不平度:≤1dB相位不平度:≤3º输入输出驻波比:≤1.5电路仿真电路仿真采用ADS2011软件,原理图如下图所示:原理图经过多次优化之后,各项指标均能达到设计要求,仿真曲线如下所示:原理图隔离度S23原理图发射系数S111.851.901.952.002.052.102.151.802.20-28-26-24-22-30-20freq, GHzd B (S (2,3))1.851.901.952.002.052.102.151.802.20-24.0-23.5-23.0-24.5-22.5freq, GHzd B (S (1,1))原理图插入损耗S21电磁场仿真场仿真采用HFSS10.0软件,3D 模型及仿真曲线如下图所示3D 模型1.851.901.952.002.052.102.151.802.20-3.125-3.120-3.115-3.110-3.130-3.105freq, GHzd B (S (2,1))S参数仿真曲线版图设计经过ADS软件仿真及优化之后,通过Layout得到仿真版图如下图所示:版图经过HFSS软件可导出CAD版图,如下图所示:CAD版图实验调试根据CAD版图,可制得实际版图,经过简单的焊接工作之后,制作的功分器如图所示:实物图将功分器连接电缆与频谱分析仪连成回路,经过频谱仪操作,可测得测试曲线如下图所示:S21参数测试曲线相位不平度测试曲线S11参数测试曲线隔离度测试曲线幅度不平度测试曲线数据分析通过测试曲线,可知功分器基本工作在1.8-2.2GHz;S11参数最小值为-4.394dB,考虑到仪器本身的3dB损耗,可知插损为1.394dB,略大于1dB,未达到插损≤1dB的设计指标;相位不平度最大值为2.718°,数值小于等于3°,达到设计指标;设计指标中要求输入输出驻波≤1.5,经过换算可得S11≤-14dB才能满足设计要求,而测试数据中S11参数最大值为-15.517dB,满足设计要求;工作频率范围内,隔离度为24.244dB ~ 26.824dB,满足隔离度≥20dB的设计要求;幅度不平度最大值为0.465dB,达到幅度不平度≤1dB的设计指标。
功分器设计原理嘿,朋友们!今天咱来聊聊功分器设计原理这档子事儿。
你说这功分器啊,就好比是一个神奇的分配大师。
想象一下,有一股力量,就像水流一样,要被均匀地分到不同的地方去,这就是功分器要干的活儿。
它是咋做到的呢?其实啊,就跟咱分东西一样。
比如说有一堆糖果,要分给几个小朋友,得保证每个小朋友都能拿到差不多的糖果数量,不能这个多那个少,对吧?功分器也是这样,要把输入的信号能量,合理地分配到各个输出端口。
这其中的关键就在于它的内部结构啦。
它就像是一个精心设计的迷宫,信号在里面走来走去,最后就被准确地分开啦。
这里面的线路啊、元件啊,都得搭配得恰到好处,就像拼图一样,缺了一块儿都不行。
而且哦,这功分器还得很稳定可靠呢!不能今天分好啦,明天就出岔子。
就好比你给小朋友分糖果,今天分对了,明天就乱分一气,那怎么行呢?所以啊,在设计的时候就得考虑各种因素,什么温度啦、湿度啦,都不能影响它的正常工作。
你说要是功分器设计得不好会咋样?哎呀,那可就麻烦啦!信号可能就不能准确地到达该去的地方,就像送快递送错了地址一样,那后果可不堪设想啊!再说说这功分器的种类吧,那也是五花八门的。
有等分的,有不等分的,就像分糖果,有的是平均分,有的是按需分配。
每种都有它自己的用处和特点,得根据实际情况来选择。
咱平时生活里不是也经常会遇到要分配东西的情况吗?这和功分器的原理其实差不多呢!只不过功分器是在信号的世界里工作罢了。
总之啊,功分器设计原理可真是个有意思的东西,它虽然看不见摸不着,但却在各种电子设备里默默地发挥着重要作用呢!没有它,好多设备可就没法正常工作啦。
所以啊,可别小看了这个小小的功分器,它可是电子世界里的大功臣呢!原创不易,请尊重原创,谢谢!。