一氧化氮疗法
- 格式:pptx
- 大小:19.07 MB
- 文档页数:43
一氧化氮吸入治疗新生儿持续肺动脉高压的护理目的探讨吸入一氧化氮治疗新生儿持续肺动脉高压(PPHN)的疗效和护理。
方法10例PPHN患儿在机械通气下将NO气源加入呼吸机环路中,NO浓度为(15~20)×10﹣6,疗程为24h~7d.。
治疗前后动态观察患儿心率血压,动态血气,氧合指数变化,重点加强一氧化氮使用过程中的观察及气道护理,密切观察不良反应。
结果通过有效的护理措施,降低患儿并发症的发生,提高一氧化氮吸入治疗新生儿持续肺动脉高压的疗效。
结论机械通气配合一氧化氮治疗持续肺动脉高压有显著疗效。
标签:一氧化氮;持续肺动脉高压;机械通气;新生儿新生儿持续肺动脉高压(PPHN)可由胎粪吸入综合征,肺透明膜病,肺炎和先天性心脏病等多种疾病所致[1],病死率高达40%,特点是持续肺高压和右向左分流。
近来吸入一氧化氮(inhaled nitric oxide INO)治疗各种原因引起的新生儿持续肺动脉高压获得良好效果,使病死率大为下降。
现对我科NICU 2012年1月~2013年9月起10例由各种原因引起的PPHN应用机械通气配合使用一氧化氮吸入治疗新生儿的临床资料报道如下。
1 资料与方法1.1一般资料本组患儿10例(男7例,女3例),胎龄33~40w,出生体重2200~3700g,均为生后1d入院。
原发病分别为新生儿胎粪吸入综合症5例,肺炎合并动脉导管未闭3例,新生儿肺透明膜病2例,所有患儿均有不同程度的呼吸困难和青紫,与低氧血症的程度不相平行。
入院后经常规治疗,病情无好转或进行性恶化,经心脏超声检查确诊有肺动脉高压,存在动脉导管或卵园孔水平的右向左分流。
1.2方法确诊病例采用机械通气配合NO吸入通气方式为SIMV或HFO模式,PaCO2目标值为30~35cmH2O(IcmH2O=0.098KPa)。
NO气源由上海诺芬生物技术有限公司(10PMa)提供。
通气质量流量控制仪调节流量,加入呼吸机输出环节路内(湿化器前)并使用NO×BO×PLUS型NO和NO2监测仪(英国)监测NO和NO2浓度患儿呼出的气体经特制管道排出室外。
一氧化氮治疗肺动脉高压原理肺动脉高压是一种罕见但严重的疾病,常常导致患者丧失生活质量甚至危及生命。
传统治疗方法包括药物治疗、手术及肺移植等,然而这些治疗方式并不能完全治愈病情,而且存在一定的风险和限制。
近年来,一氧化氮作为一种新型的治疗手段备受关注。
一氧化氮(NO)是一种重要的生物信号分子,在血管扩张、血小板聚集和炎症反应等生理过程中发挥着重要作用。
在肺动脉高压的治疗中,一氧化氮可以通过以下几种途径发挥作用。
一氧化氮可以通过扩张肺动脉血管,降低肺动脉血管的阻力,改善血流动力学,减轻心脏负担。
肺动脉高压患者的肺动脉血管常常收缩狭窄,增加了心脏对抗血管阻力的负荷,使心脏不断受到挤压和负荷。
通过一氧化氮的作用,可以放松肺动脉血管平滑肌,扩张血管,减少阻力,改善心脏的功能。
一氧化氮还可以抑制血小板聚集和凝血,在肺动脉高压患者中,血小板易于聚集和凝血,导致血栓形成,进一步加重病情。
一氧化氮可以通过抑制血小板的活化和凝血的过程,减少血栓的形成,降低肺动脉血栓栓塞的风险。
一氧化氮还可以通过调节炎症反应,减轻肺动脉高压患者的炎症反应。
炎症反应在肺动脉高压的发病机制中起着重要作用,一氧化氮可以通过调节炎症因子的产生和释放,降低炎症反应的程度,减轻病情。
总的来说,一氧化氮治疗肺动脉高压的原理是通过扩张肺动脉血管,抑制血小板聚集和凝血,调节炎症反应等多种方式,改善病情,减轻症状,提高生活质量。
一氧化氮治疗肺动脉高压是一种新型的治疗手段,虽然还处于不断探索和完善阶段,但其独特的作用机制和良好的疗效已经受到广泛关注。
希望通过更多的研究和临床实践,能够进一步发挥一氧化氮在肺动脉高压治疗中的作用,为患者带来更好的治疗效果。
一氧化氮治疗肺动脉高压原理一氧化氮治疗肺动脉高压原理肺动脉高压(PAH)是一种罕见且严重的疾病,其特征为肺动脉内血压升高,导致心脏负荷过大,最终导致心力衰竭和死亡。
PAH的治疗一直是医学领域的研究热点,其中一种重要的治疗手段是一氧化氮(NO)治疗。
那么,一氧化氮治疗PAH的原理具体是什么呢?一氧化氮是自然界中重要的化学物质,在疾病治疗中也有广泛应用。
NO可通过刺激内皮细胞合成内皮源性一氧化氮(eNO),抑制平滑肌细胞收缩,调节局部血流量和血管张力。
对于PAH患者而言,局部的肺血管受到破坏,引起内皮细胞树突走形、血管阻力升高,使得肺动脉血压持续升高。
因此,NO可被用来扩张肺动脉,降低肺动脉压力,减少肺血管内皮细胞损伤,提升氧合作用,从而达到治疗高血压肺血管疾病的效果。
一氧化氮治疗PAH的方式通常通过吸入一氧化氮来实现。
吸入的一氧化氮到达肺部后会迅速扩张肺血管并增加肺血流量,同时减少肺动脉压力和肺血管的阻力,缓解了呼吸窘迫、心衰和低氧血症的症状。
此外,NO还具有其他的治疗机制,例如能够抑制促血小板聚集因子的产生,防止血小板聚集和血栓形成,从而降低肺静脉血栓的概率。
除此之外,NO还具有抗炎和抗氧化作用,对于PAH患者而言也是非常有益的。
总之,一氧化氮是一种有效的PAH治疗手段。
它通过扩张肺血管、增加血流量、减少肺动脉压力和肺血管的阻力、缓解呼吸窘迫、心衰和低氧血症等症状,从而实现治疗效果。
同时,还具有抑制促血小板聚集因子、抗炎和抗氧化等其他治疗机制,对于病情控制和预防并发症也有一定的作用。
当然,一氧化氮治疗还需要在医生的指导下进行,控制使用剂量和时长,避免不良反应的产生,进一步提高治疗效果。
一氧化氮治疗肺动脉高压原理肺动脉高压(PAH)是一种罕见但严重的心血管疾病,主要特征是肺动脉压力升高。
一氧化氮(NO)是一种重要的生物活性分子,在治疗PAH中起到了关键的作用。
本文将介绍一氧化氮治疗肺动脉高压的原理。
一氧化氮是由内皮细胞产生的一种气体信号分子,它通过扩张血管、抑制血液凝块形成和抑制血管平滑肌增生等多种机制对血管功能产生调节作用。
在正常情况下,一氧化氮通过内皮细胞合成酶(eNOS)催化L-精氨酸转化为L-瓜氨酸,然后再由L-瓜氨酸酶催化转化为一氧化氮。
一氧化氮通过扩张肺动脉平滑肌细胞中的血管来降低肺动脉压力,从而改善肺动脉高压症状。
在PAH患者中,内皮细胞合成酶的活性降低,导致一氧化氮合成减少。
这会导致肺动脉收缩,肺动脉阻力增加,肺动脉压力升高。
一氧化氮治疗通过增加肺动脉内皮细胞中的一氧化氮合成和释放来纠正这一失衡。
一氧化氮治疗的方式有三种:吸入一氧化氮、内静脉注射一氧化氮和口服一氧化氮。
吸入一氧化氮是最常见的治疗方式,它通过呼吸道直接将一氧化氮送入肺部。
一氧化氮吸入后,迅速扩张肺动脉血管,减少肺动脉阻力,降低肺动脉压力。
内静脉注射一氧化氮是将一氧化氮溶液通过静脉输注给患者,起效快,但需要密切监测一氧化氮浓度,以避免过量引起毒性反应。
口服一氧化氮是通过口服药物来提供一氧化氮,但目前尚处于研究阶段。
一氧化氮治疗的关键是控制给药剂量。
一氧化氮的浓度过高会引起毒性反应,而浓度过低则无法达到治疗效果。
因此,治疗过程中需要密切监测一氧化氮浓度,并根据患者的具体情况进行调整。
此外,一氧化氮治疗通常与其他抗PAH药物联合使用,以提高治疗效果。
尽管一氧化氮治疗在PAH患者中取得了一定的成功,但仍存在一些限制。
首先,一氧化氮具有短半衰期,需要持续给药才能维持治疗效果。
其次,患者对一氧化氮的反应存在个体差异,需要根据患者的具体情况进行个体化治疗。
此外,一氧化氮治疗还存在一些不适应症,如严重低血压、呼吸衰竭等,需要慎重使用。
一氧化氮治疗肿瘤的研究进展作者:王丽凯,田娅,吴惠霞来源:《上海师范大学学报·自然科学版》2022年第04期摘要:一氧化氮(NO)是一种半衰期很短的气体分子,对细胞膜具有高穿透性,能在人体内传递重要信息,并具有调节细胞的功能.NO气体分子既能维持正常细胞的生理功能和活性,又能选择性地快速耗尽肿瘤细胞的能量,诱导肿瘤细胞凋亡.研究表明:NO可以通过多种机制實现肿瘤治疗.已有一些NO供体药物表现出良好的抗肿瘤活性,精确控制NO在肿瘤部位的释放,可杀死肿瘤细胞.因此,NO气体疗法作为一种肿瘤治疗策略具有一定的应用前景.文章简述了NO的生理学特性和几种典型的NO供体,以及释放NO的生物材料在生物医学领域的应用进展.关键词:一氧化氮(NO); NO供体; 肿瘤; 气体治疗; 生物材料中图分类号: O 613.6 文献标志码: A 文章编号: 1000-5137(2022)04-0443-09Research progress of nitric oxide in the treatment of tumorWANG Likai, TIAN Ya, WU Huixia*(College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China)Abstract: Nitric oxide (NO) is a ubiquitous gas molecule with a short half-life. It is highly permeable to cell membranes and can transmit important information and regulate cellular functions in the human body. NO molecules can not only maintain the physiological function and activity of normal cells, but also selectively and rapidly deplete the energy of tumor cells and induce their apoptosis. Studies have shown that NO may achieve tumor therapy through a variety of mechanisms. Some NO donor drugs have shown good anti-tumor activity and can be used to precisely control the release of NO at tumor sites and kill tumor cells. Therefore, NO gas therapy is a promising tumor treatment strategy. This review covers the physiological characteristics of NO, several typical NO donors, and the application progress of NO releasing biomaterials in biomedical field.Key words: nitric oxide(NO); NO donors; tumor; gas therapy; biomaterials0 引言一氧化氮(NO)是一氧化氮合酶(NOS)作用产生的半衰期仅为3-5 s的分子.NO分子中有一个未成对电子,可形成自由基,对多种生物分子具有很高的反应性.NO具有脂溶性,可以快速透过生物膜扩散,在体内极不稳定,能迅速被血红蛋白、氧自由基或氢醌等灭活.NO可以对血管生成和舒张、细胞周期、细胞凋亡、侵袭和转移等过程进行调节,从而影响细胞功能.NO还能与二氧化氮(NO2)反应生成三氧化二氮(N2O3),并能与超氧化物反应生成过氧亚硝酸盐(ONOO-).N2O3和ONOO-这2种分子均可通过亚硝化或氧化应激引起DNA损伤:N2O3可以通过胺的亚硝化作用导致N‒亚硝胺的形成,进而损伤DNA;过氧亚硝酸盐可以氧化和硝化DNA,并导致单链DNA断裂[1].NO的生物效应通常取决于分子的形成、代谢、NOS的类型和NO的浓度等.在过去的几十年中,人们一直在努力研究NO对癌生物学的影响.多年来,NO在致癌和抗肿瘤进展中有着较大的误解和争议,因为它同时具有促进肿瘤细胞生长和杀死肿瘤细胞的能力.然而,确定哪种作用占优势是很复杂的,包括但不限于NO存在的时间、位置、浓度和肿瘤微环境[2].NO生成过多或者生成不足都会引起基因突变、肿瘤等.近年来,许多气体纳米发生器已经能够通过被动或主动靶向聚集在肿瘤部位,在内源性或外源性刺激下有效控制气体分子的释放.因此,无论是单独使用NO还是与其他治疗方式联合使用,这些发现都使NO广泛应用于抗癌剂[3].目前,气体治疗已成为一种新兴的、安全有效的抗癌治疗策略.1 NO的生理学特性1.1 NO的生物合成细胞合成NO的主要途径是通过NOS的酶促作用将L‒精氨酸转化为L‒瓜氨酸,并释放出NO,如图1所示[4].NOS是一种同工酶,选择性分布在不同脑区的神经元中,其同工酶有3种亚型,即神经型一氧化氮合酶(nNOS)、诱导型一氧化氮合酶(iNOS)和内皮型一氧化氮合酶(eNOS).其中,eNOS和nNOS在细胞处于生理状态下即可组成性表达,并可因细胞内钙增加而被钙调蛋白激活;iNOS是非钙依赖型的,当细胞受到内源性或外源性刺激时,可在较短的时间内产生高浓度的NO[4].此外,还可以通过硝酸盐→亚硝酸盐→NO途径合成NO.体内的硝酸盐主要来自膳食和自身合成.在生物体内,循环的硝酸盐被唾液腺主动摄取,并被口腔中的细菌还原为亚硝酸盐,在血液和组织中进一步代谢为NO和其他生物活性氮氧化物[5].亚硝酸盐是氮氧化物的氧化还原过程中的中间产物,在血液和组织中比较稳定,且可被多种物质还原成NO,包括肌红蛋白、血红蛋白、抗坏血酸、黄嘌呤氧化还原酶、质子和多酚[5].这些途径产生的NO会因缺氧和酸中毒条件而增加,因而可以保证NO的产量.1.2 NO的生物学作用NO可以自由地通过生物膜并参与一系列生理和病理过程,如神经信号传递、血管扩张、血小板黏附和聚集等,在生物体内发挥着至关重要的作用.NO的生物学作用是通过直接或间接的化学反应产生的.例如,NO直接与不同蛋白质的金属配合物结合形成金属亚硝酰基配合物来调节靶蛋白的生物学活性.NO还可以与多种内源性自由基反应,产生活性氮氧化合物,这些强毒性的活性氮氧化合物将导致线粒体损伤,进而诱导细胞凋亡.NO在生物体内像一把双刃剑,因为它既具有杀死肿瘤细胞的作用,又具有促进肿瘤细胞生长的作用.在低生理水平下,NO可作为抗氧化剂,减少芬顿反应,终止自由基链式反应,并抑制过氧化物酶和氧化酶的活性.较高浓度的NO能够舒张血管,改善组织缺氧状态,有利于化疗药物的渗透,对肿瘤细胞具有杀伤作用[6].但是,持续过量的NO将产生神经毒性,影响体内平衡和改变蛋白质功能,从而导致基因突变,最终使正常黏膜癌变[7].不同组织中的生理过程对NO的需求量各不相同,浓度过高或者过低都会对组织造成一定的损伤,引起疾病的发生[8].只要将适当浓度的NO递送至肿瘤部位,NO的靶向释放也可能增强化学疗法和放射疗法的疗效.因此,如何将适当浓度的NO靶向释放至肿瘤,已成为近年来生物医学领域的研究重点.2 NO供体直接使用外源性或内源性NO的缺点是其半衰期极短,且易受各种谷胱甘肽(GSH)、超氧化物和血红蛋白等物质的影响.因此,将NO供体载入纳米平台中,直接和精确地控制NO的靶向释放,有很好的应用前景.NO供体是指在体内经酶促反应或非酶促反应释放NO的一类化合物,如有机硝酸盐、有机亚硝酸盐、S‒亚硝基硫醇(RSNO)、金属配合物等多种化学物质已被用作NO供体,用于各种生物或医学领域[9],如图2所示.2.1 有机硝酸酯(RONO2)及有机亚硝酸酯类RONO2是醇的硝酸酯,是最早的、目前最常用的NO供体.它们可以通过相应醇的酯化反应或烷基卤化物与AgNO3的反应来合成,如图3所示[10].这类供体的优点是给药途径比较广,但容易产生耐药性.硝酸甘油(GTN)和单硝酸异山梨酯(ISMN)是临床研究中使用最广泛的NO供体类药物.它们有几个既定的临床应用:GTN是一種廉价又有效的、能快速逆转与急性心绞痛有关疼痛的药物;ISMN是RONO2中释放NO较慢的一种,已被用于治疗慢性心绞痛[11].与RONO2类似,有机亚硝酸酯是醇类和亚硝酸酯化形成的酯.它们主要通过醇与亚硝酰氯(NOCl)反应或醇与NO和氧气(O2)经过酯化反应来合成,如图3所示[12].有机亚硝酸酯的主要作用是舒张静脉和降低血压,例如,亚硝酸丁酯(BN)、亚硝酸异丁酯(ISBN)和亚硝酸叔丁酯(TBN)已在临床上用作血管扩张剂[13].与GTN等RONO2相比,它们对酶的依赖性更低、作用效力更高,且不易引起耐药性.但是,它们缺乏选择性和生物利用度,以及细胞毒性和致癌性较高,因此不如RONO2常用[14].2.2 RSNO类RSNO是贮存、运输和释放NO的重要载体,在生物体内具有重要的生理作用.RSNO普遍存在于生物体的血液和组织中,只需要一个电子就能引发NO的释放,因此,可通过光、热、碱性pH值、过渡金属离子、抗坏血酸和酶等促使RSNO自发均裂反应产生NO[15].人工合成的RSNO是新型的NO供体类药物,通过静脉等途径进入体内后,可以参与呼吸、心血管、消化等多个系统疾病的诊断和治疗[16].2.3 金属-一氧化氮配合物NO是金属配合物中的强配体,它的结合常数比一氧化碳(CO)和O2高得多,具有多种氧化态,氧化价态的高低决定了配合物中NO的反应性.NO调节信号通路的主要机制是与金属中心原子(如铁(Fe)、钌(Ru)等)结合,如图4所示[12],如血红素基团或蛋白质的铁硫簇.硝普钠(SNP)已经广泛应用于急性降压药物和动静脉血管扩张剂,其血管舒张作用是由NO的产生而造成的[17].SNP晶体在避光且干燥的条件下可以长时间保存,光和O2会促使其水溶液分解,并释放出NO和氰化物,从而导致“氰化物毒性”,对机体造成伤害[18].除了Fe之外,Ru对NO也有很高的亲和力,且Ru对NO的亲和力可以随着其他配体的改变而变化,以便调节NO的释放.光活性Ru配合物热稳定性好,且能在紫外光照射下释放NO.然而,NO的有效释放需要使用对组织有害的高功率紫外线,这一缺陷阻碍了该类NO供体的临床应用[19].2.4 其他供体1956年MAGEE等[20]发现了二甲基亚硝胺和亚硝胺二甲胺均可致大鼠肝癌.其致癌作用是由于N-亚硝基化合物会导致蛋白质和核酸的烷基化.但是,N-亚硝胺却是一种能舒张血管的NO供体.链脲霉素(STZ)含有N-亚硝胺基团,具有抗肿瘤、致糖尿病和致癌作用[21].胰腺β细胞具有低水平的活性氧(ROS)清除酶,对NO和ROS比较敏感,STZ能在胰岛β细胞中释放NO,使细胞的DNA受到损害[22].因此,可将此类NO供体作为抗癌药物进行研究.偶氮二醇烯鎓盐(NONOates)释放NO的机制遵循动力学且不受细胞代谢产物或酶的催化.它们以固体形态稳定存在,但在生理条件下会自发分解生成NO,分解速率会因结构、温度和pH值而改变[23].因此,可以通过它们在体外的分解速率直接预测药物的持续作用时间.研究证明:NONOates能够降低多种肿瘤细胞的增长速率,抑制肿瘤细胞的生长[24].此外,还可以通过硝酸盐→亚硝酸盐→NO途径合成NO.体内的硝酸盐主要来自膳食和自身合成.在生物体内,循环的硝酸盐被唾液腺主动摄取,并被口腔中的细菌还原为亚硝酸盐,在血液和组织中进一步代谢为NO和其他生物活性氮氧化物[5].亚硝酸盐是氮氧化物的氧化还原过程中的中间产物,在血液和组织中比较稳定,且可被多种物质还原成NO,包括肌红蛋白、血红蛋白、抗坏血酸、黄嘌呤氧化还原酶、质子和多酚[5].这些途径产生的NO會因缺氧和酸中毒条件而增加,因而可以保证NO的产量.1.2 NO的生物学作用NO可以自由地通过生物膜并参与一系列生理和病理过程,如神经信号传递、血管扩张、血小板黏附和聚集等,在生物体内发挥着至关重要的作用.NO的生物学作用是通过直接或间接的化学反应产生的.例如,NO直接与不同蛋白质的金属配合物结合形成金属亚硝酰基配合物来调节靶蛋白的生物学活性.NO还可以与多种内源性自由基反应,产生活性氮氧化合物,这些强毒性的活性氮氧化合物将导致线粒体损伤,进而诱导细胞凋亡.NO在生物体内像一把双刃剑,因为它既具有杀死肿瘤细胞的作用,又具有促进肿瘤细胞生长的作用.在低生理水平下,NO可作为抗氧化剂,减少芬顿反应,终止自由基链式反应,并抑制过氧化物酶和氧化酶的活性.较高浓度的NO能够舒张血管,改善组织缺氧状态,有利于化疗药物的渗透,对肿瘤细胞具有杀伤作用[6].但是,持续过量的NO将产生神经毒性,影响体内平衡和改变蛋白质功能,从而导致基因突变,最终使正常黏膜癌变[7].不同组织中的生理过程对NO的需求量各不相同,浓度过高或者过低都会对组织造成一定的损伤,引起疾病的发生[8].只要将适当浓度的NO递送至肿瘤部位,NO的靶向释放也可能增强化学疗法和放射疗法的疗效.因此,如何将适当浓度的NO靶向释放至肿瘤,已成为近年来生物医学领域的研究重点.2 NO供体直接使用外源性或内源性NO的缺点是其半衰期极短,且易受各种谷胱甘肽(GSH)、超氧化物和血红蛋白等物质的影响.因此,将NO供体载入纳米平台中,直接和精确地控制NO的靶向释放,有很好的应用前景.NO供体是指在体内经酶促反应或非酶促反应释放NO的一类化合物,如有机硝酸盐、有机亚硝酸盐、S‒亚硝基硫醇(RSNO)、金属配合物等多种化学物质已被用作NO供体,用于各种生物或医学领域[9],如图2所示.2.1 有机硝酸酯(RONO2)及有机亚硝酸酯类RONO2是醇的硝酸酯,是最早的、目前最常用的NO供体.它们可以通过相应醇的酯化反应或烷基卤化物与AgNO3的反应来合成,如图3所示[10].这类供体的优点是给药途径比较广,但容易产生耐药性.硝酸甘油(GTN)和单硝酸异山梨酯(ISMN)是临床研究中使用最广泛的NO供体类药物.它们有几个既定的临床应用:GTN是一种廉价又有效的、能快速逆转与急性心绞痛有关疼痛的药物;ISMN是RONO2中释放NO较慢的一种,已被用于治疗慢性心绞痛[11].与RONO2类似,有机亚硝酸酯是醇类和亚硝酸酯化形成的酯.它们主要通过醇与亚硝酰氯(NOCl)反应或醇与NO和氧气(O2)经过酯化反应来合成,如图3所示[12].有机亚硝酸酯的主要作用是舒张静脉和降低血压,例如,亚硝酸丁酯(BN)、亚硝酸异丁酯(ISBN)和亚硝酸叔丁酯(TBN)已在临床上用作血管扩张剂[13].与GTN等RONO2相比,它们对酶的依赖性更低、作用效力更高,且不易引起耐药性.但是,它们缺乏选择性和生物利用度,以及细胞毒性和致癌性较高,因此不如RONO2常用[14].2.2 RSNO类RSNO是贮存、运输和释放NO的重要载体,在生物体内具有重要的生理作用.RSNO普遍存在于生物体的血液和组织中,只需要一个电子就能引发NO的释放,因此,可通过光、热、碱性pH值、过渡金属离子、抗坏血酸和酶等促使RSNO自发均裂反应产生NO[15].人工合成的RSNO是新型的NO供体类药物,通过静脉等途径进入体内后,可以参与呼吸、心血管、消化等多个系统疾病的诊断和治疗[16].2.3 金属-一氧化氮配合物NO是金属配合物中的强配体,它的结合常数比一氧化碳(CO)和O2高得多,具有多种氧化态,氧化价态的高低决定了配合物中NO的反应性.NO调节信号通路的主要机制是与金属中心原子(如铁(Fe)、钌(Ru)等)结合,如图4所示[12],如血红素基团或蛋白质的铁硫簇.硝普钠(SNP)已经广泛应用于急性降压药物和动静脉血管扩张剂,其血管舒张作用是由NO的产生而造成的[17].SNP晶体在避光且干燥的条件下可以长时间保存,光和O2会促使其水溶液分解,并释放出NO和氰化物,从而导致“氰化物毒性”,对机体造成伤害[18].除了Fe之外,Ru对NO也有很高的亲和力,且Ru对NO的亲和力可以随着其他配体的改变而变化,以便调节NO的释放.光活性Ru配合物热稳定性好,且能在紫外光照射下释放NO.然而,NO的有效释放需要使用对组织有害的高功率紫外线,这一缺陷阻碍了该类NO供体的临床应用[19].2.4 其他供体1956年MAGEE等[20]发现了二甲基亚硝胺和亚硝胺二甲胺均可致大鼠肝癌.其致癌作用是由于N-亚硝基化合物会导致蛋白质和核酸的烷基化.但是,N-亚硝胺却是一种能舒张血管的NO供体.链脲霉素(STZ)含有N-亚硝胺基团,具有抗肿瘤、致糖尿病和致癌作用[21].胰腺β细胞具有低水平的活性氧(ROS)清除酶,对NO和ROS比较敏感,STZ能在胰岛β细胞中释放NO,使细胞的DNA受到损害[22].因此,可将此类NO供体作为抗癌药物进行研究.偶氮二醇烯鎓盐(NONOates)释放NO的机制遵循动力学且不受细胞代谢产物或酶的催化.它们以固体形态稳定存在,但在生理条件下会自发分解生成NO,分解速率会因结构、温度和pH值而改变[23].因此,可以通过它们在体外的分解速率直接预测药物的持续作用时间.研究证明:NONOates能够降低多种肿瘤细胞的增长速率,抑制肿瘤细胞的生长[24].此外,还可以通过硝酸盐→亚硝酸盐→NO途径合成NO.体内的硝酸盐主要来自膳食和自身合成.在生物体内,循环的硝酸盐被唾液腺主动摄取,并被口腔中的细菌还原为亚硝酸盐,在血液和组织中进一步代谢为NO和其他生物活性氮氧化物[5].亚硝酸盐是氮氧化物的氧化还原过程中的中间产物,在血液和组织中比较稳定,且可被多种物质还原成NO,包括肌红蛋白、血红蛋白、抗坏血酸、黄嘌呤氧化还原酶、质子和多酚[5].这些途径产生的NO会因缺氧和酸中毒条件而增加,因而可以保证NO的产量.1.2 NO的生物学作用NO可以自由地通过生物膜并参与一系列生理和病理过程,如神经信号传递、血管扩张、血小板黏附和聚集等,在生物体内发挥着至关重要的作用.NO的生物学作用是通过直接或间接的化学反应产生的.例如,NO直接与不同蛋白质的金属配合物结合形成金属亚硝酰基配合物来调节靶蛋白的生物学活性.NO还可以与多种内源性自由基反应,产生活性氮氧化合物,这些强毒性的活性氮氧化合物將导致线粒体损伤,进而诱导细胞凋亡.NO在生物体内像一把双刃剑,因为它既具有杀死肿瘤细胞的作用,又具有促进肿瘤细胞生长的作用.在低生理水平下,NO可作为抗氧化剂,减少芬顿反应,终止自由基链式反应,并抑制过氧化物酶和氧化酶的活性.较高浓度的NO能够舒张血管,改善组织缺氧状态,有利于化疗药物的渗透,对肿瘤细胞具有杀伤作用[6].但是,持续过量的NO将产生神经毒性,影响体内平衡和改变蛋白质功能,从而导致基因突变,最终使正常黏膜癌变[7].不同组织中的生理过程对NO的需求量各不相同,浓度过高或者过低都会对组织造成一定的损伤,引起疾病的发生[8].只要将适当浓度的NO递送至肿瘤部位,NO的靶向释放也可能增强化学疗法和放射疗法的疗效.因此,如何将适当浓度的NO靶向释放至肿瘤,已成为近年来生物医学领域的研究重点.2 NO供体直接使用外源性或内源性NO的缺点是其半衰期极短,且易受各种谷胱甘肽(GSH)、超氧化物和血红蛋白等物质的影响.因此,将NO供体载入纳米平台中,直接和精确地控制NO的靶向释放,有很好的应用前景.NO供体是指在体内经酶促反应或非酶促反应释放NO的一类化合物,如有机硝酸盐、有机亚硝酸盐、S‒亚硝基硫醇(RSNO)、金属配合物等多种化学物质已被用作NO供体,用于各种生物或医学领域[9],如图2所示.2.1 有机硝酸酯(RONO2)及有机亚硝酸酯类RONO2是醇的硝酸酯,是最早的、目前最常用的NO供体.它们可以通过相应醇的酯化反应或烷基卤化物与AgNO3的反应来合成,如图3所示[10].这类供体的优点是给药途径比较广,但容易产生耐药性.硝酸甘油(GTN)和单硝酸异山梨酯(ISMN)是临床研究中使用最广泛的NO供体类药物.它们有几个既定的临床应用:GTN是一种廉价又有效的、能快速逆转与急性心绞痛有关疼痛的药物;ISMN是RONO2中释放NO较慢的一种,已被用于治疗慢性心绞痛[11].与RONO2类似,有机亚硝酸酯是醇类和亚硝酸酯化形成的酯.它们主要通过醇与亚硝酰氯(NOCl)反应或醇与NO和氧气(O2)经过酯化反应来合成,如图3所示[12].有机亚硝酸酯的主要作用是舒张静脉和降低血压,例如,亚硝酸丁酯(BN)、亚硝酸异丁酯(ISBN)和亚硝酸叔丁酯(TBN)已在临床上用作血管扩张剂[13].与GTN等RONO2相比,它们对酶的依赖性更低、作用效力更高,且不易引起耐药性.但是,它们缺乏选择性和生物利用度,以及细胞毒性和致癌性较高,因此不如RONO2常用[14].2.2 RSNO类RSNO是贮存、运输和释放NO的重要载体,在生物体内具有重要的生理作用.RSNO普遍存在于生物体的血液和组织中,只需要一个电子就能引发NO的释放,因此,可通过光、热、碱性pH值、过渡金属离子、抗坏血酸和酶等促使RSNO自发均裂反应产生NO[15].人工合成的RSNO是新型的NO供体类药物,通过静脉等途径进入体内后,可以参与呼吸、心血管、消化等多个系统疾病的诊断和治疗[16].2.3 金属-一氧化氮配合物NO是金属配合物中的强配体,它的结合常数比一氧化碳(CO)和O2高得多,具有多种氧化态,氧化价态的高低决定了配合物中NO的反应性.NO调节信号通路的主要机制是与金属中心原子(如铁(Fe)、钌(Ru)等)结合,如图4所示[12],如血红素基团或蛋白质的铁硫簇.硝普钠(SNP)已经广泛应用于急性降压药物和动静脉血管扩张剂,其血管舒张作用是由NO的产生而造成的[17].SNP晶体在避光且干燥的条件下可以长时间保存,光和O2会促使其水溶液分解,并释放出NO和氰化物,从而导致“氰化物毒性”,对机体造成伤害[18].除了Fe之外,Ru对NO也有很高的亲和力,且Ru对NO的亲和力可以随着其他配体的改变而变化,以便调节NO的释放.光活性Ru配合物热稳定性好,且能在紫外光照射下释放NO.然而,NO的有效释放需要使用对组织有害的高功率紫外线,这一缺陷阻碍了该类NO供体的临床应用[19].2.4 其他供体1956年MAGEE等[20]发现了二甲基亚硝胺和亚硝胺二甲胺均可致大鼠肝癌.其致癌作用是由于N-亚硝基化合物会导致蛋白质和核酸的烷基化.但是,N-亚硝胺却是一种能舒张血管的NO供体.链脲霉素(STZ)含有N-亚硝胺基团,具有抗肿瘤、致糖尿病和致癌作用[21].胰腺β细胞具有低水平的活性氧(ROS)清除酶,对NO和ROS比较敏感,STZ能在胰岛β细胞中释放NO,使细胞的DNA受到损害[22].因此,可将此类NO供体作为抗癌药物进行研究.偶氮二醇烯鎓盐(NONOates)释放NO的机制遵循动力学且不受细胞代谢产物或酶的催化.它们以固体形态稳定存在,但在生理条件下会自发分解生成NO,分解速率会因结构、温度和pH值而改变[23].因此,可以通过它们在体外的分解速率直接预测药物的持续作用时间.研究证明:NONOates能够降低多种肿瘤细胞的增长速率,抑制肿瘤细胞的生长[24].此外,还可以通过硝酸盐→亚硝酸盐→NO途径合成NO.体内的硝酸盐主要来自膳食和自身合成.在生物体内,循环的硝酸盐被唾液腺主动摄取,并被口腔中的细菌还原为亚硝酸盐,在血液和组织中进一步代谢为NO和其他生物活性氮氧化物[5].亚硝酸盐是氮氧化物的氧化还原过程中的中间产物,在血液和组织中比较稳定,且可被多种物质还原成NO,包括肌红蛋白、血红蛋白、抗坏血酸、黄嘌呤氧化还原酶、质子和多酚[5].这些途径产生的NO会因缺氧和酸中毒条件而增加,因而可以保证NO的产量.1.2 NO的生物学作用。
一氧化氮的使用湖南省儿童医院新生儿1科贺芬萍第一部分: NO的临床应用概括一、一氧化氮的药理作用:1、一氧化氮介导的血管扩张作用:内2、.调节血压灌注:一氧化氮对心肌收缩力有一定的调节作用,许多末梢神经也可通过一氧化氮相关机制发挥神经源性血管舒张作用,影响器官如胃肠道、呼吸道及泌尿生殖道的血液供应。
3、.神经递质作用:4、.抗炎作用:5.、.对出凝血机制的影响:6、其他:可扩张支气管,也可保护由其他反应性中间产物,如超氧化物阴离子和过氧化氢自由基所引起的氧化性损害。
二、应用指征1.肺血管张力异常的疾病如新生儿持续性肺动脉高压,2. 2.对缺氧的足月儿或近足月儿(胎龄≥33周),在进行机械通气及吸入氧浓度为100%条件下,若氧合指数仍≥25或PaO2<100mmHg,3.早产儿出现上述情况可试用,但效果差于足月儿。
三、吸入一氧化氮气体的装置及使用方法:1.气源:常用氮平衡之气源,一氧化氮浓度为800ppm,也可用450ppm浓度的气源。
气源应严格按照GMP的标准生产制备,属于医用级。
2.连接方法:可与人工呼吸机一同使用,也可通过面罩吸入。
3.第一种方法:经减压后,一氧化氮气源通过高精确度的转子流量计、质量流量计或质量流量控制器的调节,经不锈钢或聚四氟乙烯管道,以较小的流量加入到呼吸及管道的新生儿吸入端,位于湿化器前或后。
一氧化氮所需浓度可根据以下公式计算:NO钢瓶输出流量=呼吸机流量÷【(钢瓶NO浓度÷需要的NO浓度)—1】4.第二种方法:先将NO气体与N2经混合器1混合,再将混合气体连接到人工呼吸机空-氧混合器2的空气输入端,通过调节混合器1和混合器2而取得所需的NO浓度。
通常采用第一种方法,因为该方法只需要较小的NO输出流量,能节约相对较昂贵的气源,同时一氧化氮与氧接触时间较短,可减少NO2的产生。
5.废气净化:呼气阀排气口连接较粗的软管,将废气排出室外。
四、气体浓度监测方法:NO吸入浓度除根据浓度稀释公式外,尚需根据浓度监测数据最终确定,尤其是NO2毒性大,更需要监测。
肺动脉高压一氧化氮治疗原理
肺动脉高压(PAH)是一种罕见的持续性肺血管病,其特征是肺动脉血压升高,导致肺血管阻力增加,最终导致右心衰竭。
肺血管扩张剂是PAH治疗中的核心药物类别,其中应用最广泛的一类是一氧化氮(NO)剂。
肺动脉高压的病理生理过程非常复杂,包括血管损伤、肺毛细血管内皮细胞和平滑肌细胞增生、局部炎症反应、纤维化和血栓形成等多种机制。
其中一个重要的机制是缺乏一氧化氮。
一氧化氮是一种生物活性气体,是内皮细胞合成的一种重要的信号分子,具有广泛的生理和病理生理作用,如血管扩张、抑制血小板活化、白细胞粘附和释放神经递质等作用。
在肺血管疾病中,一氧化氮在肺血管的调节中起着重要的作用,可通过作用于平滑肌细胞,促进松弛和扩张肺动脉内皮细胞,增强血管的通透性来调节肺血管的收缩和扩张。
在PAH治疗中,一氧化氮剂主要作用于肺循环,减轻血管收缩,促进血管扩张,并且提升氧输送,从而减轻肺动脉高压或血压,缓解病情,改善预后。
根据临床研究的结果,在PAH的治疗中,一氧化氮裂解酶抑制剂主要是通过提高循环一氧化氮水平,改善通气/血流比容与气体交换,从而改善肺循环的功能。
一氧化氮的局部的生物活性和短半衰期使得它对肺血管中的血压及阻力会产生快速而时效的调节作用,这使一氧化氮颇得肺血管疾病的治疗者们青睐。
总之,一氧化氮在PAH的治疗中有重要的作用,可以减轻血管收缩,改善血流,增强氧输送,优化肺循环功能,从而治疗和改善PAH的症状和预后。
在应用肺血管扩张剂的同时,应进一步探究一氧化氮治疗的机制,以期不断推动肺动脉高压治疗理念的发展和更新。
一氧化氮吸入治疗技术原理-概述说明以及解释1.引言1.1 概述概述:一氧化氮是一种重要的气体信号分子,具有广泛的生理作用。
在近年来,一氧化氮的吸入治疗技术逐渐成为临床上治疗多种疾病的重要手段。
本文将对一氧化氮的作用原理、吸入治疗的历史发展以及应用领域进行探讨,旨在详细介绍该技术的原理和应用,为读者提供更深入的了解。
通过本文的阐述,希望读者能够对一氧化氮吸入治疗有进一步的认识,并探讨其在未来的发展前景。
1.2 文章结构:本文将分为三个主要部分来探讨一氧化氮吸入治疗技术的原理。
首先,将介绍一氧化氮的作用原理,解释其在医学上的重要性和作用机制。
其次,将追溯一氧化氮吸入治疗技术的历史发展,探讨其在临床实践中的演变过程。
最后,将探讨一氧化氮吸入治疗技术在不同应用领域中的应用情况和疗效,从而全面了解该技术的实际应用和潜在效果。
通过这三部分的内容,读者将对一氧化氮吸入治疗技术有一个全面的认识,从而更好地理解其在医学领域中的重要性和价值。
1.3 目的本文的主要目的是深入探讨一氧化氮吸入治疗技术的原理,通过介绍一氧化氮的作用原理、历史发展以及应用领域,帮助读者更好地了解这一治疗方法的原理和机制。
同时,我们也将分析一氧化氮吸入治疗的优势和局限性,探讨其未来的发展趋势,为医疗工作者和患者提供更多关于一氧化氮吸入治疗技术的信息和指导。
通过本文的介绍和分析,希望能够促进一氧化氮吸入治疗技术的应用和发展,为临床医学带来更多的创新和突破。
2.正文2.1 一氧化氮的作用原理一氧化氮(NO)作为一种重要的生物活性气体,在人体内发挥着多种作用。
它主要通过以下几种机制实现其生理功能:1. 血管扩张作用:一氧化氮能够渗透血管内皮细胞并激活鸟嘌呤环酶,使得环磷酸鸟嘌呤(cGMP)的生成增加,从而促使血管平滑肌细胞松弛,血管扩张,增加血流量,降低血压,改善组织血液循环。
2. 抗炎作用:一氧化氮能够调节免疫系统的功能,抑制炎症反应和炎症介质的释放,从而减轻组织的炎症反应,对一些炎症性疾病具有一定的治疗作用。
一氧化氮养生法简介一氧化氮养生法简介一氧化氮养生法(2010-12-2509:53:33)美国加州大学的路易斯.伊格纳罗教授,因发现人体内一氧化氮的重要作用而获得大名鼎鼎的诺贝尔医学奖!路易斯教授近年来致力于推荐“一氧化氮养生法”,认为增加体内一氧化氮有益于健康长寿。
中国药科大学药理学博士王伟说,路易斯教授所推荐的是一种全新的养生防病理念,临床研究证实增加体内一氧化氮,完全可达到防病治病、延年益寿的目的,非常适合我国50岁以上的中老年人。
一般人都以为,一氧化氮(NO)是污染物,怎么能用来养生呢?王博士举了一个例子:硝酸甘油是随身携带的心脏病急救药,之所以起效快、疗效好就是因为它进入人体后转化成一氧化氮,进而发生一些化学反应来发挥快速治疗作用。
一氧化氮其实是人体内最重要的信号分子,可穿透任何细胞(具有脂溶性),在心血管系统、神经系统、免疫系统乃至全身,发挥传输生理信号的重要作用。
它的作用主要体现在三个方面:①一氧化氮在心血管系统具有松弛血管平滑肌的功能,增加血流量,维持血管和动脉壁的清洁,防止脂肪等沉积物黏附于血管壁,维持健康血压,减轻心脏负担。
②在免疫系统方面,一氧化氮可杀死细菌、病毒、肿瘤细胞及多种病原体,构成强有力的体内防御系统。
③一氧化氮作为一种神经信号的传递物质,可促进脑部血流量、增强大脑记忆及保护脑细胞等。
人体血管内皮细胞及部分神经细胞等是生产一氧化氮的“工厂”,其“原料”主要为一氧化氮合酶(NOS)、精氨酸、瓜氨酸等。
随着年龄增长,体内产生的一氧化氮会逐渐减少。
加上不良生活习惯,如常食用甜食、油腻食品和含多种食品添加剂的食物,以及抽烟酗酒、经常熬夜、心理压力大、缺乏锻炼等都会造成内皮细胞损伤、炎症等,使体内一氧化氮减少。
体内一氧化氮减少会出现记忆力下降、胸闷、气短、尿频、性功能低下等。
若长期一氧化氮缺乏则会引发高血压、冠心病、高脂血症、中风、老年痴呆、糖尿病、肥胖、阳痿、癌症等疾病。
一氧化氮吸入治疗新生儿持续肺动脉高压的护理探究【摘要】目的:探讨分析新生儿持续肺动脉高压采用一氧化氮治疗期间实施护理的效果。
方法:2019年12月至2021年1月,选取92例新生儿持续肺动脉高压(PPHN)展开研究,随机分为两组,患儿均采用一氧化氮吸入治疗,对照组联合常规护理,观察组联合综合护理,对比两组结局。
结果:观察组护理后的血气指标(血氧饱和度、动脉血氧分压、氧合指数)优于对照组(P<0.05)。
观察组并发症(低血压、肺炎、心力衰竭、败血症)发生率 4.35%小于对照组17.39%(P<0.05)。
结论:PPHN采用一氧化氮治疗期间实施综合护理,可改善血气指标与并发症发生率,值得推广。
关键词:新生儿持续肺动脉高压;一氧化氮;常规护理;综合护理;血气指标;并发症新生儿持续肺动脉高压(PPHN)属于常见新生儿急危重症,死亡率在40%-50%[1]。
临床多采用一氧化氮吸入疗法治疗疾病,临床验证该方案具有理想的治疗效果。
但有研究[2]指出,为保障治疗效果,改善患儿预后,应在PPHN治疗期间积极实施有效的护理干预,调节患儿身心健康,提升患儿的整体治疗效果。
基于此,对比常规护理和综合护理的临床应用效果,见下文。
1·资料与方法1.1临床资料2019年12月至2021年1月,选取92例PPHN展开研究,随机分为两组。
对照组男女比为26/20,胎龄36-42周(39.38±0.89)周,病程5-43h (24.24±8.79)h。
观察组男女比为25/21,胎龄36-42周(39.23±0.81)周,病程5-44h(24.50±8.71)h。
上述资料比较无差异(P>0.05)。
对照组(常规护理):在新生儿娩出子宫后,迅速清理患儿呼吸道。
若患儿存在胎粪吸入综合征,需及时给予经口气管插管,利用导管将被胎粪污染羊水全部吸除。
采用生理盐水对患儿气管进行反复冲洗,为患儿提供吸氧治疗。
一氧化氮治疗疾病原理今天咱们来聊聊一氧化氮这个神奇的小玩意儿是怎么治疗疾病的,可有趣啦!一氧化氮啊,它虽然只是小小的分子,但本事可大着呢。
你看啊,咱们人体的血管就像一条条小河流,血液就在这些“河流”里欢快地流淌。
可是呢,有时候血管会变得狭窄或者堵塞,就像小河流里有了淤泥或者石头挡路。
这时候一氧化氮就闪亮登场啦。
一氧化氮就像是一个超级管道工,它能够让血管的平滑肌细胞放松。
你可以想象血管平滑肌就像紧紧握着的小拳头,一氧化氮一来,就像给这个小拳头做了个按摩,让它松开了。
这样血管就会扩张开来,血液就能更顺畅地流动啦。
比如说有高血压的人,血管总是紧绷着,血压就高。
一氧化氮能让血管放松,血压就能够降下来呢,就像给一个压力很大的气球放放气一样。
再说说一氧化氮对心脏的好处吧。
心脏可是人体的大泵站啊,一刻不停地把血液泵到全身各处。
要是心脏的血管堵了,那可不得了,就会引发心绞痛甚至心肌梗死。
一氧化氮能让心脏的血管保持通畅,给心脏提供足够的氧气和营养物质。
它就像心脏的小保镖一样,时刻守护着心脏的健康。
你想啊,心脏在一氧化氮的保护下,就能欢快地跳动,就像一个充满活力的小鼓手,咚咚咚地敲打出健康的节奏。
还有哦,在咱们的免疫系统里,一氧化氮也有它的一席之地。
当有病菌入侵咱们身体的时候,身体里的免疫细胞就会像小战士一样冲出来战斗。
一氧化氮在这个时候就像是给小战士们的秘密武器。
它可以帮助免疫细胞更好地杀伤病菌。
比如说有些细菌在一氧化氮的攻击下,就像被施了魔法一样,失去了活力,然后就被免疫细胞轻松消灭啦。
而且一氧化氮还能调节免疫反应的强度呢。
如果免疫反应太强烈了,就像一群小战士打红了眼,可能会误伤自己的身体组织,一氧化氮就会出来拉一把,让免疫反应保持在一个合适的强度,不至于失控。
在神经系统里,一氧化氮也没闲着。
咱们的大脑就像一个超级复杂的电脑,神经细胞之间要互相传递信息。
一氧化氮就像是一个小信使,在神经细胞之间跑来跑去,传递着各种信号。
一氧化氮养生法一氧化氮养生法是路易斯·伊格纳罗博士在他的《NO让你远离心脑血管疾病》一书中提出的有效防止心脑血管疾病的保健养生法。
“一氧化氮养生法”有三大步骤,此三步相辅相成。
对已患有心血管疾病者可降低发病率,并使患者的病情得到不同程度的改善。
对健康人群可起到有效的预防作用。
第一步:一氧化氮养生法---保健品的作用(两种氨基酸和四种抗氧化剂的混合物)您可以分别购买以上六种保健品来服用,但有一点需要注意保健品的补充剂量遵从全或无定律。
剂量不够,作用很弱。
这里介绍一种我认为很好的保健品,名叫Nite—works中文名叫“夜宁欣”,它同时含有以上六种保健品,为粉状饮品。
它是康宝莱公司与1998年诺贝尔医学奖得主路易斯·伊格纳罗博士共同研发的预防心血管疾病的保健品。
现已通过卫生部门检验,已在中国上市。
第二步:一氧化氮养生法---营养食品的作用(NO饮食)含抗氧化剂的食品:香蕉、黑莓、蓝莓、谷物糠、黑巧克力、鱼油、苹果、红葡萄酒、红薯、三文鱼、番茄、木瓜、樱桃、茶(红、绿)等。
含L-精氨酸和L-瓜氨酸的食品:杏仁、黑巧克力、花生、红肉、三文鱼、黄豆、胡桃益于心脏的油:芥花子油、玉米油、橄榄油(纯天然)、红花油、芝麻油含优质蛋白的食品:鳕鱼、蛋、龙虾、花生、三文鱼、虾、瘦肉、剑鱼、黄豆、杏仁、胡桃等。
几点说明:第一、瘦肉含的优质蛋白很高,但同时含过多的饱和脂肪,对患高脂血症病人的健康极为不利。
建议使用保健品或豆类等植物蛋白补充。
第二、糖尿病患者少吃豆制品。
第三、绿茶的作用1、抗癌,特别是前列腺癌和乳腺癌。
2、对抗风湿性关节炎。
3、降血压。
4、降血脂(LDL)。
5、动脉硬化。
6、预防血栓形成。
7、心脏病。
8、中风。
9、加快体脂肪代谢,有助于减肥。
绿茶中主要含EGCGD 抗氧化剂,该物质具有杀死癌细胞而不会损伤正常细胞的作用;预防吸烟者发生心脏病;促进心血管系统的健康。
EGCG能抑制机体的氧化应激反应,保护血管内皮免受损害,促进一氧化氮生成。