人教版九年级数学上册导学案 23.1 旋转和旋转的性质
- 格式:doc
- 大小:194.53 KB
- 文档页数:3
第二十三章旋转投我以桃,报之以李。
《诗经·大雅·抑》原创不容易,【关注】,不迷路!23.1图形的旋转23.1.1第1课时旋转的概念与性质学习目标:1.掌握旋转的有关概念及基本性质.2.能够根据旋转的基本性质解决实际问题.重点:掌握旋转的有关概念及基本性质.难点:探索旋转的性质并能运用旋转的性质解决实际问题.一、知识链接1.将图①平移,使点A的对应点为点C,画出平移后的图形.2.如图②,已知△ABC和直线l,请画出△ABC关于直线l的对称图形.图①图②二、要点探究探究点1:旋转的概念观察与思考观察荡秋千、转动的钟表和风车,它们有什么共同的特征?思考怎样来定义上面这些图形的变换?知识要点在平面内,将一个图形绕一个定点按某个方向转动一个角度,这样的图形运动称为旋转.这个定点称为旋转中心.转动的角称为旋转角.如果图形上的点P经过旋转变为点P',这两个点叫做这个旋转的对应点.转动的方向分为顺时针与逆时针.例1下列物体的运动是旋转的有.①电梯的升降运动;②行驶中的汽车车轮;③方向盘的转动;④骑自行车的人;⑤坐在摩天轮里的小朋友.方法总结:判断一种运动是否属于旋转,先看图形是否在同一平面内运动,其次要看是否有旋转中心,旋转角,旋转方向,还要注意判断变化前后图形大小是否发生了变化.例2若叶片A绕O顺时针旋转到叶片B,则旋转中心是______,旋转角是_________,旋转角等于____度,其中的对应点有_______、_______、_______、_______、_______、_______.练习如图,三角形ABD经过旋转后到三角形ACE的位置,其中∠BAC=60°.(1)旋转中心是哪一点?(2)旋转了多少度?顺时针还是逆时针?(3)如果M是AB的中点,经过上述旋转后,点M转到什么位置?要点归纳:确定一次图形的旋转时,必须明确旋转中心、旋转角、旋转方向.旋转的范围是“平面内”,其中“旋转中心,旋转方向,旋转角度”称之为旋转的三要素.典例精析例3如图,点A、B、C、D都在方格纸的格点上,若△AOB绕点O按逆时针方向旋转到△COD的位置,则旋转的角度为( )A.30°B.45°C.90°D.135°方总结:一个图形由一个位置旋转到另一个位置,如果有固定不动的点,那么这个点就是旋转中心,对应点与旋转中心所连线段的夹角等于旋转角.探究点2:旋转的性质合作探究1根据图形填空旋转中心是点__________;图中对应点有;图中对应线段有_____________________________________.每对对应线段的长度有怎样的关系?________.图中旋转角等于________.合作探究2观察下图,你能得到什么结论?知识要点:旋转的性质1.对应点到旋转中心的离相等;2.两组对应点分别与旋转中心的连线所成的角相等;3.旋转中心是唯一不动的点;4.旋转不改变图形的形状和大小.想一想如图,将△ABC逆时针旋转△ADE,如何确定它们的旋转中心位置?练一练如图,在平面直角坐标系xOy中,△ABC的顶点A(1,2)、B(-2,2)、C(-1,0).若将△ABC以某点为旋转中心,顺时针旋转90°得到△DEF,则旋转中心的坐标是()A.0,0)B.(1,0)C.(1,-1)D.(2.5,0.5)方法总结:旋转中心在对应点连线的垂直平分线上,找到旋转中心,找到两组对应点连线的垂直平分线的交点即可.例4如图,将△ABC绕点A逆时针旋转150°,得到△ADE,这时点B,C,D 恰好在同一直线上,求∠B的度数.变式如图,△ABC为钝角三角形,将△ABC绕点A逆时针旋转120°,得到△AB'C',连接B'.若AC'∥BB,则∠CAB'的度数为多少?例5如图,四边形ABCD是正方形,△ADF按顺时针方向旋转一定角度后得到△ABE,已知AF=5,AB=8,求DE的长度.方法总结:利用旋转的性质解决问题时应抓住以下几点:(1)明确旋转中的“变”与“不变”;(2)找准旋转前后的“对应关系”;(3)充分挖掘旋转过程中的相等关系.三、课堂小结旋转定义三要素:旋中心,旋转方向和旋转角度性质①旋转前后的图形全等;②对应点到旋转中心的距离相等;③对应点与旋转中心所连线段的夹角等于旋转角.1.下列现象中属于旋转的有()①地下水位逐年下降;②传送带的移动;③水龙头开关的转动;④钟摆的运动;⑤荡秋千运动.A.2个B.3个C.4个D.5个2.下列说法正确的是()A.旋转改变图形的形状和大小B.平移改变图形的位置C.图形可以沿某直线方向旋转一定距离D.由平移得到的图形也一定可由旋转得到3.△ABC绕点A旋转一定角度后得到△ADE,若BC=4,AC=3,则下列说法正确的是()A.DE=3B.AE=4C.∠CAB是旋转角D.∠CAE是旋转角第3题图第4题图第5题图4.如图,在平面直角坐标系中,有一个Rt△ABC,且A(-1,3),B(-3,-1),C(-3,3),已知△A1AC1是由△ABC旋转得到的.则旋转中心的坐标是()A.(0,0)B.(-1,0)C.(1,0)D.(0,-1)5.如图,点E是正方形ABCD内一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置,若AE=1,BE=2,CE=3则∠BE′C=________度.拓展提高:6.如图,已知正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°,将△DAE绕点D按逆时针方向旋转90°得到△DCM.(1)求证:EF=MF;(2)当AE=1时,求EF的长.参考答案自主学习一、知识链接1.图略2.图略课堂探究二、要点探究探究点1:观察与思考思考答:把时针当成一个图形,那么它可以绕着中心固定点转动一定角度.钟表的指针在不停地转动,从3时到5时,时针转动了60度;把叶片当成一个平面图形,那么它可以绕着平面内中心固定点转动一定角度.风车风轮的每个叶片在风的吹动下转动到新的位置.例1③⑤例2O∠AOB60A与BB与CC与DD与EE与FF与A练习解:(1)旋转中心是点A.(2)旋转了60°,逆时针.(3)点M转到了AC的中点上.例3C探究点2:合作探究1C点A与点A′,点B与点B′,点M与点M′,点N与点N′线段CA与CA′、CB与CB′、AB与A′B′相等45°合作探究2解:角:∠AOA'=∠BOB'=∠COC';线:AO=A'O,BO=B'O,CO=C'O 想一想解:如图,两条对应点连线段的垂直平分线的交点O即为旋转中心.练一练C例4解:∵将△ABC绕点A逆时针旋转150°,得到△ADE,∴∠BAD=150°,AB=AD.∴∠B=1(180°-150°)=15°.2变式解:∵将△ABC绕点A逆时针旋转120°,得到△AB'C',∴∠BAB'=∠CAC'=120°,AB=AB'.∴∠AB'B=1(180°-120°)=30°.又∵AC'∥BB',∴∠2B'AC'=∠AB'B=30°.∴∠CAB'=∠CAC'-∠B'AC'=120°-30°=90°.例5解:∵△ADF按顺时针方向旋转一定角度后得到△ABE,∴AE=AF=5,AD=AB=8.∴DE=AD-AE=8-5=3.当堂检测1.B2.B3.D4.A5.135拓展提高:(1)证明:∵△DAE绕点D逆时针旋转90°得到△DCM,∴DE=DM,∠EDM=90°,∵∠EDF=45°,∴∠FDM=45°,∴∠EDF=∠FDM.又∵DF=DF,DE=DM,∴△DEF ≌△DMF,∴EF=MF.(2)解:设EF=MF=x,∵AE=CM=1,AB=BC=3,∴EB=AB-AE=3-1=2,BM=BC+CM=3+1=4,∴BF=BM-MF=4-x.在Rt△EBF中,由勾股定理得EB2+BF2=EF2,即22+(4-x)2=x2,解得x=52.则EF的长为52.【素材积累】岳飞应募参军,因战功累累不断升职,宋高宗亲手写了“精忠岳飞”四个字,制成旗后赐给他。
九年级下数学NO :1 主备人:银 波 审核人: 授课人: 第 周 星期 第 组 学生 预习评价: 整理评价23.1图形的旋转(1)一、学习目标:通过具体实例认识图形的旋转,理解“对应点到旋转中心的距离相等”以及“旋转前、后的图形全等”的基本性质。
二、学习重难点为:旋转及对应点的有关概念及其应用 三、学习过程 (一)、情景导入: 1、观察下列图片:(1)时钟上的秒针在不停的转动;(2)大风车的转动;(3)飞速转动的电风扇叶片;(1)这些运动有什么共同特征?(2)它们在运动过程中,形状、大小、位置是否发生变化?(二)自主学习: 1、旋转的概念:图1:在同一平面内,点A 绕着定点O 旋转某一角度得到点 ; 图2:在同一平面内,线段AB 绕着定点O 旋转某一角度得到线段 ; 图3:在同一平面内,三角形ABC 绕着定点O 旋转某一角度得到 。
把一个 绕着 内 转动一个 ,叫做图形的旋转, 叫做旋转中心, 叫做旋转角。
2、旋转的三要素:(1) ;(2) ;(3) 。
3、旋转的性质:(1)△ABO 绕点O 旋转得到△CDO ,则:点B 的对应点是________;线段OB 的对应线段是________;线段CD 的对应线段是________; ∠AOB 的对应角是________;∠B 的对应角是________; 旋转中心是________;旋转角是_________________。
(2)△ABC在旋转过程中,哪些发生了变化?AB= ;∠AOB= ;∠ABO= ;∠OAB= ;OA= ;OB= ;OC= ;∠AO C= 。
对应边:;对应角:;对应点到旋转中心的距离:;对应点与旋转中心所连线段的夹角等于。
三、例题学习:1,△ABF是△ADE的旋转图形。
四边形ABCD是边长为1的正方形,且DE=4(1)旋转中心是哪一点?(2)旋转了多少度?(3)AF的长度是多少?(4)如果连结EF,那么△AEF是怎样的三角形?四、课堂练习:如图,如果把钟表的指针看做四边形AOBC,它绕O点旋转得到四边形DOEF. 在这个旋转过程中:(1)旋转中心是什么?(2)经过旋转,点A、B分别移动到什么位置?(3)旋转角是什么?(4)AO与DO的长有什么关系?BO与EO呢?(5)∠AOD与∠BOE有什么大小关系?五、课后练习:1、下列现象中属于旋转的有( )个①地下水位逐年下降;②传送带的移动;③方向盘的转动;④水龙头开关的转动;⑤钟摆的运动;⑥荡秋千运动。
九级数学 课题23.1图形的旋转(第一课时) 学习目标:1、掌握旋转的定义以及相关概念2、理解旋转的基本性质3、利用性质解决相关问题。
学习重点:旋转相关概念以及性质学习难点:利用性质解决相关问题。
学习过程:一、课前展示:二、自主学习-------旋转的定义(一).自学教材P56并填空:1、把一个平面图形___着平面内某一点O _____一个角度,就叫做图形的旋转,点O 叫做_________,转动的角叫做________。
因此,旋转的决定因素....是_________和_________。
(二).自学检测:1.钟表的分针匀速旋转一周需要60分.(1)指出它的旋转中心;(2)经过20分,分针旋转了_________度.2.如图,如果把钟表的指针看做三角形OAB ,它绕O 点按顺时针方向旋转得到△OEF ,在这个旋转过程中:(1)旋转中心是______旋转角是__________(2)经过旋转,点A 、B 分别移动______________3.如图:∆ABC 是等边三角形,D 是BC 上一点,∆ABD 经过旋转后到达∆ACE 的位置。
(1)旋转中心是_______(2)旋转了_______度.(3)如果M 是AB 的中点,那么经过上述旋转后,点M 转到了________________.三、合作交流-----旋转的性质同组学生讨论探究,总结归纳旋转地性质。
①_______________________________________________________②__________________________________________________________③_______________________________________________________ E D C B A M四、应用提高1、已知△ABC 是直角三角形,∠ACB=90°,AB=5㎝,BC=3厘米,△ABC 绕点C 逆时针方向旋转90°后得到△DEC ,则∠D=______,∠B=______,DE=_______㎝,EC=______㎝,AE=_______㎝,DE 与AB 的位置关系为_________________.2、正方形ABCD 中有一点P ,把△ABP 绕点点B 旋转到△CQB,连结PQ ,则△PBQ 的形状是____1 等边三角形至少旋转__________度才能与自身重合。
一、自主预习1、平移是指在同一平面内,将一个图形整体按照某个 方向移动一定的距离,这样的图形运动叫做图形的平移运动,简称2、性质:图形平移前后的形状和大小 变,只是 发生变化;图形平移后,对应点连成的线段 且 (或在同一直线上) 3、思考探究(1)钟表的指针不停地转动(2)大风车的转动给人们带来快乐(3)电风扇飞速旋转的叶片给人们带来丝丝乐意 这些现象有什么共同特点?4、相关概念总结把一个图形绕着某一定点O 转动一个角度的图形变换叫做旋转.这个定点O 叫 ,转动的角叫做 5、自学检测(1)已知:把△ABC 绕着点B 顺时针旋转 60º后能与△A ´B ´C ´重合。
求:(1)找出旋转中心(2)指出对应点、旋转角(2)如图,四边形ABCD 是长方形,四边形AEFG也是长方形,E 在AD 上,如果长方形ABCD 旋转后能与长方形AEFG 重合,那么:①旋转中心是哪一点?②旋转角是多少度? ③点C 与点D 的对应点分别是什么?(3)课本56页练习2、3(课本上完成) 二、合作探究如图,在 硬纸板上,挖一个三角形的洞,在挖一个小洞O作为旋转中心,硬纸板下面放一张白纸,先在这个纸上描出这个挖掉的△ABC,然后围绕旋转中心转动硬纸片,在描出这个挖掉的三角形(△A 'B 'C ')移动硬纸板思考:1. 线段OA 与OA '有什么关系? 2.∠AOA '与∠BOB '有什么关系 ?3. △ABC 和△A 'B 'C '的形状和大小有什么关系?归纳总结:旋转的性质1、对应点到旋转中心的距离 2、对应点与旋转中心所连线段的夹角等于 角 3、旋转前后的图形 三、展示交流如图E 是正方形ABCD 中CD 上任意一点,以A 为中心,把△ADE 顺时针旋转90°,画出旋转后的图形。
科目 数学班级学生姓名 课题 23.1图形的旋转 课型新授 课时1课时主备教师备课组长签字学习目标:1.通过具体实例认识图形旋转的变换2.探索图形旋转的性质 3.会作一个图形经过旋转变换后的图形4.利用图形旋转的变换进行设计 学习重点 图形旋转变换的性质及作一个图形经过这种图形变换后的图形 学习难点 图形旋转变换的性质及作一个图形经过这种图形变换后的图形ADC EB四、当堂检测1.如图,把△ABC绕点C顺时针旋转35°,得到△A'B'C',交AC于点D,若∠A'DC=90°,则∠A的度数为()A、45° B、55° C、65° D、75°2.在图形旋转中,下列说法错误的是()A.在图形上的每一点到旋转中心的距离相等B.图形上每一点移动的角度相同C.图形上可能存在不动的点D.图形上任意两点的连线与其对应两点的连线长度相等3.如图,下面的四个图案中,既包含图形的旋转,又包含图形的轴对称的是()4.如图,△ABC和△ADE均是顶角为42°的等腰三角形,BC、DE分别是底边,图中的△ABD绕A旋转42°后得到的图形是________,它们之间的关系是______,•其中BD=_________.5.(选做题)如图,已知正方形ABCD的对角线交于O点,若点E在AC的延长线上,•AG•⊥EB,交EB的延长线于点G,AG的延长线交DB的延长线于点F,则△OAF与△OBE全等吗?如果全等给予证明,如果不全等请说明理由?。
九年级数学“23.1图形的旋转”导学案一、学习目标:掌握旋转的有关概念,经历探索图形旋转特征的过程,体验和感受图形旋转的主要特征,理解图形旋转的基本性质二、教学重点:旋转的有关概念和旋转的基本性质教学难点:探索旋转的基本性质学习方法:观察、操作、交流、归纳1.请同学们认真观察我县大厦楼顶的钟表或家里的钟表,有什么在不停地转动?旋绕什么点呢?•从1点到2点时针转了_____ __度,分针转了___ ____度,秒针转了____ __度.2.一般的,把一个图形绕着某一点O转动一个角度的图形变换叫,点O叫做,叫旋转角。
如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的.3.如右图,如果把钟表的指针看做三角形OAB,它绕O点按顺时针方向旋转得到△OEF,在这个旋转过程中,旋转中心是。
旋转角是。
经过旋转,点A、B分别移动到位置。
4.如图可以看到,点A旋转到点,OA旋转到,∠AOB旋转到,此时点B的对应点是点,线段OB的对应线段是。
线段AB的对应线段是。
∠A的对应角是,∠B的对应角是,∠AOB的对应角是,旋转中心是点,旋转的角度是。
5. 图形的旋转由和决定。
6. 结合教材总结旋转的特征:(1)(2)(3)四、走进新课例1:如图,四边形ABCD是正方形,ΔADE旋转后能与ΔABF重合。
(1)旋转中心是哪点?(2)旋转了多少度?(3)如果连结EF,则ΔAEF是什么三角形?为什么?尝试练习一:1.如图,ΔABC是等边三角形,D是BC上一点,ΔABD经旋转后到达ΔACE的位置(1)旋转中心是哪一点?(2)旋转了多少度?(3)如果M是AB的中点,那么经过上述旋转后,点M转到了什么位置?2.如图,四边形ABCD、四边形EFGH都是边长为1的正方形.(1)这个图案可以看做是哪个“基本图案”通过旋转得到的?(2)请画出旋转中心和旋转角.(3)指出,经过旋转,点A、B、C、D分别移到什么位置?(注意:图形的旋转由什么决定)例2如图,Rt△ABC中,∠C=90°,∠ABC=60°,△ABC以点C 为中心旋转到△A′B′C的位置,使B在斜边A′B′上,A′C与AB相交于D,试确定∠BDC的度数.(提示:抓住旋转前后两个三角形的对应边相等、对应角相等等性质)尝试练习二:1.如图,K是正方形ABCD内一点,以AK为一边作正方形AKLM,使L、M•在AK的同旁,连接BK和DM,试用旋转的思想说明线段BK与DM的关系.2.如图,在正方形ABCD中,E是AD的中点,F是BA延长线上一点,AF=1AB.2(1)可以通过平行移动、翻折、旋转中的哪一种方法,•使△ABE 移到△ADF的位置?(2)指出如图7所示中的线段BE与DF之间的关系.五.成果检测1.在平面内,将一个图形绕一个定点沿着某个方向转动一个角度,这样的图形运动称为________,这个定点称为_____ ___,转动的角为___ _____.2.如图1,△ABC与△ADE都是等腰直角三角形,∠C和∠AED都是直角,•点E•在AB上,如果△ABC经旋转后能与△ADE重合,那么旋转中心是点_________;旋转的度数是__________.3.如图2,△ABC为等边三角形,D为△ABC•内一点,•△ABD•经过旋转后到达△ACP的位置,则,(1)旋转中心是___ _;(2)旋转角度是__ ___;(•3)△ADP是_____三角形.(1) (2) (3)4、图形:线段、角、圆、梯形、正方形、菱形中绕一定点转动一定角度(小于360°)能与原图形重合的图形有()A、2个B、3个C、4个D、5个5.在26个英文大写字母中,通过旋转180°后能与原字母重合的有().A.6个 B.7个 C.8个 D.9个6.从5点15分到5点20分,分针旋转的度数为().A.20° B.26° C.30° D.36°7.如图3,在Rt△ABC中,∠ACB=90°,∠A=40°,以直角顶点C 为旋转中心,•将△ABC旋转到△A′B′C的位置,其中A′、B′分别是A、B的对应点,且点B在斜边A′B′上,直角边CA′交AB于D,则旋转角等于().A.70° B.80° C.60° D.50°8. 画出图中ΔADC以D为旋转中心,顺时针旋转90°后的三角形。
一、基础知识(一)旋转的概念:把一个图形绕着平面内某一点O转动一个角度,就叫作图形的旋转,点O叫做旋转中心,转动的角叫做旋转角旋转的三要素:旋转中心、旋转方向、旋转角度(二)旋转的性质:1.对应点到旋转中心的距离相等2.对应点与旋转中心所连线段的夹角等于旋转角3.旋转前、后的图形全等二、重难点分析本课教学重点:旋转的性质①对应点到旋转中心的距离相等②对应点与旋转中心所连线段的夹角等于旋转角③旋转前、后的图形全等旋转角的确定--------每一对对应点与旋转中心的连线之间的夹角都是这个旋转的旋转角,一个旋转中有多个旋转角。
本课教学难点:对图形进行旋转变换。
和实际相联系的图形变换。
通过设置数学实验让学生进行独立的探究学习,促使学生主动参与数学知识的“再发现”,培养学生动手实践能力,观察、分析、比较、抽象、概括的思维能力。
三、典例精析:例1:如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于()A.55°B.70°C.125°D.145°【答案】C【考点】旋转的性质。
例2.如图1,点A是线段BC上一点,△ABD和△ACE都是等边三角形.(1)连结BE,CD,求证:BE=CD;(2)如图2,将△ABD绕点A顺时针旋转得到△AB′D′.①当旋转角为度时,边AD′落在AE上;②在①的条件下,延长DD’交CE于点P,连接BD′,CD′.当线段AB、AC满足什么数量关系时,△BDD′与△CPD′全等?并给予证明.=30°,从而得到∠ABD′=∠DBD′=∠BD′D=∠ACD′=∠PD′C=30°,然后利用“角边角”证明△BDD′与△CPD′全等.四、感悟中考1、(2013年衡阳)如图,在Rt△OAB中,∠AOB=30°,将△OAB绕点O逆时针旋转100°得到△OA1B1,则∠A1OB= °。
人教版九年级数学上册23.1《旋转的概念及性质》教学设计一. 教材分析人教版九年级数学上册23.1《旋转的概念及性质》是整个初中数学的重要内容,它不仅巩固了之前所学的几何知识,还为高中数学打下基础。
本节内容通过旋转的定义、性质和变换,使学生了解旋转在实际中的应用,提高其空间想象能力和解决问题的能力。
二. 学情分析九年级的学生已经具备了一定的几何知识基础,对图形的变换有一定的了解。
但旋转作为一种特殊的图形变换,其概念和性质较为抽象,需要通过具体实例和实际操作来引导学生理解和掌握。
三. 教学目标1.了解旋转的概念,理解旋转的性质。
2.学会用旋转的观点分析和解决问题。
3.培养学生的空间想象能力和解决问题的能力。
四. 教学重难点1.旋转的概念和性质。
2.旋转在实际中的应用。
五. 教学方法1.采用问题驱动法,引导学生主动探究旋转的性质。
2.利用多媒体和实物模型,直观展示旋转过程,增强学生的空间想象力。
3.注重实践操作,让学生通过动手实践来理解和掌握旋转的概念和性质。
六. 教学准备1.多媒体教学设备。
2.实物模型和图片。
3.旋转相关的练习题和作业。
七. 教学过程1. 导入(5分钟)教师通过展示一些生活中的旋转现象,如旋转门、风车等,引导学生思考这些现象与数学有什么联系。
学生可以发现这些现象都是通过旋转来实现的,从而引出本节课的主题——旋转的概念及性质。
2. 呈现(10分钟)教师通过多媒体展示旋转的定义和性质,同时结合实物模型进行讲解,让学生直观地理解旋转的概念。
教师引导学生发现旋转并不改变图形的大小和形状,只是改变图形的位置。
3. 操练(10分钟)学生分组进行实践操作,利用准备好的实物模型和图片进行旋转,观察旋转前后的变化,验证旋转的性质。
教师巡回指导,解答学生的疑问。
4. 巩固(10分钟)教师出示一些有关旋转的练习题,让学生独立完成。
题目可以包括判断题、选择题和应用题,以巩固学生对旋转概念和性质的理解。
5. 拓展(10分钟)教师引导学生思考旋转在实际中的应用,如地图上的方向表示、机械零件的安装等。
《23.1.1旋转的概念与性质》一、学习目标1.了解生活中广泛存在的旋转现象,知道旋转是继平移、对称之后的又一种基本变换.2.能结合图形指出什么是旋转中心、旋转角和对应点.3.体会旋转的形成过程,并探究旋转的性质.二、导学指导与检测导学导学检测及课堂展示阅读教材第59页的内容完成右边的学习内容1.把一个平面图形,叫做图形的旋转.2.从课文中的思考实例可以看出:图形的旋转三要素是,,.3.如右图,点P是正方形ABCD内一点,将△ABP绕B点顺时针方向旋转到△CBP′的位置时,其旋转中心是,旋转角度为,点A、B、P的对应点分别为.即时训练:1.时钟的时针在不停地旋转,从上午6时到上午9时,时针旋转的角度是多少?从上午9时到上午10时呢?解:2.如图,杠杆绕支点转动撬起重物,杠杆的旋转中心是点,旋转角是,点A的对应点是点.阅读教材第60页的“探究”——旋转的性质的内容完成相关的内容1.按下列要求动手画图:在硬纸板上先挖一个三角形洞,再在三角形洞外挖一个小洞O(作为旋转中心),把挖好洞的硬纸板放在白纸上,在白纸上描出挖掉的三角形图案(△ABC),围绕旋转中心转动硬纸板,再描出挖掉的三角形图案(△A′B′C′),移开硬纸板,用虚线连接OA、OA′、OB、OB′、OC、OC′.2.OA与OA′、OB与OB′、OC与OC′分别有何关系?.3.△AOA′、△BOB′、△COC′之间有何关系?.4.△ABC与△A′B′C′有何关系?.5.观察你画的图形,还有不同的发现吗?即时训练:1.如图1,小明坐在秋千上,秋千旋转了80°. 请在图中小明身上任意选一点P,利用旋转的性质,标出点P的对应点.图1 图2 图32.如图2,用左面的三角形经过怎样的旋转,可以得到右面的图形?解:3.找出图3中扳手拧螺母时的旋转中心和旋转角.解:三.巩固诊断(一)基础巩固(70分)1. (10分) 下列现象中属于旋转的有()△火车行驶;△荡秋千运动;△方向盘的转动;△钟摆的运动;△圆规画圆.A.1个B.2个C.3个D.4个2.(10分) 如图,点A、B、C、D都在方格纸的格点上,若△AOB绕点O按逆时针方向旋转到△COD的位置,则旋转的角度为()A.30°B.45°C.90°D.135°3.(20分) 如图,四边形ABCD是边长为4的正方形,且DE=1,△ABF是△ADE的旋转图形.旋转中心是,旋转了度,AF的长度是,连接EF,则△AEF的形状是.4.(10分) 如图,右边的小鸡是由左边的小鸡经过旋转得到的,旋转中心是点O.从图中量一量旋转角是多少度.解:5.(20分)下面两组图形分别是用左边的图形经过怎样的旋转得到右边的图形的?解:(二)综合应用(20分)6.(10分) 如图,该图形围绕自己的旋转中心,按下列角度旋转后,不能与自身重合的是()A.72°B.108°C.144°D.216°第6题图第7题图7.(10分)把图中的五角星图案,绕着它的中心点O旋转,旋转角为多少度时,旋转后的五角星能与自身重合?解:(三)拓展延伸(10分)8.(10分)如图,△ABD、△AEC都是等边三角形,BE与DC有什么关系?你能用旋转的性质说明上述关系成立的理由吗?解:四、堂清、日清记录堂清日清今日之事今日毕日积月累成大器课堂反思:澜沧拉祜族自治县第一中学自主高效课堂导学案年级:九班级:学生姓名:制作人:九年级数学组教研组审批时间: 2021年8月31日《23.1.2旋转作图与坐标系中的旋转变换》一、学习目标1. 能按要求作出简单平面图形旋转后的图形.2. 能通过图形的旋转设计图案.二、导学指导与检测导学导学检测及课堂展示阅读教材第60页例题完成右边的学习内容1. 例如图,E是正方形ABCD中CD边上任意一点,以点A为中心,把△ADE顺时针旋转90°,画出旋转后的图形.△因为A是旋转中心,所以A点的对应点是.△根据正方形的性质:AD=AB,△DAB=90°,所以点D的对应点是.△因为旋转前、后的两个图形全等,所以本例根据三角形全等的判定方法.作出△ADE的对应图形为.△E点的对应点E′,还有别的方法作出来吗?总结:作一个图形旋转后的图形,关键是作出对应点,并按原图的顺序依次连接各对应点.即时训练;在△ABC中,AB=AC,P是BC边上任意一点,以点A为中心,取旋转角等于△BAC,把△ABP逆时针旋转,画出旋转后的图形.阅读教材第61页“练习”以下的内容完成相关的内容1.把一个基本图形进行旋转来设计图案,可以通过哪两种途径获得不同的图案效果?2.任意画一个△ABC,以A为中心,把这个三角形逆时针旋转40°;3.任意画一个△ABC,以AC中点为中心,把这个三角形旋转180°.4.如图,菱形ABCD中,△BAD=60°,AC、BD相交于点O,试分别以点O和点A为旋转中心,以90°为旋转角画出图案,并相互交流.总结:运用旋转作图应满足三要素:旋转中心、旋转方向、旋转角,而旋转中心、旋转角固定下来,对应点就自然而然地固定下来.因此,选择不同的旋转中心、不同的旋转角会作出不同效果的图案.即时训练:请在图中画出线段AB以O为旋转中心逆时针分别旋转90°,180°,270°时对应的图形.解:三.巩固诊断(一)基础巩固(70分)1.(10分) 将△AOB绕点O旋转180°得到△DOE,则下列作图正确的是()A B C D2.(10分) 数学课上,老师让同学们观察如图所示的图形,问:它绕着圆心O旋转多少度后和它自身重合?甲同学说:45°;乙同学说:60°;丙同学说:90°;丁同学说:135°.以上四位同学的回答中,错误的是()A.甲B.乙C.丙D.丁3.(10分) 如图,将一个钝角△ABC(其中△ABC=120°)绕点B顺时针旋转得到△A1BC1,使得C点落在ABABCDO的延长线上的点C1处,连接AA1.(1)写出旋转角的度数;(2)求证:△A1AC=△C1.4.(20分) 分别画出△ABC绕点O逆时针旋转90°和180°后的图形.5.(20分)把图中的△ABC作下列旋转:(1)以C为中心,把这个三角形顺时针旋转60°;(2)在△ABC外任取一点O为中心,把这个三角形顺时针旋转120°.(二)综合应用(20分)BACBAC6.(10分)如图,在Rt△ABC中,△ACB=90°,△A=40°,以直角顶点C为旋转中心,将△ABC旋转到△A′B′C的位置,其中A′、B′分别是A、B的对应点,且点B在斜边A′B′上,直角边CA′交AB于点D,则旋转角等于()A.70°B.80°C.60°D.50°7.(10分)右图中的风车图案,可以由哪个基本的图形,经过什么样的旋转得到?(三)拓展延伸(10分)8.(10分) 如图,△ABC中,△C=90°,△B=40°,点D在边BC上,BD=2CD.△ABC绕着点D顺时针旋转一定角度后,点B恰好落在初始△ABC的边上,求旋转角α(0°<α<180°)的度数.四、堂清、日清记录堂清日清今日之事今日毕日积月累成大器课堂反思:澜沧拉祜族自治县第一中学自主高效课堂导学案年级:九班级:学生姓名:制作人:九年级数学组教研组审批时间: 2021年8月31日《23.2.1 中心对称的概念和性质》一、学习目标1.通过具体实例认识中心对称,弄清楚中心对称及其有关概念的含义.2.探究并归纳出中心对称的性质.3.会作与一个图形关于某个点成中心对称的另一个图形.二、导学指导与检测导学导学检测及课堂展示阅读教材第64页最后一段话之前的内容完成右边的学习内容1.把一个图形,如果它,那么就说这两个图形或,这个点叫做. 叫做关于对称中心的对称点.2.中心对称是指几个图形之间的位置关系?一个图形绕一点旋转能与另一个图形重合就是中心对称吗?3.在下列四组图形中右边数字与左边数字成中心对称的有.(1)(2)(3)(4)阅读教材第64页最后一段话到第65页例题之前的内容完成相关的内容1.按下列步骤动手画图:第一步:用三角尺画出△ABC;第二步:以三角尺的一个顶点O为中心,把三角尺旋转180°,再画出△A′B′C′;第三步:移开三角尺,并用虚线连接对应点AA′,BB′,CC′.2.思考下列问题:△△ABC与△A′B′C′关于点O对称吗?_________________;△△ABC与△A′B′C′全等吗?为什么?;△线段AA′、BB′、CC′有何关系?;△点O在线段AA′、BB′、CC′的什么位置?;△点O在线段AA′、BB′、CC′的什么位置?.阅读教材第651.如图△,怎样画点A关于点O的对称点?2.如图△,怎样画△ABC关于点O对称的△A′B′C′?C页至第66页例1的内容完成相关的内容图△ 图△即时训练1. 分别画出下列图形关于点O 对称的图形.2. 图中的两个四边形关于某点对称,找出它们的对称中心. 解:四.巩固诊断 (一)基础巩固(70分)1. (10分) 下列结论中,错误的是( )A .形状大小完全相同的两个图形一定关于某点成中心对称B .成中心对称的两个图形,对称中心到两对称点的距离相等C .成中心对称的两图形,对称中心在两对称点的连线上D .成中心对称的两图形,对应线段平行(或在同一直线上)且相等2. (10分) 如图,△ABC 与△A 1B 1C 1关于点O 成中心对称,下列说法:△△BAC=△B 1A 1C 1;△AC=A 1C 1; △OA=OA 1;△△ABC 与△A 1B 1C 1的面积相等.其中正确的有( )A.1个B .2个C .3个D .4个3. (10分) 如图,△ABC 和△AB′C′成中心对称,A 为对称中心,若△C=90°,△B=30°, BC=1,则BB′的长为( )A.4B.33C.233D.4334. (10分) 如图,四边形ABCD 与四边形FGHE 关于点O 成中心对称,下列说 法中错误的是( )A .AD△EF ,AB△GFB .BO=GOC .CD=HE ,BC=GHD .DO=HO.A .O.O .O第2题图5.(10分) 如图,两个卡通图案是关于某点成中心对称的两个图案,试在图中确定其对称中心.解:6.(20分)分别画出下面图形关于点O对称的图形.解:.O.O(二)综合应用(20分)7. (20分)如图,△DEC是由△ABC经过如下的几何变换而得到的:△以AC所在直线为对称轴作轴对称,再以C为旋转中心,顺时针旋转90°;△以C为旋转中心,顺时针旋转90°得△A′B′C′,再以A′C′所在直线为对称轴作轴对称;△将△ABC向下、向左各平移1个单位,再以AC的中点为中心作中心对称,其中正确的变换有()A.△△B.△△C.△△D.△△△(三)拓展延伸(10分)8. (10分)如图,在△ABC中,AB=AC,若将△ABC绕点C顺时针旋转180°得到△FEC.(1)试猜想AE与BF有何关系?说明理由;(2)若△ABC的面积为3cm2,求四边形ABFE的面积.解:四、堂清、日清记录堂清日清今日之事今日毕日积月累成大器课堂反思:澜沧拉祜族自治县第一中学自主高效课堂导学案年级:九班级:学生姓名:制作人:九年级数学组教研组审批时间: 2021年8 月 31 日《23.2.2中心对称图形》一、学习目标1.能判断一个图形是不是中心对称图形.2.知道中心对称和中心对称图形的区别和联系.二、导学指导与检测导学导学检测及课堂展示阅读教材第66页“思考”至第67页的内容完成右边的学习内容1.线段AB绕它的中点O旋转180°后,平行四边形ABCD绕它的两条对角线的交点O旋转180° .像这样,把一个图形绕着旋转后,如果,那么这个图形叫做,这个点就是它的.2.比较中心对称和中心对称图形的概念,试说明它们有何区别与联系:区别:。
如图,E 是正方形ABCD 中CD 边上任意一点,以点A 为中心,把△ADE 顺时针旋转90°,画出旋转后的图形.
例题:
练习1 :如图,∆ABC 是等边三角形,D 是BC 上一点,
∆ABD 经过旋转后到达∆ACE 的位置。
(1)旋转中心是哪一点?(2)旋转了多少度?
(3)如果M 是AB 的中点,那么经过上述旋
转后,点M 转到了什么位置?
E
D
C
B
A
M
.
随堂训练
1.如图a ,△AOB 旋转到△A′OB′的位置.若∠AOA′=90°,则旋转中心是点______.旋转角是______.点A 的对应点是______.线段AB 的对应线段是______.∠B 的对应角是______ ∠BOB′=______.
图 a 图b
2.如图b ,已知△ABC 是直角三角形,∠
ACB=90°,AB=5㎝,BC=3厘米,△ABC 绕点C 逆时针方向旋转90°后得到△
DEC,则∠D=______,∠B=______,DE=_______㎝,EC=______㎝,AE=_______㎝三.归纳总结
(总结本节课所学的内容和掌握情况)
四.拓展提升:
1.如图1.正方形ABCD中有一点P,把△ABP绕点点B旋转到△CQB,连结PQ,则△PBQ的形状是____________.
2.如图2. P是等边△ABC内一点,△AQC是由△APB旋转所得,则∠PAQ=
_______
中考链接
(2016.深圳)如图边长为1的正方形EFOG绕与之边长相等的正方形ABCD的对角线交点O旋转任意角度,求图中重叠部分的面积。
(让学生思考、讨论,充分想象,寻求不同的解法)
G
E
F
O
C
A
B
D。