迁移学习
- 格式:pptx
- 大小:3.41 MB
- 文档页数:31
第1篇一、实验背景学习迁移是指在学习过程中,先前学习对后续学习的影响。
学习迁移现象在现实生活中广泛存在,如学习数学知识对物理知识的理解、学习外语对其他语言的掌握等。
为了探究学习迁移的规律,本实验旨在通过设计一系列实验,分析不同学习情境下学习迁移的效果。
二、实验目的1. 了解学习迁移的概念和类型;2. 探究不同学习情境下学习迁移的效果;3. 分析影响学习迁移的因素;4. 为教学实践提供理论依据。
三、实验方法1. 实验设计:采用前测后测设计,将被试分为实验组和对照组。
实验组在学习新知识前,接受与目标知识相关的旧知识训练;对照组在学习新知识前,不接受任何训练。
2. 实验材料:选择初中数学和物理课程中相关内容,分为三个层次:基础、中等、困难。
3. 实验步骤:a. 对被试进行前测,测试其旧知识掌握程度;b. 对实验组进行旧知识训练,对照组不进行训练;c. 对所有被试进行后测,测试其新知识掌握程度;d. 收集数据,进行统计分析。
四、实验结果与分析1. 实验组在旧知识训练后,新知识掌握程度显著高于对照组(p<0.05);2. 不同层次的学习迁移效果存在差异:基础层次迁移效果较好,中等层次次之,困难层次迁移效果较差;3. 影响学习迁移的因素包括:知识间的相似性、学习者的认知结构、学习策略等。
五、讨论1. 学习迁移是学习过程中的一种普遍现象,实验结果验证了这一观点;2. 旧知识训练对学习迁移有显著影响,说明在学习新知识前,对相关旧知识的复习有助于提高学习效果;3. 不同层次的学习迁移效果存在差异,说明在教学中应根据学生的认知水平,合理设计教学内容和教学方法;4. 影响学习迁移的因素众多,教学中应注重培养学生的认知结构、学习策略等,以提高学习迁移效果。
六、结论1. 学习迁移现象在现实生活中广泛存在,对教学实践具有重要意义;2. 旧知识训练有助于提高学习迁移效果,教学中应重视旧知识的复习;3. 不同层次的学习迁移效果存在差异,教学中应根据学生的认知水平,合理设计教学内容和教学方法;4. 影响学习迁移的因素众多,教学中应注重培养学生的认知结构、学习策略等,以提高学习迁移效果。
迁移学习、元学习、强化学习、联邦学习等1、迁移学习(Transfer Learning)直观理解:站在巨⼈的肩膀上学习。
根据已有经验来解决相似任务,类似于你⽤骑⾃⾏车的经验来学习骑摩托车。
专业理解:将训练好的内容应⽤到新的任务上,即将源域(被迁移对象)应⽤到⽬标域(被赋予经验的领域)。
迁移学习不是具体的模型,更类似于解题思路。
当神经⽹络很简单,训练⼀个⼩的神经⽹络不需要特别多的时间,完全可以从头开始训练。
如果迁移之前的数据和迁移后的数据差别很⼤,这时迁移来的模型起不到很⼤的作⽤,还可能⼲扰后续的决策。
应⽤场景:⽬标领域数据太少、节约训练时间、实现个性化应⽤。
实际擅长应⽤例举:语料匮乏的⼩语种之间的翻译、缺乏标注的医疗影像数据识别、⾯向不同领域快速部署对话系统。
NLP领域中的应⽤:Transformer、Bert之类的预训练语⾔模型,微调后可以完成不同的任务。
2、元学习(Meta Learning)与传统的监督学习不⼀样,传统的监督学习要求模型来识别训练数据并且泛化到测试数据。
训练⽬标:Learn to Learn,⾃⼰学会学习。
例:你不认识恐龙,但是你有恐龙的卡⽚,这样看见⼀张新的图⽚时,你知道新的图⽚上的动物与卡⽚上的动物长得很像,是同类的。
靠⼀张卡⽚来学习识别叫做:one-shot learning。
3、⼩样本学习(Few-Shot Learning)Few-Shot Learning是⼀种Meta Learning。
⽤很少的数据来做分类或回归。
例如:模型学会了区分事物的异同,例如:虽然数据集中没有狗的照⽚,模型不会识别狗,但模型也能判断两张狗的图⽚上的事物是同类的。
数据集:Support Set。
Support Set与训练集的区别:训练集的规模很⼤,每⼀类下⾯有很多图⽚,可以⽤来训练⼀个深度神经⽹络。
相⽐这下,Support Set数据集⽐较⼩,每⼀类下⾯只有⼀张或⼏张图⽚,不⾜以训练⼀个⼤的神经⽹络。
迁移学习简介迁移学习的分类方法代表性研究工作问题与展望迁移学习资源迁移学习简介•定义与概念•迁移学习vs 传统机器学习•与其他概念的对比迁移学习将会是引领下一次机器学习热潮的驱动力。
——吴恩达,NIPS 2016•什么是迁移学习?–心理学角度:人们利用之前的经验和知识进行推理和学习的能力。
–机器学习角度:一个系统将别的相关领域中的知识应用到本应用中的学习模式。
[DARPA]–举例:C++→Java;骑自行车→骑摩托车–关键词:举一反三•迁移学习要解决的问题:–给定一个研究领域和任务,如何利用相似领域进行知识的迁移,从而达成目标?•为什么要进行迁移学习?–数据的标签很难获取对已有知识的重用是必要的–从头建立模型是复杂和耗时的•迁移学习vs 传统机器学习传统机器学习迁移学习数据分布训练和测试数据同分布训练和测试数据不需要同分布数据标签足够的数据标注不需要足够的数据标注建模每个任务分别建模可以重用之前的模型传统机器学习迁移学习•与其他概念的对比–Life-long learning (终身学习) :连续不断地在一个域上学习–Multi-task learning (多任务学习):两个任务同时完成–Domain adaptation (域适配):迁移学习的子类–Incremental learning (增量学习):一个域上的不断学习–Self-taught learning (自我学习):从自身数据中学习–Covariance shift (协方差漂移):迁移学习的子类–……•迁移学习与其他已有概念相比,着重强调学习任务之间的相关性,并利用这种相关性完成知识之间的迁移。
•迁移学习常用概念–Domain (域):由数据特征和特征分布组成,是学习的主体•Source domain(源域):已有知识的域•Target domain (目标域):要进行学习的域–Task (任务):由目标函数和学习结果组成,是学习的结果•迁移学习的形式化定义–条件:给定一个源域和源域上的学习任务,目标域和目标域上的学习任务–目标:利用和学习在目标域上的预测函数。
一、什么是学习迁移迁移的种类有哪些学习迁移是在某一种学科或情境中获得的技能、知识、理解或态度对在另一学科或情境中技能、知识、理解或态度的获得的影响。
简单地说,学习迁移就是指一种学习活动对另一种学习活动的影响。
在学习过程中,经常可以看到迁移现象。
例如,掌握英语的人学起法语来就比较容易;会骑自行车的人比不会骑的人学开摩托车要容易一些;会拉二胡的人,再学习弹三弦、拉小提琴,也比较容易。
此外,也可以看到一些与此相反的现象,如学汉语拼音对有些英语字母语音的学习常常发生干扰;习惯于右脚起跳的跳高技能对掌握用左脚起跳的撑杆跳高也有干扰作用。
这些都是学习迁移现象。
1.从迁移的性质来分,可以分成正迁移和负迁移。
正迁移也叫“助长性迁移”,是指一种学习对另一种学习的促进作用。
如学习数学有利于学习物理,学习珠算有利于心算,掌握平面几何有助于掌握立体几何等,懂得英语的人很容易掌握法语。
负迁移也叫“抑制性迁移”,是指一种学习对另一种学习产生阻碍作用。
如掌握了汉语语法,在初学英语语法时,总是出现用汉语语法去套英语语法,从而影响了英语语法的掌握,在立体几何中搬用平面几何的“垂直于同一条直线的两条直线相互平行”的定理,则会对立体几何有关内容的学习产生干扰等。
2.从迁移的方向来分,迁移可以分为顺向迁移和逆向迁移。
顺向迁移是指先前学习对后继学习发生的影响。
在物理中学习了“平衡”概念,就会对以后学习化学平衡、生态平衡、经济平衡产生影响。
通常所说的“举一反三”就是顺向迁移的例子。
逆向迁移是指后继学习对先前学习发生的影响。
如学习了微生物后对先前学习的动物、植物的概念会产生影响等。
3.根据迁移发生的方式来分,可以分为特殊迁移和非特殊迁移。
特殊迁移是指学习迁移发生时,学习者原有的经验组成要素及其结构没有变化,只是将一种学习中习得的经验要素重新组合并移用到另一种学习之中。
如跳水的一些项目,弹跳、空翻、入水等基本动作是一样的,运动员在某些项目中将这些基本动作熟练掌握,那么在学习新的跳水项目时,就可以把这些基本动作加以不同的组合,很快形成新的动作技能。
什么是迁移学习?
迁移学习最早源于机器学习领域,是指借助先前学习的知识或经验来
加速新任务的学习进程。
近年来,迁移学习在人工智能领域的应用越
来越广泛,成为影响深远的技术之一。
那么,为什么迁移学习如此重
要呢?
1. 提高学习效率
迁移学习可以将之前的学习经验应用到新的任务中,从而提高学习的
速度和准确率。
相对于从零开始学习一个新任务,通过迁移学习,机
器可以快速掌握新任务的要领,减少重复学习的浪费,提高学习效率。
2. 解决数据稀缺的问题
在许多实际场景中,新的任务为数据稀缺问题,样本数量不足,很难
进行充分训练,这时候可以通过迁移学习,从已有的数据中提取出特征,并将其应用到新任务中。
这种方式可以缓解数据稀缺的问题,提
高分类准确率。
3. 应用广泛
迁移学习不仅适用于图像识别、自然语言处理等领域,还可以应用于
推荐系统、线性回归、分类等多种场景。
越来越多的研究表明,迁移
学习可以被广泛应用于各个领域,并取得了很好的效果。
虽然迁移学习有许多优势,但在实际应用中也存在一些挑战。
例如,如何选择合适的迁移学习模型、如何解决模型鲁棒性等问题,都需要我们不断探索和研究。
随着人工智能技术的不断发展,迁移学习必将在各个领域得到更广泛的应用和进一步的突破。
什么是迁移学习?请举例说明其应用场景
迁移学习是指将已经学习到的知识或技能应用于新的领域或问题中,以提高学习的效率和准确度。
迁移学习是机器学习领域中的重要研究方向之一,旨在通过利用已经学会的知识来加速新任务的学习,同时减少对新训练数据的需求,提高模型的泛化能力。
迁移学习的应用场景十分广泛,可以应用于自然语言处理、图像识别、推荐系统等多个领域。
例如,在自然语言处理中,通过已经学习到的知识或技能可以更快地理解新的语言,从而更好地完成翻译或文本分类等任务。
在图像识别中,可以利用已经学会的模型在新的领域中快速进行识别,例如将动物园中的物种识别模型应用到野外环境中。
在推荐系统中,可以将用户的历史行为信息进行迁移,从而更好地推荐相似的商品或服务。
迁移学习的核心在于将已有的知识与新任务有机结合起来,形成新的学习框架。
具体步骤包括选择源域和目标域、选择适当的迁移学习方法、进行特征选择和特征变换等。
在未来,迁移学习将对各个领域的智能化发展产生深远影响,帮助人们更好地解决新的问题和挑战。
同时,有关迁移学习的研究还需要深入探讨,以打破领域之间的障碍,更好地实现知识共享和智能提升。