继电器常用自锁电路
- 格式:doc
- 大小:585.00 KB
- 文档页数:8
正反转电路图带自锁互锁引言正反转电路是一种常见的电子电路,用于控制电机或其他装置在正转和反转运动之间切换。
自锁和互锁是两种常见的控制方式,可用于确保电路的可靠性和安全性。
本文将介绍正反转电路图,并详细讨论如何使用自锁和互锁来增加电路的功能和可靠性。
一、正反转电路图正反转电路图有多种设计方案,下面将介绍一种常见的正反转电路图。
这个电路图的基本原理是使用两个继电器控制电机的正转和反转运动。
1. 主控制开关主控制开关用于控制电机的正转和反转运动。
在打开状态下,电机将进行正转运动,而在关闭状态下,电机将进行反转运动。
主控制开关通常由一个双刀双掷开关实现,根据开关的位置选择正转或反转。
2. 继电器继电器是正反转电路的核心元件,用于控制电机的正转和反转运动。
该电路使用两个继电器,一个用于控制正转,另一个用于控制反转。
继电器通常由两个可开关的触点和一个激励线圈组成。
当激励线圈被电流激活时,触点会打开或闭合,从而控制电路中其他元件的状态。
3. 控制线路控制线路连接主控制开关和继电器,用于传递控制信号。
在这个电路中,主控制开关通过控制线路将信号传递给激励线圈,从而控制继电器的状态。
如果电机需要进行正转运动,主控制开关将控制线路连接到正转继电器的激励线圈。
反之,如果电机需要进行反转运动,主控制开关将控制线路连接到反转继电器的激励线圈。
二、自锁和互锁功能自锁和互锁是两种常见的控制方式,可用于增加电路的功能和可靠性。
下面将介绍如何使用自锁和互锁功能来改进正反转电路。
1. 自锁功能自锁功能用于确保电机在进行正转或反转运动后保持在相应状态。
在正反转电路中,自锁功能可通过在继电器触点和激励线圈之间添加一个自锁触点来实现。
自锁触点是一个可控制的触点,其状态取决于继电器激励线圈的状态。
当继电器激励线圈被电流激活时,自锁触点闭合,保持继电器的状态。
如果电机需要切换到反转或正转状态,自锁触点将打开,继电器将切换到相应状态。
2. 互锁功能互锁功能用于确保电机在正转和反转状态之间只能切换一个。
继电器工作原理以及电路图
继电器工作原理:
继电器是一种通过控制小电流来实现对大电流的开关操作的装置。
它由一个电磁铁和一对触点组成。
当控制电路通电时,电流通过继电器的线圈,产生磁场。
这个磁场会吸引铁芯,使之向下运动。
当铁芯靠近底部时,触点之间的接触断开。
当控制电路断电时,线圈中的电流停止流动,磁场消失,铁芯恢复原位,触点之间的接触闭合。
根据继电器的不同类型,触点可以是常开型(NO)或常闭型(NC)。
常开型继电器在无控制信号时处于断开状态,常闭型继电器在无控制信号时处于闭合状态。
继电器工作原理电路图如下:(无标题)
[继电器工作原理电路图]
请注意,根据不同的继电器类型(如电压、电流、功率等),电路图的具体连接方式可能会有所不同。
以上电路图仅为示意图,供参考。
电工中的自锁互锁联锁的概念本文主要是关于自锁互锁联锁的相关介绍,并着重对自锁互锁联锁的原理及其应用进行了详尽的阐述。
自锁互锁在接触器线圈得电后,利用自身的常开辅助触点保持回路的接通状态,一般对象是对自身回路的控制。
如把常开辅助触点与启动按钮并联,这样,当启动按钮按下,接触器动作,辅助触点闭合,进行状态保持,此时再松开启动按钮,接触器也不会失电断开。
一般来说,在启动按钮和辅助触点并联之外,还要在串联一个按钮,起停止作用。
点动开关中作启动用的选择常开触点,做停止用的选常闭触点。
主电路从三相电源端点L1,L2,L3引来,经电源开关QS,熔断器FU和接触器KM的三对主触点KM到电动机M。
控制电路(或称辅助电路)由按钮SR和接触器线圈KY组成。
I.工作原理合上电源开关QS,按启动按钮SBl*接触器KM的线圈通电*在主电路中的三对主触头闭合一电动机获电而启动;与此同时,接触器KM的常开辅助触点闭合,将按钮SBI 的常开触点短接。
从按钮SB1接通到接触器KM常开触点闭合只需数十毫秒的时间,因此手松开启动按钮后线圈KM已完全可以通过辅助触头KM (1 -2)而维持自己的导电通路,不再受启动按钮SB1控制,也就确保了松开启动按钮SB1后电动机的继续运行。
把与启动按钮SBI并联的常开辅助触头KM (1一2)叫接触器KM的门锁触头,又叫自保触头。
因接触器的释放时间比吸合时间还短,所以只需按一下停止按钮SB2,接触器KM线圈断电便立即释放,其常开辅助触头断开,主触头也断开,电动机就停止运行。
互锁,说的是几个回路之间,利用某一回路的辅助触点,去控制对方的线圈回路,进行状态保持或功能限制。
一般对象是对其他回路的控制。
联锁,就是设定的条件没有满足,或内外部触发条件变化引起相关联的电气、工艺控制设备工作状态、控制方式的改变。
“在一个回路中,即有自锁又有互锁的就叫做“联锁””这种说法并不科学,也不全面。
原理。
时间继电器控制电动机电路图
附上一张电机延时顺、逆自动转换不断循环运行的电路图:
工作过程:
按启动钮,继j电器KC得电吸合并自锁,时间继电器KT1得电开始延时、常闭延时触点通电接触器KM1得电吸合、电机顺转;当KT1到设置时间,常闭、常开延时触点动作,KM1失电复位(电机也失电),接通KT2开始延时、KM2得电吸合、电机逆转;当KT2到设置时间,常闭延时触点动作,KT1失电,常闭、常开延时触点复位、KT2、KM2失电复位(电机也失电)重新接通KT1再开始延时,KM1得电吸合,电机顺转,如此不断循环。
点动自锁的控制原理
点动自锁是一种常用的电气控制原理,广泛应用于电气设备和系统中。
点动自锁的控制原理如下:
1. 控制电路中引入一个称为自锁接触器或自锁继电器的元件。
该元件有两个接点,一个是控制接点,通过外部控制信号控制开闭;另一个是自锁接点,通过自身的动作状态来控制开闭。
2. 在正常情况下,自锁接触器的控制接点是闭合的,自锁接点是断开的。
3. 当外部控制信号到达,控制接点闭合,使得自锁接触器的线圈通电,电动机等负载开始运行。
4. 同时,自锁线圈通电后,自锁接点也将闭合。
此时,即使释放外部控制信号,控制接点打开,自锁接触器仍能保持闭合状态,电动机继续运转。
5. 如果需要停止运行,可以通过一个额外的断开按钮,使得自锁接触器的线圈失去电源,自锁接点断开,电动机停止运行。
电工都必须掌握的基础知识:自锁与互锁的含义_自锁与互锁的作用原理图解自锁与互锁,是每个电工都必须掌握的基础知识,但往往新手电工对此比较容易混淆。
自锁与互锁的含义自锁与互锁需要用到的元件一般来说,最常用的元件是接触器和继电器(二者原理相同)。
自锁与互锁的作用自锁与互锁均对电路有一定的保护作用,主要目的是为了防止电路失压,维护电路的正常运行。
自锁与互锁的定义自锁:依靠接触器自身辅助触头而保持接触器线圈通电的现象。
互锁:利用接触器常闭辅助触头作为相互制约的控制关系。
自锁与互锁的作用原理图解自锁:一般利用接触器线圈、接触器常开触点以及按钮使用,如下图:图中,按钮SB2,接触器线圈KM和接触器常开触点KM共同组成了自锁装置。
该装置可以保证按下按钮SB2时电路可以持续供电。
工作过程:按下按钮SB2后,电路中通电,接触器线圈KM得电,且接触器常开触点KM闭合(接触器特性),整个电路拥有持续电流。
松开按钮SB2后,按钮SB2断开(按钮特性),由于接触器常开触点KM已经闭合,电路依然可以正常供电。
如果没有自锁——如果没有接触器KM接入电路,则按下按钮SB2后整个电路得电,松开按钮SB2后,电路断开。
互锁:用于两个支路相互制约,一般由两个接触器的线圈和常闭触点配合使用,如下图:图中自锁与互锁并存,以SB1所在支路为例,接触器KM1的线圈、常闭触点和SB1相互配合,共同制约SB2所在支路。
工作过程:按下SB1,支路自锁,接触器常开触点KM1闭合。
同时,接触器KM1常闭触点KM1断开。
此时再按下SB2,电路无反应。
如果没有互锁——如果没有接触器常闭触点KM1和KM2,且同时按下SB1和SB2或在SB1自锁后再按下SB2,会导致两个支路同时供电。
若两个支路不能同时供电,如电动机正反转电路,则会造成危险。
磁保持继电器应用电路磁保持继电器应用电路1. 简介磁保持继电器是一种特殊类型的继电器,其独特的设计可使继电器在停电或控制信号消失后保持原状态。
这种继电器常被应用于需要长时间保持状态或需要手动复位的电路中。
本文将深入探讨磁保持继电器应用电路,从基础的概念开始逐步展开。
2. 基本工作原理磁保持继电器的基本工作原理是利用电磁吸引力来保持继电器的状态。
当控制电路通电时,继电器的线圈产生强磁场,使得可动接点吸引到线圈上的磁铁上,完成闭合或断开电路的操作。
一旦控制电路断电,继电器的线圈磁场消失,但由于可动接点与磁铁之间的吸引力,继电器可保持原来的状态。
3. 磁保持继电器的应用场景磁保持继电器广泛应用于需要长时间保持状态的电路中,如电气控制系统、机械设备和自动化系统等。
具体应用场景包括:3.1 冷冻设备控制冷冻设备需要在停电后保持关闭状态以避免冷空气的浪费。
磁保持继电器可用于控制电源供应,一旦停电,继电器将保持冷冻设备的关闭状态,并在电源恢复时自动恢复。
3.2 电动机控制电动机通常需要通过继电器启动和停止。
在停电后,磁保持继电器可保持电动机运行状态,以免重新启动时造成过大的启动电流冲击。
3.3 电源切换在一些场景中,需要实现电源切换以确保连续供电。
磁保持继电器可用于切换电源,保持切换后的状态,同时避免因电源波动而导致系统故障。
4. 优点和缺点磁保持继电器在特定的应用场景中具有一些优点,但也存在一些缺点。
4.1 优点4.1.1 高稳定性:磁保持继电器的状态保持时间长,可靠性高,具有很好的稳定性。
4.1.2 低功耗:磁保持继电器工作时消耗的电流较小,能够降低系统的功耗。
4.1.3 耐高温:磁保持继电器可在高温环境下工作,对温度的适应性较强。
4.2 缺点4.2.1 较大体积:磁保持继电器相对于其他类型的继电器来说,体积较大,占据的空间较多。
4.2.2 价格较高:相较于普通继电器,磁保持继电器的价格较高,增加了系统成本。
常见自锁电路有哪些如何实现自锁本文主要是关于自锁电路的相关介绍,并着重对自锁电路的原理及其应用进行了详尽的阐述。
自锁电路自锁电路是电路中的一种,一旦按下开关,电路就能够自动保持持续通电,直到按下其它开关使之断路为止。
在通常的电路中,按下开关,电路通电;松开开关,电路断开。
工作原理:启动。
电机启动时,合上电源开关QS,接通整个控制电路电源。
按下启动按钮其常开点闭合,接触器线圈KM得电可吸合,并接在两端的辅助常开同时闭合,主回路中:主触头闭合使电动机接入三相交流电源启动旋转。
二次回路中:按钮按下后把电送到KM线圈,KM辅助触点接通后也为KM线圈供电,这样就形成了两路供电。
松开启动按钮时,虽然一路已经断开,但KM线圈仍通过自身的辅助触点这一通路保持给线圈通电,从而确保电机继续运转。
这种依靠接触器自身常开辅助触点而使其线圈保持通电的方式,称为接触器自锁,也叫电气自锁。
这对起自锁作用的辅助常开触点称为自锁触点,这段电路称为自锁电路。
自锁电路外文名Self-locking circuit。
按下开关电路能自动保持持续通电的电路。
所属学科电气工程。
继电器电路可以将开关串联在继电器的主触点(继电器线圈)上。
与此同时,将继电器的一个空余的副触点(常开触点)与开关并联(并且与主触点接通)。
这样一来,按下开关,副触点(常开触点)吸合,电路通电;松开开关之后,由于副触点已经吸合,并向继电器主触点的线圈供电,线圈反过来又保持副触点吸合。
再将线路从继电器输出端引出,电路就可以保持持续的通电了。
过流保护电路在电力电子器件驱动电路中,当做器件过流保护时需要加入自锁电路,防止进一步烧坏功率器件。
如果驱动IC没有自锁功能就需要加入自锁电路。
常用的最简单的自锁电路可以用两个三极管来实现,也已经被广泛使用。
常见自锁电路有哪些电气控制中互锁主要是为保证电器安全运行而设置的。
它主要是由两电器件互相控制而形成互锁的。
它实现的手段主要有三个,一个是电气互锁。
常见自锁电路有哪些如何实现自锁本文主要是关于自锁电路的相关介绍,并着重对自锁电路的原理及其应用进行了详尽的阐述。
自锁电路自锁电路是电路中的一种,一旦按下开关,电路就能够自动保持持续通电,直到按下其它开关使之断路为止。
在通常的电路中,按下开关,电路通电;松开开关,电路断开。
工作原理:启动。
电机启动时,合上电源开关QS,接通整个控制电路电源。
按下启动按钮其常开点闭合,接触器线圈KM得电可吸合,并接在两端的辅助常开同时闭合,主回路中:主触头闭合使电动机接入三相交流电源启动旋转。
二次回路中:按钮按下后把电送到KM线圈,KM辅助触点接通后也为KM线圈供电,这样就形成了两路供电。
松开启动按钮时,虽然一路已经断开,但KM线圈仍通过自身的辅助触点这一通路保持给线圈通电,从而确保电机继续运转。
这种依靠接触器自身常开辅助触点而使其线圈保持通电的方式,称为接触器自锁,也叫电气自锁。
这对起自锁作用的辅助常开触点称为自锁触点,这段电路称为自锁电路。
自锁电路外文名Self-locking circuit。
按下开关电路能自动保持持续通电的电路。
所属学科电气工程。
继电器电路可以将开关串联在继电器的主触点(继电器线圈)上。
与此同时,将继电器的一个空余的副触点(常开触点)与开关并联(并且与主触点接通)。
这样一来,按下开关,副触点(常开触点)吸合,电路通电;松开开关之后,由于副触点已经吸合,并向继电器主触点的线圈供电,线圈反过来又保持副触点吸合。
再将线路从继电器输出端引出,电路就可以保持持续的通电了。
过流保护电路在电力电子器件驱动电路中,当做器件过流保护时需要加入自锁电路,防止进一步烧坏功率器件。
如果驱动IC没有自锁功能就需要加入自锁电路。
常用的最简单的。
低压电工电动机自锁接线方法
电动机自锁的接线方法主要涉及控制电路的连接。
以下是具体的步骤:
1. 选择好交流接触器的电压,如果是380V可以直接从三根相线中抽出两根控制,如果是220V电压的交流接触器,那就需要另外一根零线。
2. 准备两个交流接触器,一根相线进入热继电器的常闭触点以后,然后再连接停止按钮,分别进入两个启动按钮。
3. 两个启动按钮上并联各个交流接触器的常开触点,然后回到交流接触器线圈,回到另外一根相线(零线),这就是自锁电路。
此外,为了防止两相电源短路事故,接触器K M 1和K M 2的主触头决不允许同时闭合。
这就是所谓的互锁环节,在电路中起到安全保护作用。
以上方法仅供参考,由于存在一定的危险性,所以建议非专业人士不要自行操作,应寻求专业电工的帮助。
电路自锁原理图电路自锁原理图是一种常见的电子电路,它通过特定的设计和连接方式,实现了在某些条件下自动保持电路状态的功能。
在实际应用中,电路自锁原理图被广泛应用于各种自动控制系统中,如开关控制、定时器、计数器等。
本文将介绍电路自锁原理图的基本原理、工作方式以及常见的应用场景。
电路自锁原理图的基本原理是利用正反馈的特性,使得电路在特定条件下能够自动保持其状态。
在电路自锁原理图中,通常会使用触发器、门电路、计数器等元件,通过它们之间的连接和相互作用,实现电路的自锁功能。
其中,触发器起到了关键的作用,它能够在接收到特定信号时改变输出状态,并通过反馈回路使得电路能够自锁。
电路自锁原理图的工作方式通常分为两种模式,设置模式和保持模式。
在设置模式下,电路会对输入信号进行处理,并根据特定条件改变输出状态;而在保持模式下,电路会通过反馈回路自动保持当前状态,直至接收到新的设置信号。
这种工作方式使得电路能够在特定条件下实现自动保持状态的功能,从而满足各种自动控制系统的需求。
电路自锁原理图在实际应用中有着广泛的应用场景。
其中,最常见的应用之一是在开关控制系统中。
通过合理设计和连接电路自锁原理图,可以实现开关的自锁功能,从而避免了长时间按住开关的操作,提高了操作的便利性和安全性。
此外,电路自锁原理图还可以应用于定时器、计数器、逻辑控制等领域,为各种自动控制系统提供了可靠的解决方案。
总之,电路自锁原理图是一种基于正反馈的电子电路,通过特定的设计和连接方式实现了在特定条件下自动保持状态的功能。
它在各种自动控制系统中有着广泛的应用,如开关控制、定时器、计数器等。
通过深入理解电路自锁原理图的基本原理和工作方式,我们可以更好地应用它,为自动控制系统的设计和实现提供可靠的支持。
电路自锁原理图
电路自锁原理图是一种常见的电子电路图,它是由多个电子元件组成的,用于
实现电路的自锁功能。
自锁电路是一种特殊的触发电路,在特定条件下,可以实现电路的自动锁定和解锁。
下面我们将介绍电路自锁原理图的组成和工作原理。
首先,我们来看一下电路自锁原理图的基本组成。
自锁电路通常由触发器、逻
辑门和控制开关等元件组成。
其中,触发器是自锁电路的核心部件,它可以实现电路的状态存储和切换。
逻辑门用于实现触发器的控制逻辑,而控制开关则用于手动控制电路的锁定和解锁。
接下来,我们来分析电路自锁原理图的工作原理。
当控制开关处于解锁状态时,电路处于可工作状态。
此时,输入信号可以通过逻辑门作用于触发器,触发器的输出状态将受到控制信号的影响。
当控制开关处于锁定状态时,电路将被锁定在当前状态,不受外部输入信号的影响。
在实际应用中,电路自锁原理图常常用于控制系统和数字电路中。
例如,它可
以用于实现按钮开关的状态锁定,也可以用于数字逻辑电路的状态控制。
通过合理设计触发器和逻辑门的组合,可以实现不同的自锁功能,满足不同场景下的需求。
总的来说,电路自锁原理图是一种非常实用的电子电路图,它可以实现电路的
自动锁定和解锁功能。
通过合理设计和应用,可以实现各种自锁功能,为控制系统和数字电路的设计提供了便利。
希望本文对您理解电路自锁原理图有所帮助,谢谢阅读!。
自锁电路图的工作原理自锁电路是一种常见的电子电路,它具有自动保持状态的特性,在实际应用中有着广泛的用途。
自锁电路通常由几个基本元件组成,包括触发器、门电路等,通过它们的相互作用,实现了电路的自锁功能。
下面我们将详细介绍自锁电路的工作原理。
首先,让我们来了解一下自锁电路的基本组成部分。
自锁电路通常由两个或多个触发器组成,这些触发器可以是RS触发器、D触发器、JK触发器等。
此外,还需要使用门电路来实现自锁的功能,常见的门电路有与门、或门、非门等。
这些元件的相互作用构成了自锁电路的基本结构。
自锁电路的工作原理可以简单概括为,当输入信号满足一定条件时,电路将自动保持当前状态,直到满足另一条件才会改变状态。
这种自动保持状态的特性使得自锁电路在实际应用中具有很大的灵活性和便利性。
在自锁电路中,触发器起着至关重要的作用。
触发器是一种能够存储信息的元件,它可以在接收到触发信号时改变输出状态,并且可以一直保持这个状态直到下一次接收触发信号。
通过合理地配置触发器的输入和输出,可以实现各种各样的自锁功能。
除了触发器,门电路也是自锁电路中不可或缺的部分。
门电路可以对输入信号进行逻辑运算,并输出相应的结果。
在自锁电路中,门电路常常用来控制触发器的输入信号,从而实现自锁功能。
不同类型的门电路可以实现不同的逻辑运算,因此可以根据实际需求选择合适的门电路。
自锁电路的工作原理还涉及到触发条件和保持条件的概念。
触发条件是指当输入信号满足一定条件时,电路将改变状态;而保持条件是指电路在改变状态后可以自动保持当前状态。
通过合理地设计触发条件和保持条件,可以实现各种不同的自锁功能,满足不同的应用需求。
总的来说,自锁电路通过触发器和门电路的相互作用,实现了自动保持状态的功能。
在实际应用中,可以根据具体的需求选择合适的触发器和门电路,设计出符合要求的自锁电路。
自锁电路的工作原理相对简单,但在实际应用中有着广泛的用途,是电子电路中的重要组成部分。
LM324组成的简易过流自锁保护电路
本电路与直流稳压电源配合使用,可防止电源过流损坏。
电路见下图所示,正常情况下IC1-1⑨脚电位高于⑩脚电位,⑧脚输出低电位,IC-2{14}脚也输出低电位,继电器J不动作,LED发绿光。
当负载电流超过设定值时,IC-1⑩脚电位高于⑨脚电位,⑧脚输出高电平,IC-2{14}脚也输出高电平,使VD导通,J吸合,负载电源切断,LED发红光;与此同时,{14}脚高电平通过R4反馈到输入端{12}脚,使这一状态自锁。
只有过流原因解除、并按一下按钮S后,电路才恢复正常。
电路见图,正常情况下IC1-1⑨脚电位高于⑩脚电位,⑧脚输出低电位,IC-2{14}脚也输出低电位,继电器J不动作,LED发绿光。
当负载电流超过设定值时,IC-1⑩脚电位高于⑨脚电位,⑧脚输出高电平,IC-2{14}脚也输出高电平,使VD导通,J吸合,负载电源切断,LED发红光;与此同时,{14}脚高电平通过R4反馈到输入端{12}脚,使这一状态自锁。
只有过流原因解除、并按一下按钮S后,电路才恢复正常。
R2是负载电流取样电阻,调节W可改变最大允许电流。