疲劳与断裂-应变疲劳
- 格式:ppt
- 大小:2.30 MB
- 文档页数:36
应力疲劳法,应变疲劳法,断裂疲劳法应力疲劳法、应变疲劳法和断裂疲劳法是材料科学和工程领域中常用的疲劳试验方法。
这些方法可用于评估材料在长期重复加载下的疲劳性能,以及预测材料的寿命。
下面将分别介绍这三种疲劳试验方法及其应用。
一、应力疲劳法应力疲劳法是通过施加周期性的应力加载来评估材料的疲劳性能。
在应力疲劳试验中,材料会在一定的应力水平下进行重复加载,加载过程中记录应力和应变数据。
通过分析应力-应变曲线,可以得到材料的疲劳寿命和疲劳强度。
应力疲劳法可以用于评估金属材料、复合材料和橡胶等各种材料的疲劳性能。
二、应变疲劳法应变疲劳法是通过施加周期性的应变加载来评估材料的疲劳性能。
在应变疲劳试验中,材料会在一定的应变幅值下进行重复加载,加载过程中记录应力和应变数据。
通过分析应力-应变曲线,可以得到材料的疲劳寿命和疲劳强度。
应变疲劳法在评估纤维增强复合材料等材料的疲劳性能时,具有一定的优势。
三、断裂疲劳法断裂疲劳法是通过施加循环加载并观察材料破裂的方式来评估材料的疲劳性能。
在断裂疲劳试验中,材料会在一定的加载循环数下进行重复加载,加载过程中记录应力和位移等数据。
通过分析应力-位移曲线,可以得到材料的疲劳寿命和疲劳强度。
断裂疲劳法适用于评估金属材料、混凝土和岩石等材料的疲劳性能。
这三种疲劳试验方法在实际工程中有着广泛的应用。
例如,在航空航天领域,疲劳性能是评估飞机部件和发动机部件可靠性的重要指标之一。
通过应力疲劳法、应变疲劳法和断裂疲劳法,可以对材料在复杂载荷下的疲劳行为进行研究,提高航空器的安全性和可靠性。
疲劳试验方法还可以应用于材料的研发和设计过程中。
通过对不同材料的疲劳性能进行评估,可以选择合适的材料用于特定的工程应用,提高产品的寿命和可靠性。
同时,疲劳试验方法也可以用于研究材料的疲劳机制和损伤演化规律,为材料的改进和优化提供科学依据。
应力疲劳法、应变疲劳法和断裂疲劳法是评估材料疲劳性能的重要方法。
这些方法可以通过施加不同的加载方式,对材料的疲劳寿命和疲劳强度进行评估,为工程应用和材料设计提供依据。
飞行器材料的疲劳与断裂研究在航空航天领域,飞行器的安全与可靠性始终是至关重要的关注点。
而飞行器材料的疲劳与断裂问题,则是影响其性能和安全的关键因素之一。
要理解飞行器材料的疲劳与断裂,首先得清楚什么是材料的疲劳。
简单来说,材料疲劳就是在循环载荷的作用下,材料内部逐渐产生损伤,经过一定次数的循环后,最终导致材料失效。
对于飞行器而言,这种循环载荷可能来自于飞行过程中的气流波动、起降时的冲击、发动机的振动等。
飞行器在运行过程中,其材料会不断地承受着各种复杂的应力和应变。
这些应力和应变的反复作用,使得材料内部的微观结构逐渐发生变化。
比如,位错的增殖与运动、晶界的滑移、微裂纹的萌生与扩展等。
在微观层面上,这些变化可能并不明显,但随着时间的推移和循环次数的增加,它们会逐渐累积,最终导致材料的宏观性能下降,出现疲劳裂纹。
当疲劳裂纹扩展到一定程度时,就可能引发材料的断裂。
断裂是材料失效的最终形式,一旦发生,往往会带来严重的后果。
因此,对于飞行器材料的疲劳与断裂研究,我们需要关注多个方面。
首先是材料的选择。
不同的材料具有不同的疲劳性能和断裂韧性。
例如,钛合金具有高强度和较好的抗疲劳性能,常用于飞机的结构部件;而铝合金虽然重量轻,但疲劳性能相对较弱。
因此,在设计飞行器时,需要根据不同部位的工作条件和要求,选择合适的材料。
其次是材料的加工工艺。
加工过程中的热处理、冷加工等工艺会影响材料的微观结构和性能。
例如,不合适的热处理可能导致材料内部产生残余应力,从而降低其疲劳寿命。
因此,优化加工工艺,减少材料内部的缺陷和残余应力,对于提高材料的疲劳性能至关重要。
再者是结构设计。
合理的结构设计可以减少应力集中,降低材料承受的循环载荷。
比如,采用流线型的外形可以减少气流对飞行器的阻力和冲击,从而降低结构所承受的应力;在结构的拐角和连接处采用圆滑过渡,可以避免应力集中的产生。
另外,环境因素也会对飞行器材料的疲劳与断裂产生影响。
例如,高温、低温、腐蚀环境等都会加速材料的损伤和失效。
材料科学中的断裂和疲劳材料科学是研究材料结构、性能、制备与应用的一门学科,断裂和疲劳是其中重要的研究内容。
在材料的应力下,出现破裂现象称为断裂,而在反复加载下,产生裂纹逐渐扩展而失效的现象称为疲劳。
了解材料的断裂和疲劳行为对材料的应用和加工具有重要意义。
断裂是材料失效的一种突发性的现象,直接影响材料的使用寿命和安全性。
在断裂过程中,材料常常会发生裂纹扩展和断面形态改变。
研究材料断裂需要从分子、微观结构和宏观层面入手,包括材料的组织、缺陷、微观应力和应变分布等方面。
针对不同的材料类型,断裂研究方法也不尽相同。
一般来说,材料断裂的方式有两种,即韧性断裂和脆性断裂。
韧性材料在受到应力的情况下,能够发生著名的“韧性断裂”,即在承受最大应力之前迅速发生塑性变形,吸收大量的能量,并伴随着断面形态的改变和拉伸变形。
而脆性材料在受到应力时,由于其致密的晶格结构,断裂常常是突然的、不可预测的,并伴随着断面形态的裂纹状。
疲劳是材料失效的另一种常见现象。
在连续循环加载下,材料中的微小裂纹会逐渐扩大,最终导致失效。
疲劳失效是机械工程领域中的重要问题,因为它会直接影响到机械结构的寿命和安全。
疲劳失效的预测需要深入研究材料的疲劳行为、裂纹扩展规律和力学性质。
疲劳试验可以通过不同的加载方式、不同的加载频率和载荷幅值进行,以验证材料的疲劳性能和失效机制。
对于材料的疲劳性能研究,常常会用到S-N(应力-循环次数)曲线。
该曲线将材料的疲劳寿命与应力-循环次数联系起来。
在S-N曲线中,应力水平越高,材料的寿命越短,疲劳强度越低。
材料的疲劳性能还与其他因素有关,如试样几何形状、表面质量、温度等。
最近几十年来,随着材料科学和力学的发展,断裂和疲劳理论得到了不断的加强。
在研究和预测材料的疲劳行为方面,新的模型和算法不断涌现。
例如,弯曲式疲劳试验可以比拉伸式疲劳试验更好地模拟材料在使用环境下承受应力的情况,从而更加准确地预测材料的疲劳寿命。
No.1疲劳与断裂的概念1.疲劳:金属材料在应力或应变的反复作用下发生的性能变化称为疲劳。
2.疲劳断裂:材料承受交变循环应力或应变时,引起的局部结构变化和内部缺陷的不断地发展,使材料的力学性能下降,最终导致产品或材料的完全断裂,这个过程称为疲劳断裂,也可简称为金属的疲劳。
引起疲劳断裂的应力一般很低,疲劳断裂的发生,往往具有突发性、高度局部性及对各种缺陷的敏感性等特点。
No.2疲劳断裂的分类1.高周疲劳与低周疲劳如果作用在零件或构件的应力水平较低,破坏的循环次数高于10万次的疲劳,称为高周疲劳。
例如弹簧、传动轴、紧固件等类产品一般以高周疲劳见多。
作用在零件构件的应力水平较高,破坏的循环次数较低,一般低于1万次的疲劳,称为低周疲劳。
例如压力容器,汽轮机零件的疲劳损坏属于低周疲劳。
2.应力和应变分析应变疲劳——高应力,循环次数较低,称为低周疲劳;应力疲劳——低应力,循环次数较高,称为高周疲劳。
复合疲劳,但在实际中,往往很难区分应力与应变类型,一般情况下二种类型兼而有之,这样称为复合疲劳。
3.按照载荷类型分类弯曲疲劳、扭转疲劳、拉压疲劳、接触疲劳、振动疲劳、微动疲劳。
No.3疲劳断裂的特征宏观:裂纹源→扩展区→瞬断区。
裂纹源:表面有凹槽、缺陷,或者应力集中的区域是产生裂纹源的前提条件。
疲劳扩展区:断面较平坦,疲劳扩展与应力方向相垂直,产生明显疲劳弧线,又称为海滩纹或贝纹线。
瞬断区:是疲劳裂纹迅速扩展到瞬间断裂的区域,断口有金属滑移痕迹,有些产品瞬断区有放射性条纹并具有剪切唇区。
微观:疲劳断裂典型的特征是出现疲劳辉纹。
一些微观试样中还会出现解理与准解理现象(晶体学上的名称,在微观显象上出现的小平面),以及韧窝等微观区域特征。
No.4疲劳断裂的特点(1)断裂时没有明显的宏观塑性变形,断裂前没有明显的预兆,往往是突然性的产生,使机械零件产生的破坏或断裂的现象,危害十分严重。
(2)引起疲劳断裂的应力很低,往往低于静载时屈服强度的应力负荷。
材料疲劳与断裂力学分析材料疲劳和断裂力学是材料科学中的重要分支,它们研究材料在长期使用过程中的疲劳和断裂行为。
疲劳是指材料在受到交变载荷作用下,经过一定次数的循环加载后发生破坏的现象。
而断裂则是指材料在受到外界力作用下,发生裂纹扩展并最终破坏的过程。
本文将从材料疲劳和断裂的基本概念入手,探讨其力学分析方法和应用。
材料疲劳是材料工程中非常重要的问题之一。
在实际工程中,材料常常会受到交变载荷的作用,如机械零件的振动、车辆的行驶等。
这些交变载荷会导致材料内部的微观缺陷逐渐扩展,最终引发疲劳破坏。
疲劳寿命是评估材料抗疲劳性能的重要指标,它表示材料在一定的载荷条件下能够承受多少次循环加载。
疲劳寿命的预测是材料疲劳力学的核心问题之一。
疲劳寿命的预测可以通过应力-应变曲线和材料的疲劳强度来实现。
应力-应变曲线描述了材料在受到外力作用下的应变响应。
在疲劳加载下,应力-应变曲线会发生变化,出现应力集中和应变集中现象。
这些应力和应变集中会导致材料内部的微观缺陷逐渐扩展,最终引发疲劳破坏。
材料的疲劳强度是指在一定的载荷条件下,材料能够承受的最大疲劳应力水平。
通过疲劳强度和应力-应变曲线,可以预测材料的疲劳寿命。
断裂力学是研究材料断裂行为的重要学科。
材料的断裂行为是指在受到外界力作用下,材料内部出现裂纹并逐渐扩展,最终导致材料破坏的过程。
断裂行为的研究对于材料的设计和安全评估具有重要意义。
断裂力学的基本概念包括裂纹尖端应力场、应力强度因子和断裂韧性等。
裂纹尖端应力场是指裂纹附近的应力分布情况。
在裂纹尖端附近,应力集中现象非常明显,应力值会远远超过材料的强度极限。
应力强度因子是描述裂纹尖端应力场的重要参数,它表示裂纹尖端的应力强度。
断裂韧性是指材料抵抗裂纹扩展的能力,它是评估材料抗断裂性能的重要指标。
通过研究裂纹尖端应力场、应力强度因子和断裂韧性,可以预测材料的断裂行为。
材料疲劳和断裂力学的研究对于材料的设计和安全评估具有重要意义。
拉伸后波状界面发生了分离。
图4表2参13应力应变、疲劳与脆断、断裂力学20084061 基板材料对QFP焊点应力应变影响的数值模拟/张 亮…//焊接学报.22008,29(1):35~39采用粘塑性有限元法,针对三种不同基板材料,对Sn3.8Ag0.7Cu焊点的应力及应变进行分析。
结果表明,F R24基板对应焊点的最大应力集中在焊点最内侧的尖角处;L TCC基板对应焊点的最大应力集中在焊点最外侧的尖角处;P TF E基板对应焊点的最大应力集中在焊点和引线交界的尖角处。
三种基板材料中,F R24基板对应焊点的残余应力最小,L TCC 基板对应焊点残余应力最大,PTF E基板对应焊点居中。
运用Anand方程计算得出Sn37Pb钎料的分析结果和Sn3.8Ag0.7Cu钎料对应的结果具有相同的规律。
对基板厚度进行的优化模拟计算结果表明,基板厚度为0.8mm时对应焊点的残余应力最大。
图10表2参920084062 N b对镍基合金高温失塑裂纹敏感性的影响机理/唐正柱…//焊接学报.22008,29(1):107~112通过应变2裂纹(S TF)试验法测定临界开裂应变值和开裂温度,确定HS690焊丝中Nb含量对熔敷金属抗高温失塑裂纹(DDC)能力的影响规律,并采用透射电镜对焊丝熔敷金属中析出物的尺寸和形态进行了观察。
结果表明,在焊接工艺条件相同的情况下,采用向HS690焊丝中添加Nb的冶金方法能够调整晶界处第二相(Nb,Ti)C的数量和形态,晶界条件得到改善,HS690熔敷金属抗DDC的能力得到明显的提高。
图6表3参320084063 双丝焊铝合金平板残余应力梯度超声波法建立/路 浩…//焊接学报.22008,29(2):61~64在假设无限小波叠加在各向同性变形弹性体基础上,推导了超声波法应力测量的理论基础声弹性方程,特殊条件下简化出临界折射纵波声弹性方程。
建立了超声波法焊接残余应力测量系统,选用对应力敏感的临界折射纵波作为测量波形,对20mm厚X坡口双丝焊对接2219铝合金平板纵向残余应力场梯度进行了测量,获取了纵向残余应力场引起的声时差信号分布,用M R软件计算了铝合金残余应力场纵向应力的分布,与声时差信号的趋势进行了对比,趋势符合。