信号与系统
- 格式:ppt
- 大小:1.33 MB
- 文档页数:57
信号与系统分析在现代科学技术领域中,信号与系统分析是一门重要的学科。
它主要研究信号以及信号在系统中的传输和处理过程。
本文将从信号与系统的基本概念、数学模型、频域分析以及实际应用等方面对信号与系统进行分析。
一、信号与系统的基本概念1.1 信号的定义与分类信号是指随时间、空间或其他自变量的变化而变化的物理量。
根据信号的特征和性质,可以将信号分为连续时间信号和离散时间信号。
连续时间信号是在连续时间内取值的信号,例如模拟音频信号;离散时间信号是在离散时间点上取值的信号,例如数字音频信号。
1.2 系统的定义与分类系统是指对信号进行处理或者传输的设备或物理构造。
根据系统的输入和输出形式,可以将系统分为线性系统和非线性系统。
线性系统满足加法性和齐次性的特性,而非线性系统则不满足。
二、信号与系统的数学模型2.1 连续时间信号模型连续时间信号可以用连续函数来描述。
常见的连续时间信号模型有周期函数、指数函数和三角函数等。
在实际应用中,还可以利用微分方程来描述连续时间信号与系统之间的关系。
2.2 离散时间信号模型离散时间信号可以用序列来表示。
序列是由离散的采样点构成的数列。
常见的离散时间信号模型有单位样值序列、周期序列和随机序列等。
在实际应用中,离散时间信号与系统之间可以通过差分方程进行建模。
三、频域分析频域分析是对信号在频域上的特性进行分析的方法。
通过将信号从时域转换到频域,可以更加清晰地观察信号的频率成分及其变化规律。
常见的频域分析方法有傅里叶变换、拉普拉斯变换和Z变换等。
3.1 傅里叶变换傅里叶变换是将一个信号在频域上进行表示的方法。
它可以将信号分解成一系列的正弦函数或者复指数函数的组合。
傅里叶变换广泛应用于信号的频谱分析、滤波器设计以及通信系统等领域。
3.2 拉普拉斯变换拉普拉斯变换是对信号在复域上的频域表示。
它具有傅里叶变换的扩展性质,可以处理更加一般的信号和系统。
拉普拉斯变换在控制系统分析和设计、电路分析以及信号处理等方面有重要应用。
第一章信号与系统的基本概念一、信号的定义①广义地说,信号就是随时间和空间变化的某种物理量或物理现象.②在通信工程中,一般将语言、文字、图像、数据等统称为消息,在消息中包含着一定的信息③信号是消息的载体,是消息的表现形式,是通信的客观对象,而消息则是信号的内容④应当注意,信号与函数在概念的内涵与外延上是有区别的。
信号一般是时间变量t的函数,但函数并不一定都是信号,信号是实际的物理量或物理现象,而函数则可能只是一种抽象的数学定义。
二、信号的分类(1) 确定信号与随机信号。
按信号随时间变化的规律来分,信号可分为确定信号与随机信号。
实际传输的信号几乎都是随机信号。
因为若传输的是确定信号,则对接收者来说,就不可能由它得知任何新的信息,从而失去了传送消息的本意。
但是,在一定条件下,随机信号也会表现出某种确定性,例如在一个较长的时间内随时间变化的规律比较确定,即可近似地看成是确定信号。
随机信号是统计无线电理论研究的对象。
本书中只研究确定信号。
(2)连续时间信号与离散时间信号。
按自变量t取值的连续与否来分,信号有连续时间信号与离散时间信号之分,分别简称为连续信号与离散信号。
(3)周期信号与非周期信号。
设信号f(t),t∈R,若存在一个常数T,使得f(t-nT)=f(t) n∈Z (1-1)则称f(t)是以T为周期的周期信号。
从此定义看出,周期信号有三个特点:1) 周期信号必须在时间上是无始无终的,即自变量时间t的定义域为t∈R。
2) 随时间变化的规律必须具有周期性,其周期为T。
3) 在各周期内信号的波形完全一样。
(4) 正弦信号与非正弦信号。
(5) 功率信号与能量信号。
三、信号的相关名词1. 有时限信号与无时限信号若在有限时间区间(t1<t<t2)内信号f(t)存在,而在此时间区间以外,信号f(t)=0,则此信号即为有时限信号,简称时限信号,否则即为无时限信号。
2. 有始信号与有终信号设t1为实常数。
若t<t1时f(t)=0, t>t1时f(t)≠0,则f(t)即为有始信号,其起始时刻为t1。
一、信号的概念消息(message):常常把来自外界的各种报道统称为消息。
信息(information):通常把消息中有意义的内容称为信息。
信号(signal):信号是反映信息的各种物理量,是系统直接进行加工、变换以实现通信的对象。
信号是信息的表现形式,信息是信号的具体内容。
信号是信息的载体,通过信号传递信息。
信号的描述1、数学描述:使用具体的数学表达式,把信号描述为一个或若干个自变量的函数或序列的形式。
2、波形描述:按照函数自变量的变化关系,把信号的波形画出来。
“信号”与“函数”两词常相互通用。
相互关联的事物组合而成具有特定功能的整体。
二、信号的分类1. 确定信号和随机信号确定信号或规则信号:可以用确定时间函数表示的信号随机信号:若信号不能用确切的函数描述,它在任意时刻的取值都具有不确定性,只可能知道它的统计特性2.连续信号和离散信号连续时间信号:在连续的时间范围内(-∞<t<∞)有定义的信号称为连续时间信号,简称连续信号。
实际中也常称为模拟信号。
离散时间信号:仅在一些离散的瞬间才有定义的信号称为离散时间信号,简称离散信号。
实际中也常称为数字信号。
3.周期信号和非周期信号周期信号:是指一个每隔一定时间T,按相同规律重复变化的信号。
(在较长时间内重复变化)连续周期信号f(t)满足f(t) = f(t + mT),离散周期信号f(k)满足f(k) = f(k + mN),满足上述关系的最小T(或整数N)称为该信号的周期。
非周期信号:不具有周期性的信号称为非周期信号。
结论:①连续正弦信号一定是周期信号,而正弦序列不一定是周期序列。
②两连续周期信号之和不一定是周期信号,而两周期序列之和一定是周期序列。
4.能量信号与功率信号信号可看作是随时间变化的电压或电流,信号f (t)在1欧姆的电阻上的瞬时功率为| f (t)|²,在时间区间所消耗的总能量和平均功率分别定义为:能量信号:信号总能量为有限值而信号平均功率为零。
1.信号、信息、系统信号是随时间变化的物理量,消息是带传送的一种以收发双方事先约定的方式组成的符号,如语言、文字;信息是所接收到的未知内容的消息,即传输的信号是带有信息的。
信号是消息的表现形式,消息是信号的具体内容。
系统:若干相互关联的事物组合而成,具有特定功能的整体2.奇异信号函数本身有不连续点或其导数或积分有不连续点的叫做奇异函数,单位冲击单位阶跃3.能量信号和功率信号能量信号:信号能量非零有限,平均功率为0,。
持续时间有限的确定信号功率信号:信号能量无限,平均功率非零有限。
直流,周期,随机信号4.因果信号和非因果信号因果:仅在自变量正半轴区间,取非零值,物理可实现5.系统的特性记忆/无记忆:对自变量的每一个值,系统的输出仅取决于该时刻的输入,则为无记忆。
可逆性:不同输入,导致不同输出,则为可逆系统因果性:因果系统任何时刻的输出只取决于现在的输入和过去的输入。
t<0,h(t)=0稳定性:输入有界输出有界时不变特性:系统特性不随时间改变线性:叠加性,齐次性6.线性时不变系统线性:齐次性、可加性时不变:输出仅与输入有关,与状态无关7.起始状态、初始状态起始状态:零输入状态,指系统在激励信号加入前的状态初始状态:指系统在激励信号加入之后的状态起始状态是系统中储能元件储能的反映8.零输入响应、零状态响应零输入响应:系统输入为0,由起始状态所产生的响应,或者将之等效为电压源或者电流源即等效输入信号所产生的。
零状态响应:系统起始无储能,系统响应只由外加信号产生,线性性质:系统的响应是二者响应之和。
9.冲击响应、阶跃响应冲击响应与阶跃响应都属于零状态响应。
冲击响应:是系统在单位冲击信号激励下的响应,可以确定系统的因果性和稳定性。
冲击响应等于阶跃响应的导数,阶跃响应等于冲击响应的积分。
求法:先写出系统的微分方程,在求齐次解,再根据特征方程得到通解,根据初始条件得到系数。
10.卷积积分意义定义:在连续时间系统中,利用卷积的方法求系统的零状态响应。
信号与系统知识点总结一、信号与系统概念1. 信号的基本概念信号是指传输信息的载体,可以是任意形式的能量,例如声音、图像、视频等。
信号分为连续信号和离散信号两种类型。
连续信号是指在任意时间范围内都有定义的信号,离散信号是指只在某些离散点上有定义的信号。
2. 系统的概念系统是指对输入信号进行处理并产生输出信号的过程。
系统分为线性系统和非线性系统两种类型。
线性系统满足叠加原理和齐次性质,而非线性系统不满足这两个性质。
3. 信号与系统的分类信号与系统可以按照不同的分类方式进行划分。
例如,按时间域和频率域可以将信号和系统分为时域信号和系统以及频域信号和系统。
二、时域分析1. 时域中的基本概念在时域中,信号经常被表示为在时间轴上的波形。
对信号进行时域分析,可以揭示信号的变化规律和特征。
例如,信号的幅度、频率、相位等特征。
2. 时域信号的表示时域信号可以分为连续信号和离散信号两种类型。
连续信号通常可以由函数来表示,而离散信号则可以用序列或数组来表示。
3. 线性时不变系统线性时不变系统是指系统具有线性和时不变两个性质。
线性性质意味着系统满足叠加原理和齐次性质,时不变性质意味着系统的响应与输入信号的时移无关。
三、频域分析1. 傅里叶变换傅里叶变换是将信号在时域中的表示转换为频域中的表示的数学工具。
它可以将信号转换为频谱,揭示信号的频率成分和能量分布。
傅里叶变换分为连续傅里叶变换和离散傅里叶变换两种。
2. 滤波器的频域特性滤波器可以用来对信号进行频域处理。
常见的滤波器包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器。
滤波器对不同频率成分的信号有不同的响应,能够用来滤除不需要的频率分量,或者突出需要的频率分量。
3. 抽样定理抽样定理是指在进行模拟信号的离散化表示时,需要保证抽样率足够高,以避免混叠失真。
根据抽样定理,模拟信号进行离散化表示的采样频率需要大于信号最高频率的两倍。
四、系统响应分析1. 系统的时域响应系统的时域响应是指系统对输入信号的时域响应。
信号与系统摘要:信号与系统是电子工程、通信工程、自动化等领域中的重要基础课程,它研究的是信号的特征、信号的传输、信号的处理以及系统对信号的响应等问题。
本文将从信号与系统的基本概念、信号的分类、信号的传输与处理以及系统的特性等方面展开论述,旨在帮助读者更好地理解和应用信号与系统的相关知识。
一、引言信号与系统作为电子工程、通信工程、自动化等领域中的一门重要课程,是相关专业学习的基础。
信号与系统研究的是信号的特征、信号的传输和处理,以及系统对信号的响应。
信号与系统的学习对于我们理解和应用相关领域的知识具有重要意义。
二、信号的基本概念信号是对所研究对象状态或信息的某种表示。
信号可以是连续的,也可以是离散的。
连续信号是指在时间上连续变化的信号,而离散信号是指在时间上以一定的间隔取样的信号。
信号可以是模拟的,也可以是数字化的。
模拟信号是以连续形式存在的信号,而数字信号是以离散形式存在的信号。
在信号的表示中,常用的数学函数包括正弦函数、余弦函数和指数函数等。
三、信号的分类根据信号的形式和表示方式,信号可以分为几类。
最常见的分类是连续信号和离散信号。
另外,根据信号的能量和功率特性,信号可以分为能量信号和功率信号。
能量信号是指有限时间内能量有限的信号,而功率信号是指平均功率有限的信号。
此外,信号还可以按照周期性和非周期性分类,周期性信号在一定时间上重复出现,非周期性信号则没有这种规律性。
四、信号的传输与处理信号的传输是指信号从发送端经过传输媒介到达接收端的过程。
在信号传输过程中,可能会遇到噪声、失真等问题,因此需要对信号进行处理。
信号处理包括滤波、采样、量化、编码等过程,旨在提高信号的质量和可靠性。
滤波是对信号进行频率选择的操作,采样是将连续信号转换为离散信号的过程,量化是对信号幅度进行离散化处理的过程,编码则是对信号进行数字化表示的过程。
五、系统的特性系统是对信号进行处理和响应的装置或过程。
系统可以是线性的或非线性的,线性系统的特点是满足叠加原理,即输入信号和输出信号之间存在线性关系。
第一章信号与系统概述 (1)1。
1 信号与系统基本概念 (1)1。
1.1 信号基本概念 (1)1.1。
2 系统基本概念 (2)1.2 连续时间信号及分类 (2)1。
2。
1 确定性信号和随机信号 (3)1。
2.2 连续和分段连续时间信号 (3)1.2。
3 实信号与复信号 (4)1.2.4 周期信号与非周期信号 (7)1。
2。
5能量信号和功率信号 (7)1.2.6 MA TLAB实现常见标准信号波形 (8)1。
3 连续时间信号的基本运算 (11)1。
3。
1 信号的+、-、×运算 (11)1。
3.2 信号的时间变换运算 (12)1.3。
3 尺度变换(横坐标展缩) (14)1.3.4 微分与积分运算 (15)1。
3.5 MATLAB实现信号的时域运算和变换 (16)1.4 奇异信号 (19)1.4.1 阶跃函数 (19)1。
4.2 冲激函数 (21)1.5 系统的分类及性质 (26)1.5。
1 连续系统与离散系统 (26)1。
5.2 动态系统与即时系统 (26)1。
5。
3 线性系统与非线性系统 (26)1.5.4 时不变系统与时变系统 (28)1.5.5 因果系统与非因果系统 (28)1.5.6 稳定系统与不稳定系统 (29)1。
5。
7 LTI连续系统的微分特性和积分特性 (29)1。
6 连续系统描述方法 (30)1。
6。
1 系统的解析描述-—建立微分方程 (30)1。
6。
2 系统的框图描述——物理模型 (32)*1.7 LTI系统分析概述 (34)本章小结 (36)习题一 (36)第一章信号与系统概述本章将介绍信号与系统的概念以及它们的分类方法,然后讨论线性时不变(LinearTimer—Invariant,简称LTI)系统的特性和描述方法,同时深入地研究阶跃函数、冲激函数以及其特性,它们在LTI系统分析中占有十分重要的地位。
1。
1 信号与系统基本概念信号与系统在自然科学和社会科学领域中发挥着越来越重要的作用,信号与系统问题无处不在.近代,人们在自然科学以及工程、经济、社会科学等许多领域中,广泛地引用“系统"的概念、理念和方法,并根据各学科自身规律,建立相应的数学模型,研究各自的问题。