第6章 器件仿真工具(DESSIS)的模型分析
- 格式:ppt
- 大小:1.02 MB
- 文档页数:39
半导体物理与器件实验指导书——ISE TCAD工具使用中北大学电子科学与技术系编写ISE TCAD环境的熟悉了解一.GENESISe——ISE TCAD模拟工具的用户主界面1)包括GENESISe平台下如何浏览、打开、保存、增加、删除、更改项目;增加实验;增加实验参数;改变性能;增加工具流程等;2)理解基本的项目所需要使用的工具,每个工具的具体功能及相互之间的关系。
二.工艺流程模拟工具LIGMENT/DIOS,器件边界及网格加密工具MDRAW1)掌握基本工艺流程,能在LIGMENT平台下完成一个完整工艺的模拟;2)在运用DIOS工具时会调用在LIGMENT中生成的*_dio.cmd文件;3)能直接编辑*_dio.cmd文件,并在终端下运行;4)掌握在MDRAW平台下进行器件的边界、掺杂、网格的编辑。
三.器件仿真工具DESSIS,曲线检测工具INSPECT和TECPLOT。
1)理解DESSIS文件的基本结构,例如:文件模块、电路模块、物理模块、数学模块、解算模块;2)应用INSPECT提取器件的参数,例如:MOSFET的阈值电压(V t)、击穿电压BV、饱和电流I sat等;3)应用TECPLOT观察器件的具体信息,例如:杂质浓度、电场、晶格温度、电子密度、迁移率分布等。
课程实验内容设计一NMOS工艺流程和GENESISe用户主界面操作熟悉1)编辑*_dio.cmd文件(或在LEGMENT操作平台下)对NMOS进行工艺流程模拟;2)运行*_dio.cmd文件,观察其工艺执行过程。
3)在MDRAW工具中调入DIOS中生成的mdr_*.bnd和mdr_*.cmd文件,再对器件的网格进行更进一步的加密。
4)编辑*_des.cmd文件,并在终端下运行此程序,其中对其简单的Id-Vg 特性进行模拟;5)在INSPECT中观察不同的工艺参数值对器件的特性有何影响,特别的对阈值电压的影响。
设计二PN结实验1)运用MDRAW工具设计一个PN结的边界(如图所示)及掺杂;2)在MDRAW下对器件必要的位置进行网格加密;3)编辑*_des.cmd文件,并在终端下运行此程序,考虑偏压分别在-2V,0V,0.5V时各自的特性;4)应用TECPLOT工具查看PN 结的杂质浓度,电场分布,电子电流密度,空穴电流密度分布。
SPICE的器件模型大全在介绍SPICE基础知识时介绍了最复杂和重要的电路描述语句,其中就包括元器件描述语句。
许多元器件(如二极管、晶体管等)的描述语句中都有模型关键字,而电阻、电容、电源等的描述语句中也有模型名可选项,这些都要求后面配以.MODEL起始的模型描述语句,对这些特殊器件的参数做详细描述。
电阻、电容、电源等的模型描述语句语句比较简单,也比较容易理解,在SPICE基础中已介绍,就不再重复了;二极管、双极型晶体管的模型虽也做了些介绍,但不够详细,是本文介绍的重点,以便可以自己制作器件模型;场效应管、数字器件的模型过于复杂,太专业,一般用户自己难以制作模型,只做简单介绍。
元器件的模型非常重要,是影响分析精度的重要因素之一。
但模型中涉及太多图表,特别是很多数学公式,都是在WORD下编辑后再转为JEPG图像文件的,很繁琐和耗时,所以只能介绍重点。
一、二极管模型:1.1 理想二极管的I-V特性:1.2 实际硅二极管的I-V特性曲线:折线1.3 DC大信号模型:1.4 电荷存储特性:1.5 大信号模型的电荷存储参数Qd:1.6 温度模型:1.7 二极管模型参数表:二、双极型晶体管BJT模型:2.1 Ebers-Moll静态模型:电流注入模式和传输模式两种2.1.1 电流注入模式:2.1.2 传输模式:2.1.3 在不同的工作区域,极电流Ic Ie的工作范围不同,电流方程也各不相同:2.1.4 Early效应:基区宽度调制效应2.1.5 带Rc、Re、Rb的传输静态模型:正向参数和反向参数是相对的,基极接法不变,而发射极和集电极互换所对应的两种状态,分别称为正向状态和反向状态,与此对应的参数就分别定义为正向参数和反向参数。
2.2 Ebers-Moll大信号模型:2.3 Gummel-Pool静态模型:2.4 Gummel-Pool大信号模型:拓扑结构与Ebers-Moll大信号模型相同,非线性存储元件电压控制电容的方程也相同2.5 BJT晶体管模型总参数表:三、金属氧化物半导体晶体管MOSFET模型:3.1 一级静态模型:Shichman-Hodges模型3.2 二级静态模型(大信号模型):Meyer模型3.2.1 电荷存储效应:3.2.2 PN结电容:3.3 三级静态模型:3.2 MOSFET模型参数表:一级模型理论上复杂,有效参数少,用于精度不高场合,迅速粗略估计电路二级模型可使用复杂程度不同的模型,计算较多,常常不能收敛三级模型精度与二级模型相同,计算时间和重复次数少,某些参数计算比较复杂四级模型BSIM,适用于短沟道(<3um)的分析,Berkley在1987年提出四、结型场效应晶体管JFET模型:基于Shichman-Hodges模型4.1 N沟道JFET静态模型:4.2 JFET大信号模型:4.3 JFET模型参数表:五、GaAs MESFET模型:分两级模型(肖特基结作栅极)GaAs MESFET模型参数表:六、数字器件模型:6.1 标准门的模型语句:.MODEL <(model)name> UGATE [模型参数] 标准门的延迟参数:6.2 三态门的模型语句:.MODEL <(model)name> UTGATE [模型参数]三态门的延迟参数:6.3 边沿触发器的模型语句:.MODEL <(model)name> UEFF [模型参数]边沿触发器参数:JKFF nff preb,clrb,clkb,j*,k*,g*,gb* JK触发器,后沿触发DFF nff preb,clrb,clk,d*,g*,gb* D触发器,前沿触发边沿触发器时间参数:6.4 钟控触发器的模型语句:.MODEL <(model)name> UGFF [模型参数]钟控触发器参数:SRFF nff preb,clrb,gate,s*,r*,q*,qb* SR触发器,时钟高电平触发DLTCH nff preb,clrb,gate,d*,g*,gb* D触发器,时钟高电平触发钟控触发器时间参数:6.5 可编程逻辑阵列器件的语句:U <name> <pld type> (<#inputs>,<#outputs>) <input_node>* <output_node># +<(timing model)name> <(io_model)name> [FILE=<(file name) text value>] +[DATA=<radix flag>$ <program data>$][MNTYMXDLY=<(delay select)value>]+[IOLEVEL=<(interface model level)value>]其中:<pld type>列表<(file name) text value> JEDEC格式文件的名称,含有阵列特定的编程数据JEDEC文件指定时,DATA语句数据可忽略<radix flag> 是下列字母之一:B 二进制 O 八进制 X 十六进制<program data> 程序数据是一个数据序列,初始都为0PLD时间模型参数:七、数字I/O接口子电路:数字电路与模拟电路连接的界面节点,SPICE自动插入此子电路子电路名(AtoDn和DtoAn)在I/O模型中定义,实现逻辑状态与电压、阻抗之间的转换。
solutionsSolidWorks Flow SimulationSolidWorks Flow Simulation 是一款强大的计算流体力学 (CFD) 工具。
在那些液流、热传递和流体力间的交互作用决定设计成败的设计中,您可以使用该工具快速轻松地模拟这三种因素。
使用范围广泛的物理模型和功能:• 分析零部件内部的流动或零部件外部的流动,或者综合分析内部流动和外部流动。
• 结合流体分析和热分析,同时包括自然对流和强制对流、传导和辐射。
• 让 SolidWorks Flow Simulation 确定最佳尺寸或满足力、压差或速度等目标的入口和出口条件。
• 包含孔隙、气穴和湿度等复杂效果。
• 解决涉及非牛顿流体(例如,血液和塑料)的流动问题。
• 使用旋转坐标系模拟叶轮的旋转并研究流体在叶轮中如何流动。
充分利用现实操作条件的无限组合:• 应用入口速度、压力、质量流速或体积流速和风扇。
如果涉及多种流体,还可以应用质量比或体积比。
• 通过应用平面热源或体积热源、指定自然对流或强制对流或加入太阳辐射,模拟温度变化。
• 使用散热器模拟程序研究散热器对电子元件的影响。
• 跟踪流体中悬浮颗粒的行为。
• 应用随时间和坐标变化的边界条件和热源。
使用强大而且直观的结果可视化工具,获取有价值的分析信息:• 使用剖面图解研究结果数值的分布情况,包括速度、压力、漩涡、温度和质量比。
• 使用点参数工具测量任何位置的结果。
• 按照任何 SolidWorks 草图绘制不同的结果。
• 列出结果并自动将数据导出到 Microsoft ® Excel 。
• 使用动态显示条纹、3D 箭头、管道或球面,以分析模型内部或周围的流动轨迹。
SolidWorks ® Flow Simulation 为您模拟 SolidWorks 设计内部和外部的液流和热状态提供了无可比拟的便利性。
模拟多物理场的电子设计,以进行液流分析和热分析。
可编辑修改精选全文完整版目录第六章 Simulation有限元分析 (2)6.1 Simulation基础知识 (2)6.1.1 有限元法概述 (2)6.1.2 Simulation概述 (2)6.1.3 Simulation使用指导 (4)6.1.4 Simulation有限元分析的一般步骤 (8)6.2 SimulationXPress应力分析 (10)6.3 Simulation结构有限元分析 (16)6.3.1 轴静态分析 (16)6.3.2 夹钳装配体静态分析 (36)6.4 Simulation优化分析 (50)6.4.1 优化设计概述 (50)6.4.2 优化设计基础知识 (51)6.4.3 轴的优化分析 (51)6.5 小结 (59)第六章 Simulation有限元分析在制造业中,为了缩短产品设计周期,提高产品质量,广泛采用计算机辅助工程(Computer Aided Engineering,CAE),机械设计已逐渐实现了由静态、线性分析向动态、非线性分析的过渡,由经验类比向最优设计的过渡。
CAE在产品开发研制中显示出了无与伦比的优越性,使其成为现代企业在日趋激烈的竞争中取胜的一个重要条件,因而越来越受到科技界和工程界的重视。
在CAE技术中,有限元分析(Finite Element Analysis,FEA)是应用最为广泛、最为成功的一种数值分析方法。
SolidWorks Simulation即是一款基于有限元(即FEA数值)技术的分析软件,通过与SolidWorks的无缝集成,在工程实践中发挥了愈来愈大的作用。
6.1 Simulation基础知识6.1.1 有限元法概述有限元法(Finite Element Method,FEM)是随着计算机的发展而迅速发展起来的一种现代计算方法,是一种求解关于场问题的一系列偏微分方程的数值方法。
有限元分析的基本概念是用较简单的问题代替复杂问题后再求解。
Spectre的使用说明前面已经介绍了电路图的设计和画法,现在我们介绍仿真,cadance 仿真工具很多,如Hspice, Spectres等等,我们这里介绍Spectre,同时以共源放大器为例,介绍DC,AC,Tran电路图如下:第一节:仿真准备开始仿真时,点击Tools,在下拉菜单中点击Analogy Environment ,见下图出现如下窗口1.1 先介绍各条命令及其下拉的子命令的作用:一:Session:菜单包括Schematic Window、Save State、Load State、Options、Reset、Quit 等菜单项。
Schematic window项回到电路图(此时仿真窗口仍存在,只是当前的活动窗口为电路图);Save State项打开相应的窗口,保存当前所设定的模拟所用到的各种。
参数。
如图所示。
窗口中的两项分别为状态名(Save As)和选择需保存的内容(What to Save)。
Load State打开相应的窗口,加载已经保存的状态。
Reset 重置analog artist。
相当于重新打开一个模拟窗口,Quit退出仿真。
二:Setup 菜单包括Design、Simulator/directory/host、Temperature、Model libraries,Stimulition,Simulation Files,Environment等菜单项:1: Design项选择所要模拟的线路图。
2: Simulator/directory/host 项选择模拟使用的模型,点击此项,出现如下图窗点击Simulator项,出现下拉菜单如下图系统提供的选项有cdsSpice、hspiceS、spectreS等等。
我们一般用到的是cdsSpice和spectre,spectreS。
其中采用spectre,spectreS进行的模拟更加精确。
我们使用的上华提供的库,应使用spectre库,下面我们只以这种工具为例说明。