多光谱图像处理ppt课件
- 格式:ppt
- 大小:6.64 MB
- 文档页数:30
遥感图像处理与分析(十)Remote Sensing ImageProcessingand Analysis第十章图像的彩色和多光谱处理主要内容:彩色图像处理基本方法遥感多光谱影像处理彩色图像人眼对于彩色的观察和处理是一种生理和心理现象,其机理还没有完全搞清楚,因而对于彩色的许多结论都是建立在实验基础之上的。
对彩色图像的处理是基于对其适当的描述方法,每种处理方法都有其特定的应用场合。
颜色是什么¾视觉系统对可见光的感知结果可见光是波长在380~780 nm之间的电磁波,我们看到的大多数光不是一种波长的光,而是由许多不同波长的光组合成的,因此有多种颜色的感觉;¾颜色只存在于眼睛和大脑人的视网膜有对红、绿、蓝颜色敏感程度不同的三种锥体细胞;杆状体细胞在光功率极低的条件下才起作用;¾在计算机图像处理中,三种锥体细胞扮演重要角色,杆状细胞则未扮演什么角色视觉系统对颜色感知的特性¾眼睛本质上是一个照相机人的视网膜(human retina)通过神经元感知外部世界的颜色,每个神经元是一个对颜色敏感的锥体(cone)¾红、绿和蓝三种锥体细胞对不同频率的光的感知程度不同,对不同亮度的感知程度也不同这就意味着,人们可以使用数字图像处理技术来降低表示图像的数据量而不使人感到图像质量有明显下降。
¾从理论上说,自然界中的任何一种颜色都可以由R,G,B这三种颜色值之和来确定,它们构成一个三维的RGB矢量空间色彩的形成与分布光学原理解释的色彩的形成二维数字图像:两个空间变量的灰度值函数。
多光谱图像:两个空间变量和一个光谱变量(光的波长的函数)的灰度值函数,对应于电磁谱的不同波段生成一组三维图像。
彩色图像:当光谱采样限制到三个波段,即对应于人类视觉系统敏感的红、绿、蓝光谱段时的多光谱图像。
色彩的形成与分布绿白红蓝黄紫青几种常用的表色系颜色的描述是通过建立色彩模型来实现的,不同的色彩模型对应于不同的处理目的。
多光谱图像图像理解是在数字图像处理、计算机技术和人工智能不断发展的基础上产生的一种模拟人的图像识别机理的理论,它与计算机视觉理论有许多共同的部分,或者说有许多交叉的部分,它与人工智能、专家系统也有着一些共同的地方。
图像理解主要包括三个层次,其低层为一般图像处理;中层为图像中特征的符号化组织过程;高层为抽象的符号推理。
因此,计算机视觉主要与其低层,人工智能主要与其高层产生重叠。
目前,就图像理解这一理论的研究探讨有了专门的期刊;有关大学设置了专门的课程;有关专家学者写了专著。
比如国防科技大学的王润生教授就系统地介绍和总结了图像理解的基本理论、方法和国内外研究现状等〔1〕。
这一方面的基础理论和方法引起了有关学者和科研人员的注意和浓厚兴趣,他们结合自己的工作领域,进行了更深入的研究。
应当说,有关的理论和方法已经被极大地丰富了。
比如,有关图像纹理分析这方面的论文、论著数不胜数,其中,有关新理论新方法(如分形分维方法)的应用,更为这一理论注入了新内容;再如,我国数字摄影测量界已经将“双目”图像的分析理论和方法推向了具有世界先进水平的境界。
尽管如此,图像理解的理论与方法仍有严重不足之处。
这并不是指这一理论尚未成熟,而是指它的理论与方法还存在着片面性,还没有成为一个完整的体系。
因为图像理解的对象是各类图像,并没有限定是某一类图像,那么,现在的问题就是遥感图像理解(主要是多光谱图像理解)的理论十分贫乏。
以人类生存环境及地球资源为主要研究目标获取的各种遥感图像已经得到越来越广泛的应用,丰富的光谱信息及其在时间空间域的分辨率的提高,配合着地理信息系统技术,全球定位系统技术和因特网技术的发展和普及,为图像信息的广泛应用创造了空前繁荣的局面,成为信息时代的显著特征,在信息高速公路和数字地球战略中占据着极其重要的地位。
然而,现有的图像理解理论和方法在如此丰富的信息面前却显得苍白无力。
应当说,面对丰富的遥感信息,人们一直在研究如何处理和应用,有关这方面的理论和方法的研究成果也是不少的,但似乎并没有从图像理解的角度加以总结、提练,有的方面甚至缺乏系统的研究。