29.新人教版九年级数学上册24.1圆的有关性质(第2课时)
- 格式:ppt
- 大小:39.73 MB
- 文档页数:32
24.1 圆的有关性质24.1.2 垂直于弦的直径一、教学目标【知识与技能】1.通过观察实验,使学生理解圆的轴对称性.2.掌握垂径定理及其推论.理解其证明,并会用它解决有关的证明与计算问题.【过程与方法】通过探索垂径定理及其推论的过程,进一步体会和理解研究几何图形的各种方法.【情感态度与价值观】1.结合本课特点,向学生进行爱国主义教育和美育渗透.2.激发学生探究、发现数学问题的兴趣和欲望.二、课型新授课三、课时1课时。
四、教学重难点【教学重点】垂径定理及其推论,会运用垂径定理等结论解决一些有关证明,计算和作图问题.【教学难点】垂径定理及其推论.五、课前准备课件、图片、直尺等.六、教学过程(一)导入新课你知道赵州桥吗?它的主桥是圆弧形,它的跨度(弧所对的弦的长)为37m,拱高(弧的中点到弦的距离)为7.23m,你能求出赵州桥主桥拱的半径吗?(出示课件2)(二)探索新知探究一圆的轴对称性教师问:把一个圆沿着它的任意一条直径对折,重复几次,你发现了什么?由此你能得到什么结论?(出示课件4)学生通过自己动手操作,归纳出结论:圆是轴对称图形,任何一条直径所在直线都是它的对称轴.出示课件5:教师问:圆是轴对称图形吗?如果是,它的对称轴是什么?你能找到多少条对称轴?学生答:圆是轴对称图形,任意一条直径所在直线都是圆的对称轴.思考:如何来证明圆是轴对称图形呢?出示课件6:已知:在⊙O中,CD是直径,AB是弦,CD⊥AB,垂足为E.教师问:此图是轴对称图形吗?学生答:是轴对称图形.教师问:满足什么条件才能证明圆是轴对称图形呢?师生共同解答如下:(出示课件7)证明:连结OA、OB.则OA=OB.又∵CD⊥AB,∴直径CD所在的直线是AB的垂直平分线.∴对于圆上任意一点,在圆上都有关于直线CD的对称点,即⊙O关于直线CD对称.师生进一步认知:圆是轴对称图形,任何一条直径所在直线都是圆的对称轴.探究二垂径定理及其推论出示课件8:如图,AB是⊙O的一条弦, 直径CD⊥AB, 垂足为E.你能发现图中有哪些相等的线段和劣弧?为什么?学生独立思考后口答:线段:AE=BE弧:AC⌒=BC⌒,AD⌒=BD⌒学生简述理由:把圆沿着直径CD折叠时,CD两侧的两个半圆重合,点A 与点B重合,AE与BE重合,重合.教师总结归纳:(出示课件9)垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧.推导格式:∵CD是直径,CD⊥AB,∴AE=BE, AC⌒=BC⌒,AD⌒=BD⌒教师强调:垂径定理是圆中一个重要的定理,三种语言要相互转化,形成整体,才能运用自如.想一想:下列图形是否具备垂径定理的条件?如果不是,请说明为什么?(出示课件10)学生独立思考后口答:1图是;2图不是,因为没有垂直;3图是;4图不是,因为CD没有过圆心.教师强调:垂径定理的几个基本图形:(出示课件11)出示课件12:如果把垂径定理(垂直于弦的直径平分弦,并且平分弦所对的两条弧)结论与题设交换一条,命题是真命题吗?①过圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧.上述五个条件中的任何两个条件都可以推出其他三个结论吗?学生思考后教师总结:深化认知:(出示课件13)如图,①CD是直径;②CD⊥AB,垂足为E;③AE=BE;④AC⌒=BC⌒;⑤AD⌒=BD⌒.举例证明其中一种组合方法.学生思考后独立解决,并加以交流,教师加以指导,并举例.(出示课件14)如图,AB是⊙O的一条弦,作直径CD,使AE=BE.(1)CD⊥AB吗?为什么?⑵AC⌒与BC⌒相等吗?AD⌒与BD⌒相等吗?为什么?证明:⑴连接AO,BO,则AO=BO,又AE=BE,OE=OE∴△AOE≌△BOE(SSS),∴∠AEO=∠BEO=90°,∴CD⊥AB.(2)由垂径定理可得AC⌒=BC⌒,AD⌒=BD⌒教师归纳总结:(出示课件15)垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.思考:“不是直径”这个条件能去掉吗?如不能,请举出反例.教师强调:圆的两条直径是互相平分的.出示课件16:例1 如图,OE⊥AB于E,若⊙O的半径为10cm,OE=6cm,则AB=cm.学生思考后师生共同解答:连接OA,∵OE⊥AB,巩固练习:(出示课件17)如图,⊙O的弦AB=8cm,直径CE⊥AB于D,DC=2cm,求半径OC的长.学生自主思考后,独立解答如下:解:连接OA,∵CE⊥AB于D,,∴设OC=xcm,则OD=x-2,根据勾股定理,得x2=42+(x-2)2,∴22221068AE OA OE=-=-=cm.1184(cm)22AD AB==⨯=解得x=5,即半径OC的长为5cm.出示课件18:例2 已知:⊙O中弦AB∥CD,求证:学生思考后师生共同解答.证明:作直径MN⊥AB.∵AB∥CD,∴MN⊥CD.则(垂直于弦的直径平分弦所对的弧)教师强调:平行弦夹的弧相等.师生共同归纳总结:(出示课件19)解决有关弦的问题,经常是过圆心作弦的弦心距(垂线段),或作垂直于弦的直径,连结半径等辅助线,为应用垂径定理创造条件.巩固练习:(出示课件20)如图,在⊙O中,AB、AC为互相垂直且相等的两条弦,OD⊥AB于D,OE⊥AC于E,求证: 四边形ADOE是正方形.学生独立解答,一生板演.证明:∵OE⊥AC,OD⊥AB,AB⊥AC,∴∠OEA=∠EAD=∠ODA=90°.∴四边形ADOE为矩形,AE=12AC,AD=12AB.又∵AC=AB,∴AE=AD.∴四边形ADOE为正方形.出示课件21:例3 根据刚刚所学,你能利用垂径定理求出导入中赵州桥主桥拱半径的问题吗?教师引导学生分析题意,先把实际问题转化为数学问题,然后画出图形进行解答.解:如图,用AB表示主桥拱,设AB所在圆的圆心为O,半径为R.经过圆心O作弦AB的垂线OC垂足为D,与弧AB交于点C,则D是AB的中点,C 是弧AB的中点,CD就是拱高.∴AB=37m,CD=7.23m.AB=18.5m,OD=OC-CD=R-7.23.∴AD=12OA2=AD2+OD2,R2=18.52+(R-7.23)2,解得R≈27.3.即主桥拱半径约为27.3m.巩固练习:(出示课件23)如图a、b,一弓形弦长为,弓形所在的圆的半径为7cm,则弓形的高为_______.学生独立思考后解答:如图,分两种情况,弓形的高为5cm或12cm.教师归纳:1.涉及垂径定理时辅助线的添加方法(出示课件24)在圆中有关弦长a,半径r, 弦心距d(圆心到弦的距离),弓形高h的计算题时,常常通过连半径或作弦心距构造直角三角形,利用垂径定理和勾股定理求解.2.弓形中重要数量关系弦a,弦心距d,弓形高h,半径r之间有以下关系:⑴d+h=r;⑵2 222ar d⎛⎫=+ ⎪⎝⎭.(三)课堂练习(出示课件25-29)1.2.已知⊙O中,弦AB=8cm,圆心到AB的距离为3cm,则此圆的半径为.3.⊙O的直径AB=20cm, ∠BAC=30°则弦AC= .4.(分类讨论题)已知⊙O的半径为10cm,弦MN∥EF,且MN=12cm,EF=16cm,则弦MN和EF之间的距离为.5.已知:如图,在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C,D两点.你认为AC和BD有什么关系?为什么?6.如图,一条公路的转弯处是一段圆弧(即图中弧CD,点O是弧CD的圆心),其中CD=600m,E为弧CD上的一点,且OE⊥CD,垂足为F,EF=90m.求这段弯路的半径.参考答案:1.C2.5cm3.4.14cm或2cm5.证明:过O作OE⊥AB,垂足为E,则AE=BE,CE=DE.∴AE-CE=BE-DE.即AC=BD.6.解:连接OC.设这段弯路的半径为Rm,则OF=(R-90)m.,OE CD ⊥11600300(m)22CF CD ∴==⨯=,根据勾股定理,得222,OC CF OF =+ ()22230090.R R =+- 解得R=545.∴这段弯路的半径约为545m.(四)课堂小结通过这节课的学习,你有哪些收获和体会?(五)课前预习预习下节课(24.1.3)的相关内容.七、课后作业配套练习册内容八、板书设计:九、教学反思:1.这节课的教学从利用垂径定理来解决赵州桥桥拱半径问题开始,引入课题从实验入手,得到圆的轴对称性,进而推出垂径定理及推论.教学设计中,从具体、简单、特殊到抽象、复杂、一般,层层递进,以利于提高学生的数学思维能力,同时,注意加强对学生的启发和引导,培养学生们大胆猜想,小心求证的科学研究素质.2.本课的教学方法是将垂径定理和勾股定理有机结合,将圆的问题转化为直角三角形,常作的辅助线是半径或垂直于弦的直径.。
24.1圆的有关性质第2课时教学内容1.圆心角的概念.2.有关弧、弦、圆心角关系的定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.3.定理的推论:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等.教学目标了解圆心角的概念:掌握在同圆或等圆中,圆心角、弦、弧中有一个量的两个相等就可以推出其它两个量的相对应的两个值就相等,及其它们在解题中的应用.通过复习旋转的知识,产生圆心角的概念,然后用圆心角和旋转的知识探索在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等,最后应用它解决一些具体问题.重难点、关键1.重点:定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对弦也相等及其两个推论和它们的应用.2.难点与关键:探索定理和推导及其应用.教学过程一、复习引入(学生活动)请同学们完成下题.已知△OAB,如图所示,作出绕O点旋转30°、45°、60°的图形.ABO老师点评:绕O点旋转,O点就是固定点,旋转30°,就是旋转角∠BOB′=30°.二、探索新知如图所示,∠AOB的顶点在圆心,像这样顶点在圆心的角叫做圆心角.(学生活动)请同学们按下列要求作图并回答问题:如图所示的⊙O 中,分别作相等的圆心角∠AOB 和∠A ′OB ′将圆心角∠AOB 绕圆心O 旋转到∠A ′OB ′的位置,你能发现哪些等量关系?为什么?=,AB=A ′B ′理由:∵半径OA 与O ′A ′重合,且∠AOB=∠A ′OB ′ ∴半径OB 与OB ′重合∵点A 与点A ′重合,点B 与点B ′重合 ∴与重合,弦AB 与弦A ′B ′重合 ∴=,AB=A ′B ′因此,在同一个圆中,相等的圆心角所对的弧相等,所对的弦相等. 在等圆中,相等的圆心角是否也有所对的弧相等,所对的弦相等呢?请同学们现在动手作一作.(学生活动)老师点评:如图1,在⊙O 和⊙O ′中,分别作相等的圆心角∠AOB 和∠A ′O ′B ′得到如图2,滚动一个圆,使O 与O ′重合,固定圆心,将其中的一个圆旋转一个角度,使得OA 与O ′A ′重合.(1) (2) 你能发现哪些等量关系?说一说你的理由? 我能发现:=,AB=A /B /.现在它的证明方法就转化为前面的说明了,这就是又回到了我们的数学思想上去呢──B 'AB ''A B AB ''A B AB ''ABB ''A 'AB ''A B化归思想,化未知为已知,因此,我们可以得到下面的定理:同样,还可以得到:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦也相等. 在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等. (学生活动)请同学们现在给予说明一下. 请三位同学到黑板板书,老师点评.例1.如图,在⊙O 中,AB 、CD 是两条弦,OE ⊥AB ,OF ⊥CD ,垂足分别为EF . (1)如果∠AOB=∠COD ,那么OE 与OF 的大小有什么关系?为什么?(2)如果OE=OF ,那么与的大小有什么关系?AB 与CD 的大小有什么关系?为什么?∠AOB 与∠COD 呢?分析:(1)要说明OE=OF ,只要在直角三角形AOE 和直角三角形COF 中说明AE=CF ,即说明AB=CD ,因此,只要运用前面所讲的定理即可.(2)∵OE=OF ,∴在Rt △AOE 和Rt △COF 中, 又有AO=CO 是半径,∴Rt △AOE ≌Rt △COF ,∴AE=CF ,∴AB=CD ,又可运用上面的定理得到= 解:(1)如果∠AOB=∠COD ,那么OE=OF 理由是:∵∠AOB=∠COD ∴AB=CD∵OE ⊥AB ,OF ⊥CD ∴AE=AB ,CF=CD ∴AE=CF又∵OA=OC∴Rt △OAE ≌Rt △OCF ∴OE=OF(2)如果OE=OF ,那么AB=CD ,=,∠AOB=∠COD 理由是:∵OA=OC ,OE=OF ∴Rt △OAE ≌Rt △OCF ∴AE=CF又∵OE ⊥AB ,OF ⊥CDABCD DAB CD 1212AB CD∴AE=AB ,CF=CD ∴AB=2AE ,CD=2CF∴AB=CD∴=,∠AOB=∠COD三、巩固练习教材 练习1 教材练习2. 四、应用拓展例2.如图3和图4,MN 是⊙O 的直径,弦AB 、CD 相交于MN 上的一点P ,∠APM=∠CPM .(1)由以上条件,你认为AB 和CD 大小关系是什么,请说明理由.(2)若交点P 在⊙O 的外部,上述结论是否成立?若成立,加以证明;若不成立,请说明理由.(3) (4) 分析:(1)要说明AB=CD ,只要证明AB 、CD 所对的圆心角相等,只要说明它们的一半相等.上述结论仍然成立,它的证明思路与上面的题目是一模一样的. 解:(1)AB=CD理由:过O 作OE 、OF 分别垂直于AB 、CD ,垂足分别为E 、F ∵∠APM=∠CPM ∴∠1=∠2 OE=OF连结OD 、OB 且OB=OD ∴Rt △OFD ≌Rt △OEB ∴DF=BE根据垂径定理可得:AB=CD(2)作OE ⊥AB ,OF ⊥CD ,垂足为E 、F∵∠APM=∠CPN 且OP=OP ,∠PEO=∠PFO=90° ∴Rt △OPE ≌Rt △OPF ∴OE=OF连接OA 、OB 、OC 、OD易证Rt △OBE ≌Rt △ODF ,Rt △OAE ≌Rt △OCF1212AB CDP∴∠1+∠2=∠3+∠4 ∴AB=CD五、归纳总结(学生归纳,老师点评) 本节课应掌握: 1.圆心角概念.2.在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都部分相等,及其它们的应用. 六、布置作业1.教材 复习巩固4、5、6、7、8. 2.选用课时作业设计.第二课时作业设计一、选择题.1.如果两个圆心角相等,那么( )A .这两个圆心角所对的弦相等;B .这两个圆心角所对的弧相等C .这两个圆心角所对的弦的弦心距相等;D .以上说法都不对2.在同圆中,圆心角∠AOB=2∠COD ,则两条弧AB 与CD 关系是( ) A .=2 B .> C .<2 D .不能确定 3.如图5,⊙O 中,如果=2,那么( ).A .AB=ACB .AB=AC C .AB<2ACD .AB>2AC(5) (6) 二、填空题1.交通工具上的轮子都是做圆的,这是运用了圆的性质中的_________. 2.一条弦长恰好为半径长,则此弦所对的弧是半圆的_________.3.如图6,AB 和DE 是⊙O 的直径,弦AC ∥DE ,若弦BE=3,则弦CE=________. 三、解答题1.如图,在⊙O 中,C 、D 是直径AB 上两点,且AC=BD ,MC ⊥AB ,ND ⊥AB ,M 、N在⊙O 上. (1)求证:=;(2)若C 、D 分别为OA 、OB 中点,则成立吗?AB CD AB CD AB CD AB ACBAM BN AM MN NB ==2.如图,以ABCD 的顶点A 为圆心,AB 为半径作圆,分别交BC 、AD 于E 、F ,若∠D=50°,求的度数和的度数.3.如图,∠AOB=90°,C 、D 是AB 三等分点,AB 分别交OC 、OD 于点E 、F ,求证:AE=BF=CD .答案:一、1.D 2.A 3.C 二、1.圆的旋转不变形 2.或 3.3 三、1.(1)连结OM 、ON ,在Rt △OCM 和Rt △ODN 中OM=ON ,OA=OB ,∵AC=DB ,∴OC=OD ,∴Rt △OCM ≌Rt △ODN ,∴∠AOM=∠BON ,∴(2)2.BE 的度数为80°,EF 的度数为50°.3.连结AC 、BD ,∵C 、D 是三等分点, ∴AC=CD=DB ,且∠AOC=×90°=30°, ∵OA=OC ,∴∠OAC=∠OCA=75°,又∠AEC=∠OAE+∠AOE=45°+30°=75°, ∴AE=AC ,同理可证BF=BD ,∴AE=BF=CDBEEF 1353AM NB =AM MN NB ==AB 13初中数学公式大全1过两点有且只有一条直线2两点之间线段最短3同角或等角的补角相等4同角或等角的余角相等5过一点有且只有一条直线和已知直线垂直6直线外一点与直线上各点连接的所有线段中,垂线段最短7平行公理经过直线外一点,有且只有一条直线与这条直线平行8如果两条直线都和第三条直线平行,这两条直线也互相平行9同位角相等,两直线平行10内错角相等,两直线平行11同旁内角互补,两直线平行12两直线平行,同位角相等13两直线平行,内错角相等14两直线平行,同旁内角互补15定理三角形两边的和大于第三边16推论三角形两边的差小于第三边17三角形内角和定理三角形三个内角的和等于180 °18推论1直角三角形的两个锐角互余19推论2三角形的一个外角等于和它不相邻的两个内角的和20平行四边形判定定理1两组对角分别相等的四边形是平行四边形21平行四边形判定定理2两组对边分别相等的四边形是平行四边形22平行四边形判定定理3对角线互相平分的四边形是平行四边形23平行四边形判定定理4一组对边平行相等的四边形是平行四边形24矩形性质定理1矩形的四个角都是直角25矩形性质定理2矩形的对角线相等26矩形判定定理1有三个角是直角的四边形是矩形27矩形判定定理2对角线相等的平行四边形是矩形28菱形性质定理1菱形的四条边都相等29菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角30菱形面积= 对角线乘积的一半,即S= (a×b )÷231菱形判定定理1四边都相等的四边形是菱形32菱形判定定理2对角线互相垂直的平行四边形是菱形33正方形性质定理1正方形的四个角都是直角,四条边都相等34正方形性质定理2 正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角35定理1关于中心对称的两个图形是全等的36定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分37逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称38等腰梯形性质定理等腰梯形在同一底上的两个角相等。
24.1.1 圆01 教学目标1.了解圆的基本概念,并能准确地表示出来.2.理解并掌握与圆有关的概念:弦、直径、圆弧、等圆、同心圆等.02 预习反馈阅读教材P79~80内容,理解记忆与圆有关的概念,并完成下列问题.1.如图,在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆.其固定的端点O叫做圆心,线段OA叫做半径.2.圆心为O、半径为r的圆可以看成是所有到定点O的距离等于定长r的点的集合.3.连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径;圆上任意两点间的部分叫做圆弧;圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆,大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.4.以点A为圆心,可以画无数个圆;以已知线段AB的长为半径,可以画无数个圆;以点A为圆心,AB的长为半径,可以画1个圆.【点拨】确定圆的两个要素:圆心(定点)和半径(定长).圆心确定圆的位置,半径确定圆的大小.5.到定点O的距离为5的点的集合是以O为圆心,5为半径的圆.03 新课讲授例1(教材P80例1)矩形ABCD的对角线AC,BD相交于点O.求证:A,B,C,D四个点在以点O为圆心的同一个圆上.【思路点拨】 要求证几个点在同一个圆上,即需要证明这几个点到同一个点(即圆心)的距离相等.【解答】 证明:∵四边形ABCD 为矩形, ∴OA =OC =12AC ,OB =OD =12BD ,AC =BD .∴OA =OC =OB =OD .∴A ,B ,C ,D 四个点在以点O 为圆心,OA 为半径的圆上(如图).例2 (教材P80例1的变式)△ABC 中,∠C =90°.求证:A ,B ,C 三点在同一个圆上. 【解答】 证明:如图,取AB 的中点O ,连接OC .∵在△ABC 中,∠C =90°, ∴△ABC 是直角三角形.∴OC =OA =OB =12AB (直角三角形斜边上的中线等于斜边的一半).∴A ,B ,C 三点在同一个圆上.【跟踪训练1】 (例1的变式题)(1)在图中,画出⊙O 的两条直径;(2)依次连接这两条直径的端点,得一个四边形.判断这个四边形的形状,并说明理由.解:(1)作图略.(2)矩形.理由:因为该四边形的对角线互相平分且相等,所以该四边形为矩形. 【思考】 由刚才的问题思考:矩形的四个顶点一定共圆吗? 例3 已知⊙O 的半径为2,则它的弦长d 的取值范围是0<d≤4.【点拨】直径是圆中最长的弦.例4在⊙O中,若弦AB等于⊙O的半径,则△AOB的形状是等边三角形.【点拨】与半径相等的弦和两半径构造等边三角形是常用数学模型.【跟踪训练2】如图,点A,B,C,D都在⊙O上.在图中画出以这4点为端点的各条弦.这样的弦共有多少条?解:图略.6条.04 巩固训练1.如图,图中有1条直径,2条非直径的弦,圆中以A为一个端点的优弧有4条,劣弧有4条.【点拨】这类数弧问题,为防多数或少数,通常按一定的顺序和方向来数.2.如图,⊙O中,点A,O,D以及点B,O,C分别在一条直线上,图中弦的条数为2.3.(24.1.1习题)点P到⊙O上各点的最大距离为10 cm,最小距离为8 cm,则⊙O的半径是1或9cm.【点拨】这里分点在圆外和点在圆内两种情况.4.如图,已知AB是⊙O的直径,点C在⊙O上,点D是BC的中点.若AC=10 cm,则OD的长为5__cm.【点拨】圆心O是直径AB的中点.5.如图,CD为⊙O的直径,∠EOD=72°,AE交⊙O于B,且AB=OC,则∠A的度数为24°.【点拨】连接OB构造三角形,从而得出角的关系.05 课堂小结1.这节课你学了哪些知识?2.学会了哪些解圆的有关问题的技巧?。
2018-2019学年九年级数学上册第二十四章圆24.1 圆的有关性质24.1.2 垂直于弦的直径教案2 (新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018-2019学年九年级数学上册第二十四章圆24.1 圆的有关性质24.1.2 垂直于弦的直径教案2 (新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018-2019学年九年级数学上册第二十四章圆24.1 圆的有关性质24.1.2 垂直于弦的直径教案2 (新版)新人教版的全部内容。
24.1。
2 垂直于弦的直径01 教学目标1.理解圆的对称性.2.通过圆的轴对称性质的学习,理解垂直于弦的直径的性质.3.能运用垂径定理计算和证明实际问题.02 预习反馈阅读教材P81~83内容,并完成下列问题.1.圆是轴对称图形,任何一条直径所在的直线都是圆的对称轴,圆也是中心对称图形,对称中心为圆心.2.垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧,即如图,∵CD是⊙O的直径,且AB⊥CD,∴AE=BE;AC,︵=错误!;错误!=错误!.3.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧,即如图,∵CD是⊙O的直径,且AE=BE(AB不是直径),∴CD⊥AB;错误!=错误!;错误!=错误!.03 新课讲授知识点1 垂径定理例1(教材补充例题)已知⊙O的半径为5 cm.(1)若圆心O到弦AB的距离为3 cm,则弦AB的长为8__cm;(2)若弦AB的长为8 cm,则圆心O到AB的距离为3__cm.【点拨】(1)圆中已知半径、弦长、弦心距三者中的任何两个,即可求出另一个.(2)“已知弦的中点,连接圆心和中点构造垂直”或“连接半径,由半径、半弦、弦心距构造直角三角形"是常用的辅助线.例2(例1的变式题)已知:如图,线段AB与⊙O交于C,D两点,且OA=OB.求证:AC=BD.【解答】证明:作OE⊥AB于E。
第二十四章圆24.1 圆的有关性质24.1.1 圆经历圆的概念的形成过程,理解圆、弧、弦等与圆有关的概念,了解等圆、等弧的概念.重点经历形成圆的概念的过程,理解圆及其有关概念.难点理解圆的概念的形成过程和圆的集合性定义.活动1创设情境,引出课题1.多媒体展示生活中常见的给我们以圆的形象的物体.2.提出问题:我们看到的物体给我们什么样的形象?活动2动手操作,形成概念在没有圆规的情况下,让学生用铅笔和细线画一个圆.教师巡视,展示学生的作品,提出问题:我们画的圆的位置和大小一样吗?画的圆的位置和大小分别由什么决定?教师强调指出:位置由固定的一个端点决定,大小由固定端点到铅笔尖的细线的长度决定.1.从以上圆的形成过程,总结概念:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点所形成的图形叫做圆.固定的端点O叫做圆心,线段OA叫做半径.以点O 为圆心的圆,记作“⊙O”,读作“圆O”.2.小组讨论下面的两个问题:问题1:圆上各点到定点(圆心O)的距离有什么规律?问题2:到定点的距离等于定长的点又有什么特点?3.小组代表发言,教师点评总结,形成新概念.(1)圆上各点到定点(圆心O)的距离都等于定长(半径r);(2)到定点的距离等于定长的点都在同一个圆上.因此,我们可以得到圆的新概念:圆心为O,半径为r的圆可以看成是所有到定点O的距离等于定长r的点的集合.(一个图形看成是满足条件的点的集合,必须符合两点:在图形上的每个点,都满足这个条件;满足这个条件的每个点,都在这个图形上.)活动3学以致用,巩固概念1.教材第81页练习第1题.2.教材第80页例1.多媒体展示例1,引导学生分析要证明四个点在同一圆上,实际是要证明到定点的距离等于定长,即四个点到O的距离相等.活动4自学教材,辨析概念1.自学教材第80页例1后面的内容,判断下列问题正确与否:(1)直径是弦,弦是直径;半圆是弧,弧是半圆.(2)圆上任意两点间的线段叫做弧.(3)在同圆中,半径相等,直径是半径的2倍.(4)长度相等的两条弧是等弧.(教师强调:长度相等的弧不一定是等弧,等弧必须是在同圆或等圆中的弧.)(5)大于半圆的弧是劣弧,小于半圆的弧是优弧.2.指出图中所有的弦和弧.活动5达标检测,反馈新知教材第81页练习第2,3题.活动6课堂小结,作业布置课堂小结1.圆、弦、弧、等圆、等弧的概念.要特别注意“直径和弦”“弧和半圆”以及“同圆、等圆”这些概念的区别和联系.等圆和等弧的概念是建立在“能够完全重合”这一前提条件下的,它将作为今后判断两圆或两弧相等的依据.2.证明几点在同一圆上的方法.3.集合思想.作业布置1.以定点O为圆心,作半径等于2厘米的圆.2.如图,在Rt△ABC和Rt△ABD中,∠C=90°,∠D=90°,点O是AB的中点.求证:A,B,C,D四个点在以点O为圆心的同一圆上.答案:1.略;2.证明OA=OB=OC=OD即可.。
24.1圆的有关性质第2课时教学内容1.圆心角的概念.2.有关弧、弦、圆心角关系的定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.3.定理的推论:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等.教学目标了解圆心角的概念:掌握在同圆或等圆中,圆心角、弦、弧中有一个量的两个相等就可以推出其它两个量的相对应的两个值就相等,及其它们在解题中的应用.通过复习旋转的知识,产生圆心角的概念,然后用圆心角和旋转的知识探索在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等,最后应用它解决一些具体问题.重难点、关键1.重点:定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对弦也相等及其两个推论和它们的应用.2.难点与关键:探索定理和推导及其应用.教学过程一、复习引入(学生活动)请同学们完成下题.已知△OAB,如图所示,作出绕O点旋转30°、45°、60°的图形.ABO老师点评:绕O点旋转,O点就是固定点,旋转30°,就是旋转角∠BOB′=30°.二、探索新知如图所示,∠AOB的顶点在圆心,像这样顶点在圆心的角叫做圆心角.(学生活动)请同学们按下列要求作图并回答问题:如图所示的⊙O 中,分别作相等的圆心角∠AOB 和∠A ′OB ′将圆心角∠AOB 绕圆心O 旋转到∠A ′OB ′的位置,你能发现哪些等量关系?为什么?=,AB=A ′B ′理由:∵半径OA 与O ′A ′重合,且∠AOB=∠A ′OB ′ ∴半径OB 与OB ′重合∵点A 与点A ′重合,点B 与点B ′重合 ∴与重合,弦AB 与弦A ′B ′重合 ∴=,AB=A ′B ′因此,在同一个圆中,相等的圆心角所对的弧相等,所对的弦相等. 在等圆中,相等的圆心角是否也有所对的弧相等,所对的弦相等呢?请同学们现在动手作一作.(学生活动)老师点评:如图1,在⊙O 和⊙O ′中,分别作相等的圆心角∠AOB 和∠A ′O ′B ′得到如图2,滚动一个圆,使O 与O ′重合,固定圆心,将其中的一个圆旋转一个角度,使得OA 与O ′A ′重合.(1) (2) 你能发现哪些等量关系?说一说你的理由? 我能发现:=,AB=A /B /.现在它的证明方法就转化为前面的说明了,这就是又回到了我们的数学思想上去呢──B 'AB ''A B AB ''A B AB ''ABB ''A 'AB ''A B化归思想,化未知为已知,因此,我们可以得到下面的定理:同样,还可以得到:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦也相等. 在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等. (学生活动)请同学们现在给予说明一下. 请三位同学到黑板板书,老师点评.例1.如图,在⊙O 中,AB 、CD 是两条弦,OE ⊥AB ,OF ⊥CD ,垂足分别为EF . (1)如果∠AOB=∠COD ,那么OE 与OF 的大小有什么关系?为什么?(2)如果OE=OF ,那么与的大小有什么关系?AB 与CD 的大小有什么关系?为什么?∠AOB 与∠COD 呢?分析:(1)要说明OE=OF ,只要在直角三角形AOE 和直角三角形COF 中说明AE=CF ,即说明AB=CD ,因此,只要运用前面所讲的定理即可.(2)∵OE=OF ,∴在Rt △AOE 和Rt △COF 中, 又有AO=CO 是半径,∴Rt △AOE ≌Rt △COF ,∴AE=CF ,∴AB=CD ,又可运用上面的定理得到= 解:(1)如果∠AOB=∠COD ,那么OE=OF 理由是:∵∠AOB=∠COD ∴AB=CD∵OE ⊥AB ,OF ⊥CD ∴AE=AB ,CF=CD ∴AE=CF又∵OA=OC∴Rt △OAE ≌Rt △OCF ∴OE=OF(2)如果OE=OF ,那么AB=CD ,=,∠AOB=∠COD 理由是:∵OA=OC ,OE=OF ∴Rt △OAE ≌Rt △OCF ∴AE=CF又∵OE ⊥AB ,OF ⊥CDABCD DAB CD 1212AB CD∴AE=AB ,CF=CD ∴AB=2AE ,CD=2CF∴AB=CD∴=,∠AOB=∠COD三、巩固练习教材 练习1 教材练习2. 四、应用拓展例2.如图3和图4,MN 是⊙O 的直径,弦AB 、CD 相交于MN 上的一点P ,∠APM=∠CPM .(1)由以上条件,你认为AB 和CD 大小关系是什么,请说明理由.(2)若交点P 在⊙O 的外部,上述结论是否成立?若成立,加以证明;若不成立,请说明理由.(3) (4) 分析:(1)要说明AB=CD ,只要证明AB 、CD 所对的圆心角相等,只要说明它们的一半相等.上述结论仍然成立,它的证明思路与上面的题目是一模一样的. 解:(1)AB=CD理由:过O 作OE 、OF 分别垂直于AB 、CD ,垂足分别为E 、F ∵∠APM=∠CPM ∴∠1=∠2 OE=OF连结OD 、OB 且OB=OD ∴Rt △OFD ≌Rt △OEB ∴DF=BE根据垂径定理可得:AB=CD(2)作OE ⊥AB ,OF ⊥CD ,垂足为E 、F∵∠APM=∠CPN 且OP=OP ,∠PEO=∠PFO=90° ∴Rt △OPE ≌Rt △OPF ∴OE=OF连接OA 、OB 、OC 、OD易证Rt △OBE ≌Rt △ODF ,Rt △OAE ≌Rt △OCF1212AB CDP∴∠1+∠2=∠3+∠4 ∴AB=CD五、归纳总结(学生归纳,老师点评) 本节课应掌握: 1.圆心角概念.2.在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都部分相等,及其它们的应用. 六、布置作业1.教材 复习巩固4、5、6、7、8. 2.选用课时作业设计.第二课时作业设计一、选择题.1.如果两个圆心角相等,那么( )A .这两个圆心角所对的弦相等;B .这两个圆心角所对的弧相等C .这两个圆心角所对的弦的弦心距相等;D .以上说法都不对2.在同圆中,圆心角∠AOB=2∠COD ,则两条弧AB 与CD 关系是( ) A .=2 B .> C .<2 D .不能确定 3.如图5,⊙O 中,如果=2,那么( ).A .AB=ACB .AB=AC C .AB<2ACD .AB>2AC(5) (6) 二、填空题1.交通工具上的轮子都是做圆的,这是运用了圆的性质中的_________. 2.一条弦长恰好为半径长,则此弦所对的弧是半圆的_________.3.如图6,AB 和DE 是⊙O 的直径,弦AC ∥DE ,若弦BE=3,则弦CE=________. 三、解答题1.如图,在⊙O 中,C 、D 是直径AB 上两点,且AC=BD ,MC ⊥AB ,ND ⊥AB ,M 、N在⊙O 上. (1)求证:=;(2)若C 、D 分别为OA 、OB 中点,则成立吗?AB CD AB CD AB CD AB ACBAM BN AM MN NB ==2.如图,以ABCD 的顶点A 为圆心,AB 为半径作圆,分别交BC 、AD 于E 、F ,若∠D=50°,求的度数和的度数.3.如图,∠AOB=90°,C 、D 是AB 三等分点,AB 分别交OC 、OD 于点E 、F ,求证:AE=BF=CD .答案:一、1.D 2.A 3.C 二、1.圆的旋转不变形 2.或 3.3 三、1.(1)连结OM 、ON ,在Rt △OCM 和Rt △ODN 中OM=ON ,OA=OB ,∵AC=DB ,∴OC=OD ,∴Rt △OCM ≌Rt △ODN ,∴∠AOM=∠BON ,∴(2)2.BE 的度数为80°,EF 的度数为50°.3.连结AC 、BD ,∵C 、D 是三等分点, ∴AC=CD=DB ,且∠AOC=×90°=30°, ∵OA=OC ,∴∠OAC=∠OCA=75°,又∠AEC=∠OAE+∠AOE=45°+30°=75°, ∴AE=AC ,同理可证BF=BD ,∴AE=BF=CDBEEF 1353AM NB =AM MN NB ==AB 13关注“初中教师园地”公众号2019秋季各科最新备课资料陆续推送中快快告诉你身边的小伙伴们吧~。
24.1 圆(第二课时 )------ 垂径定理知识点1、垂径定理:垂直于弦的直径 ,并且平分弦所对的 。
2、推论:平分弦(不是直径)的直径 ,并且平分弦所对的 。
【特别注意:1、垂径定理及其推论实质是指一条直线满足:⑴过圆心⑵垂直于弦⑶平分弦⑷平分弦所对的优弧⑸平分弦所对的劣弧五个条件中的两个,那么可推出其中三个,注意解题过程中的灵活运用;2、圆中常作的辅助线是过圆心作弦的垂线;3、垂径定理常用作计算,在半径r 、弦a 、弦心d 、和拱高h 中已知两个可求另外两个】 一、选择题1.如图,在⊙O 中,OC⊥弦AB 于点C ,AB=4,OC=1,则OB 的长是( )2.如图,⊙O 的半径为5,弦AB =8,M 是弦AB 上的动点,则OM 不可能为( ). A.2 B.3 C.4 D.53.在半径为5cm 的圆中,弦AB ∥CD ,AB =6cm ,CD =8cm ,则AB 和CD 的距离是( ). A.7cm B.1cm C.7cm 或4cm D.7cm 或1cm4.如图,AB 是⊙O 的弦,半径OA =2,∠AOB =120°,则弦AB 的长是().B (A )22 (B )32 (C )5 (D )535.如图,AB是⊙O的直径,弦CD⊥AB,垂足为M,下列结论不成立的是()A.CM=DM B.CB DBC.∠ACD=∠ADCD.OM=MD6.如图,在半径为5的⊙O中,AB、CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为()A.3 B.4 C.D.7.如图,AB为⊙O的直径,弦CD⊥AB于E,已知CD=12,BE=2,则⊙O的直径为()A.8 B.10 C.16 D.208、如图是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB宽为8cm,水面最深地方的高度为2cm,则该输水管的半径为()A .3cmB .4cmC .5cmD .6cm 二、填空题1.如图,AB 是⊙O 的直径,BC 是弦,OD ⊥BC ,垂足为D ,已知OD =5,则弦AC = .2、如图AB 是⊙O 的直径,∠BAC=42°,点D 是弦AC 的中点,则∠DOC 的度数是 度.3、如图,M 是CD 的中点,EM⊥CD,若CD=4,EM=8,则所在圆的半径为 .4、如图,在⊙O 中,弦AB 垂直平分半径OC ,垂足为D ,若⊙O 的半径为2,则弦AB 的长为 .5、如图,在平面直角坐标系中,点O 为坐标原点,点P 在第一象限,P Θ与x 轴交于O,A 两点,点A 的坐标为(6,0),P Θ的半径为13,则点P 的坐标为 ____________.6.如图,AB 为⊙O 的直径,CD 为⊙O 的一条弦,CD ⊥AB ,垂足为E ,已知CD=6,AE=1,则⊙0的半径为 .7.如图,AB 是⊙O 的弦,OC ⊥AB 于C .若0C=1,则半径OB 的长为 .8.如图,⊙O 的半径为5,P 为圆内一点,P 到圆心O 的距离为4,则过P 点的弦长的最小值是 .9.如图,一条公路的转弯处是一段圆弧(图中的AB ︵),点O 是这段弧的圆心,C 是AB ︵上一点,OC ⊥AB ,垂足为D ,AB =300m ,CD =50m ,则这段弯路的半径是 m.D10.如图,将半径为2cm 的圆形纸片折叠后,圆弧恰好经过圆心O ,则折痕AB 的长为 cm .三、解答题1.如图,AB 和CD 是⊙O 的弦,且AB=CD , E 、F 分别为弦AB 、CD 的中点, 证明:OE=OF 。