人教版必修二 6.5 宇宙航行 同步巩固专项练习
- 格式:docx
- 大小:640.20 KB
- 文档页数:17
1
高中物理 必修2
宇宙航行
题型1(普通卫星问题)
卫星的各物理量随轨道半径的变化而变化的规律
1、向心力a和向心加速度𝐹向
向心力是由万有引力充当的,即𝐹向=𝐺𝑀𝑚𝑟2,再根据牛顿第二定律可得𝐺𝑀𝑚𝑟2=𝑚𝑎,𝑎=𝐺𝑀𝑟2,随着轨道半径的增加,卫星的向心力和相信加速度都减小。
2、线速度v
由𝐺𝑀𝑚𝑟2=𝑚𝑣2𝑟得v=√𝐺𝑀𝑟,随着轨道半径的增加,卫星的线速度减小。
3、角速度ω
由𝐺𝑀𝑚𝑟2=𝑚𝜔2𝑟得ω=√𝐺𝑀𝑟3,随着轨道半径的增加,做匀速圆周运动的卫星的角速度减小
4、周期T
由𝐺𝑀𝑚𝑟2=𝑚(2𝜋𝑇)2𝑟得T=2π√𝑟3𝐺𝑀,随着轨道半径的增加,卫星的周期增大。
注意:
(1)上述讨论都是卫星做匀速圆周运动的情况,而非变轨时的情况。
(2)运动学量v、a、ω、f随着r的增加而减小,只有T随着r的增加而增加。
(3)任何卫星的环绕速度不大于7.9km/s,运动周期不小于85min。
1、“嫦娥三号”卫星在距月球100km的圆形轨道上开展科学探测,其飞行的周期为118min。若已知月球半径和万有引力常量,由此不能推算出( B )
A. “嫦娥三号”卫星绕月运行的速度
B. “嫦娥三号”卫星的质量
C. 月球的第一宇宙速度
D. 月球的质量
2、2017年4月,我国成功发射的天舟一号货运飞船与天宫二号空间实验室完成了首次交会对接,对接形成的组合体仍沿天宫二号原来的轨道(可视为圆轨道)运行。与天宫二号单独运行时相比,组合体运行的( C )
A. 周期变大 B. 速率变大 C. 动能变大 D. 向心加速度变大
3、人类历史上第一张黑洞照片在前不久刚刚问世,让众人感叹:“黑洞”我终于“看见”你了!事实上人类对外太空的探索从未停止,至今在多方面已取得了不少进展。假如人类发现了某X星球,为了进一步了解该星球,可以采用发射一颗探测卫星到该星球上空进行探测的方式。若探测卫星的轨道是圆形的,且贴近X星球表面。已知X星球的质量约为地球质量的81倍,其半径约为地球半径的4倍,地球上的第一宇宙速度约为7.9km/s,则该探测卫星绕X星球运行的速率约为( A )
A. 1.8km/s B. 4km/s C. 16km/s D. 36km/s
4、关于人造地球卫星的向心力,下列各种说法中错误的是( D ) 2
A. 根据向心力公式F=m𝑣2𝑟,轨道半径增大到2倍时,向心力减小到原来的12
B. 根据向心力公式F=mr𝜔2,轨道半径增大到2倍时,向心力也增大到原来的2倍
C. 根据向心力公式F=mvω,向心力的大小与轨道半径无关
D. 根据卫星的向心力是地球卫星的万有引力F=G𝑀𝑚𝑟2,可见轨道半径增大到2倍时,向心力减小到原来的14
5、某极地卫星的运动轨道平面还过地球的南北两极,如图所示,卫星从北极正上方按图示方向第一次运动到北纬30°的正上方时所用时间为0.5h,则下列说法正确的是( C )
A. 该卫星的运行速度大于7.9km/s
B. 该卫星与同步卫星的运行半径之比为1:8
C. 改卫星与同步卫星的向心加速度之比为16:1
D. 该卫星的机械能一定小于同步卫星的机械能
6、2019年1月3日10时26份嫦娥四号探测器自主着陆在月球背面实现人类探测器首次在月球背面软着陆,为了保持嫦娥四号与地面的通信在此之前曾发射中继卫星“鹊桥”进入地月拉格朗日L2点的Halo使命轨道,如图该点位于地月连线的延长线上,“鹊桥”位于该点在几乎不消耗燃料的情况下与月球同步绕月球做圆周运动,以下说法正确的是( B )
A. 鹊桥的向心加速度小于月球的向心加速度
B. 鹊桥的线速度大于月球的线速度
C. 鹊桥的角速度小于月球的角速度
D. 鹊桥的周期大于月球的周期
7、未来的星际航行中,宇航员长期处于零重力状态,为缓解这种状态带来的不适,有人设想在未来的航天器上加装一段圆柱形“旋转舱”,如图所示,当旋转舱绕其轴线匀速旋转时,宇航员站在旋转舱内圆柱形侧壁上,可以受到与他站在地球表面时相同大小的支持力.为达到上述目的,下列说法正确的是( B )
A.旋转舱的半径越大,转动的角速度就应越大
B.旋转舱的半径越大,转动的角速度就应越小
C.宇航员质量越大,旋转舱的角速度就应越大
D.宇航员质量越大,旋转舱的角速度就应越小
8、如图所示,a、b、c、d是在地球大气层外的圆形轨道上匀速运行的四颗人造卫星。其中a、c的轨道相交于P,b、d在同一个圆轨道上。某时刻b卫星恰好处于c卫星的正上方。下列说法中正确的是( B )
A. b、d存在相撞危险
B. a、c的加速度大小相等,且大于b的加速度
C. b、c的角速度大小相等,且小于a的角速度
D. a、c的线速度大小相等,且小于d的线速度
9、如图所示,曲线I是绕地球做圆周运动卫星1的轨道示意图,其半径为R;曲线II是绕地球做椭圆运动卫星2的轨道的示意图,O点为地球球心,AB为椭圆的长轴,两轨道和地心都在同一平面内,已知在两轨道上运动的卫星的周期相等,万有引力常量为G,地球质量为M,下列说法正确的是( B )
A. 椭圆轨道的常州AB长度为R 3
B. 若OA=0.5R,则卫星在B点的速率𝑣𝐵<√2𝐺𝑀3𝑅
C.
在I轨道上卫星1的速率为𝑣0,在II轨道的卫星2在B点的速率为𝑣𝐵,则𝑣0<𝑣𝐵
D. 两颗卫星运动到C点时,卫星1和卫星2的加速度不同
10、如图所示,在同一轨道平面上的几个质量不等的人造地球卫星A、B、C,均绕地球做匀速圆周运动,它们在某一时刻恰好在同一直线上,下列说法中正确的是( C )
A. 轨道线速度𝑣𝐴<𝑣𝐵<𝑣𝐶
B. 万有引力𝐹𝐴>𝐹𝐵>𝐹𝐶
C. 向心加速度𝑎𝐴>𝑎𝐵>𝑎𝐶
D. 运动一周后,它们将同时回到图示位置
11、我国首颗量子科学实验卫星于2016年8月16日1点40份成功发射。量子卫星成功运行后,我国将在世界上首次实现卫星和地面之间的量子通信,构建天地一体化的量子保密通信与科学实验体系。假设量子卫星轨道在赤道平面,如图所示。已知量子卫星的轨道半径是地球半径的m倍,同步卫星的轨道半径是地球半径的n倍,图中P点是地球赤道上一点,由此可知( D )
A. 同步卫星与量子卫星的运行周期之比为𝑛3𝑚3
B. 同步卫星与P点的速度之比为√1𝑛
C. 量子卫星与同步卫星的速度之比为𝑛𝑚
D. 量子卫星与P点的速度之比为√𝑛3𝑚
12、近地人造卫星1和2绕地球做匀速圆周运动的周期分别为𝑇1和𝑇2,设在卫星1、卫星2各自所在的高度上的重力加速度大小分别为𝑔1、𝑔2,则( B )
A. 𝑔1𝑔2=(𝑇1𝑇2)34 B. 𝑔1𝑔2=(𝑇2𝑇1)43 C. 𝑔1𝑔2=(𝑇1𝑇2)2 D. 𝑔1𝑔2=(𝑇2𝑇1)2
13、环境监测卫星是专门用于环境和灾害监测的对地观测卫星,利用三颗轨道相同的监测卫星可组成一个监测系统,它们的轨道与地球赤道在同一平面内,当卫星高度合适时,该系统的监测范围可恰好覆盖地球的全部赤道表面且无重叠区域。已知地球半径为R,地球表面重力加速度为g,关于该系统下列说法正确的是( C )
A. 卫星的运行速度大于7.9km/s
B. 卫星的加速度为𝑔2
C. 卫星的周期为4π√2𝑅𝑔
D. 这三颗卫星的质量必须相等
14、如图,人造地球卫星M、N在同一平面内绕地心O做匀速圆周运动,已知M、N连线与M、O连线间的夹角最大值为θ,则M、N的运动速度大小之比等于( C )
A. √tan𝜃
B. √1tan𝜃
C. √sin𝜃 4
D. √1sin𝜃
15、由中山大学发起的空间引力波探测工程“天琴计划”于2015年启动,对一个超紧凑双白矮星系统产生的引力波进行探测。该计划采用三颗相同的卫星(SC1、SC2、SC3)构成一个等边三角形阵列,三角形边长约为地球半径的27倍,地球恰好处于三角形中心,卫星将在以地球为中心的圆轨道上运行,如图所示(只考虑卫星和地球之间的引力作用),则( A )
A. 卫星绕地球运行的周期大于近地卫星的运行周期
B. 卫星绕地球运行的相信加速度大于近地卫星的向心加速度
C. 卫星绕地球运行的速度等于第一宇宙速度
D. 卫星的发射速度应大于第二宇宙速度
题型2(卫星、飞船变轨)
涉及到人造卫星、飞船的变轨有两种情况
1、渐变
由于某个因素的影响使原来做匀速圆周运动的卫星的轨道半径发生缓慢的变化(逐渐增大或逐渐减小),由于半径变化缓慢,卫星每一周的运动仍可以看作是匀速圆周运动。
解决此类问题,首先要判断这种变轨时离心还是向心,即轨道半径r是增大还是减小,然后再判断卫星的其他相关物理量如何变化。
如:人造卫星绕地球做匀速圆周运动,无论轨道多高,都会受到稀薄大气的阻力作用。如果不及时进行轨道维持(即通过启动星上小型发动机,将化学能转化为机械能,保持卫星应具有的状态),卫星就会自动变轨,偏离原来的圆周轨道,从而引起各个物理量的变化。
这种变轨的起因是阻力。阻力对卫星做复工,使卫星速度减小,卫星所需要的向心力m𝑣2𝑟减小了,而万有引力G𝑀𝑚𝑟2的大小没有变,因此卫星将做向心运动,即轨道半径r将减小。
由基本原理中的结论可知:卫星线速度v将增大,周期T将减小,向心加速度a将增大,动能𝐸𝑘将增大,势能𝐸𝑃将减小,有部分机械能转化为内能(摩擦生热),卫星机械能𝐸机将减小。
为什么卫星克服阻力做功,动能反而增加了呢?这是因为一旦轨道半径减小,在卫星克服阻力做功的同时,万有引力(即重力)对卫星做正功,而且万有引力做的正功远大于克服空气阻力做的功,外力对卫星做的总共是正的,因此卫星动能增加。
根据𝐸机=𝐸𝑃+𝐸𝑘,该过程重力势能的减少总大于动能的增加。
又如:有一种宇宙学的理论认为在漫长的宇宙演化过程中,引力常量G是逐渐减小的。如果这个结论正确,那么环绕星球将发生离心现象,即环绕星球到中心星球间的距离r将逐渐增大,环绕星球的线速度v将减小,周期T将增大,向心加速度a将减小,动能𝐸𝑘将减小,势能𝐸𝑃将增大。
2、突变
由于技术上的需要,有时要在适当的位置短时间启动飞行器上的发动机,使飞行器轨道发生突变,使其进入预定的轨道
如:发射同步卫星时,可以先将卫星发送到近地轨道I,使其绕地球做匀速圆周运动,速率为𝑣1;变轨时在P点点火加速,短时间内将速率由𝑣1增加到𝑣2,使卫星进入椭圆形的轨道II;卫星运行到远地点Q时的速率为𝑣3;此时进行第二次点火加速,在短时间内将速率由𝑣3增加