望远镜的发展史
- 格式:doc
- 大小:51.50 KB
- 文档页数:5
望远镜属于光学器材吗?一、什么是望远镜?1. 望远镜的定义和作用望远镜是一种利用光学原理来观测地球以外的天体的器械。
它通过集中光线来提高观测对象的清晰程度和放大倍数,让我们能够更加清晰地观察到远离我们的星体。
2. 望远镜的组成望远镜由物镜、目镜、接目器和支架等组件构成。
物镜是望远镜的主光学部分,用于收集和聚焦远处的光线;目镜则是我们用眼睛来观察的部分,起到放大和透视的作用;接目器链接物镜和目镜,使拥有不同视觉习惯的人都能够观察;支架则是支撑望远镜的框架,保持其稳定。
二、望远镜的历史发展1. 古代的望远镜古代的望远镜主要是利用透镜原理,由于限制在当时的材料和技术,其放大倍数较低。
最早被公认的望远镜是由荷兰光学工匠汉斯·卡尔丹于1608年发明,成为了人类光学技术史上的重要里程碑。
2. 现代望远镜的发展随着科技的不断进步,现代望远镜的技术和性能得到了极大的提升。
例如,哈勃太空望远镜的发射,使得人类可以在太空中观测到远超地球的宇宙事物。
同时,地面上的大型望远镜也通过天文观测和精确测量等手段,为人类揭示了宇宙的奥秘。
三、望远镜是光学器材的代表1. 光学器材的定义和分类光学器材是指利用光学原理进行观测、测量和实验的设备和仪器。
根据用途和原理不同,可以将光学器材分为视觉器材、光学测量仪器、光学实验仪器等多个类别。
2. 望远镜的光学原理望远镜利用光线的折射和反射原理来观测远处的天体。
物镜会将远处的光线通过折射或反射后聚焦到一个点上,经过目镜放大后我们就可以观察到远处的天体。
3. 其他光学器材除了望远镜,其他光学器材如显微镜、投影仪等也利用了光线的折射和反射原理来实现其功能。
综上所述,望远镜属于光学器材的一种,它是利用光学原理来观察和研究天体的重要工具。
随着科技的不断进步,望远镜和其他光学器材的性能和功能得到了极大的发展和提升,为人类探索宇宙带来了更多的可能。
无论是古代的望远镜还是现代的高科技望远镜,它们都是人类认识宇宙的窗口和桥梁,为我们探索和了解宇宙的奥秘提供了重要的帮助。
望远镜发展史望远镜是一种光学仪器,用于观察远处的天体和物体。
它的发展历史可以追溯到公元前1600年左右,当时古希腊人发明了最早的“望远镜”,用于观察天空中的星星和行星。
随着科学技术的不断进步,望远镜也不断地得到改进和完善。
在17世纪初期,意大利人加利莱奥·伽利略使用他自己制作的望远镜,成功地观测到了木星上的四颗卫星,并证实了日心说理论。
这一发现对天文学产生了深刻影响,并使得望远镜成为天文学研究中不可或缺的工具。
17世纪中期,荷兰人汉斯·卡西米尔开始制造反射式望远镜,这种望远镜使用凹面反射镜代替凸面透镜作为主要光学元件。
这种新型望远镜具有更大的口径和更广阔的视野,因此被广泛应用于天文学研究和导航等领域。
18世纪初期,英国人威廉·赫歇尔使用反射式望远镜观测天体,发现了天王星和土星的卫星,并制作出了当时最大的望远镜。
这种望远镜口径达到了1.2米,成为当时世界上最先进的光学仪器之一。
19世纪中期,法国人阿尔万·福卡发明了折射式望远镜,这种望远镜使用透镜作为主要光学元件。
它具有更好的色散性能和更高的分辨率,因此被广泛应用于天文学研究和观测。
20世纪初期,德国人马克斯·普朗克提出了量子力学理论,这一理论对物理学产生了深刻影响,并推动了望远镜技术的发展。
20世纪中叶,美国人詹姆斯·韦伯和罗伯特·威尔逊发明了干涉仪,用于观测恒星表面和行星大气层等细节结构。
21世纪初期,随着计算机技术和数字成像技术的不断进步,望远镜的观测精度和数据处理能力得到了大幅提升。
现代望远镜不仅可以观测天体和物体,还可以用于探测宇宙背景辐射、探索暗物质和暗能量等重大科学问题。
总之,望远镜的发展历史是人类科技进步的一个缩影。
从最早的简单光学仪器到现代高科技望远镜,每一次改进和进步都推动着天文学研究的发展,为人类认识宇宙提供了更多的可能性。
什么是望远镜?望远镜是一种用于观测远处物体的光学仪器,被广泛用于天文学、地质学、生态学和军事等领域。
它的工作原理是通过透镜或凸面镜将光线聚集起来,使得远处的物体看起来更加清晰。
以下是关于望远镜的几个要点:1. 望远镜的起源及发展希腊哲学家伊壁鸠鲁曾首先提出了凸透镜的原理,并将其制成了放大镜。
1570年,伽利略用放大镜观察到了木星四颗卫星;1608年,来自荷兰的望远镜制造商汉斯·利珀雷创造出了一种透镜对物体放大的仪器,可使物体看得更远、更清晰。
此后,望远镜经历了不断的改进和发展,其中最大程度的改变是从透镜到望远镜上反射式的变化。
2. 望远镜的种类及用途目前,望远镜大致分为两种类型:折射式望远镜和反射式望远镜。
折射式望远镜适用于观察天体或地球上的远处景象,而反射式望远镜适用于观察更微小的物体,比如细胞和分子等。
根据用途的不同,望远镜还分为天文望远镜、地球观测望远镜、军事望远镜、生态观测望远镜等多种类型。
3. 望远镜观测的重要性望远镜的应用范围广泛,其中天文学是望远镜观测的最常见领域。
望远镜帮助人类更好地了解太阳系和宇宙,更好地发现和研究行星、卫星、彗星、恒星、黑洞等。
此外,望远镜在地球观测方面也发挥着重要作用,帮助我们了解地球各个方面的数据和地貌变化状况。
4. 望远镜应用的展望未来,随着科技的进步,望远镜将会不断发展和创新。
例如,会推出更先进的望远镜,比如代表着现代天文学发展的哈勃太空望远镜,未来还可以开展探索,也可以通过开发更高级的望远镜来进行更深入的研究。
总之,望远镜作为观测天体和地球的工具,一直是科学家、学者们的无价之宝。
随着技术进步和科学发展,望远镜必将在更广泛的领域内发挥更重要的作用,为人类的探秘工作做出更加卓越的贡献。
望远镜的发展历程望远镜是人类观察天体的重要工具,其发展历程可以追溯到古代。
古代的望远镜是由两个凸透镜组成,最早被使用者将其称为“望远镜”。
这种简单的望远镜在十七世纪初得到了推广使用,提供了较好的观测效果。
然而,由于光线经过镜片会发生色差,造成像的模糊,使得图像的质量有限。
在十七世纪中期,伽利略·伽利莱发明了改进型的望远镜,他使用一个凸透镜和一个凹透镜组成的组合镜,解决了色差的问题,提高了观测的准确性。
这种望远镜被称为伽利略望远镜,成为当时最先进的天文观测工具。
到了十八世纪,人们开始使用反射望远镜。
反射望远镜使用一面凹面镜代替了凸透镜作为主光学元件。
这种改进使得望远镜的观测视野更加宽广,成为当时最主流的望远镜类型。
克·赫歇尔是第一个成功制造出大型反射望远镜的人,他在1789年观测到天王星,震撼了整个天文学界。
到了十九世纪,随着光学技术的发展,人们开始使用更加复杂的多镜组合来改善望远镜的成像质量。
德国的索拉和法国的香农克原则,都极大地推动了望远镜的发展。
同时,电子设备的应用也为观测实验提供了更精确的数据。
近代,望远镜的发展在光学、机械、电子等领域取得了巨大的进步。
人们制造出了口径巨大的望远镜,可以观测到很远的星系和行星。
在空间探测方面,人们研制出了太空望远镜,如哈勃望远镜和詹姆斯·韦伯太空望远镜,它们能够在地球大气层以外进行观测,避免了大气干扰。
随着科技的不断进步,未来的望远镜还将继续发展。
超大口径的望远镜、高分辨率成像和光干涉技术等将成为望远镜发展的重点。
这些进展将使我们对宇宙的认知更加深入和全面。
望远镜技术的发展历程与趋势一、前言望远镜是天文学研究中的重要设备,是观测宇宙的窗口。
望远镜的技术不断发展,为研究宇宙奥秘提供了更加精准和清晰的数据和图像。
本文将从发展历程和未来趋势两个角度来探讨望远镜技术的发展。
二、望远镜技术的发展历程1. 瞳孔型望远镜最早的望远镜出现在17世纪。
荷兰人哈勒留斯第一次使用两个简单的透镜组成的瞳孔型望远镜观测天体。
这种望远镜虽然简单,但对当时的天文学研究起到了重要作用。
2. 折射式望远镜1670年,皮科洛明尼发明了折射望远镜,使用镜片代替透镜组成望远镜。
折射式望远镜与瞳孔型望远镜相比,可以获得更高的分辨率和更清晰的图像。
3. 大型望远镜19世纪,望远镜的大小和口径开始增加。
1825年,赫歇尔在德国建造了一架口径为61厘米的望远镜,成为当时世界上最大的望远镜。
4. 射电望远镜20世纪初,人们发现天体还以射电波的形式辐射能量。
射电望远镜的发明成为人们探索宇宙的重要工具,因为射电波可以穿过遮挡和云层,能够监测到更远的星系。
5. 太空望远镜1970年,美国发射了第一架太空望远镜——哈勃望远镜。
哈勃望远镜首次让人们在地球轨道上观测宇宙,避免了地球大气层的干扰,获得了更高质量的图像和数据。
随后,其他国家也相继发射了自己的太空望远镜。
三、望远镜技术未来的趋势1. 大型望远镜未来的望远镜将继续追求更大的口径和更高的分辨率。
为了满足这个需求,需要采用更加严格的光学工艺、超级计算机等技术手段对数据进行处理。
2. 智能化望远镜未来的望远镜将会智能化,具备自主指向和捕捉目标的能力。
科学家将会在望远镜中安装特定的软件,让望远镜能够自主选择观测目标,并进行自动的视场扫描和数据处理。
3. 火星望远镜2020年,美国将会发射火星2020任务,计划将一架火星车和一架着陆器送到火星上,开展火星探索。
这次任务中,火星车将会携带一架新型望远镜,用于检测火星的大气、地貌等情况。
4. 新型光学材料科学家正在研究新型光学材料,制造更加透明、更加坚固和更加光学性能稳定的望远镜。
望远镜技术发展历程及其最新进展自古以来,人们就对宇宙的探索充满了好奇心。
但是由于宇宙的广袤和距离的遥远,人类无法用肉眼观察到宇宙的全部。
因此,望远镜在人类对宇宙的探索中发挥了重要的作用。
本文将探讨望远镜技术从诞生到发展的历程,并介绍望远镜技术的最新进展。
一、望远镜技术的诞生当年,古希腊的天文学家用肉眼观测天空中的天体,发现了恒星,而恒星之间有规律的移动,因而设想出天体经过恒星形成了星座。
公元1609年,日耳曼裔荷兰人吉尔斯·斯德望发明了基本的望远镜。
这种望远镜使用两个透镜将目标放大。
这种设备的被称为“荷兰人”。
并首次发现了月球表面的细节,如较大的环形山和山峰。
二、望远镜的进步望远镜技术不断发展,在各行各业都取得了巨大的成就,从长视距离的操作到便携式的望远镜式样,科技工程公司已经平推了诸多新品。
而随着技术的进步,望远镜的精度不断提高,逐渐能够探测到更加微小的星体。
三、现代望远镜技术的发展现代天文学需要更高分辨率和更高的灵敏度,因此,处理和分析天文数据的计算机技术和算法的发展与成熟需求完全契合。
现代望远镜技术的发展,主要可以分为两大类,即宇宙同步和地面望远镜。
1.宇宙同步望远镜技术宇宙同步望远镜技术是直接安装在宇宙空间中的望远镜。
如哈勃、钱卫星和斯皮策之类的望远镜都采用了这种技术,这些望远镜大部分是为了观测天体光谱和恒星颜色的变化而设计的。
哈勃望远镜是目前最出名的宇宙望远镜之一,它巡轮入交接区,察看恒星,星云和星系。
它具有高分辨率和高恒定度,可从地球的大气阻力中解放,从而提高成像的质量。
2.地面望远镜技术与宇宙同步望远镜技术不同,地面望远镜安装在地球表面。
它们的性能和设计因目的而异,有些望远镜被用于侦查太阳系外行星,有些望远镜被用于更深入地探测宇宙中的星系和黑洞。
最新的地面望远镜技术包括3D成像和自适应光学。
3D成像允许精确导航和建模非常远离地球的天体,而自适应光学使望远镜能够不受地球大气的影响,更准确地看到星际对象。
望远镜的发展史望远镜的发展史是人类在探索宇宙和大自然的过程中一项重要的科技进步。
望远镜的发明和改进不仅推动了天文学的发展,也极大改变了我们对宇宙的认知。
1. 早期发明 (16世纪末)望远镜的发明一般归功于荷兰的眼镜制造商。
1608年,荷兰人汉斯·李普斯海(Hans Lippershey)最早申请了望远镜的专利,这种装置能够放大远处的物体。
然而,李普斯海可能并非唯一发明者,几乎同时期的其他工匠,如扎哈里亚斯·詹森(Zacharias Janssen)也有望远镜的设计。
2. 伽利略的改进 (1609年)意大利科学家伽利略·伽利莱(Galileo Galilei)是第一个将望远镜用于天文观测的人。
他在1609年改进了荷兰望远镜,制作出一个能够放大约20倍的望远镜,并用它观察月球表面、木星的卫星、金星的相位和太阳黑子。
这一系列观测为伽利略提供了证据,支持了哥白尼的日心说,挑战了地心说的传统天文学观念。
3. 开普勒式望远镜 (1611年)1611年,德国天文学家约翰内斯·开普勒(Johannes Kepler)提出了一种改进的望远镜设计,后来被称为开普勒望远镜。
它使用了两个凸透镜,能够提供更大的视场和更清晰的图像,但图像是倒置的。
尽管这一设计在天文观测中具有优势,但倒置的图像限制了它在地面观测中的使用。
4. 反射望远镜的发明 (17世纪晚期)牛顿望远镜(Newtonian telescope)是艾萨克·牛顿(Isaac Newton)在1668年发明的。
牛顿设计了一种反射式望远镜,使用凹面镜代替透镜以避免色差问题。
反射望远镜的发明标志着望远镜技术的重大突破,因为它克服了透镜的色差问题并能制造出更大的口径,适合观察更遥远的天体。
5. 大口径反射望远镜 (18世纪至19世纪)在18世纪和19世纪,天文学家不断改进反射望远镜,尤其是威廉·赫歇尔(William Herschel),他于1789年制造了当时世界上最大的望远镜,口径达到1.2米。
望远镜的发展历程望远镜是一种用来观察遥远天体的光学仪器,它的发展历程可以追溯到古代。
在古希腊时期,人们开始使用简单的放大镜来观察星体,这可以被视为望远镜的起源。
然而,真正的望远镜的发展始于17世纪。
1608年,荷兰人汉斯·卢伽(Hans Lippershey)制造出了世界上第一台望远镜,他使用两个凸透镜组成了一个简单的放大系统。
这种望远镜被称为折射望远镜,因为它使用了透镜来折射光线。
不久之后,伽利略·伽利莱(Galileo Galilei)改进了这个望远镜,并使用它来进行天文观测。
他的贡献之一是发现了木星的四颗卫星,这证明了地球并非宇宙的中心,而是绕太阳运行。
在17世纪末至18世纪初,牛顿望远镜问世。
这种望远镜采用了凸透镜和平面反射镜的组合,使得镜筒更短且更易于制造。
牛顿望远镜的发明对望远镜的发展产生了深远影响,很多现代望远镜的原理仍然基于牛顿望远镜。
19世纪末至20世纪初,随着光学技术的进一步发展,望远镜的观测能力得到了极大的提升。
望远镜的口径不断增加,光学镜片的质量不断改善,这使得科学家们能够更精确地观测到星体的细节。
然而,随着时间的推移,望远镜的视野还是受到了限制。
由于地球的大气层对光线的扭曲和散射,望远镜的观测能力受到了很大的干扰。
为了克服这一问题,人们开发了自适应光学系统。
这种系统可以根据大气条件的变化,实时调整望远镜的形状,以纠正光线的扭曲,从而获得更清晰和准确的图像。
此外,望远镜的发展还包括了无线电望远镜和空间望远镜。
无线电望远镜利用射电波来观测天体,它们可以穿透大气层并探测到辐射源。
而空间望远镜则避开了地球大气层的干扰,像哈勃望远镜这样的空间望远镜能够提供非常清晰的图像,并探索遥远宇宙的未知领域。
如今,望远镜已成为天文学研究中不可或缺的工具。
它们能够让我们更深入地了解宇宙的起源、结构和演化,解开许多宇宙之谜。
随着技术的不断进步,我们有理由相信,未来的望远镜将会带给我们更多震撼人心的发现和突破。
1608年,荷兰的一位眼镜商偶然发现用两块镜片可以看清远处的景物,受此启发,他制造了人类历史上的第一架望远镜。
经过近400年的的发展,望远镜的功能越来越强大,观测的距离也越来越远。
为庆祝“2009国际天文年”,英国《新科学家》评选出了人类历史上最著名的望远镜。
以下是这14架最著名的望远镜:1、伽利略折射望远镜伽利略是第一个认识到望远镜将可能用于天文研究的人。
虽然伽利略没有发明望远镜,但他改进了前人的设计方案,并逐步增强其放大功能。
图中的情景发生于1609年8月,伽利略正在向当时的威尼斯统治者演示他的望远镜。
伽利略制作了一架口径4.2厘米,长约1.2米的望远镜。
他是用平凸透镜作为物镜,凹透镜作为目镜,这种光学系统称为伽利略式望远镜。
伽利略用这架望远镜指向天空,得到了一系列的重要发现,天文学从此进入了望远镜时代。
折射望远镜的优点是焦距长,底片比例尺大,对镜筒弯曲不敏感,最适合于做天体测量方面的工作。
但是它总是有残余的色差,同时对紫外、红外波段的辐射吸收很厉害2、牛顿反射式望远镜牛顿反射式望远镜的原理并不是采用玻璃透镜使光线折射或弯曲,而是使用一个弯曲的镜面将光线反射到一个焦点之上。
这种方法比使用透镜将物体放大的倍数要高数倍。
牛顿经过多次磨制非球面的透镜均告失败后,决定采用球面反射镜作为主镜。
他用2.5厘米直径的金属,磨制成一块凹面反射镜,并在主镜的焦点前面放置了一个与主镜成45o角的反射镜,使经主镜反射后的会聚光经反射镜以90o角反射出镜筒后到达目镜。
这种系统称为牛顿式反射望远镜。
它的球面镜虽然会产生一定的象差,但用反射镜代替折射镜却是一个巨大的成功。
反射望远镜的主要优点是不存在色差,当物镜采用抛物面时,还可消去球差。
图中显哈勃太空望远镜示的是牛顿首个反射式望远镜的复制品。
3、赫歇尔望远镜18世纪晚期,德国音乐师和天文学家威廉-赫歇尔开始制造大型反射式望远镜。
图中显示的是赫歇尔所制造的最大望远镜,镜面口径为1.2米。
该望远镜非常笨重,需要四个人来操作。
赫歇尔是制作反射式望远镜的大师,他早年为音乐师,因为爱好天文,从1773年开始磨制望远镜,一生中制作的望远镜达数百架。
赫歇尔制作的望远镜是把物镜斜放在镜筒中,它使平行光经反射后汇聚于镜筒的一侧。
在反射式望远镜发明后,反射材料一直是其发展的障碍:铸镜用的青铜易于腐蚀,不得不定期抛光,需要耗费大量财力和时间,而耐腐蚀性好的金属,比青铜密度高且十分昂贵。
4、耶基斯折射望远镜耶基斯折射望远镜坐落于美国威斯康星州的耶基斯天文台,主透镜建成于1895年,是当时世界上最大望远镜。
十九世纪末,随着制造技术的提高,制造较大口径的折射望远镜成为可能,随之就出现了一个制造大口径折射望远镜的高潮。
世界上现有的8架70厘米以上的折射望远镜有7架是在1885年到1897年期间建成的,其中最有代表性的是1897年建成的口径102厘米的叶凯士望远镜和1886年建成的口径91厘米的里克望远镜。
但折射望远镜后来在发展上受到限制,主要是因为从技术上无法铸造出大块完美无缺的玻璃做透镜,并且由于重力使大尺寸透镜的变形会非常明显,因而丧失明锐的焦点。
5、威尔逊山60英寸望远镜这幅图片拍摄于1946年,夜间操作员吉因-汉考克正在手动操控望远镜。
1908年,美国天文学家乔治-埃勒里-海耳主持建成了口径60英寸的反射望远镜,安装于威尔逊山。
这是当时世界上最大的望远镜,光谱分析、视差测量、星云观测和测光等天文学领域成为世界领先的设备。
虽然数年后胡克望远镜的口径超过了它,但在此后的数年中它依然是世界上最大的望远镜之一。
1992年海耳望远镜上安装了一台早期的自适应光学设施,使它的分辨本领从0.5-1.0角秒提高到0.07角秒。
6、胡克100英寸望远镜在富商约翰-胡克的赞助下,口径为100英寸的反射望远镜于1917年在威尔逊山天文台建成。
在此后的30年间,它一直是世界上最大的望远镜。
为了提供平稳的运行,这架望远镜的液压系统中使用液态的水银。
1919年阿尔伯特-迈克尔逊为这架望远镜装了一个特殊装置:一架干涉仪,这是光学干涉装置首次在天文学上得到应用。
迈克尔逊可以用这台仪器精确地测量恒星的大小和距离。
亨利-诺里斯-罗素使用胡克望远镜的数据制定了他对恒星的分类。
埃德温-哈勃使用这架100英寸望远镜完成了他的关键的计算。
他确定许多所谓的“星云”实际上是银河系外的星系。
在米尔顿-赫马森的帮助下他认识到星系的红移说明宇宙在膨胀。
7、海耳200英寸望远镜海耳对胡克100英寸望远镜并不十分满意。
1928年,他决定在帕洛马山天文台再架设了一台口径为200英寸的巨型反射望远镜。
新望远镜于1948年完工并投入使用。
海耳1890年毕业于美国麻省理工学院。
1892年任芝加哥大学天体物理学副教授,开始组织叶凯士天文台,任台长。
1904年筹建威尔逊山太阳观象台,即后来的威尔逊山天文台。
他任首任台长,直到1923年因病退休。
1895年,海耳创办《天体物理学杂志》。
1899年当选为新成立的美国天文学与天体物理学会副会长。
海耳一生最主要的贡献体现在两个方面:对太阳的观测研究和制造巨型望远镜。
8、喇叭天线喇叭天线位于美国新泽西州的贝尔电话实验研究所,曾用来探测和发现宇宙微波背景辐射。
喇叭天线建造于1959年。
当喇叭长度一定时,若使喇叭张角逐渐增大,则口面尺寸与二次方相位差也同时加大,但增益并不和口面尺寸同步增加,而有一个其增益为最大值的口面尺寸,具有这样尺寸的喇叭就叫作最佳喇叭。
喇叭天线的辐射场可利用惠更斯原理由口面场来计算。
口面场则由喇叭的口面尺寸与传播波型所决定。
可用几何绕射理论计算喇叭壁对辐射的影响,从而使计算方向图与实测值在直到远旁瓣处都能较好地吻合。
9、甚大阵射电望远镜甚大阵射电望远镜座落于美国新墨西哥州索科洛,于1980年建成并投入使用。
甚大阵由27面直径25米的抛物面天线组成,呈Y型排列。
天文学家可以利用甚大阵来研究黑洞、星云等宇宙各种现象。
甚大望远镜是一组光学望远镜阵列。
它包括了4个8.2米的望远镜,阵列中每个都是一个大型望远镜,而且每一个都能独立工作,并具有捕获比人类肉眼观测到的光线弱40亿倍的光线,这比南非大望远镜能捕获的最弱光线还弱四倍。
甚大阵望远镜能够把最多3个望远镜集中在一起形成独立单元,通过地下的镜片将光线组合成一个统一的光束,这使得望远镜系统能够观测到比单个望远镜分辨率高25倍的图像。
10、哈勃太空望远镜哈勃太空望远镜发射于1990年4月。
它位于地球大气层之上,因此它取得了其他所有地基望远镜从来没有取得的革命性突破。
天文学家们利用它来测量宇宙的膨胀比率以及发生产生这种膨胀的暗能量和神秘力量。
哈勃太空望远镜已到“晚年”。
它在太空的十几年中,经历过数次大修。
尽管每次大修以后,“哈勃”都面貌一新,特别是2001年科学家利用哥伦比亚航天飞机对它进行的第四次大修,为它安装测绘照相机,更换太阳能电池板,更换已工作11年的电力控制装置,并激活处于“休眠”状态的近红外照相机和多目标分光计,然而,大修仍掩盖不住它的老态,因为“哈勃”从上太空起就处于“带病坚持工作”状态。
11、凯克系列望远镜凯克望远镜位于夏威夷莫纳克亚山,口径为10米。
由于当今技术不可能实现单片望远镜镜面口径超过8.4米,因此凯克望远镜的镜面由36块六边形分片组合而成。
凯内望远镜巨大的镜面使它使用起来非同一般,不只是因为它的大尺寸,还因为它是由36个直径为1.8米的六边形小镜片组成的。
凯克望远镜开创了基于地面的望远镜的新时代。
它的规模是美国加利富尼亚州帕落马山上的海耳望远镜的两倍,后者在前几十年内是世界上最大的望远镜。
有人曾认为制造如此之大的望远镜是不可能的,但新科学技术把不可能变为了现实。
12、斯隆2.5米望远镜“斯隆数字天空勘测计划”的2.5米望远镜位于美国新墨西哥州阿柏角天文台。
该望远镜拥有一个相当复杂的数字相机,望远镜内部是30个电荷耦合器件(CCD)探测器。
斯隆望远镜使用口径为2.5米的宽视场望远镜,测光系统配以分别位于u、g、r、i、z波段的五个滤镜对天体进行拍摄。
这些照片经过处理之后生成天体的列表,包含被观测天体的各种参数,比如它们是点状的还是延展的,如果是后者,则该天体有可能是一个星系,以及它们在CCD上的亮度,这与其在不同波段的星等有关。
另外,天文学家们还选出一些目标来进行光谱观测。
13、威尔金森宇宙微波各向异性探测卫星美国宇航局于2001年7月发射了威尔金森宇宙微波各向异性探测卫星(WMAP),用来研究宇宙微波背景以及宇宙大爆炸遗留物的辐射问题。
WMAP 绘制了首张清晰的宇宙微波背景图,从而可以精确地测定宇宙的年龄为137亿年。
WMAP的目标是找出宇宙微波背景辐射的温度之间的微小差异,以帮助测试有关宇宙产生的各种理论。
它是COBE的继承者,是中级探索者卫星系列之一。
WMAP以宇宙背景辐射的先躯研究者大卫-威尔金森命名。
14、雨燕观测卫星“雨燕”(Swift)观测卫星发射于2004年,主要是用来研究伽玛暴现象。
“雨燕”可在短短的一分钟内自动观测到伽玛暴现象。
到目前为止,它已经发现了数百次伽玛暴现象。
“雨燕”卫星实际上是一颗专门用于确定伽马射线暴起源、探索早期宇宙的国际多波段天文台。
它主要由三部分组成,分别从伽马射线、X射线、紫外线和光波四个方面研究伽马射线暴和它的耀斑。
在多年的运行中,“雨燕”卫星先后共10次捕捉到以极快角速度运行的伽马射线暴,其中,最短的伽马射线暴只持续了50毫秒。
目前,“雨燕”卫星可以检测到120亿光年以外单独的恒星参数。
对大望远镜结构的要求是:①支承巨大而精密的光学主镜,对任何指向,镜面变形应在λ/8甚至λ/20以内;②保持光学元件间的正确位置;③有足够的刚度;④望远镜整体平稳并能准确“跟星”;⑤便于在各个焦点上操作相应的接收器;⑥制造成本低等。
主镜支承设计的原则是把定位和承重分离,径向和轴向分离。
轴向定位的三点,只承受镜子重量的3%左右,其余重量可用各种方式托起。
早期的大望远镜多用机械杠杆在背面将镜子托起,点的多少取决于主镜的直径和厚度。
近代大望远镜多采用气垫,这是一些压力随天顶距而变化的气枕。
径向支承的结构要考虑镜室与主镜的膨胀系数不同所造成的影响,即必须的温差补偿措施。
镜筒桁架口径2米以上的大望远镜,其镜筒绝大多数为平移桁架结构。
因为薄壁结构的镜筒在倾斜时,巨大的镜室重量会使镜筒弯曲,导致主副镜光轴失调。
平移桁架结构是在1938年提出的,首先用于美国口径5米望远镜上获得成功。
这种结构可使镜筒两端有相等的平行下沉,使光轴仍保持正确状态。
油垫轴承为使大望远镜平稳而准确地跟踪天体,其转动轴的摩擦系数必须很小。
在望远镜的巨大重量下,普通的滑动轴承结构不可能保持油膜。
滚动轴承的摩擦系数也过大。