当前位置:文档之家› 淀粉糖化酶的研究概述

淀粉糖化酶的研究概述

淀粉糖化酶的研究概述

淀粉糖化酶(starch-hydrolyzing enzyme)是淀粉分解机制中重要的一类蛋白酶,它能够将淀粉分解为糖类衍生物,具有重要的经济价值。近几十年来,对淀粉糖化酶的研究发展迅速,它的应用也日益广泛。

1、酶活性的测定

为了有效地测量淀粉糖化酶的酶活性,研究者们应用了一系列诸如酶测定法、分子量测定、酶抑制测定等方法,以便对淀粉糖化酶的活性进行更准确的测量。

2、酶基因的结构和表达

淀粉糖化酶的结构及表达研究大多是利用基因克隆技术来完成的。有了淀粉糖化酶基因的克隆和序列分析,可以利用基因工程技术,修饰和改造酶的活性,提高淀粉糖化酶的生产效率。

3、酶的抑制与修饰

抑制剂和修饰剂是控制淀粉糖化酶的活性的两种有效手段,研究者可以研究不同氨基酸或酰胺的抑制作用,以及其他活性物质的抑制效果,以便更好地控制淀粉糖化酶的活性。

4、生物合成

利用细胞工程技术等方法,移植和表达淀粉糖化酶基因,从而构建出一种新的淀粉糖化酶来取代传统的淀粉糖化酶,或者将熟悉的淀粉糖化酶改良为一种新型的淀粉糖化酶。

总之,淀粉糖化酶是一类重要的酶,它与淀粉分解机制密切相关,研究者们正在利用不同的方法和技术,努力探索淀粉糖化酶的机制,并从中发现改进技术,提高淀粉糖化酶的酶活性,以及有效控制其表达,最终实现其工业应用。

淀粉酶的研究进展[文献综述]

毕业论文文献综述 生物工程 淀粉酶的研究进展 1. 淀粉酶简介 淀粉酶是催化淀粉、糖原转化成葡萄糖、麦芽糖及其它低聚糖的一类酶的总称,广泛应用于淀粉工业、食品工业、医药、纺织、洗涤剂、青贮饲料、微生态制剂以及酿酒等行业[1]。淀粉酶是最早用于工业化生产的酶,迄今为止仍是用途最广、产量最大的酶制剂产品之一[2]。 不同种类的淀粉酶水解淀粉会生成不同的产物。常见的淀粉酶可以分为以下几种:α-淀粉酶(EC3.2.l.1),也叫液化酶;β-淀粉酶(EC3.2.1.2);葡萄糖淀粉酶(EC3,2.1.3),也叫γ -淀粉酶,简称糖化酶(缩写GA或G):异淀粉酶(EC3.2.1.68)等[3]。α-淀粉酶能随机地作用于淀粉的非还原端,生成麦芽糖、麦芽三糖、糊精等还原糖,所得产物的还原性末端葡萄糖单位碳原子为α构型,同时该酶能使淀粉浆的粘度下降;β-淀粉酶是从淀粉的非还原性末端切下一分子的麦芽糖,其产物还原性末端葡萄糖单位碳原子为β构型;葡萄糖淀粉酶是从底物非还原末端依次水解α-l,4糖苷键和分支的α-1,6-糖苷键,生成葡萄糖。异淀粉酶是只水解糖原或支链淀粉分支点的α-1,6糖苷键,切下侧枝链[5]。 对淀粉酶的分类和作用机制研究较多,可按来源、产物的旋光度、作用机制等进行分类。但近年随着酶学性质的研究的发展,对酶的作用机制、方式等研究不断取得新成果,分类学问题出现许多难点。我国在食品方面研究和应用的微生物酶估计有30多种[6],其中淀粉酶有α-淀粉酶、β-淀粉酶、葡萄糖淀粉酶、异淀粉酶、普鲁兰酶、环糊精生成酶等。 2. 淀粉酶的生产 2.1 淀粉酶的来源 淀粉酶的来源很广泛,可以来自于植物、动物以及微生物。大部分的淀粉酶存在于微生物中,微生物中主要的两种淀粉酶为α-淀粉酶及葡糖淀粉酶,此外,主要存在于植物中的β-淀粉酶也存在于少量微生物中。 α-淀粉酶可以从几种细菌、真菌和酵母中分离获得。但是,由于细菌淀粉酶具有几个比较优良的特性,因此,细菌淀粉酶用的比较多,特别是淀粉液化芽孢杆菌已用于工业化生产[5]。 不像其他的淀粉酶,微生物仅产生少量的β-淀粉酶,有杆菌(假单孢杆菌和梭状芽孢杆菌)等。

α-淀粉酶综述

α-淀粉酶综述 佚名2013-10-06 摘要:α-淀粉酶分布十分广泛,遍及微生物至高等植物。α-淀粉酶是一种十分重要的酶制剂,大量应用于粮食加工、食品工业、酿造、发酵、纺织品工业和医药行业等,是应用最为广泛的酶制剂之一。本文概述了α-淀粉酶的发现和应用发展史、分离纯化及结构的研究史、催化机制及其研究史、工业化生产和应用现状与发展趋势等。 关键词:α-淀粉酶发现应用分离纯化结构催化机制研究史发展趋势 α- 淀粉酶( α- 1,4- D- 葡萄糖- 葡萄糖苷水解酶) 普遍分布在动物、植物和微生物中, 是一种重要的淀粉水解酶。其作用于淀粉时从淀粉分子的内部随机切开α-1,4糖苷键,生成糊精和还原糖。由于产物的末端残基碳原子构型为α构型,故称α-淀粉酶。现在α-淀粉酶泛指能够从淀粉分子内部随机切开α-1,4糖苷键,起液化作用的一类酶。 1 α-淀粉酶的发现和应用史 1.1 α-淀粉酶的发现 啤酒是最古老的酒精饮料,发酵是其关键步骤,其中所包含的糖化过程就是把淀粉转化为糖。这个转化过程的机理一直都没有被弄清楚,直到淀粉的发现。 在19世纪早期,许多科学家都在研究谷物提取物中淀粉的消化机理。Nasse(1811年)发现,从生物体中提取的淀粉能过被转化为糖,而从被沸水杀死的植物细胞中提取的淀粉不能被转化为糖。Kirchhoff(1815年)做了一个巧妙的实验。他将4份的冷水加入到2份的淀粉中,并边加边搅拌。之后加入20份的沸水使其形成一层厚厚的淀粉糊。在淀粉糊还是余温的时候,加入被粉碎的麸质(或麦芽),然后在40-60°列式温度下水浴。1-2小时后发现,淀粉糊开始缓慢液化。8-10小时后,淀粉糊被转化为一种甜的溶液。之后,他将其通过过滤和蒸发浓缩得到了糖浆,品尝后发现,其和发酵液一样甜。在操作的过程中,他注明了实验过程中仅添加了非常少的麸质,并且得到的糖浆与淀粉的量成正比。此外,如果在加入麸质前加入几滴高浓度的硫磺酸,最终就没有糖生成。从这个实验中他得到结论1)麸质是一种能够使温水中的淀粉粉末转化为糖的物质。2)作为种子发芽的结果,相比种子内的物质而言,麸质能过将更多的淀粉转化为糖。至此,Kirchhoff奠定了发现谷物中一种能够将淀粉转化为糖的蛋白质的基础。

淀粉酶,糖化酶

糖化酶 糖化酶Gluco-Amylase 又称葡萄糖淀粉酶(EC3.2.1.3),是以黑曲霉变异菌株经发酵制得的高效生物催化剂。糖化酶能在常温条件下将淀粉分子的a-1.4和a-1.6糖苷键切开,而使淀粉转化为葡萄糖。凡是以淀粉为原料又需糖化的生产过程,均可使用糖化酶以其提高淀粉糖化收率。不含转苷酶将具有极高的转化率。其系列产品有固体和液体两种类型,适用于淀粉糖、酒精、酿造、味精、葡萄糖、有机酸和抗菌素等工业. 一、产品特性:1、作用方式:糖化酶又称葡萄糖淀粉酶,它能从淀粉分子的非还原性末端水解a—1,4葡萄糖苷糖,生产葡萄糖,也能缓慢水解a—1,6葡萄糖苷键,转化为葡萄糖. 2、热稳定性:在60℃下较为稳定,最适作用温度58—60℃. 3、最适作用:PH4.0—4.5 4、产品质量符合QB1805.2—93标准. 二、产品规格. 项目指标固体糖化酶液体糖化酶外观黄褐色粉末褐色液体酶活力5万、10万、15万10万、15万水份(%)≤8 细度(目)80%通过40目酶存活率半年不低于标定酶活三个月不低于标定酶活 三、酶活力定义:1克酶粉或1ml酶液于40℃PH4.6条件下,1小时分解可溶性淀粉产生1mg 葡萄糖的酶量为1个酶活单位。 四、应用参考 酒精工业:原料经中温蒸煮冷却到58—60℃,加糖化酶,参考用量为80—200单位/克原料,保温30—60分钟,冷却至30℃左右发酵。 淀粉糖工业:原料经液化后,调PH到4.2—4.5,冷却到58—60℃,加糖化酶,参考用量为100—300单位/克原料,保温糖化24—48小时。 啤酒行业:生产“干啤酒”时,在糖化或发酵前加入糖化酶,可以提高发酵度。 酿造工业:在白酒、黄酒、曲酒等酒类生产中,以酶代曲,可以提高出酒率,也普遍用于食醋工业。其他工业:在味精、抗菌素等其他工业应用时,淀粉液化后冷却到60℃,调PH4.2—4.5,加糖化酶。参考用量100—300单位/克原料。 淀粉酶 生物学 中文名称:淀粉酶

淀粉酶

淀粉酶在生活中的应用 摘要:淀粉酶是生产淀粉糖和发酵产品最重要的一种物质,对淀粉工业的发展起了巨大的促进作用。淀粉酶分布非常广泛,是人们经常研究的一种酶。从纺织工业到废水处理,这些酶都有不同规模的应用。 关键词:淀粉酶;α-淀粉酶;β-淀粉酶;葡萄糖淀粉酶; 脱支酶; 水解酶 Abstract :Starch enzymes are one of the most important materials for manufacturing starch sugars and ferment products. They have contributed greatly to the development of the starch hydrolysis industry. Amylase is widely distributed,is a kind of enzyme that studying by people.From textile industry to wastewater treatment, these enzymes have different scale applications. Keywords :starch enzymes; α- Amylase; β- Amylase;1, 4- D-Glucanglucohydrolase; 1, 6- α- D- Glucano-hydrolase; hydrolysis 1. 酶的分类 淀粉酶(amylase)是一种能水解淀粉、糖原和有关多糖中的O-葡萄糖 键的酶,它属于水解酶类,是催化淀粉、糖元和糊精中糖苷键的一类酶的统 称。淀粉酶广泛分布于自然界,几乎所有植物、动物和微生物都含有淀粉酶。 它是研究较多、生产最早、应用最广和产量最大的一种酶, 其产量占整个酶 制剂总产量的50 %以上。按其来源可分为细菌淀粉酶、霉菌淀粉酶和麦芽 糖淀粉酶。根据对淀粉作用方式的不同,可以将淀粉酶分成四类: 1) α- 淀粉酶,它从底物分子内部将糖苷键裂开; 2) β- 淀粉酶,它从底物的非还原性末端将麦芽糖单位水解下来; 3) 葡萄糖淀粉酶,它从底物的非还原性末端将葡萄糖单位水解下来; 4) 脱支酶,只对支链淀粉、糖原等分支点的α- 1, 6- 糖苷键有专一 性。

糖化酶

我国糖化酶的研究概况 糖化酶是世界上生产量最大应用范围最广的酶类,介绍了糖化酶的结构组成、特性、生产、提取、活力检测以及提高酶活力的研究。主要的内容包括:一、糖化酶的简介 糖化酶是应用历史悠久的酶类,1 500年前,我国已用糖化曲酿酒。本世纪2O年代,法国人卡尔美脱才在越南研究我国小曲,并用于酒精生产。50年代投入工业化生产后,到现在除酒精行业,糖化酶已广泛应用于酿酒、葡萄糖、果葡糖浆、抗菌素、乳酸、有机酸、味精、棉纺厂等各方面,是世界上生产量最大应用范围最广的酶类。 糖化酶是葡萄糖淀粉酶的简称(缩写GA或G)。它是由一系列微生物分泌的,具有外切酶活性的胞外酶。其主要作用是从淀粉、糊精、糖原等碳链上的非还原性末端依次水解a一1,4糖苷键,切下一个个葡萄糖单元,并像B一淀粉酶一样,使水解下来的葡萄糖发生构型变化,形成B—D一葡萄糖。对于支链淀粉,当遇到分支点时,它也可以水解a一1,6糖苷键,由此将支链淀粉全部水解成葡萄糖。糖化酶也能微弱水解a一1,3连接的碳链,但水解a一1.4糖苷键的速度最快,它一般都能将淀粉百分之百地水解生成葡萄糖。 二、糖化酶的结构组成及分类 糖化酶在微生物中的分布很广,在工业中应用的糖化酶主要是从黑曲霉、米曲霉、根霉等丝状真菌和酵母中获得,从细菌中也分离到热稳定的糖化酶,人的唾液、动物的胰腺中也含有糖化酶。不同来源的淀粉糖化酶其结构和功能有一定的差异,对生淀粉的水解作用的活力也不同,真菌产生的葡萄糖淀粉酶对生淀粉具有较好的分解作用。 糖化酶是一种含有甘露糖、葡萄糖、半乳糖和糖醛酸的糖蛋白,分子量在60 000 到1 000 000间,通常碳水化合物占4% 18%。但糖化酵母产生的糖化酶碳水化合物高达80%,这些碳水化合物主要是半乳糖、葡萄糖、葡萄糖胺和甘露糖。 三、糖化酶的特性 1、糖化酶的热稳定性 在糖化酶的热稳定性机理及筛选热稳定性糖化酶菌株上。工业上应用的糖化酶都是利用它的热稳定性。一般真菌产生的糖化酶热稳定性比酵母高,细菌产生

食品工业淀粉酶

食品工业淀粉酶 1β-淀粉酶 β-淀粉酶(ec3.2.1.2)是糖化酶的一种。该酶作用专一性底物时,可以使麦芽糖由 α-型变为β-型,发生沃尔登转位反应(waldeninversion),因此得名β-淀粉酶。当 它作用于淀粉时,会产生麦芽糖和β-界限糊精。其广泛存在于各种植物(甘薯、小麦、 玉米、大豆)和微生物中。在制药方面,由于其可以制造麦芽糖,所以通常和α-淀粉酶 一起用作消化剂[14]。β-淀粉酶在生产麦芽糖浆中的应用麦芽糖的生产只能依靠酶法 制备。工业上经常利用耐高温α-淀粉酶的液化、β-淀粉酶糖化,再利用其他的酶进一步糖化,产生出90%以上的麦芽糖浆。生产医用级和食品级麦芽糖需要将淀粉浆浓度调至10%~20%。麦芽糖的吸收不依赖于胰岛素,所以糖尿病病人也可以摄取定量的麦芽糖。年,徐忠等人用β-淀粉酶和普鲁兰酶作用成功制备了淀粉糖浆。β-淀粉酶在啤酒生产中的应用在酿造工业中,β-淀粉酶是一种重要的糖化酶。在啤酒生产中,其对啤酒的品质及品 种起着关键性作用。将β-淀粉酶用于麦芽的糖化过程中,能够改善麦芽质量,提高得率。β-淀粉酶用于啤酒生产时,可以提高糖化率,节约麦芽的用量,并且可以使生产成本降 低大约25万元,生产出来的啤酒品质良好,口味纯正。另外,β-淀粉酶在制药业中也有 广泛地应用。 2葡萄糖淀粉酶 葡萄糖淀粉酶的系统名称为a-1,4葡聚糖葡萄糖苷水解酶,简称糖化酶,是一种单 链的酸性糖苷水解酶,具有外切酶活性。它由淀粉或类似物分子的'非还原末端顺序切开 a-1,4糖苷键,生成β-葡萄糖。另外,它还可以水解a-1,6糖苷键和a-1,3糖苷键。 糖化酶还用于生产果葡糖浆,后者被广泛应用于食品工业,另外,其还是一种很好的面包 面团改良剂。糖化酶在工业生产中具有非常广泛的应用。在酒类行业中,糖化酶制剂能够 代替自制的麸曲,简化生产工艺,提高生产效率。在干啤酒酿造过程中,能提高麦汁中可 发酵性糖的含量。在白酒和曲酒生产中以糖化酶代替酒曲,可以提高出酒率,减少食物的 消耗,同时提升了酒的品质。 3异淀粉酶 异淀粉酶是一种脱支酶,可以专一性地切开α-1,6糖苷键形成直链淀粉。当单独使 用异淀粉酶使支链淀粉变为直链淀粉,具有凝结成块的特点。利用它的这个特性,可以用 作食品薄膜,这种薄膜对氧和油脂剧透具有良好的隔绝性,很适合作为食品的保护层。异 淀粉酶与糖化酶协同作用时可以提高糖化速度,如:异淀粉酶与β-淀粉酶复合使用可以 大大提高麦芽糖得率。在酒精发酵中采用异淀粉酶,不仅可以使发酵率提高1%~3%,同时 还可以提高淀粉的利用率。 4结语

产淀粉酶的微生物的研究【文献综述】

文献综述 生物科学 产淀粉酶的微生物的研究 摘要 [摘要]海洋是生物新型药物和其他具有独特药用价值的生物活性物质的重要源泉,其代谢产物多具有新颖的化学机构和独特的生理功能,包括萜类、甾醇类、生物碱类、甙类、多糖、肽类、核酸、蛋白质、酶类等[1],本文主要综述了目前产淀粉酶菌株的筛选的主要方法,以及菌种的酶活力测定的几种方法,分析其原理及一些影响因素,并根据各自的应用范围和条件,从中挑选出适合本实验的实验方法,让自己少走弯路,提高实验的效率。 [关键词] 淀粉酶;菌株筛选;酶活力 1 淀粉 淀粉是葡萄糖的高聚体,在餐饮业又称芡粉,通式是(C6H10O5)n,水解到二糖阶段为麦芽糖,化学式是(C12H22O11),完全水解后得到葡萄糖,化学式是(C6H12O6)。淀粉有直链淀粉和支链淀粉两类。淀粉是植物体中贮存的养分,贮存在种子和块茎中,各类植物中的淀粉含量都较高。 淀粉是粮食作物中含量最高的营养成分,除了可直接作为食物外,对淀粉进行深加工还可以生产葡萄糖、果糖、低聚糖等,以淀粉质原料及其水解产物为基质经过发酵可以生产乙醇、啤酒、味精、有机酸等食品与化工产品,因此淀粉深加工工业是国民经济中一个庞大的基础工业体系,合理开发利用淀粉原料对于提高农产品的附加值、提高农民收入具有十分重要的意义[2]。 2 淀粉酶 淀粉酶是一种用途极广的生物催化剂,广泛应用于造纸、食品和医药工业中[3],如饴糖、啤酒、黄酒、葡萄糖、味精、抗生素等行业;用于对高质量的丝绸、人造棉和化学纤维的退浆;可制成不同品种的工业酶、医用酶和诊断酶等。在洗涤剂工业中,淀粉酶与碱性蛋白酶、脂肪酶一起添加于洗衣粉中制成多酶洗衣粉等,具有极广泛的用途[4]。

低温淀粉糖化酶的分离纯化及酶学特性研究

低温淀粉糖化酶的分离纯化及酶学特性研究介绍 淀粉是一种由葡萄糖分子组成的多糖,是许多生物体的主要能量来源。淀粉的生物合成需要一系列酶的参与,其中淀粉合成酶和淀粉分解酶是最为重要的两类酶。淀粉分解酶被广泛应用于淀粉工业中,由于其具有良好的水解效果和可控性能。传统的淀粉糖化工艺一般要求高温,并且需要大量的碱化剂和其他的化学试剂,这些试剂可能对环境和人类健康造成负面的影响。因此,开发一种环境友好、低温下可用的淀粉糖化酶成为了研究的热点之一。 低温淀粉糖化酶是一种新型的淀粉分解酶,在低温下具有较高的活性和稳定性。因此,对低温淀粉糖化酶的研究具有极为重要的理论和实际价值。本文将主要介绍低温淀粉糖化酶的分离纯化和酶学特性研究。 一、低温淀粉糖化酶的分离纯化 低温淀粉糖化酶是一种新型的淀粉分解酶,目前尚未被广泛应用于工业生产中。因此,开发一种高效、简单、经济、可行的分离纯化方法是极为必要的。通常,淀粉酶的分离纯化方法包括离子交换、凝胶过滤、亲和层析等技术。

离子交换技术是草酸纤维素柱、磷酸纤维素柱、硫酸纤维素柱等离子交换柱对淀粉酶进行分离纯化的基础。沿着离子交换柱逐步加入浓度逐渐增加的盐水或者酸性洗涤液,使得淀粉酶依次被分离纯化,得到纯度较高的目标酶。 凝胶过滤技术则是利用凝胶过滤柱(如Sephadex G-25、Sephadex G-50等)对分子量不同的淀粉酶进行分离纯化。通过柱子底部不同压力的控制,获得分成不同分子大小的淀粉酶,从而得到纯度较高的目标酶。 亲和层析技术是利用配体(如亲和基团)与目标蛋白之间的亲和力,把目标蛋白从复杂的混合物中分离出来的技术。在低温淀粉糖化酶的分离纯化中,常用的配体有Ni2+、Cu2+、Co2+、Zn2+、Ca2+等金属离子,以及某些具有亲和性的化合物如查尔酮、AMP、NAD、ATP等。 二、低温淀粉糖化酶的酶学特性研究 酶学特性是评价酶性能的重要指标,包括酶活性、催化机理、热稳定性、pH值、温度稳定性等。 酶活性是酶的最常见指标之一,它反映了酶在一定条件下催化底物转化的速率。低温淀粉糖化酶与传统的淀粉分解酶相比,具有较高的活性和稳定性。目前已有研究表明,在40℃的温度下,低温淀粉糖化酶的活性高于传统的淀粉分解酶。

葡萄糖淀粉酶

题目:葡萄糖淀粉酶结构与功能的研究食品学院学院食品科学与工程专业 班级食科0905班 学号6130112133 学生姓名田顺风 二〇一三年十二月

葡萄糖淀粉酶结构与功能的研究 田顺风 (江南大学食品学院江苏省无锡) 摘要:本文对葡萄糖淀粉酶在微生物中的分布进行了综述,对葡萄糖淀粉酶的基本结构及作用机理、理化性质及在实际应用中的问题和拟解决途径有了初步了解,并对葡萄糖淀粉酶的应用及研究现状进行了展望。 关键词:葡萄糖淀粉酶;基本机构;理化性质 Research on the structure and function of glucoamylase Tian Shunfeng (Jiangnan University he School of Food Jiangsu Province WuXi) Abstract:In this paper, glucoamylase distributed in microorganisms are reviewed,and we have a preliminary understanding of the basic structure and mechanism of reaction of glucoamylase, physicochemical properties and problems in practical applications and ways to be solved.Also the application and research status of glucoamylase are discussed. Key words: glucoamylase; basic structure; physicochemical properties 引言 酶作为催化剂,本身在反应过程中不被消耗,也不影响反应的化学平衡。酶有正催化作用,也有负催化作用,不只是加快反应速率,也有减低反应速率。与其他非生物催化剂不同的是,酶具有高度的专一性,只催化特定的反应或产生特定的构型。目前已知的可以被酶催化的反应有约4000种,已有数百计的酶被纯化到结晶的形式。 根据蛋白质分子的组成和盘曲折叠方式,酶可分为一级结构、二级结构、三级结构和四级结构。一级结构指蛋白质分子中肽链的氨基酸残基的排列顺序,由于半胱氨酸侧链巯基经氧化后形成—s—s—键,因此在蛋白质分子的链内或链间都有可能形成二硫桥键;二级结构指蛋白质分子肽链本身的三维空间的规律性,主要由肽链骨架之间的羰基和亚氨基间形成的氢键来维系;三级结构为蛋白质分子又可按照一定方式再盘曲折叠,主要由盐键、氢键、疏水键等所维系。这样折叠后,蛋白质的肽链虽很长,但由于二、三级结构的存在,多数蛋白质在空间构型上却是紧密的球状分子;四级结构指由多条各自具有一级、二级、三级结构的肽链通过非共价键连接起来的结构形式,亚基之间主要由各表面暴露的侧链形成的键(如疏水键)所维系。 葡萄糖淀粉酶(glucoamylase)的系统名称为α-1,4-葡聚糖葡萄糖苷水解酶或γ-淀粉酶,简称糖化酶[1],是一种单链的酸性糖苷水解酶,具有外切酶活性。它从淀粉或类似物分子的非还原末端顺序切开α-1,4-糖苷键,生成β-葡萄糖。此外,它也能水解α-1,6-糖苷键和α-1,3-糖苷键。目前,糖化酶的研究主要集中在耐热高产菌株的筛选;糖化酶的热稳定性机理;利用DNA重组技术构建优良工程菌株等方面。 酶的本质是蛋白质,因此也可用分离纯化蛋白质的方法分离纯化蛋白酶,传统分离纯化蛋白质的方法是利用沉淀原理进行的,已广泛应用于实验室及工业规模蛋白质等生物产物的回收、浓缩和纯化。目前,用于蛋白酶的分离纯化的沉淀方法主要有有机溶剂沉淀法、盐析沉淀法、等电点沉淀法、热变性沉淀法等。葡

淀粉酶

首页> 实验> 植物实验> 淀粉酶活性的测定 淀粉酶活性的测定 2005-12-05 00:00:00 来源:评论:0 一、原理淀粉酶(amylase)包括几种催化特点不同的成员,其中α-淀粉酶随机地作用于淀粉的非还原端,生成麦芽糖、麦芽三糖、糊精等还原糖,同时使淀粉浆的粘度下降,因此又称为液化酶;β-淀粉酶每次从淀粉的非还端切下一分子麦芽糖,又被称为糖化酶;葡萄糖淀粉酶则从淀粉的非还原端… 一、原理 淀粉酶(amylase)包括几种催化特点不同的成员,其中α-淀粉酶随机地作用于淀粉的非还原端,生成麦芽糖、麦芽三糖、糊精等还原糖,同时使淀粉浆的粘度下降,因此又称为液化酶;β-淀粉酶每次从淀粉的非还端切下一分子麦芽糖,又被称为糖化酶;葡萄糖淀粉酶则从淀粉的非还原端每次切下一个葡萄糖。淀粉酶产生的这些还原糖能使3,5-二硝基水杨酸还原,生成棕红色的3-氨基-5-硝基水杨酸。淀粉酶活力的大小与产生的还原糖的量成正比。可以用麦芽糖制作标准曲线,用比色法测定淀粉生成的还原糖的量,以单位重量样品在一定时间内生成的还原糖的量表示酶活力。几乎所有植物中都存在有淀粉酶,特别是萌发后的禾谷类种子淀粉酶活性最强,主要是α-和β-淀粉酶酶不。Α-淀粉耐酸,在pH3.6以下迅速钝化;而β-淀粉酶不耐热,在70℃15min则被钝化。根据它们的这种特性,在测定时钝化其中之一,就可测出另一个的活力。本实验采用加热钝化β-淀粉酶测出α-淀粉酶的活力,再与非钝化条件下测定的总活力(α+β)比较,求出β-淀粉酶的活力。 二、材料、仪器设备及试剂 (一)材料:萌发的小麦种子(芽长约1cm)。 (二)仪器设备:1. 分光光度计;2. 离心机;3. 恒温水浴(37℃,70℃,100℃);4. 具塞刻度试管;5. 刻度吸管;6. 容量瓶。 (三)试剂(均为分析纯):1. 标准麦芽糖溶液(1mg/ml):精确称取100mg麦芽糖,用蒸馏水溶解并定容至100ml;2. 3,5-二硝基水杨酸试剂:精确称取1g3,5-二硝基水杨酸,溶于20ml2mol/L NaOH溶液中,加入50ml蒸馏水,再加入30g酒石酸钾钠,待溶解后用蒸馏水定容至100ml。盖紧瓶塞,勿使CO2进入。若溶液混浊可过滤后使用;3.01mol/L pH5.6的柠檬酸缓冲液:A液(0.1mol/L 柠檬酸):称取C6H8O7.H2O 21.01g,用蒸馏水溶解并定容至1L;B液(0.1mol/L 柠檬酸钠):称取Na3C6H5O7.2H2O 29.41g,用蒸馏水溶解并定容至1L。取A液55ml与B液145ml混匀,即为0.1mol/L pH5.6的柠檬酸缓冲液; 4.1%淀粉溶液:称取1g淀粉溶于100ml0.1mol/L pH 5.6的柠檬酸缓冲液中。 三、实验步骤 (一)麦芽糖标准曲线的制作:取7支干净的具塞刻度试管,编号,按表(详教材)加入试剂。摇匀,置沸水浴中煮沸5min。取出后流水冷却,加蒸馏水定容至20ml。以1号管作为空白调零点,在540nm波长下比色测定。以麦芽糖含量为横座标,吸光度值为纵座标,绘

糖化酶研究综述

糖化酶又称葡萄糖淀粉酶[Glucoamylase,(EC.3.2.1.3.)],是淀粉分解酶的的一个分支。糖化酶是一种习惯上的名称,学名为α-1,4-葡萄糖水解酶 (α-1,4-Glucan glucohydrolace)。它能把淀粉从非还原性未端水介a-1.4葡萄糖苷键产生葡萄糖,也能缓慢水解a-1.6葡萄糖苷键,转化为葡萄糖。 糖化酶是由曲霉优良菌种(Aspergilusniger)经深层发酵提炼而成。(深层发酵是利用深层培养基的厌氧环境来培养厌氧细菌,但不能培养严格厌氧细菌,多用于兼性厌氧菌和微耗氧菌的培养) 重要糖化酶生产菌有:雪白根霉,德氏根霉,河内根霉,爪哇根霉,台湾根霉,臭曲霉,黑曲霉等。 糖化酶用于以葡萄糖作发酵培养基的各种抗生素、有机酸、氨基酸、维生素的发酵;本品还大量用于生产各种规格的葡萄糖。总之,凡对淀粉、糊精必需进行酶水解的工业上,都可适用。最多应用于酒精、淀粉糖、味精、抗菌素、柠檬酸、啤酒等工业以及白酒、黄酒。 一特性: 1.作用方式:糖化酶的底物专一性较低,它除了能从淀粉链的非还原性未端切开a-1.4键处,也能缓慢切开a-1.6。因此,它能很快的把直链淀粉从非还原性未端依次切下葡萄单位,在遇到1.6键分割,先将a-1.6键分割,再将 a-1.4键分割,从而使支链淀粉水解成葡萄糖 2. 作用条件:糖化酶随作用的温度升高活力增大,超过65℃又随温度升高而活力急剧下降,本品是最适作用温度是60-62℃。最适作用PH舒值在4.0-4.5左右 3.活力检测: 酶活力定义:1克酶粉或1毫升酶液在40℃,PH4.6条件下,1小时水解可溶性淀粉产生1毫克葡萄糖的酶量为1个酶活力单位(U)。 原理:糖化酶有催化淀粉水解的作用,能从淀粉分子非还原性末端开始,分解α-1,4-葡萄糖苷键生成葡萄糖。葡萄糖分子中含有醛基,能被次碘酸钠氧化,过量的次碘酸钠酸化后析出碘,再用硫代硫酸钠标准溶液滴定,计算酶活力。 试剂和溶液: (1)乙酸-乙酸钠缓冲溶液(pH为4.6)。称取乙酸钠(CH3COONa·3H2O) 6.7g,溶于水中,加冰乙酸(CH3COOH)2.6ml,用水定容至1000ml。 配好后用pH计校正。 (2)硫代硫酸钠标准溶液(Na2S2O3,0.05mol/L)。 (3)碘溶液(1/2I2,0.1mol/L)。 (4)氢氧化钠溶液(NaOH,0.1mol/L)。 (5)200g/L可溶性氢氧化钠溶液。 (6)硫酸溶液(2mol/L)。 (7)20g/L可溶性淀粉溶液。 (8)10g/L淀粉指示液。 仪器和设备: 恒温水浴锅、秒表、比色管、玻璃仪器。

糖化酶生产工艺

糖化酶生产工艺 糖化酶是一种能够将淀粉、糖类等多糖分解成较小的糖分子的酶类。糖化酶广泛应用于食品、饲料、发酵等行业中,对于提高产品质量、降低生产成本具有重要作用。糖化酶的生产工艺主要包括发酵、提取和纯化等步骤。 首先是发酵步骤,发酵是糖化酶生产的关键环节。选择合适的菌株是确保糖化酶高效产生的重要因素。常用的菌株有曲霉、枯草芽孢杆菌等。发酵培养基的配方需要考虑菌株的营养需求,一般包括碳源、氮源、矿物质和生长因子等。发酵条件的调控也是关键,包括温度、pH值、搅拌速度和氧气供应等。优化 这些条件可以提高糖化酶产量和活性。 其次是提取步骤,通过合适的方法将发酵液中的酶提取出来。常用的提取方法有搅拌提取、超声波提取和离心提取等。其中搅拌提取是最常用的方法,通过将发酵液和混凝土搅拌,将酶分离出来。提取液中的酶可以直接用于后续的应用,也可以进一步进行纯化处理。 最后是纯化步骤,目的是将提取液中的糖化酶纯化出来,以提高酶的纯度和活性。纯化方法有离子交换层析、凝胶过滤层析、亲和层析和逆流层析等。这些方法可以根据酶的特性进行选择和组合使用,以达到最理想的纯化效果。 值得注意的是,糖化酶的生产过程中需要对各个步骤进行监控和控制,以保证产品的质量和一致性。监测酶的产量和活性,调整发酵条件和提取条件,以及确保纯化过程中的良好操作和

消毒措施等都是必要的。此外,还需要对废水和废料进行处理,以减少对环境的影响。 总之,糖化酶的生产工艺包括发酵、提取和纯化等步骤,通过合理的条件控制和方法选择,可以提高产量和活性,提高产品质量和一致性。糖化酶的生产工艺需要根据具体情况进行调整和改进,以满足不同行业的需求。

淀粉的酶水解糖化要点

第五章淀粉的酶水解糖化 众所周知,以精制淀粉or其他原料为原料,应用酸水解法制葡萄糖(Glu,由于需要高温高压和盐酸催化剂,因此在生产葡萄糖(Glu的同时,伴有葡萄糖(Glu的复合、分解反应,生产一些不可发酵性糖及其一系列有色物质,这不仅降低淀粉转化率,而且由于生产的糖液质量差,对后道精制带来不利影响,降低葡萄糖(Glu的收率。 40年代学术界已对酶水解理论取得共识。60年代末期,国外酶水解理论研究的 新发展,促进淀粉酶水解取得重大突破。日本率先实现工业化生产,其他国家也相继采用这种先进的新工艺。采用酶糖化之前需要先使淀粉液化。液化是利用液化酶使糊化淀粉水解成糊精和低聚糖等,使粘度大为降低,流动性增高,所以工业上称为液化。酶液化和酶糖化工艺称为双酶法。双酶法生产Glu工艺,是以作用专一的酶制 剂作为催化剂,反应条件温和,复合分解反应较少,因此采用双酶法生产Glu,提高了淀粉原料的转化率及糖液浓度,改善了糖液质量,是目前最为理想的制糖方法。 第一节液化 糖化使用的葡萄糖淀粉酶属于外切酶,水解作用从底物分子的非还原末端进行。为了增加糖化酶作用的机会,加快(因为液化淀粉转化成糊精、低聚糖等,底物分子数量增大,尾端增多糖化反应速度,必须用e淀粉酶将大分子的淀粉水解成糊精和低聚糖。液化的目的是为糖化创造有利条件;淀粉糊黏度大,难于操作。但是淀粉颗粒的结晶性结构对于酶作用的抵抗力强。例如细菌e淀粉酶水解淀粉颗粒和水解 糊化淀粉的速度比约为1:20000o由于这种原因,不能使液化酶直接作用淀粉,需要先加热淀粉乳使淀粉颗粒吸水膨胀,糊化,破坏其结晶结构。 淀粉乳糊化是酶法工艺的第一必要步骤。淀粉乳糊化,黏度大,流动性差,搅拌困又t也影响传热,难获得均匀白^糊化结果,特别是在较高浓度和大量物料的情况下操作有困难。华淀粉酶对于糊化的淀粉具有很强的催化水解作用,能很快水解到糊精和低聚糖,黏度急剧降低,流动性增强.工业上生产将生淀粉酶混入淀粉乳中,加热,淀粉糊化后立即液化。虽然淀粉乳浓度30-40%,液化后的流动性高,操作无困难。

糖化酶的生产工艺

糖化酶的生产工艺 糖化酶是一种催化糖化反应的酶,可以将淀粉、纤维素等多糖分解成简单的糖类。由于其广泛的应用于食品、饲料、制糖、生物燃料等领域,糖化酶的生产工艺变得越来越重要。 糖化酶的生产工艺一般分为以下几个步骤: 1. 酶源的筛选和培养 糖化酶可以从多种微生物中获得,如真菌、细菌、酵母等。首先需要筛选出具有高效酶活性的酶源,并进行毒力测试排除可能的有害物质。接着,将所选的酶源进行大规模培养,为后续酶的提取和纯化做准备。 2. 酶的提取和纯化 培养出的菌液会经过离心等操作将酶从菌体中分离出来。接下来,可以利用重组工程技术将酶基因引入适当的宿主细胞进行表达和分泌。经过多次过滤、层析、浓缩等步骤,可以获得纯化后的糖化酶产品。 3. 酶活力的测试和调整 酶的活力是衡量其催化能力的重要指标,因此需要对纯化后的酶进行活力测定。如果发现酶活力较低或不稳定,可以通过改变培养条件、酶提取和纯化过程中的参数来进行调整,如改变pH值、温度、金属离子浓度等。 4. 酶的固定化处理(可选) 为了提高酶在反应体系中的稳定性和重复使用性,可以将酶固

定在某种载体上,如多孔陶瓷、聚合物凝胶或生物膜等。固定化酶可以增加酶的使用寿命和催化效率,减少废液处理的复杂性。 5. 酶活性的保存和包装 为了保持酶活性和延长保存期限,酶产品通常会经过冷冻干燥或冷藏等工艺进行保存。同时,酶产品还需要进行适当的包装,以便在运输和储存过程中保护酶的完整性和稳定性。 总结起来,糖化酶的生产工艺包括酶源的筛选和培养、酶的提取和纯化、酶活力的测试和调整、酶的固定化处理以及酶活性的保存和包装等步骤。每个步骤都需要进行精确控制,以确保酶产品的质量和稳定性。随着科技的发展,糖化酶的生产工艺也在不断改进,可以预见未来糖化酶的生产将更加高效、环保和经济。

糖化酶

糖化酶活力测定 1.定义 1g固体酶粉(或1ml液体酶),于40℃、pH值为4.6的条件下,1h分解可溶性淀粉产生1mg葡萄糖,即为1个酶活力单位,以u/g(u/ml)表示。 2.原理 糖化酶有催化淀粉水解的作用,能从淀粉分子非还原性末端开始,分解α-1,4-葡萄糖苷键生成葡萄糖。葡萄糖分子中含有醛基,能被次碘酸钠氧化,过量的次碘酸钠酸化后析出碘,再用硫代硫酸钠标准溶液滴定,计算酶活力。 3.试剂和溶液 (1)乙酸-乙酸钠缓冲溶液(pH为4.6)。 称取乙酸钠(CH3COONa·3H2O)6.7g,溶于水中,加冰乙酸(CH3COOH)2.6ml,用水定容至1000ml。配好后用pH计校正。 (2)硫代硫酸钠标准溶液(Na2S2O3,0.05mol/L)。 (3)碘溶液(1/2I2,0.1mol/L)。 (4)氢氧化钠溶液(NaOH,0.1mol/L)。 (5)200g/L可溶性氢氧化钠溶液。 (6)硫酸溶液(2mol/L)。 (7)20g/L可溶性淀粉溶液。 (8)10g/L淀粉指示液。 4.仪器和设备 恒温水浴锅、秒表、比色管、玻璃仪器。 5.步骤 (1)待测酶液的制备称取酶粉1~2g,精确至0.0002g(或吸取液体酶1.00ml),

先用少量的乙酸缓冲液溶解,并用玻璃棒捣研,将上清液小心倾入容量瓶中。沉渣部分再加入少量缓冲液,如此捣研3~4次,最后全部移入容量瓶中,用缓冲液定容至刻度(估计酶活力在100~250u/ml范围内),摇匀。通过4层纱布过滤,滤液供测定用。 (2)测定于甲、乙两支50ml比色管中,分别加入可溶性淀粉25ml及缓冲液5ml,摇匀后,于40℃恒温水浴中预热5min。在甲管(样品)中加入待测酶液2ml,立刻摇匀,在此温度下准确反应30min,立刻各加入氢氧化钠溶液0.2ml,摇匀,将两管取出迅速冷却,并于乙管(空白)中补加待测酶液2ml,吸取上述反应液与空白液5ml,分别置于碘量瓶中,准确加入碘溶液10ml,再加氢氧化钠溶液15ml,摇匀,密塞,于暗处反应15min。取出,加硫酸溶液2ml,立即用硫代硫酸钠标准溶液滴定,直至蓝色刚好消失为其终点。 (3)计算 X=(A-B)c×90.05×32.2/5×1/2×n×2=579.9×(A-B)c×n 式中X——样品的酶活力(u/g或u/ml) A——空白消耗硫代硫酸钠溶液的体积(ml) B——样品消耗硫代硫酸钠溶液的体积(ml) c——硫代硫酸钠溶液的浓度(mol/L) 90.05——与1ml硫代硫酸钠标准溶液(1mol/L)相当的以克表示的葡萄糖的质量 32.2——反应液的总体积(ml) 5——吸取反应液的体积(ml) 1/2——吸取酶液2ml,换算为1ml n——稀释倍数 2——反应30min,换算成1h的酶活力系数所得的结果表示至整数

淀粉液化及糖化实验

精心整理 淀粉液化及糖化实验 一、实验目的 1.掌握用酶解法从淀粉原料到水解糖的制备原理及方法; 2.掌握还原糖的测定方法。 二、实验原理 在发酵过程中,因有些微生物不能直接利用淀粉,当以淀粉为原料时,必须先将淀粉水解成葡萄糖,才能供发酵使用。一般将淀粉水解为葡萄糖的过程成为淀粉的糖化,所制得的糖液成为淀粉水解糖。水解淀粉为葡萄糖的方法包括酸解法、酸酶结合法和酶解法。实验室常采用酶解法制备淀粉水解糖。 酶解法是指利用淀粉酶将淀粉水解为葡萄糖的过程。酶解法葡萄糖可分为两步:第一步是利用α-淀粉酶将淀粉转化为糊精及低聚糖,使淀粉的可溶性增加,这个过程称为液化;第二步是利用糖化酶将糊精或低聚糖进一步水解,转变为葡萄糖的过程,这个过程在生产上成为糖化。淀粉的液化和糖化都是在酶的作用下进行的,故该方法也称为双酶法。 1.酶解法液化原理 淀粉的酶解法液化是以α-淀粉酶作为催化剂,该酶作用于淀粉的α-1,4-糖苷键,从内部随机地水解淀粉,从而迅速将淀粉水解为糊精及少量麦芽糖,所以α-淀粉酶也称内切淀粉酶。淀粉受到α-淀粉酶的作用后,其碘色反应发生以下变化:蓝色→紫色→红色→浅红色→不显色(即显碘原色)。 酶解法液化因生产工艺不同分为间歇法、半连续法和连续法;液化设备分为管式、罐式和喷射式;加酶方法包括一次加酶法、二次加酶法和三次加酶法;根据酶制剂的耐温性分为中温酶法、高温酶法及中温酶和高温酶混合法。本实验采用:高温酶法,间歇式,罐式,一次加酶法。 2.酶解法糖化原理 淀粉的酶解法糖化是以糖化酶为催化剂,该酶从非还原末端以葡萄糖为单位依次分解淀粉的α-1,4-糖苷键或α-1,6-糖苷键,由于是从链的一端逐渐一个个地切断为葡萄糖,所以糖化酶也成为外切淀粉酶。 淀粉糖化的理论收率:因为在糖化过程中有水的参与反应,故糖化的理论收率为111.1% (C 6H 10O 5)n +H 2O →nC 6H 12O 6 16218180 淀粉糖化实际收率的计算公式: 淀粉糖化实际收率= 100%×(%) ×g g/L ×L 原料中纯淀粉含量)投入淀粉量() 糖液葡萄糖含量()糖液量( 淀粉转化率是指100份淀粉中有多少份淀粉被转化为葡萄糖。 淀粉转化率的计算: 淀粉转化率= 100%×1.11 ×(%)×g g/L ×L 原料中纯淀粉含量)投入淀粉量() 糖液葡萄糖含量()糖液量( 糖化液中还原糖(以葡萄糖计)占干物质的百分比,称为DE 值。用DE 值表示淀粉水解的程度或 糖化程度。 DE 值的计算公式: DE 值= 干物质含量 还原糖含量 ×100% 还原糖含量用3,5-二硝基水杨酸(DSN )比色法测定,表示方法:g 葡萄糖/100mL 糖液。 干物质含量用阿贝折光仪测定,表示方法:g 干物质/100mL 糖液。本实验采用淀粉干重替代(即原料中纯淀粉含量为100%)。

相关主题
文本预览
相关文档 最新文档