泰安市岱岳区2018届中考第三次模拟数学试题((有答案))AUAqnq
- 格式:docx
- 大小:602.93 KB
- 文档页数:23
2018年泰安学生学业水平测试模拟试题一、选择题(本大题共12个小题,满分36分) 1. | - 4|的相反数的倒数是( ) A. 4 B. - 4 C.丄 D.—丄44 2. 下列等式一定成立的是()A. (a+b ) 2=a 2+b 2B. a 2*a 3=a 6C. 3"2 = --D. 3恵-忑=2近9A. 1个B. 2个C. 3个D. 4个4. 一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距 离,即1.4960亿千米.用科学记数法表示1个天文单位应是( )下列图形中,既是轴对称图形,又是中心对称图形的是(摸到黑球的概率是( )o 11 12A. B. -7-C. -T -D. -z -o2337.如图,A 、B 、P 是半径为2的(DO 上的三点,ZAPB=45°, 为( )8. 如图,四边形ABCD, AD 〃BC, CA 是ZBCD 的平分线,且 AB 丄AC, AB=4, AD=6,则 tanB=()A. 1.4960xl07 千米B. 14.960xl07 千米C. 1.4960x10* 千米D. 0.14960xl08 千米 5. 6. B袋子中装有4个黑球2个白球,这些球除了颜色外都相同, 从袋子中随机摸出一个球,则 A. V2 B. 2 C. 2V2 D. 4B'CA. 2A /3B. 2^2x — 2/7 ■> 4述的解集为。
<2,那么“的值等于A. 1B. 0C. -1D. -210、如图,正方形/磁中,/伊8cm,对角线AC,BD 相交于点0,点EF 分别从B 、C 两点同时出发,以lcm/s 的速度沿氏、G?运动,到点G〃时停止运动,设运动时间为t® 'OEF 的面积为s (c 加2),则$(填空题(本大题共6小题,已知关于x 的方程x 2+mx+3=0的一个根是x = l,那么14. 如图在直角△ ABC 中,ZACB=90°, AC=8cm, BC=6cm,分别以 A 、B 为AR圆心,以丁的长为半径作圆,将直角△ ABC 截去两个扇形,则剩余(阴影)部 分的面积为9.关于x 的不等式组()o二、 ,另一个根是.)o 与仪s )的函数关系可用图像表示为(满分18分)()15.花鸟市场一家店铺正销售一批兰花,每盆进价100元,售价为140元,平均每天可售出20盆。
泰安市2018年初中学业水平考试数学试题一、选择题(本大题共12个小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对3分,选错、不选或选出的答案超过一个,均记零分)1. 计算:的结果是()A. -3B. 0C. -1D. 3【答案】D【解析】分析:根据相反数的概念、零指数幂的运算法则计算即可.详解:原式=2+1=3.故选D.点睛:本题考查的是零指数幂的运算,掌握任何非零数的零次幂等于1是解题的关键.2. 下列运算正确的是()A. B. C. D.【答案】D【解析】分析:根据合并同类项法则、同底数幂的乘、除法法则、积的乘方法则计算,判断即可.详解:2y3+y3=3y3,故A错误;y2•y3=y5,故B错误;(3y2)3=27y6,故C错误;y3÷y﹣2=y3﹣(﹣2)=y5.故D正确.故选D.点睛:本题考查的是合并同类项、同底数幂的乘法、积的乘方、同底数幂的除法,掌握它们的运算法则是解题的关键.3. 如图是下列哪个几何体的主视图与俯视图()A. B. C. D.【答案】C【解析】分析:直接利用主视图以及俯视图的观察角度结合结合几何体的形状得出答案.详解:由已知主视图和俯视图可得到该几何体是圆柱体的一半,只有选项C符合题意.故选C.点睛:本题主要考查了由三视图判断几何体,正确掌握常见几何体的形状是解题的关键.4. 如图,将一张含有角的三角形纸片的两个顶点叠放在矩形的两条对边上,若,则的大小为()A. B. C. D.【答案】A【解析】分析:依据平行线的性质,即可得到∠2=∠3=44°,再根据三角形外角性质,可得∠3=∠1+30°,进而得出结论.详解:如图,∵矩形的对边平行,∴∠2=∠3=44°,根据三角形外角性质,可得:∠3=∠1+30°,∴∠1=44°﹣30°=14°.故选A.点睛:本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,同位角相等.5. 某中学九年级二班六级的8名同学在一次排球垫球测试中的成绩如下(单位:个)35 38 42 44 40 47 45 45则这组数据的中位数、平均数分别是()A. 42、42B. 43、42C. 43、43D. 44、43【答案】B【解析】分析:根据中位线的概念求出中位数,利用算术平均数的计算公式求出平均数.详解:把这组数据排列顺序得:3538404244454547,则这组数据的中位数为:=43,=(35+38+42+44+40+47+45+45)=42.故选B.点睛:本题考查的是中位数的确定、算术平均数的计算,掌握中位数的概念、算术平均数的计算公式是解题的关键.6. 夏季来临,某超市试销、两种型号的风扇,两周内共销售30台,销售收入5300元,型风扇每台200元,型风扇每台150元,问、两种型号的风扇分别销售了多少台?若设型风扇销售了台,型风扇销售了台,则根据题意列出方程组为()A. B.C. D.【答案】C【解析】分析:直接利用两周内共销售30台,销售收入5300元,分别得出等式进而得出答案.详解:设A型风扇销售了x台,B型风扇销售了y台,则根据题意列出方程组为:.故选C.点睛:本题主要考查了由实际问题抽象出二元一次方程组,正确得出等量关系是解题的关键.7. 二次函数的图象如图所示,则反比例函数与一次函数在同一坐标系内的大致图象是()A. B. C. D.【答案】C【解析】分析:首先利用二次函数图象得出a,b的取值范围,进而结合反比例函数以及一次函数的性质得出答案.详解:由二次函数开口向上可得:a>0,对称轴在y轴左侧,故a,b同号,则b>0,故反比例函数y=图象分布在第一、三象限,一次函数y=ax+b经过第一、二、三象限.故选C.点睛:本题主要考查了二次函数、一次函数、反比例函数的图象,正确得出a,b的取值范围是解题的关键.8. 不等式组有3个整数解,则的取值范围是()A. B. C. D.【答案】B【解析】分析:解不等式组,可得不等式组的解,根据不等式组有3个整数解,可得答案.详解:不等式组,由﹣x<﹣1,解得:x>4,由4(x﹣1)≤2(x﹣a),解得:x≤2﹣a,故不等式组的解为:4<x≤2﹣a,由关于x的不等式组有3个整数解,得:7≤2﹣a<8,解得:﹣6<a≤﹣5.故选B.点睛:本题考查了解一元一次不等式组,利用不等式的解得出关于a的不等式是解题的关键.9. 如图,与相切于点,若,则的度数为()A. B. C. D.【答案】A【解析】分析:连接OA、OB,由切线的性质知∠OBM=90°,从而得∠ABO=∠BAO=50°,由三角形内角和定理知∠AOB=80°,根据圆周角定理可得答案.详解:如图,连接OA、OB.∵BM是⊙O的切线,∴∠OBM=90°.∵∠MBA=140°,∴∠ABO=50°.∵OA=OB,∴∠ABO=∠BAO=50°,∴∠AOB=80°,∴∠ACB=∠AOB=40°.故选A.10. 一元二次方程根的情况是()A. 无实数根B. 有一个正根,一个负根C. 有两个正根,且都小于3D. 有两个正根,且有一根大于3【答案】D【解析】分析:直接整理原方程,进而解方程得出x的值.详解:(x+1)(x﹣3)=2x﹣5整理得:x2﹣2x﹣3=2x﹣5,则x2﹣4x+2=0,(x﹣2)2=2,解得:x1=2+>3,x2=2﹣,故有两个正根,且有一根大于3.故选D.点睛:本题主要考查了一元二次方程的解法,正确解方程是解题的关键.11. 如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,经过平移后得到,若上一点平移后对应点为,点绕原点顺时针旋转,对应点为,则点的坐标为()A. B. C. D.【答案】A【解析】分析:由题意将点P向下平移5个单位,再向左平移4个单位得到P1,再根据P1与P2关于原点对称,即可解决问题.详解:由题意将点P向下平移5个单位,再向左平移4个单位得到P1.∵P(1.2,1.4),∴P1(﹣2.8,﹣3.6).∵P1与P2关于原点对称,∴P2(2.8,3.6).故选A.12. 如图,的半径为2,圆心的坐标为,点是上的任意一点,,且、与轴分别交于、两点,若点、点关于原点对称,则的最小值为()A. 3B. 4C. 6D. 8【答案】C【解析】分析:连接OP.由直角三角形斜边上的中线等于斜边的一半,得到OP=AB,当OP最短时,AB最短.连接OM交⊙M于点P,则此时OP最短,且OP=OM-PM,计算即可得到结论.详解:连接OP.∵P A⊥PB,OA=OB,∴OP=AB,当OP最短时,AB最短.连接OM交⊙M于点P,则此时OP最短,且OP=OM-PM==3,∴AB的最小值为2OP=6.故选C.点睛:本题考查了直角三角形斜边上中线的性质以及两点间的距离公式.解题的关键是利用直角三角形斜边上中线等于斜边的一半把AB的长转化为2OP.二、填空题(本大题共6小题,满分18分.只要求填写最后结果,每小题填对得3分)13. 一个铁原子的质量是,将这个数据用科学记数法表示为__________.【答案】【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值<1时,n是负数;n的绝对值等于第一个非零数前零的个数.详解:0.000000000000000000000000093=9.3×10﹣26.故答案为:9.3×10﹣26.点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14. 如图,是的外接圆,,,则的直径..为__________.【答案】【解析】分析:连接OB,OC,依据△BOC是等腰直角三角形,即可得到BO=CO=BC•cos45°=2,进而得出⊙O的直径为4.详解:如图,连接OB,OC.∵∠A=45°,∴∠BOC=90°,∴△BOC是等腰直角三角形.又∵BC=4,∴BO=CO=BC•cos45°=2,∴⊙O的直径为4.故答案为:4.点睛:本题主要考查了三角形的外接圆以及圆周角定理的运用,三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.15. 如图,在矩形中,,,将矩形沿折叠,点落在处,若的延长线恰好过点,则的值为__________.【答案】【解析】分析:先利用勾股定理求出A'C,进而利用勾股定理建立方程求出AE,即可求出BE,最后用三角函数即可得出结论.详解:由折叠知,A'E=AE,A'B=AB=6,∠BA'E=90°,∴∠BA'C=90°.在Rt△A'CB 中,A'C==8,设AE=x,则A'E=x,∴DE=10﹣x,CE=A'C+A'E=8+x.在Rt△CDE中,根据勾股定理得:(10﹣x)2+36=(8+x)2,∴x=2,∴AE=2.在Rt△ABE 中,根据勾股定理得:BE==2,∴sin∠ABE==.故答案为:.点睛:本题主要考查了折叠的性质,勾股定理,锐角三角函数,充分利用勾股定理求出线段AE是解答本题的关键.16. 如图,在中,,,,点是边上的动点(不与点重合),过作,垂足为,点是的中点,连接,设,的面积为,则与之间的函数关系式为__________.【答案】【解析】分析:由=,CD=x,得到DE=,CE=,则BE=10-,由ΔDEB 的面积S等于△BDE面积的一半,即可得出结论.详解:∵DE⊥BC,垂足为E,∴tan∠C==,CD=x,∴DE=,CE=,则BE=10-,∴S=S△BED=(10-)•化简得:.故答案为:.点睛:本题考查了动点问题的函数解析式,解题的关键是设法将BE与DE都用含有x的代数式表示.17. 《九章算术》是中国传统数学最重要的著作,在“勾股”章中有这样一个问题:“今有邑方二百步,各中开门,出东门十五步有木,问:出南门几步而见木?”用今天的话说,大意是:如图,是一座边长为200步(“步”是古代的长度单位)的正方形小城,东门位于的中点,南门位于的中点,出东门15步的处有一树木,求出南门多少步恰好看到位于处的树木(即点在直线上)?请你计算的长为__________步.【答案】【解析】分析:由正方形的性质得到∠EDG=90°,从而∠KDC+∠HDA=90°,再由∠C+∠KDC=90°,得到∠C=∠HDA,即有△CKD∽△DHA,由相似三角形的性质得到CK:KD=HD:HA,求解即可得到结论.详解:∵DEFG是正方形,∴∠EDG=90°,∴∠KDC+∠HDA=90°.∵∠C+∠KDC=90°,∴∠C=∠HDA.∵∠CKD=∠DHA=90°,∴△CKD∽△DHA,∴CK:KD=HD:HA,∴CK:100=100:15,解得:CK=.故答案为:.点睛:本题考查了相似三角形的应用.解题的关键是证明△CKD∽△DHA.三、解答题(本大题共7小题,满分66分.解答应写出文字说明、证明过程或演算步骤.)18. 先化简,再求值:,其中.【答案】.【解析】分析:先根据分式的混合运算顺序和运算法则化简原式,再将m的值代入计算可得.详解:原式=÷(﹣)=÷=•=﹣=当m=﹣2时,原式=﹣=﹣=﹣1+2=.点睛:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.19. 文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)【答案】(1)甲种图书售价每本28元,乙种图书售价每本20元;(2)甲种图书进货533本,乙种图书进货667本时利润最大.【解析】分析:(1)乙种图书售价每本元,则甲种图书售价为每本元,根据“用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本”列出方程求解即可;(2)设甲种图书进货本,总利润元,根据题意列出不等式及一次函数,解不等式求出解集,从而确定方案,进而求出利润最大的方案.详解:(1)设乙种图书售价每本元,则甲种图书售价为每本元.由题意得:,解得:.经检验,是原方程的解.所以,甲种图书售价为每本元,答:甲种图书售价每本28元,乙种图书售价每本20元.(2)设甲种图书进货本,总利润元,则.又∵,解得:.∵随的增大而增大,∴当最大时最大,∴当本时最大,此时,乙种图书进货本数为(本).答:甲种图书进货533本,乙种图书进货667本时利润最大.点睛:本题考查了一次函数的应用,分式方程的应用,一元一次不等式的应用,理解题意找到题目蕴含的相等关系或不等关系是解应用题的关键.20. 为增强学生的安全意识,我市某中学组织初三年级1000名学生参加了“校园安全知识竞赛”,随机抽取了一个班学生的成绩进行整理,分为,,,四个等级,并把结果整理绘制成条形统计图与扇形统计图(部分),请依据如图提供的信息,完成下列问题:(1)请估计本校初三年级等级为的学生人数;(2)学校决定从得满分的3名女生和2名男生中随机抽取3人参加市级比赛,请求出恰好抽到2名女生和1名男生的概率.【答案】(1)估计该校初三等级为的学生人数约为125人;(2)恰有2名女生,1名男生的概率为.【解析】分析:(1)先根据C等级人数及其所占百分比求得总人数,用总人数减去B、C、D的人数求得A等级人数,再用总人数乘以样本中A等级人数所占比例;(2)列出从3名女生和2名男生中随机抽取3人的所有等可能结果,再从中找到恰好抽到2名女生和1名男生的结果数,根据概率公式计算可得.详解:(1)∵所抽取学生的总数为8÷20%=40人,∴该班级等级为A的学生人数为40﹣(25+8+2)=5人,则估计本校初三年级等级为A的学生人数为1000×=125人;(2)设两位满分的男生记为A1、A2、三位满分的女生记为B1、B2、B3,从这5名同学中选3人的所有等可能结果为:(B1,B2,B3)、(A2,B2,B3)、(A2,B1,B3)、(A2,B1,B2)、(A1,B2,B3)、(A1,B1,B3)、(A1,B1,B2)、(A1,A2,B3)、(A1,A2,B2)、(A1,A2,B1),其中恰好有2名女生、1名男生的结果有6种,所以恰好抽到2名女生和1名男生的概率为=.点睛:本题考查了列表法或树状图法求概率以及条形统计图与扇形统计图.用到的知识点为:概率=所求情况数与总情况数之比.21. 如图,矩形的两边、的长分别为3、8,是的中点,反比例函数的图象经过点,与交于点.(1)若点坐标为,求的值及图象经过、两点的一次函数的表达式;(2)若,求反比例函数的表达式.【答案】(1),;(2).【解析】分析:(1)由已知求出A、E的坐标,即可得出m的值和一次函数函数的解析式;(2)由,得到,由,得到.设点坐标为,则点坐标为,代入反比例函数解析式即可得到结论.详解:(1)∵为的中点,∴.∵反比例函数图象过点,∴.设图象经过、两点的一次函数表达式为:,∴,解得,∴.(2)∵,∴.∵,∴,∴.设点坐标为,则点坐标为.∵两点在图象上,∴,解得:,∴,∴,∴.点睛:本题考查了矩形的性质以及反比例函数一次函数的解析式.解题的关键是求出点A、E、F的坐标.22. 如图,中,是上一点,于点,是的中点,于点,与交于点,若,平分,连接,.(1)求证:;(2)小亮同学经过探究发现:.请你帮助小亮同学证明这一结论.(3)若,判定四边形是否为菱形,并说明理由.【答案】(1)证明见解析;(2)证明见解析;(3)四边形是菱形,理由见解析. 【解析】分析:(1)由条件得出∠C=∠DHG=90°,∠CGE=∠GED,由F是AD的中点,FG∥AE,即可得到FG是线段ED的垂直平分线,进而得到GE=GD,∠CGE=∠GDE,利用AAS即可判定△ECG≌△GHD;(2)过点G作GP⊥AB于P,判定△CAG≌△P AG,可得AC=AP,由(1)可得EG=DG,即可得到Rt△ECG≌Rt△GPD,依据EC=PD,即可得出AD=AP+PD=AC+EC;(3)由∠B=30°,可得∠ADE=30°,进而得到AE=AD,故AE=AF=FG,再根据四边形AECF是平行四边形,即可得到四边形AEGF是菱形.详解:(1)∵AF=FG,∴∠F AG=∠FGA.∵AG平分∠CAB,∴∠CAG=∠FGA,∴∠CAG=∠FGA,∴AC∥FG.∵DE⊥AC,∴FG⊥DE.∵FG⊥BC,∴DE∥BC,∴AC⊥BC,∴∠C=∠DHG=90°,∠CGE=∠GED.∵F是AD的中点,FG∥AE,∴H是ED的中点,∴FG是线段ED的垂直平分线,∴GE=GD,∠GDE=∠GED,∴∠CGE=∠GDE,∴△ECG≌△GHD;(2)过点G作GP⊥AB于P,∴GC=GP,而AG=AG,∴△CAG≌△P AG,∴AC=AP,由(1)可得EG=DG,∴Rt△ECG≌Rt△GPD,∴EC=PD,∴AD=AP+PD=AC+EC;(3)四边形AEGF是菱形.证明如下:∵∠B=30°,∴∠ADE=30°,∴AE=AD,∴AE=AF=FG,由(1)得AE∥FG,∴四边形AECF是平行四边形,∴四边形AEGF是菱形.点睛:本题属于四边形综合题,主要考查了菱形的判定、全等三角形的判定和性质,线段垂直平分线的判定与性质以及含30°角的直角三角形的性质的综合运用,利用全等三角形的对应边相等,对应角相等是解决问题的关键.23. 如图,在平面直角坐标系中,二次函数交轴于点、,交轴于点,在轴上有一点,连接.(1)求二次函数的表达式;(2)若点为抛物线在轴负半轴上方的一个动点,求面积的最大值;(3)抛物线对称轴上是否存在点,使为等腰三角形,若存在,请直接写出所有点的坐标,若不存在请说明理由.【答案】(1)二次函数的解析式为;(2)当时,的面积取得最大值;(3)点的坐标为,,.【解析】分析:(1)把已知点坐标代入函数解析式,得出方程组求解即可;(2)根据函数解析式设出点D坐标,过点D作DG⊥x轴,交AE于点F,表示△ADE的面积,运用二次函数分析最值即可;(3)设出点P坐标,分P A=PE,P A=AE,PE=AE三种情况讨论分析即可.详解:(1)∵二次函数y=ax2+bx+c经过点A(﹣4,0)、B(2,0),C(0,6),∴,解得:,所以二次函数的解析式为:y=;(2)由A(﹣4,0),E(0,﹣2),可求AE所在直线解析式为y=,过点D作DN⊥x轴,交AE于点F,交x轴于点G,过点E作EH⊥DF,垂足为H,如图,设D(m,),则点F(m,),∴DF=﹣()=,∴S△ADE=S△ADF+S△EDF=×DF×AG+DF×EH=×DF×AG+×DF×EH=×4×DF=2×()=,∴当m=时,△ADE的面积取得最大值为.(3)y=的对称轴为x=﹣1,设P(﹣1,n),又E(0,﹣2),A(﹣4,0),可求P A=,PE=,AE=,分三种情况讨论:当P A=PE时,=,解得:n=1,此时P(﹣1,1);当P A=AE时,=,解得:n=,此时点P坐标为(﹣1,);当PE=AE时,=,解得:n=﹣2,此时点P坐标为:(﹣1,﹣2).综上所述:P点的坐标为:(﹣1,1),(﹣1,),(﹣1,﹣2).点睛:本题主要考查二次函数的综合问题,会求抛物线解析式,会运用二次函数分析三角形面积的最大值,会分类讨论解决等腰三角形的顶点的存在问题时解决此题的关键.24. 如图,在菱形ABCD中,AC与BD交于点O,E是BD上一点,EF//AB,∠EAB=∠EBA,过点B作DA的垂线,交DA的延长线于点G.(1)∠DEF和∠AEF是否相等?若相等,请证明;若不相等,请说明理由;(2)找出图中与ΔAGB相似的三角形,并证明;(3)BF的延长线交CD的延长线于点H,交AC于点M.求证:BM2=MF⋅MH.【答案】(1),理由见解析;(2),证明见解析;(3)证明见解析.【解析】分析:(1)先判断出∠DEF=∠EBA,∠AEF=∠EAB,即可得出结论;(2)先判断出∠GAB=∠ABE+∠ADB=2∠ABE,进而得出∠GAB=∠AEO,即可得出结论;(3)先判断出BM=DM,∠ADM=∠ABM,进而得出∠ADM=∠H,判断出△MFD∽△MDH,即可得出结论.详解:(1)∠DEF=∠AEF,理由如下:∵EF∥AB,∴∠DEF=∠EBA,∠AEF=∠EAB.∵∠EAB=∠EBA,∴∠DEF=∠AEF;(2)△EOA∽△AGB,理由如下:∵四边形ABCD是菱形,∴AB=AD,AC⊥BD,∴∠GAB=∠ABE+∠ADB=2∠ABE.∵∠AEO=∠ABE+∠BAE=2∠ABE.∵∠GAB=∠AEO,∠GAB=∠AOE=90°,∴△EOA∽△AGB;(3)如图,连接DM.∵四边形ABCD是菱形,由对称性可知,BM=DM,∠ADM=∠ABM.∵AB∥CH,∴∠ABM=∠H,∴∠ADM=∠H.∵∠DMH=∠FMD,∴△MFD∽△MDH,∴,∴DM2=MF•MH,∴BM2=MF•MH.点睛:本题是相似形综合题,主要考查了菱形的性质,对称性,相似三角形的判定和性质,判断出△EOA∽△AGB是解答本题的关键.。
2018山东泰安市中考数学试题[含答案解析版](总41页)-本页仅作为预览文档封面,使用时请删除本页-2018年山东泰安市中考数学试卷一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记零分)1.(3分)(2018•泰安)计算:﹣(﹣2)+(﹣2)0的结果是()A.﹣3 B.0 C.﹣1 D.32.(3分)(2018•泰安)下列运算正确的是()A.2y3+y3=3y6B.y2•y3=y6C.(3y2)3=9y6D.y3÷y﹣2=y53.(3分)(2018•泰安)如图是下列哪个几何体的主视图与俯视图()A.B.C.D.4.(3分)(2018•泰安)如图,将一张含有30°角的三角形纸片的两个顶点叠放在矩形的两条对边上,若∠2=44°,则∠1的大小为()A.14°B.16°C.90°﹣αD.α﹣44°5.(3分)(2018•泰安)某中学九年级二班六组的8名同学在一次排球垫球测试中的成绩如下(单位:个)35 38 42 44 40 47 45 45则这组数据的中位数、平均数分别是()A.42、42 B.43、42 C.43、43 D.44、436.(3分)(2018•泰安)夏季来临,某超市试销A、B两种型号的风扇,两周内共销售30台,销售收入5300元,A型风扇每台200元,B型风扇每台150元,问A、B两种型号的风扇分别销售了多少台?若设A型风扇销售了x台,B 型风扇销售了y台,则根据题意列出方程组为()A.B.C.D.7.(3分)(2018•泰安)二次函数y=ax2+bx+c的图象如图所示,则反比例函数y=与一次函数y=ax+b在同一坐标系内的大致图象是()A.B.C.D.8.(3分)(2018•泰安)不等式组有3个整数解,则a的取值范围是()A.﹣6≤a<﹣5 B.﹣6<a≤﹣5 C.﹣6<a<﹣5 D.﹣6≤a≤﹣59.(3分)(2018•泰安)如图,BM与⊙O相切于点B,若∠MBA=140°,则∠ACB的度数为()A.40°B.50°C.60° D.70°10.(3分)(2018•泰安)一元二次方程(x+1)(x﹣3)=2x﹣5根的情况是()A.无实数根B.有一个正根,一个负根C.有两个正根,且都小于3 D.有两个正根,且有一根大于311.(3分)(2018•泰安)如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,△ABC经过平移后得到△A1B1C1,若AC上一点P(,)平移后对应点为P1,点P1绕原点顺时针旋转180°,对应点为P2,则点P2的坐标为()A.(,)B.(﹣,﹣)C.(,)D.(﹣,﹣)12.(3分)(2018•泰安)如图,⊙M的半径为2,圆心M的坐标为(3,4),点P是⊙M上的任意一点,PA⊥PB,且PA、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为()A.3 B.4 C.6 D.8二、填空题(本大题共6小题,满分18分。
2024届山东省泰安市岱岳区中考三模数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。
用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。
将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)1.对于一组统计数据:1,6,2,3,3,下列说法错误的是( )A.平均数是3 B.中位数是3 C.众数是3 D.方差是2.52.下列运算正确的是()A.a12÷a4=a3B.a4•a2=a8C.(﹣a2)3=a6D.a•(a3)2=a73.如图,将函数y=12(x﹣2)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(1,m),B(4,n)平移后的对应点分别为点A'、B'.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是()A.y=12(x﹣2)2-2 B.y=12(x﹣2)2+7C.y=12(x﹣2)2-5 D.y=12(x﹣2)2+44.如图,在平面直角坐标系中,矩形OABC的两边OA,OC分别在x轴和y轴上,并且OA=5,OC=1.若把矩形OABC绕着点O逆时针旋转,使点A恰好落在BC边上的A1处,则点C的对应点C1的坐标为()A .(﹣91255,)B .(﹣12955,)C .(﹣161255,)D .(﹣121655,) 5.一个容量为50的样本,在整理频率分布时,将所有频率相加,其和是( )A .50B .0.02C .0.1D .16.自1993年起,联合国将每年的3月11日定为“世界水日”,宗旨是唤起公众的节水意识,加强水资源保护.某校在开展“节约每一滴水”的活动中,从初三年级随机选出10名学生统计出各自家庭一个月的节约用水量,有关数据整理如下表.节约用水量(单位:吨)1 1.1 1.4 1 1.5 家庭数 4 6 5 3 1这组数据的中位数和众数分别是( )A .1.1,1.1;B .1.4,1.1;C .1.3,1.4;D .1.3,1.1. 7.关于x 的方程2(5)410a x x ---=有实数根,则a 满足( )A .1a ≥B .1a >且5a ≠C .1a ≥且5a ≠D .5a ≠ 8.将二次函数2y x 的图象先向左平移1个单位,再向下平移2个单位,所得图象对应的函数表达式是( )A .2(1)2y x =++B .2(1)2y x =+-C .2(1)2y x =--D .2(1)2y x =-+ 9.将一把直尺与一块直角三角板如图放置,如果158∠=︒,那么2∠的度数为( ).A .32︒B .58︒C .138︒D .148︒10.在平面直角坐标系中,点,则点P 不可能在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限二、填空题(本大题共6个小题,每小题3分,共18分)11.如图所示,直线y=x+1(记为l 1)与直线y=mx+n (记为l 2)相交于点P (a ,2),则关于x 的不等式x+1≥mx+n 的解集为__________.12.甲、乙两个机器人检测零件,甲比乙每小时多检测20个,甲检测300个比乙检测200个所用的时间少10%,若设甲每小时检测x个,则根据题意,可列出方程:__________.13.已知x ay b=⎧⎨=⎩是方程组2325x yx y-=⎧⎨+=⎩的解,则3a﹣b的算术平方根是_____.14.将两张三角形纸片如图摆放,量得∠1+∠2+∠3+∠4=220°,则∠5=__.15.若a+b=3,ab=2,则a2+b2=_____.16.二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b>0;④其顶点坐标为(12,﹣2);⑤当x<12时,y随x的增大而减小;⑥a+b+c>0中,正确的有______.(只填序号)三、解答题(共8题,共72分)17.(8分)某学校“智慧方园”数学社团遇到这样一个题目:如图1,在△ABC中,点O在线段BC上,∠BAO=30°,∠OAC=75°,AO=33,BO:CO=1:3,求AB的长.经过社团成员讨论发现,过点B作BD∥AC,交AO的延长线于点D,通过构造△ABD就可以解决问题(如图2).请回答:∠ADB=°,AB=.请参考以上解决思路,解决问题:如图3,在四边形ABCD中,对角线AC与BD相交于点O,AC⊥AD,AO=33,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的长.18.(8分)旅游公司在景区内配置了50辆观光车共游客租赁使用,假定每辆观光车一天内最多只能出租一次,且每辆车的日租金x(元)是5的倍数.发现每天的营运规律如下:当x不超过100元时,观光车能全部租出;当x超过100元时,每辆车的日租金每增加5元,租出去的观光车就会减少1辆.已知所有观光车每天的管理费是1100元. (1)优惠活动期间,为使观光车全部租出且每天的净收入为正,则每辆车的日租金至少应为多少元?(注:净收入=租车收入﹣管理费)(2)当每辆车的日租金为多少元时,每天的净收入最多?19.(8分)已知:关于x 的方程x 2﹣(2m+1)x+2m=0(1)求证:方程一定有两个实数根;(2)若方程的两根为x 1,x 2,且|x 1|=|x 2|,求m 的值.20.(8分)如图,在平面直角坐标系中,矩形DOBC 的顶点O 与坐标原点重合,B 、D 分别在坐标轴上,点C 的坐标为(6,4),反比例函数y=1k x(x >0)的图象经过线段OC 的中点A ,交DC 于点E ,交BC 于点F . (1)求反比例函数的解析式;(2)求△OEF 的面积;(3)设直线EF 的解析式为y=k 2x+b ,请结合图象直接写出不等式k 2x+b >1k x的解集.21.(8分)许昌文峰塔又称文明寺塔,为全国重点文物保护单位,某校初三数学兴趣小组的同学想要利用学过的知识测量文峰塔的高度,他们找来了测角仪和卷尺,在点A 处测得塔顶C 的仰角为30°,向塔的方向移动60米后到达点B ,再次测得塔顶C 的仰角为60°,试通过计算求出文峰塔的高度CD .(结果保留两位小数)22.(10分)已知如图,在△ABC 中,∠B =45°,点D 是BC 边的中点,DE ⊥BC 于点D ,交AB 于点E ,连接CE .(1)求∠AEC 的度数;(2)请你判断AE 、BE 、AC 三条线段之间的等量关系,并证明你的结论.23.(12分)如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF.24.列方程解应用题:某商场用8万元购进一批新款衬衫,上架后很快销售一空,商场又紧急购进第二批这种衬衫,数量是第一次的2倍,但进价涨了4元/件,结果共用去17.6万元.该商场第一批购进衬衫多少件?商场销售这种衬衫时,每件定价都是58元,剩至150件时按八折出售,全部售完.售完这两批衬衫,商场共盈利多少元?参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解题分析】根据平均数、中位数、众数和方差的定义逐一求解可得.【题目详解】解:A、平均数为=3,正确;B、重新排列为1、2、3、3、6,则中位数为3,正确;C、众数为3,正确;D、方差为×[(1-3)2+(6-3)2+(2-3)2+(3-3)2+(3-3)2]=2.8,错误;故选:D.【题目点拨】本题考查了众数、平均数、中位数、方差.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量. 2、D【解题分析】分别根据同底数幂的除法、乘法和幂的乘方的运算法则逐一计算即可得.【题目详解】解:A 、a 12÷a 4=a 8,此选项错误; B 、a 4•a 2=a 6,此选项错误;C 、(-a 2)3=-a 6,此选项错误;D 、a•(a 3)2=a•a 6=a 7,此选项正确;故选D .【题目点拨】本题主要考查幂的运算,解题的关键是掌握同底数幂的除法、乘法和幂的乘方的运算法则.3、D【解题分析】 ∵函数()21212y x =-+的图象过点A (1,m ),B (4,n ), ∴m =()211212-+=32,n =()214212-+=3, ∴A (1,32),B (4,3), 过A 作AC ∥x 轴,交B ′B 的延长线于点C ,则C (4,32), ∴AC =4﹣1=3,∵曲线段AB 扫过的面积为9(图中的阴影部分),∴AC •AA ′=3AA ′=9,∴AA ′=3,即将函数()21212y x =-+的图象沿y 轴向上平移3个单位长度得到一条新函数的图象, ∴新图象的函数表达式是()21242y x =-+. 故选D .4、A【解题分析】直接利用相似三角形的判定与性质得出△ONC 1三边关系,再利用勾股定理得出答案.【题目详解】过点C 1作C 1N ⊥x 轴于点N ,过点A 1作A 1M ⊥x 轴于点M ,由题意可得:∠C 1NO=∠A 1MO=90°,∠1=∠2=∠1,则△A 1OM ∽△OC 1N ,∵OA=5,OC=1,∴OA 1=5,A 1M=1,∴OM=4,∴设NO=1x ,则NC 1=4x ,OC 1=1,则(1x )2+(4x )2=9,解得:x=±35(负数舍去),则NO=95,NC 1=125, 故点C 的对应点C 1的坐标为:(-95,125). 故选A .【题目点拨】此题主要考查了矩形的性质以及勾股定理等知识,正确得出△A 1OM ∽△OC 1N 是解题关键.5、D【解题分析】所有小组频数之和等于数据总数,所有频率相加等于1.6、D【解题分析】分析:中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.详解:这组数据的中位数是1.2 1.41.32+=;这组数据的众数是1.1.故选D.点睛:本题属于基础题,考查了确定一组数据的中位数和众数的能力,要明确定义,一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.7、A【解题分析】分类讨论:当a=5时,原方程变形一元一次方程,有一个实数解;当a≠5时,根据判别式的意义得到a≥1且a≠5时,方程有两个实数根,然后综合两种情况即可得到满足条件的a的范围.【题目详解】当a=5时,原方程变形为-4x-1=0,解得x=-14;当a≠5时,△=(-4)2-4(a-5)×(-1)≥0,解得a≥1,即a≥1且a≠5时,方程有两个实数根,所以a的取值范围为a≥1.故选A.【题目点拨】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.8、B【解题分析】抛物线平移不改变a的值,由抛物线的顶点坐标即可得出结果.【题目详解】解:原抛物线的顶点为(0,0),向左平移1个单位,再向下平移1个单位,那么新抛物线的顶点为(-1,-1),可设新抛物线的解析式为:y=(x-h)1+k,代入得:y=(x+1)1-1.∴所得图象的解析式为:y=(x+1)1-1;故选:B.【题目点拨】本题考查二次函数图象的平移规律;解决本题的关键是得到新抛物线的顶点坐标.9、D【解题分析】根据三角形的一个外角等于与它不相邻的两个内角的和求出∠1,再根据两直线平行,同位角相等可得∠2=∠1.【题目详解】如图,由三角形的外角性质得:∠1=90°+∠1=90°+58°=148°.∵直尺的两边互相平行,∴∠2=∠1=148°.故选D.【题目点拨】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.10、B【解题分析】根据坐标平面内点的坐标特征逐项分析即可.【题目详解】A. 若点在第一象限,则有:,解之得m>1,∴点P可能在第一象限;B. 若点在第二象限,则有:,解之得不等式组无解,∴点P不可能在第二象限;C. 若点在第三象限,则有:,解之得m<1,∴点P可能在第三象限;D. 若点在第四象限,则有:,解之得0<m<1,∴点P可能在第四象限;故选B.【题目点拨】本题考查了不等式组的解法,坐标平面内点的坐标特征,第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x轴上的点纵坐标为0,y 轴上的点横坐标为0.二、填空题(本大题共6个小题,每小题3分,共18分)11、x≥1【解题分析】把y=2代入y=x+1,得x=1,∴点P的坐标为(1,2),根据图象可以知道当x≥1时,y=x+1的函数值不小于y=mx+n相应的函数值,因而不等式x+1≥mx+n的解集是:x≥1,故答案为x≥1.【题目点拨】本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.12、300200(110%)20x x =⨯-- 【解题分析】 【分析】若设甲每小时检测x 个,检测时间为300x ,乙每小时检测()20x -个,检测时间为20020x -,根据甲检测300个比乙检测200个所用的时间少10%,列出方程即可. 【解答】若设甲每小时检测x 个,检测时间为300x ,乙每小时检测()20x -个,检测时间为20020x -,根据题意有: ()300200110%20x x =⨯--. 故答案为()300200110%.20x x =⨯-- 【点评】考查分式方程的应用,解题的关键是找出题目中的等量关系.13、22.【解题分析】灵活运用方程的性质求解即可。
2018年山东省泰安市岱岳区中考数学模拟试卷一.选择题(满分36分,每小题3分)1.计算:得()A.B.C.D.2.下列计算正确的是()A.5a4•2a=7a5B.(﹣2a2b)2=4a2b2C.2x(x﹣3)=2x2﹣6x D.(a﹣2)(a+3)=a2﹣63.某班第一组12名同学在“爱心捐款”活动中,捐款情况统计如下表,则捐款数组成的一组数据中,中位数与众数分别是()捐款(元)10 15 20 50人数 1 5 4 2A.15,15 B.17.5,15 C.20,20 D.15,204.一个不透明的信封中装有四张完全相同的卡片上分别画有等腰梯形、矩形、菱形、圆,现从中任取一张,卡片上画的恰好既是中心对称图形又是轴对称图形的概率是()A.B.C.D.15.已知是方程组的解,则a,b间的关系是()A.a+b=3 B.a﹣b=﹣1 C.a+b=0 D.a﹣b=﹣3 6.如图,AB是⊙O的直径,C是⊙O上一点(A、B除外),∠AOD=130°,则∠C的度数是()A.50°B.60°C.25°D.30°7.某药品经过两次降价,每瓶零售价由168元降为108元,已知两次降价的百分率相同,设每次降价的百分率为x,根据题意列方程得()A.168(1+x)2=108 B.168(1﹣x)2=108C.168(1﹣2x)=108 D.168(1﹣x2)=1088.已知函数:①y=2x;②y=﹣(x<0);③y=3﹣2x;④y=2x2+x(x≥0),其中,y随x增大而增大的函数有()A.1个B.2个C.3个D.4个9.如图,一次函数y=﹣x与二次函数为y=ax2+bx+c的图象相交于点M,N,则关于x的一元二次方程ax2+(b+1)x+c=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数C.没有实数根D.以上结论都正确10.已知二次函数y=ax2+bx+c的图象如右图所示,那么一次函数y=bx+a与反比例函数在同一坐标系内的图象可能是()A.B.C.D.11.如图,已知⊙O的半径是2,点A、B、C在⊙O上,若四边形OABC为菱形,则图中阴影部分面积为()A.π﹣2B.π﹣C.π﹣2D.π﹣12.如图,△ACB和△ECD都是等腰直角三角形,CA=CB,CE=CD,△ACB的顶点A在△ECD的斜边DE上,若AE=,AD=,则两个三角形重叠部分的面积为()A.B.3C.D.3二.填空题(共6小题,满分18分,每小题3分)13.今年“五一”节日期间,我市四个旅游景区共接待游客约303000多人次,这个数据用科学记数法可记为.14.关于x的不等式组有三个整数解,则a的取值范围是.15.在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A,B,C,D都在格点处,AB与CD相交于O,则sin∠BOD的值等于.16.在△ABC中,AB=AC,BC=12,已知圆O是△ABC的外接圆,且半径为10,则BC 边上的高为.17.某轮船由西向东航行,在A处测得小岛P的方位是北偏东75°,又继续航行7海里后,在B处测得小岛P的方位是北偏东60°,则此时轮船与小岛P的距离BP=海里.18.如图,过点A1(1,0)作x轴的垂线,交直线y=2x于点B1;点A2与点O关于直线A1B1对称;过点A2(2,0)作x轴的垂线,交直线y=2x于点B2;点A3与点O关于直线A2B2对称;过点A3(4,0)作x轴的垂线,交直线y=2x于点B3;…,按此规律作下去,则点B n的坐标为.三.解答题(共7小题,满分66分)19.(6分)先化简,再求值:先化简÷(﹣x+1),然后从﹣2<x<的范围内选取一个合适的整数作为x的值代入求值.20.(8分)《中国汉字听写大会》唤醒了很多人对文字基本功的重视和对汉字文化的学习,我市某校组织了一次全校2000名学生参加的“汉字听写大会”海选比赛,赛后发现所有参赛学生的成绩均不低于50分,为了更好地了解本次海选比赛的成绩分布情况,随机抽取了其中200名学生的海选比赛成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列统计图表:抽取的200名学生海选成绩分组表组别海选成绩xA组50≤x<60B组60≤x<70C组70≤x<80D组80≤x<90E组90≤x≤100请根据所给信息,解答下列问题:(1)请把图1中的条形统计图补充完整;(温馨提示:请画在答题卷相对应的图上)(2)在图2的扇形统计图中,记表示B组人数所占的百分比为a%,则a的值为,表示C组扇形的圆心角θ的度数为度;(3)规定海选成绩在90分以上(包括90分)记为“优等”,请估计该校参加这次海选比赛的2000名学生中成绩“优等”的有多少人?(4)经过统计发现,在E组中,有2位男生和2位女生获得了满分,如果从这4人中挑选2人代表学校参加比赛,请用树状图或列表法求出所选两人正好是一男一女的概率是多少?21.(8分)如图,已知菱形ABCD的对称中心是坐标原点O,四个顶点都在坐标轴上,反比例函数y=(k≠0)的图象与AD边交于E(﹣4,),F(m,2)两点.(1)求k,m的值;(2)写出函数y=图象在菱形ABCD内x的取值范围.22.(10分)已知,在△ABC中,∠A=90°,AB=AC,点D为BC的中点.(1)如图①,若点E、F分别为AB、AC上的点,且DE⊥DF,求证:BE=AF;(2)若点E、F分别为AB、CA延长线上的点,且DE⊥DF,那么BE=AF吗?请利用图②说明理由.23.(10分)某贸易公司计划租用甲、乙两种型号的货车共8辆,将100吨货物一次全部运往某地销售,其中每辆甲型车最多能装该种货物12吨,每辆乙型车最多能装该种货物14吨,已知租用1辆甲型货车和2辆乙型货车共需费用2600元,租用2辆甲型货车1辆乙型货车共需费用2500元,租同一种型号的货车每辆租车费用相同.(1)求租用一辆甲型货车、一辆乙型货车的费用分别是多少元?(2)若该贸易公司计划此次租车费用不超过7000元,应选择哪种租车方案可使总费用最低?并求出最低的租车总费用.24.(12分)如图,BF和CE分别是钝角△ABC(∠ABC是钝角)中AC、AB边上的中线,又BF⊥CE,垂足是G,过点G作GH⊥BC,垂足为H.(1)求证:GH2=BH•CH;(2)若BC=20,并且点G到BC的距离是6,则AB的长为多少?25.(12分)如图,在矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0).抛物线y=﹣x2+bx+c经过点A、C,与AB交于点D.(1)求抛物线的函数解析式;(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S.①求S关于m的函数表达式;②当S最大时,在抛物线y=﹣x2+bx+c的对称轴l上,若存在点F,使△DFQ为直角三角形,请直接写出所有符合条件的点F的坐标;若不存在,请说明理由.参考答案一.选择题1.解:原式=﹣××,=﹣.故选:B.2.解:(A)原式=10a5,故A错误;(B)原式=4a4b2,故B错误;(D)原式=a2+a﹣6,故D错误;故选:C.3.解:共有数据12个,第6个数和第7个数分别是15元,20元,所以中位数是:(15+20)÷2=17.5(元);捐款金额的众数是15元.故选:B.4.解:∵在等腰梯形、矩形、菱形、圆中,既是中心对称图形又是轴对称图形的有矩形、菱形、圆这3个,∴卡片上画的恰好既是中心对称图形又是轴对称图形的概率是,故选:C.5.【解答】解:将代入方程组得,,①+②得,a+b=3.故选:A.6.解:∵∠AOD=130°,∴∠C=90°﹣,故选:C.7.解:设每次降价的百分率为x,根据题意得:168(1﹣x)2=108.故选:B.8.解:①y=2x是正比例函数,k=2>0,y随x的增大而增大;②y=﹣反比例函数,在每个象限内y随x的增大而增大;③y=3﹣2x是一次函数,k=﹣2<0,y随x的增大而减小;④y=2x2+x(x≥0)是二次函数,当x≥0时,y随x的增大而增大.故选:C.9.解:∵一次函数y=﹣x与二次函数为y=ax2+bx+c的图象有两个交点,∴ax2+bx+c=﹣x有两个不相等的实数根,ax2+bx+c=﹣x变形为ax2+(b+1)x+c=0,∴ax2+(b+1)x+c=0有两个不相等的实数根,故选:A.10.解:∵二次函数图象开口向下,∴a<0,∵对称轴x=﹣<0,∴b<0,∴一次函数y=bx+a过第二三四象限,反比例函数y=位于第二四象限,∴只有B选项符合题意.故选:B.11.解:连接OB和AC交于点D,如图所示:∵圆的半径为2,∴OB=OA=OC=2,又四边形OABC是菱形,∴OB⊥AC,OD=OB=1,在Rt△COD中利用勾股定理可知:CD==,AC=2CD=2,∵sin∠COD==,∴∠COD=60°,∠AOC=2∠COD=120°,∴S=OB×AC=×2×2=2,菱形ABCOS扇形AOC==,则图中阴影部分面积为S扇形AOC﹣S菱形ABCO=π﹣2,故选:C.12.解:如图设AB交CD于O,连接BD,作OM⊥DE于M,ON⊥BD于N.∵∠ECD=∠ACB=90°,∴∠ECA=∠DCB,∵CE=CD,CA=CB,∴△ECA≌△DCB,∴∠E=∠CDB=45°,AE=BD=,∵∠EDC=45°,∴∠ADB=∠ADC+∠CDB=90°,在Rt△ADB中,AB==2,∴AC=BC=2,∴S△ABC=×2×2=2,∵OD平分∠ADB,OM⊥DE于M,ON⊥BD于N,∴OM=ON,∵====,∴S△AOC=2×=3﹣,故选:D.二.填空题(共6小题,满分18分,每小题3分)13.解:303000=3.03×105,故答案为:3.03×105.14.解:,由①得:x>8,由②得:x<2﹣4a,∴不等式组的解集是8<x<2﹣4a,∵关于x的不等式组有三个整数解,即9,10,11,∴11<2﹣4a≤12,解得:﹣≤a<﹣.故答案为:﹣≤a<﹣.15.解:连接AE、EF,如图所示,则AE∥CD,∴∠F AE=∠BOD,设每个小正方形的边长为a,则AE=,AF=,EF=a,∵,∴△F AE是直角三角形,∠FEA=90°,∴sin∠F AE==,即sin∠BOD=,故答案为:.16.解:作AD⊥BC于D,∵AB=AC,∴AD垂直平分BC,△ABC的外接圆的圆心O在直线AD上,当△ABC为锐角三角形时,O点在线段AD上,如图1,连接OB,BD=CD=BC=6,OB=OA=10,在Rt△OBD中,OD==8,∴AD=AO+DO=10+8=18;当△ABC为钝角三角形时,O点在线段AD的延长线上,如图2,连接OB,同理可得OD=8,∴AD=AO﹣DO=10﹣8=2,综上所述,BC边上的高为2或18.故答案为2或18.17.解:过P作PD⊥AB于点D.∵∠PBD=90°﹣60°=30°且∠PBD=∠P AB+∠APB,∠P AB=90﹣75=15°∴∠P AB=∠APB∴BP=AB=7(海里)故答案是:7.18.解:∵点A1坐标为(1,0),∴OA1=1,过点A1作x轴的垂线交直线于点B1,可知B1点的坐标为(1,2),∵点A2与点O关于直线A1B1对称,∴OA1=A1A2=1,∴OA2=1+1=2,∴点A2的坐标为(2,0),B2的坐标为(2,4),∵点A3与点O关于直线A2B2对称.故点A3的坐标为(4,0),B3的坐标为(4,8),依此类推便可求出点A n的坐标为(2n﹣1,0),点B n的坐标为(2n﹣1,2n).故答案为:(2n﹣1,2n).三.解答题(共7小题,满分66分)19.解:原式=÷[﹣]=÷=•=﹣,∵﹣2<x<且x+1≠0,x﹣1≠0,x≠0,x是整数,∴x=2,当x=2时,原式=﹣.20.解:(1)D的人数是:200﹣10﹣30﹣40﹣70=50(人),补全图形如下:(2)B组人数所占的百分比是×100%=15%,则a的值是15;C组扇形的圆心角θ的度数为360°×=72°;故答案为:15,72;(3)根据题意得:2000×=700(人),答:估计该校参加这次海选比赛的2000名学生中成绩“优等”的有700人.(4)分别用A 、B表示两名女生,分别用D 、E表示两名男生,由题意,可列表:A B C D第一次第二次A(A,B)(A,C)(A,D)B(B,A)(B,C)(B,D)C(C,A)(C,B)(C,D)D(D,A)(D,B)(D,C)由已知,共有12种结果,且每种结果出现的可能性相同,其中满足要求的有8种,∴P(恰好抽到1个男生和1个女生)==.21.解:(1)∵点E(﹣4,)在y=上,∴k=﹣2,∴反比例函数的解析式为y=﹣,∵F(m,2)在y=上,∴m=﹣1.(2)函数y=图象在菱形ABCD内x的取值范围为:﹣4<x<﹣1或1<x<4.22.(1)证明:连接AD,如图①所示.∵∠A=90°,AB=AC,∴△ABC为等腰直角三角形,∠EBD=45°.∵点D为BC的中点,∴AD=BC=BD,∠F AD=45°.∵∠BDE+∠EDA=90°,∠EDA+∠ADF=90°,∴∠BDE=∠ADF.在△BDE和△ADF中,,∴△BDE≌△ADF(ASA),∴BE=AF;(2)BE=AF,证明如下:连接AD,如图②所示.∵∠ABD=∠BAD=45°,∴∠EBD=∠F AD=135°.∵∠EDB+∠BDF=90°,∠BDF+∠FDA=90°,∴∠EDB=∠FD A.在△EDB和△FDA中,,∴△EDB≌△FDA(ASA),∴BE=AF.23.解:(1)设租用一辆甲型货车x元,租用一辆乙型货车y元,,得,答:租用一辆甲型货车800元,租用一辆乙型货车900元;(2)设租用甲型货车a辆,则租用乙型货车(8﹣a)辆,租车总费用为w元,则w=800a+900(8﹣a)=﹣100 a+7200,根据题意,得,解这个不等式组,得2≤a≤6,∵a为正整数,∴a=2,3,4,5,6,∵w=﹣100 a+7200是关于a的一次函数,k=﹣100<0,∴w随a的增大而减小,∴当a=6时,购买总费用最低,w=﹣100×6+7200=6600(元),此时8﹣6=2,答:当租用甲型货车6辆,则租用乙型货车2辆时,租车总费用最低,最低租车费用是6600元.24.(1)证明:∵CE⊥BF,GH⊥BC,∴∠CGB=∠CHG=∠BHG=90°,∴∠CGH+∠BGH=90°,∠BGH+∠GBH=90°,∴∠CGH=∠GBH,∴△CGH∽△GBH,∴=,∴GH2=BH•CH;(2)解:作EM⊥CB交CB的延长线于M.设CH=x,HB=y.则有,解得或,∵∠ABC是钝角,∴CH>BH,∴CH=18,BH=2,∵G是△ABC的重心,∴CG=2EG,∵GH⊥BC,EM⊥BC,∴GH∥EM,∴==,∴EM=9,CM=27,∴BM=CM﹣BC=7,∴BE==,∴AB=2BE=2.25.【解答】解:(1)将A、C两点坐标代入抛物线,得,解得:,∴抛物线的解析式为y=﹣x2+x+8;(2)①∵OA=8,OC=6,∴AC==10,过点Q作QE⊥BC与E点,则sin∠ACB===,∴=,∴QE=(10﹣m),∴S=•CP•QE=m×(10﹣m)=﹣m2+3m;②∵S=•CP•QE=m×(10﹣m)=﹣m2+3m=﹣(m﹣5)2+,∴当m=5时,S取最大值;在抛物线对称轴l上存在点F,使△FDQ为直角三角形,∵抛物线的解析式为y=﹣x2+x+8的对称轴为x=,D的坐标为(3,8),Q(3,4),当∠FDQ=90°时,F1(,8),当∠FQD=90°时,则F2(,4),当∠DFQ=90°时,设F(,n),则FD2+FQ2=DQ2,即+(8﹣n)2++(n﹣4)2=16,解得:n=6±,∴F3(,6+),F4(,6﹣),满足条件的点F共有四个,坐标分别为F1(,8),F2(,4),F3(,6+),F4(,6﹣).。
2018年山东省泰安市岱岳区中考数学模拟试卷(5月份)一.选择题(满分36分,每小题3分)1.计算:得()A.B.C.D.2.下列计算正确的是()A.5a4•2a=7a5B.(﹣2a2b)2=4a2b2C.2x(x﹣3)=2x2﹣6x D.(a﹣2)(a+3)=a2﹣63.某班第一组12名同学在“爱心捐款”活动中,捐款情况统计如下表,则捐款数组成的一组数据中,中位数与众数分别是()D.15,204.一个不透明的信封中装有四张完全相同的卡片上分别画有等腰梯形、矩形、菱形、圆,现从中任取一张,卡片上画的恰好既是中心对称图形又是轴对称图形的概率是()A.B.C.D.15.已知是方程组的解,则a,b间的关系是()A.a+b=3B.a﹣b=﹣1C.a+b=0D.a﹣b=﹣36.如图,AB是⊙O的直径,C是⊙O上一点(A、B除外),∠AOD=130°,则∠C的度数是()A.50°B.60°C.25°D.30°7.某药品经过两次降价,每瓶零售价由168元降为108元,已知两次降价的百分率相同,设每次降价的百分率为x,根据题意列方程得()A.168(1+x)2=108B.168(1﹣x)2=108C.168(1﹣2x)=108D.168(1﹣x2)=1088.已知函数:①y=2x;②y=﹣(x<0);③y=3﹣2x;④y=2x2+x(x≥0),其中,y随x 增大而增大的函数有()A.1个B.2个C.3个D.4个9.如图,一次函数y=﹣x与二次函数为y=ax2+bx+c的图象相交于点M,N,则关于x的一元二次方程ax2+(b+1)x+c=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数C.没有实数根D.以上结论都正确10.已知二次函数y=ax2+bx+c的图象如右图所示,那么一次函数y=bx+a与反比例函数在同一坐标系内的图象可能是()A.B.C.D.11.如图,已知⊙O的半径是2,点A、B、C在⊙O上,若四边形OABC为菱形,则图中阴影部分面积为()A.π﹣2B.π﹣C.π﹣2D.π﹣12.如图,△ACB和△ECD都是等腰直角三角形,CA=CB,CE=CD,△ACB的顶点A在△ECD的斜边DE上,若AE=,AD=,则两个三角形重叠部分的面积为()A.B.3C.D.3二.填空题(共6小题,满分18分,每小题3分)13.今年“五一”节日期间,我市四个旅游景区共接待游客约303000多人次,这个数据用科学记数法可记为.14.关于x的不等式组有三个整数解,则a的取值范围是.15.在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A,B,C,D都在格点处,AB与CD相交于O,则sin∠BOD的值等于.16.在△ABC中,AB=AC,BC=12,已知圆O是△ABC的外接圆,且半径为10,则BC边上的高为.17.某轮船由西向东航行,在A处测得小岛P的方位是北偏东75°,又继续航行7海里后,在B处测得小岛P的方位是北偏东60°,则此时轮船与小岛P的距离BP=海里.18.如图,过点A1(1,0)作x轴的垂线,交直线y=2x于点B1;点A2与点O关于直线A1B1对称;过点A2(2,0)作x轴的垂线,交直线y=2x于点B2;点A3与点O关于直线A2B2对称;过点A3(4,0)作x轴的垂线,交直线y=2x于点B3;…,按此规律作下去,则点B n 的坐标为.三.解答题(共7小题,满分66分)19.(6分)先化简,再求值:先化简÷(﹣x+1),然后从﹣2<x<的范围内选取一个合适的整数作为x的值代入求值.20.(8分)《中国汉字听写大会》唤醒了很多人对文字基本功的重视和对汉字文化的学习,我市某校组织了一次全校2000名学生参加的“汉字听写大会”海选比赛,赛后发现所有参赛学生的成绩均不低于50分,为了更好地了解本次海选比赛的成绩分布情况,随机抽取了其中200名学生的海选比赛成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列统计图表:抽取的200名学生海选成绩分组表请根据所给信息,解答下列问题:(1)请把图1中的条形统计图补充完整;(温馨提示:请画在答题卷相对应的图上)(2)在图2的扇形统计图中,记表示B组人数所占的百分比为a%,则a的值为,表示C组扇形的圆心角θ的度数为度;(3)规定海选成绩在90分以上(包括90分)记为“优等”,请估计该校参加这次海选比赛的2000名学生中成绩“优等”的有多少人?(4)经过统计发现,在E组中,有2位男生和2位女生获得了满分,如果从这4人中挑选2人代表学校参加比赛,请用树状图或列表法求出所选两人正好是一男一女的概率是多少?21.(8分)如图,已知菱形ABCD的对称中心是坐标原点O,四个顶点都在坐标轴上,反比例函数y=(k≠0)的图象与AD边交于E(﹣4,),F(m,2)两点.(1)求k,m的值;(2)写出函数y=图象在菱形ABCD内x的取值范围.22.(10分)已知,在△ABC中,∠A=90°,AB=AC,点D为BC的中点.(1)如图①,若点E、F分别为AB、AC上的点,且DE⊥DF,求证:BE=AF;(2)若点E、F分别为AB、CA延长线上的点,且DE⊥DF,那么BE=AF吗?请利用图②说明理由.23.(10分)某贸易公司计划租用甲、乙两种型号的货车共8辆,将100吨货物一次全部运往某地销售,其中每辆甲型车最多能装该种货物12吨,每辆乙型车最多能装该种货物14吨,已知租用1辆甲型货车和2辆乙型货车共需费用2600元,租用2辆甲型货车1辆乙型货车共需费用2500元,租同一种型号的货车每辆租车费用相同.(1)求租用一辆甲型货车、一辆乙型货车的费用分别是多少元?(2)若该贸易公司计划此次租车费用不超过7000元,应选择哪种租车方案可使总费用最低?并求出最低的租车总费用.24.(12分)如图,BF和CE分别是钝角△ABC(∠ABC是钝角)中AC、AB边上的中线,又BF⊥CE,垂足是G,过点G作GH⊥BC,垂足为H.(1)求证:GH2=BH•CH;(2)若BC=20,并且点G到BC的距离是6,则AB的长为多少?25.(12分)如图,在矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0).抛物线y=﹣x2+bx+c经过点A、C,与AB交于点D.(1)求抛物线的函数解析式;(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S.①求S关于m的函数表达式;②当S最大时,在抛物线y=﹣x2+bx+c的对称轴l上,若存在点F,使△DFQ为直角三角形,请直接写出所有符合条件的点F的坐标;若不存在,请说明理由.参考答案一.选择题1.解:原式=﹣××,=﹣.故选:B.2.解:(A)原式=10a5,故A错误;(B)原式=4a4b2,故B错误;(D)原式=a2+a﹣6,故D错误;故选:C.3.解:共有数据12个,第6个数和第7个数分别是15元,20元,所以中位数是:(15+20)÷2=17.5(元);捐款金额的众数是15元.故选:B.4.解:∵在等腰梯形、矩形、菱形、圆中,既是中心对称图形又是轴对称图形的有矩形、菱形、圆这3个,∴卡片上画的恰好既是中心对称图形又是轴对称图形的概率是,故选:C.5.【解答】解:将代入方程组得,,①+②得,a+b=3.故选:A.6.解:∵∠AOD=130°,∴∠C=90°﹣,故选:C.7.解:设每次降价的百分率为x,根据题意得:168(1﹣x)2=108.故选:B.8.解:①y=2x是正比例函数,k=2>0,y随x的增大而增大;②y=﹣反比例函数,在每个象限内y随x的增大而增大;③y=3﹣2x是一次函数,k=﹣2<0,y随x的增大而减小;④y=2x2+x(x≥0)是二次函数,当x≥0时,y随x的增大而增大.故选:C.9.解:∵一次函数y=﹣x与二次函数为y=ax2+bx+c的图象有两个交点,∴ax2+bx+c=﹣x有两个不相等的实数根,ax2+bx+c=﹣x变形为ax2+(b+1)x+c=0,∴ax2+(b+1)x+c=0有两个不相等的实数根,故选:A.10.解:∵二次函数图象开口向下,∴a<0,∵对称轴x=﹣<0,∴b<0,∴一次函数y=bx+a过第二三四象限,反比例函数y=位于第二四象限,∴只有B选项符合题意.故选:B.11.解:连接OB和AC交于点D,如图所示:∵圆的半径为2,∴OB=OA=OC=2,又四边形OABC是菱形,∴OB⊥AC,OD=OB=1,在Rt△COD中利用勾股定理可知:CD==,AC=2CD=2,∵sin∠COD==,∴∠COD=60°,∠AOC=2∠COD=120°,=OB×AC=×2×2=2,∴S菱形ABCOS扇形AOC==,则图中阴影部分面积为S 扇形AOC ﹣S 菱形ABCO =π﹣2,故选:C .12.解:如图设AB 交CD 于O ,连接BD ,作OM ⊥DE 于M ,ON ⊥BD 于N .∵∠ECD =∠ACB =90°, ∴∠ECA =∠DCB , ∵CE =CD ,CA =CB , ∴△ECA ≌△DCB ,∴∠E =∠CDB =45°,AE =BD =,∵∠EDC =45°,∴∠ADB =∠ADC +∠CDB =90°,在Rt △ADB 中,AB ==2, ∴AC =BC =2,∴S △ABC =×2×2=2,∵OD 平分∠ADB ,OM ⊥DE 于M ,ON ⊥BD 于N , ∴OM =ON ,∵====,∴S △AOC =2×=3﹣,故选:D .二.填空题(共6小题,满分18分,每小题3分) 13.解:303000=3.03×105, 故答案为:3.03×105.14.解:,由①得:x >8, 由②得:x <2﹣4a ,∴不等式组的解集是8<x<2﹣4a,∵关于x的不等式组有三个整数解,即9,10,11,∴11<2﹣4a≤12,解得:﹣≤a<﹣.故答案为:﹣≤a<﹣.15.解:连接AE、EF,如图所示,则AE∥CD,∴∠F AE=∠BOD,设每个小正方形的边长为a,则AE=,AF=,EF=a,∵,∴△F AE是直角三角形,∠FEA=90°,∴sin∠F AE==,即sin∠BOD=,故答案为:.16.解:作AD⊥BC于D,∵AB=AC,∴AD垂直平分BC,△ABC的外接圆的圆心O在直线AD上,当△ABC为锐角三角形时,O点在线段AD上,如图1,连接OB,BD=CD=BC=6,OB=OA=10,在Rt△OBD中,OD==8,∴AD=AO+DO=10+8=18;当△ABC为钝角三角形时,O点在线段AD的延长线上,如图2,连接OB,同理可得OD=8,∴AD=AO﹣D O=10﹣8=2,综上所述,BC边上的高为2或18.故答案为2或18.17.解:过P作PD⊥AB于点D.∵∠PBD=90°﹣60°=30°且∠PBD=∠P AB+∠APB,∠P AB=90﹣75=15°∴∠P AB=∠APB∴BP=AB=7(海里)故答案是:7.18.解:∵点A1坐标为(1,0),∴OA1=1,过点A1作x轴的垂线交直线于点B1,可知B1点的坐标为(1,2),∵点A2与点O关于直线A1B1对称,∴OA1=A1A2=1,∴OA2=1+1=2,∴点A2的坐标为(2,0),B2的坐标为(2,4),∵点A3与点O关于直线A2B2对称.故点A3的坐标为(4,0),B3的坐标为(4,8),依此类推便可求出点A n的坐标为(2n﹣1,0),点B n的坐标为(2n﹣1,2n).故答案为:(2n﹣1,2n).三.解答题(共7小题,满分66分)19.解:原式=÷[﹣]=÷=•=﹣,∵﹣2<x <且x+1≠0,x﹣1≠0,x≠0,x是整数,∴x=2,当x=2时,原式=﹣.20.解:(1)D的人数是:200﹣10﹣30﹣40﹣70=50(人),补全图形如下:(2)B组人数所占的百分比是×100%=15%,则a的值是15;C组扇形的圆心角θ的度数为360°×=72°;故答案为:15,72;(3)根据题意得:2000×=700(人),答:估计该校参加这次海选比赛的2000名学生中成绩“优等”的有700人.(4)分别用A、B表示两名女生,分别用D、E表示两名男生,由题意,可列表:8种,∴P(恰好抽到1个男生和1个女生)==.21.解:(1)∵点E(﹣4,)在y=上,∴k=﹣2,∴反比例函数的解析式为y=﹣,∵F(m,2)在y=上,∴m=﹣1.(2)函数y=图象在菱形ABCD内x的取值范围为:﹣4<x<﹣1或1<x<4.22.(1)证明:连接AD,如图①所示.∵∠A=90°,AB=AC,∴△ABC为等腰直角三角形,∠EBD=45°.∵点D为BC的中点,∴AD=BC=BD,∠F AD=45°.∵∠BDE+∠EDA=90°,∠EDA+∠ADF=90°,∴∠BDE=∠ADF.在△BDE和△ADF中,,∴△BDE≌△ADF(ASA),∴BE=AF;(2)BE=AF,证明如下:连接AD,如图②所示.∵∠ABD=∠BAD=45°,∴∠EBD=∠F AD=135°.∵∠EDB+∠BDF=90°,∠BDF+∠FDA=90°,∴∠EDB=∠FDA.在△EDB和△FDA中,,∴△EDB≌△FDA(ASA),∴BE=AF.23.解:(1)设租用一辆甲型货车x元,租用一辆乙型货车y元,,得,答:租用一辆甲型货车800元,租用一辆乙型货车900元;(2)设租用甲型货车a辆,则租用乙型货车(8﹣a)辆,租车总费用为w元,则w=800a+900(8﹣a)=﹣100 a+7200,根据题意,得,解这个不等式组,得2≤a≤6,∵a为正整数,∴a=2,3,4,5,6,∵w=﹣100 a+7200是关于a的一次函数,k=﹣100<0,∴w随a的增大而减小,∴当a=6时,购买总费用最低,w=﹣100×6+7200=6600(元),此时8﹣6=2,答:当租用甲型货车6辆,则租用乙型货车2辆时,租车总费用最低,最低租车费用是6600元.24.(1)证明:∵CE⊥BF,GH⊥BC,∴∠CGB=∠CHG=∠BHG=90°,∴∠CGH+∠BGH=90°,∠BGH+∠GBH=90°,∴∠CGH=∠GBH,∴△CGH∽△GBH,∴=,∴GH2=BH•CH;(2)解:作EM⊥CB交CB的延长线于M.设CH=x,HB=y.则有,解得或,∵∠ABC是钝角,∴CH>BH,∴CH=18,BH=2,∵G是△ABC的重心,∴CG=2EG,∵GH⊥BC,EM⊥BC,∴GH∥EM,∴==,∴EM=9,CM=27,∴BM=CM﹣BC=7,∴BE==,∴AB=2BE=2.25.【解答】解:(1)将A、C两点坐标代入抛物线,得,解得:,∴抛物线的解析式为y=﹣x2+x+8;(2)①∵OA=8,OC=6,∴AC==10,过点Q作QE⊥BC与E点,则sin∠ACB===,∴=,∴QE=(10﹣m),∴S=•CP•QE=m×(10﹣m)=﹣m2+3m;②∵S=•CP•QE=m×(10﹣m)=﹣m2+3m=﹣(m﹣5)2+,∴当m=5时,S取最大值;在抛物线对称轴l上存在点F,使△FDQ为直角三角形,∵抛物线的解析式为y=﹣x2+x+8的对称轴为x=,D的坐标为(3,8),Q(3,4),当∠FDQ=90°时,F1(,8),当∠FQD=90°时,则F2(,4),当∠DFQ=90°时,设F(,n),则FD2+FQ2=DQ2,即+(8﹣n)2++(n﹣4)2=16,解得:n=6±,∴F3(,6+),F4(,6﹣),满足条件的点F共有四个,坐标分别为F1(,8),F2(,4),F3(,6+),F4(,6﹣).。
2018年泰安学生学业水平测试数学样题一、选择题(本大题共12个小题,满分36分,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,错选、不选或选出的答案超过一个,均记零分.)1.在1,-2,0,-3.6 这四个数中,最大的数是( ) A .-2 B . 0 C .-3.6 D .12.下列计算正确的是A .()235x x -=B .()23636x x -=C .()221x x--= D .632x x x ÷=3.如图的几何体是由五个相同的小立方体搭成,它的左视图是( )A .B .C .D .4.鲁教版五四制初中数学教科书共八册,总字数约计1655000,用科学记数法可将1655000表示为 ( )A . 3165510⨯B .61.65510⨯C .516.5510⨯D . 70.165510⨯ 5.如图,直角三角板的直角顶点在正方形的顶点上,若0160∠=,则下列结论错误的是( ) A .0260∠= B .0360∠= C .∠4=450 D . ∠5=300 6.下列图形:任取一个是中心对称图形的概率是( )A .B .C .D .17.若关于x 的不等式组3(2)224x x a x x --<⎧⎪⎨+>⎪⎩,有解,则实数a 的取值范围是( )A .a >4B .a < 4C .4≥aD . 4≤a8.如图,将□ABCD 分别沿BF 、CE 折叠,使点A 、D 分别落在BC 上,折痕分别为BF 、CE , 若AB=6,EF=2,则BC 长为( )A .8B . 10C . 12D . 149. 下列函数中,对于任意实数1x ,2x ,当12x x >时,满足12y y <的是( ) A .y=﹣3x +2B .y=2x +1C .y=2x 2+1D .y=﹣10.工人师傅用一张半径为24cm ,圆心角为150°的扇形铁皮做成一个圆锥的侧面,则这个圆锥的高为( )cm .A . 119B .1192C .64D . 1192111.如图,抛物线c bx ax y ++=2(a ≠0)的对称轴为直x =1,与x 轴 的一个交点坐标为(-1,0),其部分图象如图所示.下列结论:① 24ac b <;②方程c bx ax++2=0的两个根是11-=x ,32=x ; ③30a c +>;④当0y >时,x 的取值范围是-13x ≤<;⑤当x1<x2<0时,y1<y 2.其中结论正确的个数是( )A.1个B.2个C.3个D.4个12.如图,AB 是⊙O 的切线,B 为切点,AC 经过点O ,与⊙O 分别相交于点 D ,C.若∠ACB=30°,AB=3,则阴影部分的面积是( )A.32B.6πC.32-6πD.33-6π二、填空题(本大题共6小题,满分18分。
泰安市 2018 年初中学业水平考试数学试题一、选择题(本大题共12 个小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对 3 分,选错、不选或选出的答案超过一个,均记零分)1. 计算:的结果是()A. -3B. 0C. -1D. 3【答案】 D【解析】分析:根据相反数的概念、零指数幂的运算法则计算即可.详解:原式=2 1+=3.故选 D.点睛:本题考查的是零指数幂的运算,掌握任何非零数的零次幂等于 1 是解题的关键.2.下列运算正确的是()A. B. C. D.【答案】 D【解析】分析:根据合并同类项法则、同底数幂的乘、除法法则、积的乘方法则计算,判断即可.333详解: 2y +y =3y ,故 A 错误;y2?y3=y5,故 B 错误;(3y2)3=27y6,故 C 错误;y3÷y﹣2=y3﹣(﹣2) =y5.故 D 正确.故选 D.点睛:本题考查的是合并同类项、同底数幂的乘法、积的乘方、同底数幂的除法,掌握它们的运算法则是解题的关键.3. 如图是下列哪个几何体的主视图与俯视图()A. B. C. D.【答案】 C【解析】分析:直接利用主视图以及俯视图的观察角度结合结合几何体的形状得出答案.详解:由已知主视图和俯视图可得到该几何体是圆柱体的一半,只有选项 C 符合题意.故选 C.点睛:本题主要考查了由三视图判断几何体,正确掌握常见几何体的形状是解题的关键.4. 如图,将一张含有角的三角形纸片的两个顶点叠放在矩形的两条对边上,若,则的大小为()A. B. C. D.【答案】 A【解析】分析:依据平行线的性质,即可得到∠2= ∠ 3=44°,再根据三角形外角性质,可得∠3=∠ 1+30°,进而得出结论.详解:如图,∵矩形的对边平行,∴∠ 2=∠ 3=44°,根据三角形外角性质,可得:∠ 3=∠ 1+30°,∴∠ 1=44°﹣30°=14°.故选 A.点睛:本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,同位角相等.5.某中学九年级二班六级的 8 名同学在一次排球垫球测试中的成绩如下(单位:个)3538424440474545则这组数据的中位数、平均数分别是()A. 42、 42B.43、 42C.43、43D.44、 43【答案】 B【解析】分析:根据中位线的概念求出中位数,利用算术平均数的计算公式求出平均数.详解:把这组数据排列顺序得:35 38 40 42 44 45 45 47 ,则这组数据的中位数为:=43, =(35+38+42+44+40+47+45+45)=42 .故选 B.点睛:本题考查的是中位数的确定、算术平均数的计算,掌握中位数的概念、算术平均数的计算公式是解题的关键.6. 夏季来临,某超市试销、两种型号的风扇,两周内共销售30 台,销售收入5300 元,型风扇每台200元,型风扇每台150 元,问、两种型号的风扇分别销售了多少台?若设型风扇销售了台,型风扇销售了台,则根据题意列出方程组为()A. B.C. D.【答案】 C【解析】分析:直接利用两周内共销售30 台,销售收入5300 元,分别得出等式进而得出答案.详解:设 A 型风扇销售了x 台,B 型风扇销售了y 台,则根据题意列出方程组为:.故选 C.点睛:本题主要考查了由实际问题抽象出二元一次方程组,正确得出等量关系是解题的关键.7. 二次函数的图象如图所示,则反比例函数与一次函数在同一坐标系内的大致图象是()A. B. C. D.【答案】 C【解析】分析:首先利用二次函数图象得出a, b 的取值范围,进而结合反比例函数以及一次函数的性质得出答案.详解:由二次函数开口向上可得:a> 0,对称轴在y 轴左侧,故a,b 同号,则b>0,故反比例函数y= 图象分布在第一、三象限,一次函数y=ax+b 经过第一、二、三象限.故选 C.点睛:本题主要考查了二次函数、一次函数、反比例函数的图象,正确得出a, b 的取值范围是解题的关键.8. 不等式组有3个整数解,则的取值范围是()A. B. C. D.【答案】 B【解析】分析:解不等式组,可得不等式组的解,根据不等式组有 3 个整数解,可得答案.详解:不等式组,由﹣x<﹣1,解得:x>4,由 4( x﹣ 1)≤ 2( x﹣a),解得: x≤ 2﹣a,故不等式组的解为:4< x≤ 2﹣ a,由关于 x 的不等式组有3个整数解,得: 7≤ 2﹣a< 8,解得:﹣ 6<a≤﹣ 5.故选 B.点睛:本题考查了解一元一次不等式组,利用不等式的解得出关于 a 的不等式是解题的关键.9. 如图,与相切于点,若,则的度数为()A. B. C. D.【答案】 A【解析】分析:连接OA、 OB,由切线的性质知∠OBM =90°,从而得∠ ABO=∠ BAO=50°,由三角形内角和定理知∠ AOB=80°,根据圆周角定理可得答案.详解:如图,连接OA、OB.∵BM 是⊙ O 的切线,∴∠ OBM=90 °.∵∠ MBA =140 °,∴∠ABO=50 °.∵OA=OB,∴∠ ABO =∠BAO =50 °,∴∠ AOB =80 °,∴∠ ACB= ∠AOB=40 °.故选 A.510. 一元二次方程根的情况是()A.无实数根B.有一个正根,一个负根C. 有两个正根,且都小于 3D.有两个正根,且有一根大于3【答案】 D【解析】分析:直接整理原方程,进而解方程得出x 的值.x 1 x3=2x 5详解:( + )(﹣)﹣2﹣ 2x﹣ 3=2x﹣ 5,则 x2﹣4x+2=0 ,( x﹣2)212整理得: x=2,解得: x =2+> 3,x =2﹣,故有两个正根,且有一根大于3.故选 D.点睛:本题主要考查了一元二次方程的解法,正确解方程是解题的关键.11. 如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,经过平移后得到,若上一点平移后对应点为,点绕原点顺时针旋转,对应点为,则点的坐标为()A. B. C. D.【答案】 A【解析】分析:由题意将点P 向下平移 5 个单位,再向左平移 4 个单位得到P1,再根据 P1与 P2关于原点对称,即可解决问题.详解:由题意将点P 向下平移 5 个单位,再向左平移 4 个单位得到P1.∵P(1.2, 1.4),∴ P1(﹣ 2.8,﹣ 3.6).∵P1与 P2关于原点对称,∴ P2( 2.8,3.6).故选 A.12. 如图,的半径为2,圆心的坐标为,点是上的任意一点,,且、与轴分别交于、两点,若点、点关于原点对称,则的最小值为()A. 3B. 4C. 6D.8【答案】 C【解析】分析:连接OP.由直角三角形斜边上的中线等于斜边的一半,得到OP= AB,当 OP 最短时, AB 最短.连接OM 交⊙ M 于点 P,则此时OP 最短,且OP=OM - PM,计算即可得到结论.详解:连接OP.∵PA⊥ PB, OA=OB,∴ OP= AB,当 OP 最短时, AB 最短.连接 OM 交⊙ M 于点 P,则此时 OP 最短,且 OP=OM - PM==3,∴ AB 的最小值为2OP=6.故选C.点睛:本题考查了直角三角形斜边上中线的性质以及两点间的距离公式.解题的关键是利用直角三角形斜边上中线等于斜边的一半把AB 的长转化为2OP.二、填空题(本大题共 6 小题,满分 18 分 .只要求填写最后结果,每小题填对得 3 分)13. 一个铁原子的质量是,将这个数据用科学记数法表示为__________.【答案】【解析】分析:科学记数法的表示形式为a× 10n的形式,其中1≤|a| < 10, n 为整数.确定n 的值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值< 1 时, n 是负数; n 的绝对值等于第一个非零数前零的个数.详解: 0.000000000000000000000000093=9.3 × 10﹣26.故答案为: 9.3× 10﹣ 26.点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a× 10n的形式,其中1≤|a| <10,n 为整数,表示时关键要正确确定 a 的值以及 n 的值.14. 如图,是的外接圆,,,则的直径为 __________ ...【答案】【解析】分析:连接OB, OC,依据△ BOC 是等腰直角三角形,即可得到BO=CO=BC?cos45°=2,进而得出⊙ O 的直径为4.详解:如图,连接OB,OC.∵∠ A=45 °,∴∠ BOC=90 °,∴△ BOC 是等腰直角三角形.又∵ BC=4,∴ BO=CO=BC?cos45 °=2,∴⊙ O的直径为4.故答案为: 4.点睛:本题主要考查了三角形的外接圆以及圆周角定理的运用,三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.15. 如图,在矩形中,,,将矩形沿折叠,点落在处,若的延长线恰好过点,则的值为__________.【答案】【解析】分析:先利用勾股定理求出A'C,进而利用勾股定理建立方程求出AE,即可求出BE,最后用三角函数即可得出结论.详解:由折叠知, A'E=AE,A'B=AB=6,∠ BA'E=90°,∴∠ BA'C=90°.在 Rt△A'CB 中,A'C==8,设AE =x,则 A'E=x,∴ DE=10﹣ x,CE=A'C+A'E=8+x.在 Rt△CDE 中,根据勾股定理得:( 10﹣x)2+36=8 x2x=2,∴AE=2Rt ABE BE==2,∴sin∠ABE ==.( +),∴.在△中,根据勾股定理得:故答案为:.点睛:本题主要考查了折叠的性质,勾股定理,锐角三角函数,充分利用勾股定理求出线段AE 是解答本题的关键.16. 如图,在中,,,,点是边上的动点(不与点重合),过作,垂足为,点是的中点,连接,设,的面积为,则与之间的函数关系式为__________.【答案】【解析】分析:由=,CD =x,得到DE =,CE =,则BE=10-,由DEB 的面积 S 等于△BDE 面积的一半,即可得出结论.详解:∵DE⊥ BC,垂足为 E,∴ tan∠ C= = ,CD=x,∴ DE =,CE=,则BE=10-,∴ S= S△BED=(10-) ?化简得:.故答案为:.点睛:本题考查了动点问题的函数解析式,17.《九章算术》是中国传统数学最重要的著作,在开门,出东门十五步有木,问:出南门几步而见木?解题的关键是设法将BE 与 DE 都用含有 x 的代数式表示.“勾股”章中有这样一个问题:“今有邑方二百步,各中”用今天的话说,大意是:如图,是一座边长为200 步(“步”是古代的长度单位)的正方形小城,东门位于的中点,南门位于的中点,出东门15 步的处有一树木,求出南门多少步恰好看到位于处的树木(即点在直线上)?请你计算的长为__________步.【答案】【解析】分析:由正方形的性质得到∠EDG =90°,从而∠ KDC +∠ HDA =90°,再由∠ C+∠KDC =90°,得到∠ C=∠HDA ,即有△ CKD ∽△ DHA ,由相似三角形的性质得到CK : KD =HD : HA,求解即可得到结论.详解:∵DEFG 是正方形,∴∠ EDG =90°,∴∠ KDC +∠ HDA =90°.∵∠ C+∠ KDC =90°,∴∠ C=∠HDA .∵∠ CKD =∠DHA =90°,∴△ CKD ∽△ DHA ,∴CK :KD =HD : HA,∴CK: 100=100: 15,解得: CK =.故答案为:.点睛:本题考查了相似三角形的应用.解题的关键是证明△CKD ∽△ DHA .三、解答题(本大题共7 小题,满分 66 分 .解答应写出文字说明、证明过程或演算步骤.)18. 先化简,再求值:,其中.【答案】.【解析】分析:先根据分式的混合运算顺序和运算法则化简原式,再将m 的值代入计算可得.详解:原式 =÷(﹣)=÷=?=﹣=当 m=﹣2时,原式=﹣=﹣=﹣ 1+2=.点睛:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.19.文美书店决定用不多于 20000 元购进甲乙两种图书共 1200 本进行销售 .甲、乙两种图书的进价分别为每本 20 元、 14 元,甲种图书每本的售价是乙种图书每本售价的 1.4 倍,若用 1680 元在文美书店可购买甲种图书的本数比用1400 元购买乙种图书的本数少10 本.( 1)甲乙两种图书的售价分别为每本多少元?( 2)书店为了让利读者,决定甲种图书售价每本降低 3 元,乙种图书售价每本降低 2 元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)【答案】(1)甲种图书售价每本28 元,乙种图书售价每本20 元;(2)甲种图书进货533 本,乙种图书进货 667 本时利润最大 .【解析】分析:( 1)乙种图书售价每本元,则甲种图书售价为每本元,根据“用1680元在文美书店可购买甲种图书的本数比用1400 元购买乙种图书的本数少10 本”列出方程求解即可;(2)设甲种图书进货本,总利润元,根据题意列出不等式及一次函数,解不等式求出解集,从而确定方案,进而求出利润最大的方案.详解:( 1)设乙种图书售价每本元,则甲种图书售价为每本元.由题意得:,解得:.经检验,是原方程的解.所以,甲种图书售价为每本元,答:甲种图书售价每本28 元,乙种图书售价每本20 元.( 2)设甲种图书进货本,总利润元,则.又∵,解得:.∵随的增大而增大,∴当最大时最大,∴当本时最大,此时,乙种图书进货本数为(本).答:甲种图书进货533 本,乙种图书进货667 本时利润最大.点睛:本题考查了一次函数的应用,分式方程的应用,一元一次不等式的应用,理解题意找到题目蕴含的相等关系或不等关系是解应用题的关键.20. 为增强学生的安全意识,我市某中学组织初三年级1000 名学生参加了“校园安全知识竞赛”,随机抽取了一个班学生的成绩进行整理,分为,,,四个等级,并把结果整理绘制成条形统计图与扇形统计图(部分),请依据如图提供的信息,完成下列问题:( 1)请估计本校初三年级等级为的学生人数;( 2)学校决定从得满分的 3 名女生和 2 名男生中随机抽取 3 人参加市级比赛,请求出恰好抽到 2 名女生和1 名男生的概率.【答案】( 1)估计该校初三等级为的学生人数约为125 人;(2)恰有 2 名女生, 1 名男生的概率为.【解析】分析:( 1)先根据 C 等级人数及其所占百分比求得总人数,用总人数减去B、 C、 D 的人数求得A 等级人数,再用总人数乘以样本中 A 等级人数所占比例;( 2)列出从 3 名女生和 2 名男生中随机抽取 3 人的所有等可能结果,再从中找到恰好抽到 2 名女生和 1 名男生的结果数,根据概率公式计算可得.18÷20%=40人,∴该班级等级为A的学生人数为40﹣(25 8 2)详解:()∵所抽取学生的总数为+ + =5 人,则估计本校初三年级等级为 A 的学生人数为 1000×=125人;( 2)设两位满分的男生记为A1、A2、三位满分的女生记为B1、B2、B3,从这 5 名同学中选 3人的所有等可能结果为:( B1, B2,B3)、( A2, B2, B3)、(A2, B1, B3)、( A2, B1,B2)、( A1, B2, B3)、( A1,B1, B3)、( A1, B1,B2)、( A1, A2, B3)、(A1, A2,B2)、( A1, A2,B1),其中恰好有 2 名女生、 1 名男生的结果有 6 种,所以恰好抽到 2 名女生和 1 名男生的概率为= .点睛:本题考查了列表法或树状图法求概率以及条形统计图与扇形统计图.用到的知识点为:概率=所求情况数与总情况数之比.21. 如图,矩形的两边、的长分别为3、 8,是的中点,反比例函数的图象经过点,与交于点.2018 年中考真题( 1)若点坐标为,求的值及图象经过、两点的一次函数的表达式;( 2)若,求反比例函数的表达式.【答案】(1),;(2).【解析】分析:( 1)由已知求出A、 E 的坐标,即可得出m 的值和一次函数函数的解析式;( 2)由,得到,由,得到.设点坐标为,则点坐标为,代入反比例函数解析式即可得到结论.详解:( 1)∵为的中点,∴.∵反比例函数图象过点,∴.设图象经过、两点的一次函数表达式为:,∴,解得,∴.( 2)∵,∴.∵,∴,∴.设点坐标为,则点坐标为.2018 年中考真题∵两点在图象上,∴,解得:,∴,∴,∴.点睛:本题考查了矩形的性质以及反比例函数一次函数的解析式.解题的关键是求出点A、 E、 F 的坐标.22. 如图,中,是上一点,于点,是的中点,于点,与交于点,若,平分,连接,.( 1)求证:;( 2)小亮同学经过探究发现:.请你帮助小亮同学证明这一结论.( 3)若,判定四边形是否为菱形,并说明理由.【答案】(1)证明见解析;( 2)证明见解析;( 3)四边形是菱形,理由见解析.【解析】分析:( 1)由条件得出∠C=∠ DHG =90°,∠ CGE=∠ GED ,由 F 是 AD 的中点, FG∥ AE,即可得到FG 是线段 ED 的垂直平分线,进而得到 GE=GD ,∠ CGE=∠GDE ,利用 AAS 即可判定△ ECG≌△ GHD ;(2)过点 G 作 GP⊥AB 于 P,判定△ CAG≌△ PAG,可得 AC=AP ,由( 1)可得 EG=DG,即可得到 Rt△ ECG≌ Rt△ GPD ,依据 EC =PD ,即可得出 AD =AP+PD =AC+EC;。
泰安市2018年初中学业水平考试数学试题一、选择题(本大题共12个小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对3分,选错、不选或选出的答案超过一个,均记零分)1. 计算:的结果是()A. -3B. 0C. -1D. 3【答案】D【解析】分析:根据相反数的概念、零指数幂的运算法则计算即可.详解:原式=2+1=3.故选D.点睛:本题考查的是零指数幂的运算,掌握任何非零数的零次幂等于1是解题的关键.2. 下列运算正确的是()A. B. C. D.【答案】D【解析】分析:根据合并同类项法则、同底数幂的乘、除法法则、积的乘方法则计算,判断即可.详解:2y3+y3=3y3,故A错误;y2•y3=y5,故B错误;(3y2)3=27y6,故C错误;y3÷y﹣2=y3﹣(﹣2)=y5.故D正确.故选D.点睛:本题考查的是合并同类项、同底数幂的乘法、积的乘方、同底数幂的除法,掌握它们的运算法则是解题的关键.3. 如图是下列哪个几何体的主视图与俯视图()A. B. C. D.【答案】C【解析】分析:直接利用主视图以及俯视图的观察角度结合结合几何体的形状得出答案.详解:由已知主视图和俯视图可得到该几何体是圆柱体的一半,只有选项C符合题意.故选C.点睛:本题主要考查了由三视图判断几何体,正确掌握常见几何体的形状是解题的关键.4. 如图,将一张含有角的三角形纸片的两个顶点叠放在矩形的两条对边上,若,则的大小为()A. B. C. D.【答案】A【解析】分析:依据平行线的性质,即可得到∠2=∠3=44°,再根据三角形外角性质,可得∠3=∠1+30°,进而得出结论.详解:如图,∵矩形的对边平行,∴∠2=∠3=44°,根据三角形外角性质,可得:∠3=∠1+30°,∴∠1=44°﹣30°=14°.故选A.点睛:本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,同位角相等.5. 某中学九年级二班六级的8名同学在一次排球垫球测试中的成绩如下(单位:个)35 38 42 44 40 47 45 45则这组数据的中位数、平均数分别是()A. 42、42B. 43、42C. 43、43D. 44、43【答案】B【解析】分析:根据中位线的概念求出中位数,利用算术平均数的计算公式求出平均数.详解:把这组数据排列顺序得:35 38 40 42 44 45 45 47,则这组数据的中位数为:=43,=(35+38+42+44+40+47+45+45)=42.故选B.点睛:本题考查的是中位数的确定、算术平均数的计算,掌握中位数的概念、算术平均数的计算公式是解题的关键.6. 夏季来临,某超市试销、两种型号的风扇,两周内共销售30台,销售收入5300元,型风扇每台200元,型风扇每台150元,问、两种型号的风扇分别销售了多少台?若设型风扇销售了台,型风扇销售了台,则根据题意列出方程组为()A. B.C. D.【答案】C【解析】分析:直接利用两周内共销售30台,销售收入5300元,分别得出等式进而得出答案.详解:设A型风扇销售了x台,B型风扇销售了y台,则根据题意列出方程组为:.故选C.点睛:本题主要考查了由实际问题抽象出二元一次方程组,正确得出等量关系是解题的关键.7. 二次函数的图象如图所示,则反比例函数与一次函数在同一坐标系内的大致图象是()A. B. C. D.【答案】C【解析】分析:首先利用二次函数图象得出a,b的取值范围,进而结合反比例函数以及一次函数的性质得出答案.详解:由二次函数开口向上可得:a>0,对称轴在y轴左侧,故a,b同号,则b>0,故反比例函数y=图象分布在第一、三象限,一次函数y=ax+b经过第一、二、三象限.故选C.点睛:本题主要考查了二次函数、一次函数、反比例函数的图象,正确得出a,b的取值范围是解题的关键.8. 不等式组有3个整数解,则的取值范围是()A. B. C. D.【答案】B【解析】分析:解不等式组,可得不等式组的解,根据不等式组有3个整数解,可得答案.详解:不等式组,由﹣x<﹣1,解得:x>4,由4(x﹣1)≤2(x﹣a),解得:x≤2﹣a,故不等式组的解为:4<x≤2﹣a,由关于x的不等式组有3个整数解,得:7≤2﹣a<8,解得:﹣6<a≤﹣5.故选B.点睛:本题考查了解一元一次不等式组,利用不等式的解得出关于a的不等式是解题的关键.9. 如图,与相切于点,若,则的度数为()A. B. C. D.【答案】A【解析】分析:连接OA、OB,由切线的性质知∠OBM=90°,从而得∠ABO=∠BAO=50°,由三角形内角和定理知∠AOB=80°,根据圆周角定理可得答案.详解:如图,连接OA、OB.∵BM是⊙O的切线,∴∠OBM=90°.∵∠MBA=140°,∴∠ABO=50°.∵OA=OB,∴∠ABO=∠BAO=50°,∴∠AOB=80°,∴∠ACB=∠AOB=40°.故选A.学#科#网...学#科#网...学#科#网...学#科#网...学#科#网...学#科#网...学#科#网...学#科#网...学#科#网...10. 一元二次方程根的情况是()A. 无实数根B. 有一个正根,一个负根C. 有两个正根,且都小于3D. 有两个正根,且有一根大于3【答案】D【解析】分析:直接整理原方程,进而解方程得出x的值.详解:(x+1)(x﹣3)=2x﹣5整理得:x2﹣2x﹣3=2x﹣5,则x2﹣4x+2=0,(x﹣2)2=2,解得:x1=2+>3,x2=2﹣,故有两个正根,且有一根大于3.故选D.点睛:本题主要考查了一元二次方程的解法,正确解方程是解题的关键.11. 如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,经过平移后得到,若上一点平移后对应点为,点绕原点顺时针旋转,对应点为,则点的坐标为()A. B. C. D.【答案】A【解析】分析:由题意将点P向下平移5个单位,再向左平移4个单位得到P1,再根据P1与P2关于原点对称,即可解决问题.详解:由题意将点P向下平移5个单位,再向左平移4个单位得到P1.∵P(1.2,1.4),∴P1(﹣2.8,﹣3.6).∵P1与P2关于原点对称,∴P2(2.8,3.6).故选A.12. 如图,的半径为2,圆心的坐标为,点是上的任意一点,,且、与轴分别交于、两点,若点、点关于原点对称,则的最小值为()A. 3B. 4C. 6D. 8【答案】C【解析】分析:连接OP.由直角三角形斜边上的中线等于斜边的一半,得到OP=AB,当OP最短时,AB最短.连接OM交⊙M于点P,则此时OP最短,且OP=OM-PM,计算即可得到结论.详解:连接OP.∵P A⊥PB,OA=OB,∴OP=AB,当OP最短时,AB最短.连接OM交⊙M于点P,则此时OP最短,且OP=OM-PM==3,∴AB的最小值为2OP=6.故选C.点睛:本题考查了直角三角形斜边上中线的性质以及两点间的距离公式.解题的关键是利用直角三角形斜边上中线等于斜边的一半把AB的长转化为2OP.二、填空题(本大题共6小题,满分18分.只要求填写最后结果,每小题填对得3分)13. 一个铁原子的质量是,将这个数据用科学记数法表示为__________.【答案】【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值<1时,n是负数;n的绝对值等于第一个非零数前零的个数.详解:0.000000000000000000000000093=9.3×10﹣26.故答案为:9.3×10﹣26.点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14. 如图,是的外接圆,,,则的直径..为__________.【答案】【解析】分析:连接OB,OC,依据△BOC是等腰直角三角形,即可得到BO=CO=BC•cos45°=2,进而得出⊙O的直径为4.详解:如图,连接OB,OC.∵∠A=45°,∴∠BOC=90°,∴△BOC是等腰直角三角形.又∵BC=4,∴BO=CO=BC•cos45°=2,∴⊙O的直径为4.故答案为:4.点睛:本题主要考查了三角形的外接圆以及圆周角定理的运用,三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.15. 如图,在矩形中,,,将矩形沿折叠,点落在处,若的延长线恰好过点,则的值为__________.【答案】【解析】分析:先利用勾股定理求出A'C,进而利用勾股定理建立方程求出AE,即可求出BE,最后用三角函数即可得出结论.详解:由折叠知,A'E=AE,A'B=AB=6,∠BA'E=90°,∴∠BA'C=90°.在Rt△A'CB中,A'C==8,设AE=x,则A'E=x,∴DE=10﹣x,CE=A'C+A'E=8+x.在Rt△CDE中,根据勾股定理得:(10﹣x)2+36=(8+x)2,∴x=2,∴AE=2.在Rt△ABE中,根据勾股定理得:BE==2,∴sin∠ABE==.故答案为:.点睛:本题主要考查了折叠的性质,勾股定理,锐角三角函数,充分利用勾股定理求出线段AE是解答本题的关键.16. 如图,在中,,,,点是边上的动点(不与点重合),过作,垂足为,点是的中点,连接,设,的面积为,则与之间的函数关系式为__________.【答案】【解析】分析:由=,CD=x,得到DE=,CE=,则BE=10-,由ΔDEB的面积S 等于△BDE面积的一半,即可得出结论.详解:∵DE⊥BC,垂足为E,∴tan∠C==,CD=x,∴DE=,CE=,则BE=10-,∴S=S△BED=(10-)•化简得:.故答案为:.点睛:本题考查了动点问题的函数解析式,解题的关键是设法将BE与DE都用含有x的代数式表示.17. 《九章算术》是中国传统数学最重要的著作,在“勾股”章中有这样一个问题:“今有邑方二百步,各中开门,出东门十五步有木,问:出南门几步而见木?”用今天的话说,大意是:如图,是一座边长为200步(“步”是古代的长度单位)的正方形小城,东门位于的中点,南门位于的中点,出东门15步的处有一树木,求出南门多少步恰好看到位于处的树木(即点在直线上)?请你计算的长为__________步.【答案】【解析】分析:由正方形的性质得到∠EDG=90°,从而∠KDC+∠HDA=90°,再由∠C+∠KDC=90°,得到∠C=∠HDA,即有△CKD∽△DHA,由相似三角形的性质得到CK:KD=HD:HA,求解即可得到结论.详解:∵DEFG是正方形,∴∠EDG=90°,∴∠KDC+∠HDA=90°.∵∠C+∠KDC=90°,∴∠C=∠HDA.∵∠CKD=∠DHA=90°,∴△CKD∽△DHA,∴CK:KD=HD:HA,∴CK:100=100:15,解得:CK=.故答案为:.点睛:本题考查了相似三角形的应用.解题的关键是证明△CKD∽△DHA.三、解答题(本大题共7小题,满分66分.解答应写出文字说明、证明过程或演算步骤.)18. 先化简,再求值:,其中.【答案】.【解析】分析:先根据分式的混合运算顺序和运算法则化简原式,再将m的值代入计算可得.详解:原式=÷(﹣)=÷=•=﹣=当m=﹣2时,原式=﹣=﹣=﹣1+2=.点睛:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.19. 文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)【答案】(1)甲种图书售价每本28元,乙种图书售价每本20元;(2)甲种图书进货533本,乙种图书进货667本时利润最大.【解析】分析:(1)乙种图书售价每本元,则甲种图书售价为每本元,根据“用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本”列出方程求解即可;(2)设甲种图书进货本,总利润元,根据题意列出不等式及一次函数,解不等式求出解集,从而确定方案,进而求出利润最大的方案.详解:(1)设乙种图书售价每本元,则甲种图书售价为每本元.由题意得:,解得:.经检验,是原方程的解.所以,甲种图书售价为每本元,答:甲种图书售价每本28元,乙种图书售价每本20元.(2)设甲种图书进货本,总利润元,则.又∵,解得:.∵随的增大而增大,∴当最大时最大,∴当本时最大,此时,乙种图书进货本数为(本).答:甲种图书进货533本,乙种图书进货667本时利润最大.点睛:本题考查了一次函数的应用,分式方程的应用,一元一次不等式的应用,理解题意找到题目蕴含的相等关系或不等关系是解应用题的关键.20. 为增强学生的安全意识,我市某中学组织初三年级1000名学生参加了“校园安全知识竞赛”,随机抽取了一个班学生的成绩进行整理,分为,,,四个等级,并把结果整理绘制成条形统计图与扇形统计图(部分),请依据如图提供的信息,完成下列问题:(1)请估计本校初三年级等级为的学生人数;(2)学校决定从得满分的3名女生和2名男生中随机抽取3人参加市级比赛,请求出恰好抽到2名女生和1名男生的概率.【答案】(1)估计该校初三等级为的学生人数约为125人;(2)恰有2名女生,1名男生的概率为.【解析】分析:(1)先根据C等级人数及其所占百分比求得总人数,用总人数减去B、C、D的人数求得A等级人数,再用总人数乘以样本中A等级人数所占比例;(2)列出从3名女生和2名男生中随机抽取3人的所有等可能结果,再从中找到恰好抽到2名女生和1名男生的结果数,根据概率公式计算可得.详解:(1)∵所抽取学生的总数为8÷20%=40人,∴该班级等级为A的学生人数为40﹣(25+8+2)=5人,则估计本校初三年级等级为A的学生人数为1000×=125人;(2)设两位满分的男生记为A1、A2、三位满分的女生记为B1、B2、B3,从这5名同学中选3人的所有等可能结果为:(B1,B2,B3)、(A2,B2,B3)、(A2,B1,B3)、(A2,B1,B2)、(A1,B2,B3)、(A1,B1,B3)、(A1,B1,B2)、(A1,A2,B3)、(A1,A2,B2)、(A1,A2,B1),其中恰好有2名女生、1名男生的结果有6种,所以恰好抽到2名女生和1名男生的概率为=.点睛:本题考查了列表法或树状图法求概率以及条形统计图与扇形统计图.用到的知识点为:概率=所求情况数与总情况数之比.21. 如图,矩形的两边、的长分别为3、8,是的中点,反比例函数的图象经过点,与交于点.(1)若点坐标为,求的值及图象经过、两点的一次函数的表达式;(2)若,求反比例函数的表达式.【答案】(1),;(2).【解析】分析:(1)由已知求出A、E的坐标,即可得出m的值和一次函数函数的解析式;(2)由,得到,由,得到.设点坐标为,则点坐标为,代入反比例函数解析式即可得到结论.详解:(1)∵为的中点,∴.∵反比例函数图象过点,∴.设图象经过、两点的一次函数表达式为:,∴,解得,∴.(2)∵,∴.∵,∴,∴.设点坐标为,则点坐标为.∵两点在图象上,∴,解得:,∴,∴,∴.点睛:本题考查了矩形的性质以及反比例函数一次函数的解析式.解题的关键是求出点A、E、F的坐标.22. 如图,中,是上一点,于点,是的中点,于点,与交于点,若,平分,连接,.(1)求证:;(2)小亮同学经过探究发现:.请你帮助小亮同学证明这一结论.(3)若,判定四边形是否为菱形,并说明理由.【答案】(1)证明见解析;(2)证明见解析;(3)四边形是菱形,理由见解析.【解析】分析:(1)由条件得出∠C=∠DHG=90°,∠CGE=∠GED,由F是AD的中点,FG∥AE,即可得到FG是线段ED的垂直平分线,进而得到GE=GD,∠CGE=∠GDE,利用AAS即可判定△ECG≌△GHD;(2)过点G作GP⊥AB于P,判定△CAG≌△P AG,可得AC=AP,由(1)可得EG=DG,即可得到Rt△ECG≌Rt△GPD,依据EC=PD,即可得出AD=AP+PD=AC+EC;(3)由∠B=30°,可得∠ADE=30°,进而得到AE=AD,故AE=AF=FG,再根据四边形AECF是平行四边形,即可得到四边形AEGF是菱形.详解:(1)∵AF=FG,∴∠F AG=∠FGA.∵AG平分∠CAB,∴∠CAG=∠FGA,∴∠CAG=∠FGA,∴AC∥FG.∵DE⊥AC,∴FG⊥DE.∵FG⊥BC,∴DE∥BC,∴AC⊥BC,∴∠C=∠DHG=90°,∠CGE=∠GED.∵F是AD的中点,FG∥AE,∴H是ED的中点,∴FG是线段ED的垂直平分线,∴GE=GD,∠GDE=∠GED,∴∠CGE=∠GDE,∴△ECG≌△GHD;(2)过点G作GP⊥AB于P,∴GC=GP,而AG=AG,∴△CAG≌△P AG,∴AC=AP,由(1)可得EG=DG,∴Rt△ECG≌Rt△GPD,∴EC=PD,∴AD=AP+PD=AC+EC;(3)四边形AEGF是菱形.证明如下:∵∠B=30°,∴∠ADE=30°,∴AE=AD,∴AE=AF=FG,由(1)得AE∥FG,∴四边形AECF是平行四边形,∴四边形AEGF是菱形.点睛:本题属于四边形综合题,主要考查了菱形的判定、全等三角形的判定和性质,线段垂直平分线的判定与性质以及含30°角的直角三角形的性质的综合运用,利用全等三角形的对应边相等,对应角相等是解决问题的关键.23. 如图,在平面直角坐标系中,二次函数交轴于点、,交轴于点,在轴上有一点,连接.(1)求二次函数的表达式;(2)若点为抛物线在轴负半轴上方的一个动点,求面积的最大值;(3)抛物线对称轴上是否存在点,使为等腰三角形,若存在,请直接写出所有点的坐标,若不存在请说明理由.【答案】(1)二次函数的解析式为;(2)当时,的面积取得最大值;(3)点的坐标为,,.【解析】分析:(1)把已知点坐标代入函数解析式,得出方程组求解即可;(2)根据函数解析式设出点D坐标,过点D作DG⊥x轴,交AE于点F,表示△ADE 的面积,运用二次函数分析最值即可;(3)设出点P坐标,分P A=PE,P A=AE,PE=AE三种情况讨论分析即可.详解:(1)∵二次函数y=ax2+bx+c经过点A(﹣4,0)、B(2,0),C(0,6),∴,解得:,所以二次函数的解析式为:y=;(2)由A(﹣4,0),E(0,﹣2),可求AE所在直线解析式为y=,过点D作DN⊥x轴,交AE于点F,交x轴于点G,过点E作EH⊥DF,垂足为H,如图,设D(m,),则点F(m,),∴DF=﹣()=,∴S△ADE=S△ADF+S△EDF=×DF×AG+DF×EH=×DF×AG+×DF×EH=×4×DF=2×()=,∴当m=时,△ADE的面积取得最大值为.(3)y=的对称轴为x=﹣1,设P(﹣1,n),又E(0,﹣2),A(﹣4,0),可求P A=,PE=,AE=,分三种情况讨论:当P A=PE时,=,解得:n=1,此时P(﹣1,1);当P A=AE时,=,解得:n=,此时点P坐标为(﹣1,);当PE=AE时,=,解得:n=﹣2,此时点P坐标为:(﹣1,﹣2).综上所述:P点的坐标为:(﹣1,1),(﹣1,),(﹣1,﹣2).点睛:本题主要考查二次函数的综合问题,会求抛物线解析式,会运用二次函数分析三角形面积的最大值,会分类讨论解决等腰三角形的顶点的存在问题时解决此题的关键.24. 如图,在菱形ABCD中,AC与BD交于点O,E是BD上一点,EF//AB,∠EAB=∠EBA,过点B作DA的垂线,交DA的延长线于点G.(1)∠DEF和∠AEF是否相等?若相等,请证明;若不相等,请说明理由;(2)找出图中与ΔAGB相似的三角形,并证明;(3)BF的延长线交CD的延长线于点H,交AC于点M.求证:BM2=MF⋅MH.【答案】(1),理由见解析;(2),证明见解析;(3)证明见解析. 【解析】分析:(1)先判断出∠DEF=∠EBA,∠AEF=∠EAB,即可得出结论;(2)先判断出∠GAB=∠ABE+∠ADB=2∠ABE,进而得出∠GAB=∠AEO,即可得出结论;(3)先判断出BM=DM,∠ADM=∠ABM,进而得出∠ADM=∠H,判断出△MFD∽△MDH,即可得出结论.详解:(1)∠DEF=∠AEF,理由如下:∵EF∥AB,∴∠DEF=∠EBA,∠AEF=∠EAB.∵∠EAB=∠EBA,∴∠DEF=∠AEF;(2)△EOA∽△AGB,理由如下:∵四边形ABCD是菱形,∴AB=AD,AC⊥BD,∴∠GAB=∠ABE+∠ADB=2∠ABE.∵∠AEO=∠ABE+∠BAE=2∠ABE.∵∠GAB=∠AEO,∠GAB=∠AOE=90°,∴△EOA∽△AGB;(3)如图,连接DM.∵四边形ABCD是菱形,由对称性可知,BM=DM,∠ADM=∠ABM.∵AB∥CH,∴∠ABM=∠H,∴∠ADM=∠H.∵∠DMH=∠FMD,∴△MFD∽△MDH,∴,∴DM2=MF•MH,∴BM2=MF•MH.点睛:本题是相似形综合题,主要考查了菱形的性质,对称性,相似三角形的判定和性质,判断出△EOA∽△AGB是解答本题的关键.。
泰安市2018年初中学业水平考试数学试题一、选择题(本大题共12个小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对3分,选错、不选或选出的答案超过一个,均记零分)1. 计算:的结果是()A. -3B. 0C. -1D. 3【答案】D【解析】分析:根据相反数的概念、零指数幂的运算法则计算即可.详解:原式=2+1=3.故选D.点睛:本题考查的是零指数幂的运算,掌握任何非零数的零次幂等于1是解题的关键.2. 下列运算正确的是()A. B. C. D.【答案】D【解析】分析:根据合并同类项法则、同底数幂的乘、除法法则、积的乘方法则计算,判断即可.详解:2y3+y3=3y3,故A错误;y2•y3=y5,故B错误;(3y2)3=27y6,故C错误;y3÷y﹣2=y3﹣(﹣2)=y5.故D正确.故选D.点睛:本题考查的是合并同类项、同底数幂的乘法、积的乘方、同底数幂的除法,掌握它们的运算法则是解题的关键.3. 如图是下列哪个几何体的主视图与俯视图()A. B. C. D.【答案】C【解析】分析:直接利用主视图以及俯视图的观察角度结合结合几何体的形状得出答案.详解:由已知主视图和俯视图可得到该几何体是圆柱体的一半,只有选项C符合题意.故选C.点睛:本题主要考查了由三视图判断几何体,正确掌握常见几何体的形状是解题的关键.4. 如图,将一张含有角的三角形纸片的两个顶点叠放在矩形的两条对边上,若,则的大小为()A. B. C. D.【答案】A【解析】分析:依据平行线的性质,即可得到∠2=∠3=44°,再根据三角形外角性质,可得∠3=∠1+30°,进而得出结论.详解:如图,∵矩形的对边平行,∴∠2=∠3=44°,根据三角形外角性质,可得:∠3=∠1+30°,∴∠1=44°﹣30°=14°.故选A.点睛:本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,同位角相等.5. 某中学九年级二班六级的8名同学在一次排球垫球测试中的成绩如下(单位:个)35 38 42 44 40 47 45 45则这组数据的中位数、平均数分别是()A. 42、42B. 43、42C. 43、43D. 44、43【答案】B【解析】分析:根据中位线的概念求出中位数,利用算术平均数的计算公式求出平均数.详解:把这组数据排列顺序得:35 38 40 42 44 45 45 47,则这组数据的中位数为:=43,=(35+38+42+44+40+47+45+45)=42.故选B.点睛:本题考查的是中位数的确定、算术平均数的计算,掌握中位数的概念、算术平均数的计算公式是解题的关键.6. 夏季来临,某超市试销、两种型号的风扇,两周内共销售30台,销售收入5300元,型风扇每台200元,型风扇每台150元,问、两种型号的风扇分别销售了多少台?若设型风扇销售了台,型风扇销售了台,则根据题意列出方程组为()A. B.C. D.【答案】C【解析】分析:直接利用两周内共销售30台,销售收入5300元,分别得出等式进而得出答案.详解:设A型风扇销售了x台,B型风扇销售了y台,则根据题意列出方程组为:.故选C.点睛:本题主要考查了由实际问题抽象出二元一次方程组,正确得出等量关系是解题的关键.7. 二次函数的图象如图所示,则反比例函数与一次函数在同一坐标系内的大致图象是()A. B. C. D.【答案】C【解析】分析:首先利用二次函数图象得出a,b的取值范围,进而结合反比例函数以及一次函数的性质得出答案.详解:由二次函数开口向上可得:a>0,对称轴在y轴左侧,故a,b同号,则b>0,故反比例函数y=图象分布在第一、三象限,一次函数y=ax+b经过第一、二、三象限.故选C.点睛:本题主要考查了二次函数、一次函数、反比例函数的图象,正确得出a,b的取值范围是解题的关键.8. 不等式组有3个整数解,则的取值范围是()A. B. C. D.【答案】B【解析】分析:解不等式组,可得不等式组的解,根据不等式组有3个整数解,可得答案.详解:不等式组,由﹣x<﹣1,解得:x>4,由4(x﹣1)≤2(x﹣a),解得:x≤2﹣a,故不等式组的解为:4<x≤2﹣a,由关于x的不等式组有3个整数解,得:7≤2﹣a<8,解得:﹣6<a≤﹣5.故选B.点睛:本题考查了解一元一次不等式组,利用不等式的解得出关于a的不等式是解题的关键.9. 如图,与相切于点,若,则的度数为()A. B. C. D.【答案】A【解析】分析:连接OA、OB,由切线的性质知∠OBM=90°,从而得∠ABO=∠BAO=50°,由三角形内角和定理知∠AOB=80°,根据圆周角定理可得答案.详解:如图,连接OA、OB.∵BM是⊙O的切线,∴∠OBM=90°.∵∠MBA=140°,∴∠ABO=50°.∵OA=OB,∴∠ABO=∠BAO=50°,∴∠AOB=80°,∴∠ACB=∠AOB=40°.故选A.10. 一元二次方程根的情况是()A. 无实数根B. 有一个正根,一个负根C. 有两个正根,且都小于3D. 有两个正根,且有一根大于3【答案】D【解析】分析:直接整理原方程,进而解方程得出x的值.详解:(x+1)(x﹣3)=2x﹣5整理得:x2﹣2x﹣3=2x﹣5,则x2﹣4x+2=0,(x﹣2)2=2,解得:x1=2+>3,x2=2﹣,故有两个正根,且有一根大于3.故选D.点睛:本题主要考查了一元二次方程的解法,正确解方程是解题的关键.11. 如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,经过平移后得到,若上一点平移后对应点为,点绕原点顺时针旋转,对应点为,则点的坐标为()A. B. C. D.【答案】A【解析】分析:由题意将点P向下平移5个单位,再向左平移4个单位得到P1,再根据P1与P2关于原点对称,即可解决问题.详解:由题意将点P向下平移5个单位,再向左平移4个单位得到P1.∵P(1.2,1.4),∴P1(﹣2.8,﹣3.6).∵P1与P2关于原点对称,∴P2(2.8,3.6).故选A.12. 如图,的半径为2,圆心的坐标为,点是上的任意一点,,且、与轴分别交于、两点,若点、点关于原点对称,则的最小值为()A. 3B. 4C. 6D. 8【答案】C【解析】分析:连接OP.由直角三角形斜边上的中线等于斜边的一半,得到OP=AB,当OP 最短时,AB最短.连接OM交⊙M于点P,则此时OP最短,且OP=OM-PM,计算即可得到结论.详解:连接OP.∵PA⊥PB,OA=OB,∴OP=AB,当OP最短时,AB最短.连接OM交⊙M于点P,则此时OP最短,且OP=OM-PM==3,∴AB的最小值为2OP=6.故选C.点睛:本题考查了直角三角形斜边上中线的性质以及两点间的距离公式.解题的关键是利用直角三角形斜边上中线等于斜边的一半把AB的长转化为2OP.二、填空题(本大题共6小题,满分18分.只要求填写最后结果,每小题填对得3分)13. 一个铁原子的质量是,将这个数据用科学记数法表示为__________.【答案】【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值<1时,n是负数;n的绝对值等于第一个非零数前零的个数.详解:0.000000000000000000000000093=9.3×10﹣26.故答案为:9.3×10﹣26.点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14. 如图,是的外接圆,,,则的直径..为__________.【答案】【解析】分析:连接OB,OC,依据△BOC是等腰直角三角形,即可得到BO=CO=BC•cos45°=2,进而得出⊙O的直径为4.详解:如图,连接OB,OC.∵∠A=45°,∴∠BOC=90°,∴△BOC是等腰直角三角形.又∵BC=4,∴BO=CO=BC•cos45°=2,∴⊙O的直径为4.故答案为:4.点睛:本题主要考查了三角形的外接圆以及圆周角定理的运用,三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.15. 如图,在矩形中,,,将矩形沿折叠,点落在处,若的延长线恰好过点,则的值为__________.【答案】【解析】分析:先利用勾股定理求出A'C,进而利用勾股定理建立方程求出AE,即可求出BE,最后用三角函数即可得出结论.详解:由折叠知,A'E=AE,A'B=AB=6,∠BA'E=90°,∴∠BA'C=90°.在Rt△A'CB中,A'C==8,设AE=x,则A'E=x,∴DE=10﹣x,CE=A'C+A'E=8+x.在Rt△CDE中,根据勾股定理得:(10﹣x)2+36=(8+x)2,∴x=2,∴AE=2.在Rt△ABE中,根据勾股定理得:BE==2,∴sin∠ABE==.故答案为:.点睛:本题主要考查了折叠的性质,勾股定理,锐角三角函数,充分利用勾股定理求出线段AE是解答本题的关键.16. 如图,在中,,,,点是边上的动点(不与点重合),过作,垂足为,点是的中点,连接,设,的面积为,则与之间的函数关系式为__________.【答案】【解析】分析:由=,CD=x,得到DE=,CE=,则BE=10-,由ΔDEB的面积S等于△BDE面积的一半,即可得出结论.详解:∵DE⊥BC,垂足为E,∴tan∠C==,CD=x,∴DE=,CE=,则BE=10-,∴S=S△BED=(10-)•化简得:.故答案为:.点睛:本题考查了动点问题的函数解析式,解题的关键是设法将BE与DE都用含有x的代数式表示.17. 《九章算术》是中国传统数学最重要的著作,在“勾股”章中有这样一个问题:“今有邑方二百步,各中开门,出东门十五步有木,问:出南门几步而见木?”用今天的话说,大意是:如图,是一座边长为200步(“步”是古代的长度单位)的正方形小城,东门位于的中点,南门位于的中点,出东门15步的处有一树木,求出南门多少步恰好看到位于处的树木(即点在直线上)?请你计算的长为__________步.【答案】【解析】分析:由正方形的性质得到∠EDG=90°,从而∠KDC+∠HDA=90°,再由∠C+∠KDC=90°,得到∠C=∠HDA,即有△CKD∽△DHA,由相似三角形的性质得到CK:KD=HD:HA,求解即可得到结论.详解:∵DEFG是正方形,∴∠EDG=90°,∴∠KDC+∠HDA=90°.∵∠C+∠KDC=90°,∴∠C=∠HDA.∵∠CKD=∠DHA=90°,∴△CKD∽△DHA,∴CK:KD=HD:HA,∴CK:100=100:15,解得:CK=.故答案为:.点睛:本题考查了相似三角形的应用.解题的关键是证明△CKD∽△DHA.三、解答题(本大题共7小题,满分66分.解答应写出文字说明、证明过程或演算步骤.)18. 先化简,再求值:,其中.【答案】.【解析】分析:先根据分式的混合运算顺序和运算法则化简原式,再将m的值代入计算可得.详解:原式=÷(﹣)=÷=•=﹣=当m=﹣2时,原式=﹣=﹣=﹣1+2=.点睛:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.19. 文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本. (1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)【答案】(1)甲种图书售价每本28元,乙种图书售价每本20元;(2)甲种图书进货533本,乙种图书进货667本时利润最大.【解析】分析:(1)乙种图书售价每本元,则甲种图书售价为每本元,根据“用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本”列出方程求解即可;(2)设甲种图书进货本,总利润元,根据题意列出不等式及一次函数,解不等式求出解集,从而确定方案,进而求出利润最大的方案.详解:(1)设乙种图书售价每本元,则甲种图书售价为每本元.由题意得:,解得:.经检验,是原方程的解.所以,甲种图书售价为每本元,答:甲种图书售价每本28元,乙种图书售价每本20元.(2)设甲种图书进货本,总利润元,则.又∵,解得:.∵随的增大而增大,∴当最大时最大,∴当本时最大,此时,乙种图书进货本数为(本).答:甲种图书进货533本,乙种图书进货667本时利润最大.点睛:本题考查了一次函数的应用,分式方程的应用,一元一次不等式的应用,理解题意找到题目蕴含的相等关系或不等关系是解应用题的关键.20. 为增强学生的安全意识,我市某中学组织初三年级1000名学生参加了“校园安全知识竞赛”,随机抽取了一个班学生的成绩进行整理,分为,,,四个等级,并把结果整理绘制成条形统计图与扇形统计图(部分),请依据如图提供的信息,完成下列问题:(1)请估计本校初三年级等级为的学生人数;(2)学校决定从得满分的3名女生和2名男生中随机抽取3人参加市级比赛,请求出恰好抽到2名女生和1名男生的概率.【答案】(1)估计该校初三等级为的学生人数约为125人;(2)恰有2名女生,1名男生的概率为.【解析】分析:(1)先根据C等级人数及其所占百分比求得总人数,用总人数减去B、C、D 的人数求得A等级人数,再用总人数乘以样本中A等级人数所占比例;(2)列出从3名女生和2名男生中随机抽取3人的所有等可能结果,再从中找到恰好抽到2名女生和1名男生的结果数,根据概率公式计算可得.详解:(1)∵所抽取学生的总数为8÷20%=40人,∴该班级等级为A的学生人数为40﹣(25+8+2)=5人,则估计本校初三年级等级为A的学生人数为1000×=125人;(2)设两位满分的男生记为A1、A2、三位满分的女生记为B1、B2、B3,从这5名同学中选3人的所有等可能结果为:(B1,B2,B3)、(A2,B2,B3)、(A2,B1,B3)、(A2,B1,B2)、(A1,B2,B3)、(A1,B1,B3)、(A1,B1,B2)、(A1,A2,B3)、(A1,A2,B2)、(A1,A2,B1),其中恰好有2名女生、1名男生的结果有6种,所以恰好抽到2名女生和1名男生的概率为=.点睛:本题考查了列表法或树状图法求概率以及条形统计图与扇形统计图.用到的知识点为:概率=所求情况数与总情况数之比.21. 如图,矩形的两边、的长分别为3、8,是的中点,反比例函数的图象经过点,与交于点.(1)若点坐标为,求的值及图象经过、两点的一次函数的表达式;(2)若,求反比例函数的表达式.【答案】(1),;(2).【解析】分析:(1)由已知求出A、E的坐标,即可得出m的值和一次函数函数的解析式;(2)由,得到,由,得到.设点坐标为,则点坐标为,代入反比例函数解析式即可得到结论.详解:(1)∵为的中点,∴.∵反比例函数图象过点,∴.设图象经过、两点的一次函数表达式为:,∴,解得,∴.(2)∵,∴.∵,∴,∴.设点坐标为,则点坐标为.∵两点在图象上,∴,解得:,∴,∴,∴.点睛:本题考查了矩形的性质以及反比例函数一次函数的解析式.解题的关键是求出点A、E、F的坐标.22. 如图,中,是上一点,于点,是的中点,于点,与交于点,若,平分,连接,.(1)求证:;(2)小亮同学经过探究发现:.请你帮助小亮同学证明这一结论.(3)若,判定四边形是否为菱形,并说明理由.【答案】(1)证明见解析;(2)证明见解析;(3)四边形是菱形,理由见解析.【解析】分析:(1)由条件得出∠C=∠DHG=90°,∠CGE=∠GED,由F是AD的中点,FG∥AE,即可得到FG是线段ED的垂直平分线,进而得到GE=GD,∠CGE=∠GDE,利用AAS即可判定△ECG≌△GHD;(2)过点G作GP⊥AB于P,判定△CAG≌△PAG,可得AC=AP,由(1)可得EG=DG,即可得到Rt△ECG≌Rt△GPD,依据EC=PD,即可得出AD=AP+PD=AC+EC;(3)由∠B=30°,可得∠ADE=30°,进而得到AE=AD,故AE=AF=FG,再根据四边形AECF是平行四边形,即可得到四边形AEGF是菱形.详解:(1)∵AF=FG,∴∠FAG=∠FGA.∵AG平分∠CAB,∴∠CAG=∠FGA,∴∠CAG=∠FGA,∴AC∥FG.∵DE⊥AC,∴FG⊥DE.∵FG⊥BC,∴DE∥BC,∴AC⊥BC,∴∠C=∠DHG=90°,∠CGE=∠GED.∵F是AD的中点,FG∥AE,∴H是ED的中点,∴FG是线段ED的垂直平分线,∴GE=GD,∠GDE=∠GED,∴∠CGE=∠GDE,∴△ECG≌△GHD;(2)过点G作GP⊥AB于P,∴GC=GP,而AG=AG,∴△CAG≌△PAG,∴AC=AP,由(1)可得EG=DG,∴Rt△ECG≌Rt△GPD,∴EC=PD,∴AD=AP+PD=AC+EC;(3)四边形AEGF是菱形.证明如下:∵∠B=30°,∴∠ADE=30°,∴AE=AD,∴AE=AF=FG,由(1)得AE∥FG,∴四边形AECF 是平行四边形,∴四边形AEGF是菱形.点睛:本题属于四边形综合题,主要考查了菱形的判定、全等三角形的判定和性质,线段垂直平分线的判定与性质以及含30°角的直角三角形的性质的综合运用,利用全等三角形的对应边相等,对应角相等是解决问题的关键.23. 如图,在平面直角坐标系中,二次函数交轴于点、,交轴于点,在轴上有一点,连接.(1)求二次函数的表达式;(2)若点为抛物线在轴负半轴上方的一个动点,求面积的最大值;(3)抛物线对称轴上是否存在点,使为等腰三角形,若存在,请直接写出所有点的坐标,若不存在请说明理由.【答案】(1)二次函数的解析式为;(2)当时,的面积取得最大值;(3)点的坐标为,,.【解析】分析:(1)把已知点坐标代入函数解析式,得出方程组求解即可;(2)根据函数解析式设出点D坐标,过点D作DG⊥x轴,交AE于点F,表示△ADE的面积,运用二次函数分析最值即可;(3)设出点P坐标,分PA=PE,PA=AE,PE=AE三种情况讨论分析即可.详解:(1)∵二次函数y=ax2+bx+c经过点A(﹣4,0)、B(2,0),C(0,6),∴,解得:,所以二次函数的解析式为:y=;(2)由A(﹣4,0),E(0,﹣2),可求AE所在直线解析式为y=,过点D作DN⊥x轴,交AE于点F,交x轴于点G,过点E作EH⊥DF,垂足为H,如图,设D(m,),则点F(m,),∴DF=﹣()=,∴S△ADE=S△ADF+S△EDF=×DF×AG+DF×EH=×DF×AG+×DF×EH=×4×DF=2×()=,∴当m=时,△ADE的面积取得最大值为.(3)y=的对称轴为x=﹣1,设P(﹣1,n),又E(0,﹣2),A(﹣4,0),可求PA=,PE=,AE=,分三种情况讨论:当PA=PE时,=,解得:n=1,此时P(﹣1,1);当PA=AE时,=,解得:n=,此时点P坐标为(﹣1,);当PE=AE时,=,解得:n=﹣2,此时点P坐标为:(﹣1,﹣2).综上所述:P点的坐标为:(﹣1,1),(﹣1,),(﹣1,﹣2).点睛:本题主要考查二次函数的综合问题,会求抛物线解析式,会运用二次函数分析三角形面积的最大值,会分类讨论解决等腰三角形的顶点的存在问题时解决此题的关键.24. 如图,在菱形ABCD中,AC与BD交于点O,E是BD上一点,EF//AB,∠EAB=∠EBA,过点B作DA的垂线,交DA的延长线于点G.(1)∠DEF和∠AEF是否相等?若相等,请证明;若不相等,请说明理由;(2)找出图中与ΔAGB相似的三角形,并证明;(3)BF的延长线交CD的延长线于点H,交AC于点M.求证:BM2=MF⋅MH.【答案】(1),理由见解析;(2),证明见解析;(3)证明见解析.【解析】分析:(1)先判断出∠DEF=∠EBA,∠AEF=∠EAB,即可得出结论;(2)先判断出∠GAB=∠ABE+∠ADB=2∠ABE,进而得出∠GAB=∠AEO,即可得出结论;(3)先判断出BM=DM,∠ADM=∠ABM,进而得出∠ADM=∠H,判断出△MFD∽△MDH,即可得出结论.详解:(1)∠DEF=∠AEF,理由如下:∵EF∥AB,∴∠DEF=∠EBA,∠AEF=∠EAB.∵∠EAB=∠EBA,∴∠DEF=∠AEF;(2)△EOA∽△AGB,理由如下:∵四边形ABCD是菱形,∴AB=AD,AC⊥BD,∴∠GAB=∠ABE+∠ADB=2∠ABE.∵∠AEO=∠ABE+∠BAE=2∠ABE.∵∠GAB=∠AEO,∠GAB=∠AOE=90°,∴△EOA∽△AGB;(3)如图,连接DM.∵四边形ABCD是菱形,由对称性可知,BM=DM,∠ADM=∠ABM.∵AB∥CH,∴∠ABM=∠H,∴∠ADM=∠H.∵∠DMH=∠FMD,∴△MFD∽△MDH,∴,∴DM2=MF•MH,∴BM2=MF•MH.点睛:本题是相似形综合题,主要考查了菱形的性质,对称性,相似三角形的判定和性质,判断出△EOA∽△AGB是解答本题的关键.。
山东省泰安市岱岳区2018 届九年级第三次模拟考试数学试题一、选择题(每小题3 分,满分36 分)1.下列计算结果等于1 的是()A.|(﹣6)+(﹣6)| B.(﹣6)﹣(﹣6)C.(﹣6)×(﹣6)D.(﹣6)÷(﹣6)【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.解:∵|(﹣6)+(﹣6)|=|﹣12|=12,故选项A 错误,∵(﹣6)﹣(﹣6)=0,故选项B 错误,∵(﹣6)×(﹣6)=36,故选项C 错误,∵(﹣6)÷(﹣6)=1,故选项D 正确,故选:D.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.2.下列运算正确的是()A.x2+x2=x4 B.3a3•2a2=6a6C.(﹣a2)3÷a3=﹣a3D.(a﹣b)2=a2﹣b2【分析】根据单项式乘以单项式、单项式除以单项式、积的乘方、合并同类项法则求出每个式子的值,再判断即可.解:A、结果是2a2,故本选项不符合题意;B、结果是6a5,故本选项不符合题意;C、结果是﹣a3,故本选项符合题意;D、结果是a2﹣2ab+b2,故本选项不符合题意;故选:C.【点评】本题考查了单项式乘以单项式、单项式除以单项式、积的乘方、合并同类项法则等知识点,能正确求出每个式子的值是解此题的关键.3.为了解某班学生每天使用零花钱的情况,小红随机调查了15 名同学,结果如下表:(单位:元)人数 2 5 4 3 1则这15 名同学每天使用零花钱的众数和中位数分别是()A.3,3 B.2,3 C.2,2 D.3,5【分析】由于小红随机调查了15 名同学,根据表格数据可以知道中位数在第三组,再利用众数的定义可以确定众数在第二组.解:∵小红随机调查了15 名同学,∴根据表格数据可以知道中位数在第三组,即中位数为3.∵2 出现了5 次,它的次数最多,∴众数为2.故选:B.【点评】此题考查中位数、众数的求法:①给定n 个数据,按从小到大排序,如果n 为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.任何一组数据,都一定存在中位数的,但中位数不一定是这组数据里的数.②给定一组数据,出现次数最多的那个数,称为这组数据的众数.如果一组数据存在众数,则众数一定是数据集里的数.4.四张质地、大小、背面完全相同的卡片上,正面分别画有下列图案,现把它们正面朝下随机摆放在桌面上,从中任意抽出一张,则抽出的卡片正面图案既是轴对称图形,又是中心对称图形的概率是()A.B.C.D.1【分析】根据轴对称图形和中心对称图形的概念确定出符合条件的结果数,再根据概率公式计算可得.解:因为在所列4 个图形中,既是轴对称图形,又是中心对称图形的是第1、3 这2 个,所以抽出的卡片正面图案既是轴对称图形,又是中心对称图形的概率是=,故选:B.【点评】此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.5.已知关于x,y的方程组的解满足方程3x+2y=19,则m值是()A.1 B.﹣1 C.19 D.﹣19【分析】先解关于x,y 二元一次方程组,求得用m 表示的x,y 的值后,再代入3x+2y=19,建立关于m 的方程,解出m 的数值.解:,①+②得x=7m,①﹣②得y=﹣m,依题意得3×7m+2×(﹣m)=19,∴m=1.故选:A.【点评】此题考查二元一次方程组的解,本题实质是解二元一次方程组,先用m 表示的x,y 的值后,再求解关于m 的方程,解方程组关键是消元.6.如图,△ABC⊙O,⊙O,AC是⊙O 的直径,∠ACB=52°,点D是上一点,则∠D度数是()A.52°B.38°C.19°D.26°【分析】由AC是⊙O的直径,根据直径所对的圆周角是直角,即可求得∠ACB 的度数,又由在同圆或等圆中,同弧或等弧所对的圆周角相等,即可求得∠D 的度数.解:∵AC 是⊙O 的直径,∴∠ABC=90°,∵∠ACB=52°,∴∠A=90°﹣∠ACB=38°,∴∠D=∠A=38°.故选:B.【点评】此题考查了圆周角定理与直角三角形的性质.此题比较简单,注意掌握直径所对的圆周角是直角与在同圆或等圆中,同弧或等弧所对的圆周角相等定理的应用是解此题的关键.7.我省2013 年的快递业务量为1.4 亿件,受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展,2014年增速位居全国第一.若2015年的快递业务量达到4.5 亿件,设2014 年与2015 年这两年的平均增长率为x,则下列方程正确的是()A.1.4(1+x)=4.5 B.1.4(1+2x)=4.5C.1.4(1+x)2=4.5 D.1.4(1+x)+1.4(1+x)2=4.5【分析】根据题意可得等量关系:2013 年的快递业务量×(1+增长率)2=2015 年的快递业务量,根据等量关系列出方程即可.解:设2014 年与2015 年这两年的平均增长率为x,由题意得:1.4(1+x)2=4.5,故选:C.【点评】此题主要考查了由实际问题抽象出一元二次方程,关键是掌握平均变化率的方法,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.8.下列四个函数:①y=2x﹣9;②y=﹣3x+6;③y=﹣;④y=﹣2x2+8x﹣5.当x<2时,y随x增大而增大的函数是()A.①③④B.②③④C.②③D.①④【分析】根据反比例函数的性质,一次函数的性质,二次函数的性质,可得答案.解:①y=2x﹣9,k=2>0 当x<2 时,y 随x 增大而增大;②y=﹣3x+6,k=﹣3<0,当x<2 时,y 随x 增大而减小;③y=﹣,k=﹣3<0,当x<0 时,y 随x 增大而增大,当0<x<2 时,y 随x增大而增大,故③错误;④y=﹣2x2+8x﹣5,当x<﹣2 时,y 随x 增大而增大,故选:D.【点评】本题考查了反比例函数的性质,一次函数的性质,二次函数的性质,熟记反比例函数的性质,一次函数的性质,二次函数的性质是解题关键.9.若0<m<2,则关于x的一元二次方程﹣(x+m)(x+3m)=3mx+37根的情况是()A.无实数根B.有两个正根C.有两个根,且都大于﹣3mD.有两个根,其中一根大于﹣m【分析】先把方程化为一般式,再计算判别式的值得到△=37(m2﹣4),然后根据m 的范围得到△<0,从而根据判别式的意义可得到正确选项.解:方程整理为x2+7mx+3m2+37=0,△=49m2﹣4(3m2+37)=37(m2﹣4),∵0<m<2,∴m2﹣4<0,∴△<0,∴方程没有实数根.故选:A.【点评】本题考查了抛物线与x 轴的交点:把求二次函数y=ax2+bx+c(a,b,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了判别式的意义.10.如果一次函数y=ax+b的图象如图所示,那么反比例函数y=和二次函数y=ax2+bx+c的图象只可能是()B .C .D .【分析】根据一次函数图象,可得a ,b ,根据反比例函数图象、二次函数图象,可得答案. 解:由一次函数图象,得a <0,b >0,当x =1 时,y =a +b <0,∵a +b <0,∴y =的图象位于二四象限,a <0,二次函数图象开口向下,x =﹣>0,对称轴在y 轴的右侧,故选:D . 【点评】本题考查了反比例函数图象、一次函数图象、二次函数图象,熟记反比例函数图象、一次函数图象、二次函数图象是解题关键.11. 如图,菱形ABCD 的边长为2cm ,∠A =60°,弧BD 是以点A 为圆心、AB 长为半径的弧,弧CD 是以点B 为圆心、BC 长为半径的弧,则阴影部分的面积为()A .1cm 2B .C .2cm 2D .πcm 2A .【分析】连接BD,判断出△ABD 是等边三角形,根据等边三角形的性质可得∠ABD=60°,再求出∠CBD=60°,然后求出阴影部分的面积=S△ABD,计算即可得解.解:如图,连接BD,∵四边形ABCD 是菱形,∴AB=AD,∵∠A=60°,∴△ABD 是等边三角形,∴∠ABD=60°,又∵菱形的对边AD∥BC,∴∠ABC=180°﹣60°=120°,∴∠CBD=120°﹣60°=60°,∴S阴影=S扇形CBD﹣(S 扇形BAD﹣S△ABD),=S△ABD,=×2×(×2),=cm2.故选:B.【点评】本题考查了菱形的性质,扇形的面积的计算,熟记性质并作辅助线构造出等边三角形是解题的关键.12.如图,已知AD为△ABC的高,AD=BC,以AB为底边作等腰Rt△ABE,EF∥AD,交AC 于F,连ED,EC,有以下结论:①△ADE≌△BCE②CE⊥AB③BD=2EF④S△BDE=S△ACE其中正确的是()A.①②③B.②④C.①③D.①③④【分析】只要证明△ADE≌△BCE,△KAE≌△DBE,EF 是△ACK 的中位线即可一一判断;解:如图延长CE 交AD 于K,交AB 于H.设AD 交BE 于O.∵∠ODB=∠OEA,∠AOE=∠DOB,∴∠OAE=∠OBD,∵AE=BE,AD=BC,∴△ADE≌△BCE,故①正确,∴∠AED=∠BEC,DE=EC,∴∠AEB=∠DEC=90°,∴∠ECD=∠ABE=45°,∵∠AHC=∠ABC+∠HCB=90°+∠EBC>90°,∴EC 不垂直AB,故②错误,∵∠AEB=∠HED,∴∠AEK=∠BED,∵AE=BE,∠KAE=∠EBD,∴△KAE≌△DBE,∴BD=AK,∵△DCK 是等腰直角三角形,DE 平分∠CDK,∴EC=EK,∵EF∥AK,∴AF=FC,∴AK=2EF,∴BD=2EF,故③正确,∵EK=EC,=S△AEC,∴S△AKE∵△KAE≈△DBE,=S△BDE,∴S△KAE∴S△BDE=S△AEC,故④正确.故选:D.【点评】本题考查等腰直角三角形的性质和判定、全等三角形的判定和性质、三角形中位线定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考选择题中的压轴题.二、填空题(共6 小题,每小题3 分,满分18 分,只要求填写最后结果,每小题填对的3 分)13.据报道.2018年5月1日到3日的五一劳动节期间,全国共接待游客1.34亿人次,旅游总收入达791.2 亿元,用科学记数法表示数791.2 亿元是7.912×1010 元人民币.【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1 时,n 是正数;当原数的绝对值<1 时,n 是负数.解:用科学记数法表示数791.2 亿元是7.912×1010 元人民币.故答案为:7.912×1010.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a 的值以及n 的值.14.若关于x的不等式的整数解共有4 个,则m的取值范围是6<m≤7 .【分析】关键不等式的性质求出不等式的解集,根据找不等式组解集的规律找出不等式组的解集,根据已知得到6≤m<7 即可.解:,由①得:x<m,由②得:x≥3,∴不等式组的解集是3≤x<m,∵关于x的不等式的整数解共有4 个,∴6<m≤7,故答案为:6<m≤7.【点评】本题主要考查对解一元一次不等式,不等式的性质,解一元一次不等式组,一元一次不等式组的整数解等知识点的理解和掌握,能根据不等式组的解集得到6<m≤7 是解此题的关键.15.点A,B、C在格点图中的位置如图所示,连AB,AC,已知格点小正方形的边长为1,则sin∠BAC的值是.【分析】过C 作CE⊥AB,利用三角形的面积公式和三角函数解答即可.解:过C 作CE⊥AB,连接BC,=3×3﹣×2×1﹣×2×1﹣×3×3﹣1=9﹣1﹣1﹣﹣1=,AB∵S△ABC=,∴××CE=,∴CE=.∵AC=,∴sin∠BAC=,故答案为:【点评】此题考查解直角三角形问题,关键是利用三角形的面积公式和三角函数解答.16.如图,△ABC是⊙O的内接三角形,∠C=30°,⊙O的半径为5,若点P是⊙O上的一点,在△ABP中,PB=AB,则PA的长为.【分析】连接OA、OP,连接OB 交AP 于H,根据圆周角定理得到∠AOB=2 ∠C=60°,根据正弦的概念计算即可.解:连接OA、OP,连接OB 交AP 于H,由圆周角定理得,∠AOB=2∠C=60°,∵PB=AB,∴∠POB=60°,OB⊥AP,则AH=PH=OP×sin∠POH=,∴AP=2AH=5,故答案为:5.【点评】本题考查的是三角形的外接圆与外心,掌握圆周角定理、解直角三角形的知识是解题的关键.17.在一次夏令营活动中,小亮从位于A点的营地出发,沿北偏东60°方向走了5km到达B地,然后再沿北偏西30°方向走了若干千米到达C 地,测得A 地在C 地南偏西30°方向,则A、C 两地的距离为km.【分析】根据已知作图,由已知可得到△ABC 是直角三角形,从而根据三角函数即可求得AC 的长.解:如图.由题意可知,AB=5km,∠2=30°,∠EAB=60°,∠3=30°.∵EF∥PQ,∴∠1=∠EAB=60° 又∵∠2=30°,∴∠ABC=180°﹣∠1﹣∠2=180°﹣60°﹣30°=90°.∴△ABC 是直角三角形.又∵MN∥PQ,∴∠4=∠2=30°.∴∠ACB=∠4+∠3=30°+30°=60°.∴AC===km.故答案为:km.【点评】本题是方向角问题在实际生活中的运用,解答此类题目的关键是根据题意画出图形利用解直角三角形的相关知识解答.18.如图,在平面直角坐标系中,直线l1:y=x+1与x轴交于点A,与y轴交于点B,以x轴为对称轴作直线y═x+1的轴对称图形的直线l2,点A1,A2,A3…在直线l1上,点B1,B2,B3…在x正半轴上,点C1,C2,C3…在直线l2上,若△A1B1O、△A2B2B1、△A3B3B2、…、△A n B n B n﹣1均为等边三角形,四边形A1B1C1O、四边形A2B2C2B1、四边形A3B3C3B2…、四边形A n B n∁n B n﹣1 的周长分别是l1、l2、l3、…、l n,则l n为(用含有n的代数式表示)【分析】依据直线l1:y=x+1,可得∠BAO=30°,进而得出∠AA1O=30°,AO=A1O=,C1O=A1B1=,分别求得四边形A1B1C1O、四边形A2B2C2B1、四边形A3B3C3B2的周长,根据规律可得四边形A n B n∁n B n﹣1的周长.解:由直线l1:y=x+1,可得A(﹣,0),B(0,1),∴AO=,BO=1,式 + ∴∠BAO =30°,又∵∠A 1OB 1=60°,∴∠AA 1O =30°,∴AO =A 1O =,由轴对称图形可得,C 1O =A 1B 1=, ∴四边形A 1B 1C 1O 的周长l 1为4; 同理可得,AB 1=A 2B 1=2,四边形A 2B 2C 2B 1的周长l 2为8, AB 2=A 3B 2=4,四边形A 3B 3C 3B 2的周长l 3为16,以此类推,A n B n ∁n B n ﹣1的周长l n 为, 故答案为:.【点评】本题主要考查了一次函数图象上点的坐标特征,等边三角形的判定与性质以及等腰三角形的性质的运用,解题时注意:直线上任意一点的坐标都满足函数关系式y =kx +b .三、解答题(共7 小题,满分66 分)19.(6分)先化简,再求值:+(+1)÷,然后从﹣ ≤x ≤的范围内选取一个合适的整数作为x 的值带入求值.【分析】根据分式的加减、乘除法则,先对分式进行化简,然后选取合适的整数代入.注意代入的整数需使原分式有意义.解:原+×=﹣=∵﹣≤x≤所以x 可取﹣2.﹣1,0,1由于当x 取﹣1、0、1 时,分式的分母为0,所以x 只能取﹣2.当x=﹣2 时,原式=8.【点评】本题主要考查了根式的化简求值.解决本题的关键是掌握分式的运算法则和运算顺序.注意代入的值需满足分式有意义.20.(8 分)随着信息化时代的到来,各种便捷支付已经成为我们生活中的一部分,某信息调查机构为了届人民使用便捷支付的情况(选项:A.微信,B.支付宝,C.QQ 红包,D.银行卡,E.现金及其它),“五一”)劳动节后某学院随机抽取了若干名学生进行调査,得到如图表(部分信息未给出):选项频数百分比A 10 mB n 0.2C 5 0.1D p 0.4E 5 0.1先根据以上信息不全条形统计图,再解答下列问题:(1)该信息调查机构吧微信支付、支付宝支付、QQ红包支付定义为移动支付,已知该学院约有3000 名学生,估计全校学生中使用移动支付的学生约有多少人?(2)已知该学院某宿舍的5名同学,有3人使用微信支付,2人使用支付宝支付,问从这5 人中随机抽出两人,使用同一种支付方式的概率是多少?【分析】(1)用3000 乘以移动支付所占的百分比;(2)画树状图(用W 表示使用微信支付,Z 表示使用支付宝支付)展示所有20 种等可能的结果数,再找出使用同一种支付方式的结果数,然后根据概率公式求解.解:(1)3000×(1﹣0.4﹣0.1)=1500,所以估计全校学生中使用移动支付的学生约有1500 人;(2)画树状图为:(用W表示使用微信支付,Z 表示使用支付宝支付)共有20 种等可能的结果数,其中使用同一种支付方式的结果数为8,所以使用同一种支付方式的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A 或B 的结果数目m,然后利用概率公式计算事件A 或事件B 的概率.21.(8 分)如图,直线y1═﹣x+1与x轴交于点A,与y轴交于点C,与反比例函数y2=(x>0)的图象交于点P,过点P,作PB⊥x轴于点B,且AC=BC(1)求反比例函数y2的解析式;(2)反比例函数y2图象上是否存在点D,使四边形BCPD为菱形?如果存在,求出点D的坐标;如果不存,说明理由【分析】(1)首先求得直线与x 轴和y 轴的交点,根据AC=BC 可得OA=OB,则B 的坐标即可求得,BP=2OC,则P 的坐标可求出,然后利用待定系数法即可求得函数的解析式;(2)连接DC 与PB 交于点E,若四边形BCPD 是菱形时,CE=DE,则CD 的长即可求得,从而求得D 的坐标,判断D 是否在反比例函数的图象上即可.解:(1)∵一次函数y1=﹣x+1的图象与x轴交于点A,与y轴交于点C,∴A(4,0),C(0,1),又∵AC=BC,CO⊥AB,∴O 是AB 的中点,即OA=OB=4,且BP=2OC=2,∴P的坐标是(﹣4,2),将P(﹣4,2)代入y2=,得m=﹣8,即反比例函数的解析式为y2=﹣;(2)假设存在这样的点D,使四边形BCPD 为菱形,如图,连接DC,与PB 交于点E.∵四边形BCPD 是菱形,∴CE=DE=4,∴CD=8,将x=﹣8 代入反比例函数解析式y=﹣,得y=1,∴D的坐标是(﹣8,1),即反比例函数的图象上存在点D 使四边形BCPD 是菱形,此时D 的坐标是(﹣8,1).【点评】本题考查了一次函数、反比函数以及菱形的判定与性质的综合应用,理解菱形的性质求得D 的坐标是关键.22.(10 分)已知:在ABC 中,AC=BC,∠ACB=90°,点E 是线段BA 延长线上的一点,CD 为AB 边上的高.(1)直线BF垂直于直线CE于点F,交线段DC延长线于点G(如图1),求证:AE=CG;(2)直线AH垂直于直线CE,垂足为点H,交线段CD的延长线于点M(如图2),找出图中与BE相等的线段,并证明.【分析】(1)根据等腰直角三角形的性质可得CD=AD=BD,∠CAB=∠ACD =∠BCD=∠ABC=45°,根据同角的余角相等可得∠G=∠E,即可证△AEC≌△CGB,则可得AE=CG;(2)根据同角的余角相等可得∠M=∠E,即可证△ACM≌△CBE,可得BE=CM.证明:(1)∵AC=BC,∠ACB=90°,CD为AB边上的高.∴CD=AD=BD,∠CAB=∠ACD=∠BCD=∠ABC=45°∴∠EAC=∠BCG=135°,∵∠G+∠DBG=90°,∠E+∠DBG=90°∴∠G=∠E,且∠EAC=∠BCG,AC=BC∴△AEC≌△CGB(AAS)∴AE=CG(2)BE=CM理由如下:∵∠M+∠DCE=90°,∠E+∠DCE=90°∴∠M=∠E,且AC=BC,∠ACD=∠ABC∴△ACM≌△CBE(AAS)∴CM=BE【点评】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,熟练运用这些性质进行推理是本题的关键.23.(10 分)某蔬菜加工公司先后两次收购某时令蔬菜200 吨,第一批蔬菜价格为2000 元/吨,因蔬菜大量上市,第二批收购时价格变为500 元/吨,这两批蔬菜共用去16 万元.(1)求两批次购蔬菜各购进多少吨?(2)公司收购后对蔬菜进行加工,分为粗加工和精加工两种:粗加工每吨利润400 元,精加工每吨利润800 元.要求精加工数量不多于粗加工数量的三倍.为获得最大利润,精加工数量应为多少吨?最大利润是多少?【分析】(1)根据题意可以列出相应的二元一次方程组,从而可以解答本题;(2)根据题意可以得到利润与精加工吨数的函数关系,再根据题意可以得到关于精加工吨数的不等式,然后根据一次函数的性质即可解答本题.解:(1)设第一次购进a 吨,第二次购进b 吨,,解得,,答:第一次购进40 吨,第二次购进160 吨;(2)设精加工x 吨,利润为w 元,w=800x+400(200﹣x)=400x+80000,∵x≤3(200﹣x),解得,x≤150,∴当x=150 时,w 取得最大值,此时w=140000,答:为获得最大利润,精加工数量应为150 吨,最大利润是140000.【点评】本题考查一次函数的应用、二元一次方程组的应用、一元一次不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质解答啊.24.(12 分)如图,在△ABC 中.AB=AC,AD⊥BC 于D,作DE⊥AC 于E,F 是AB 中点,连EF 交AD 于点G.(1)求证:AD2=AB•AE;(2)若AB=3,AE=2,求的值.【分析】(1)只要证明△DAE∽△CAD,可得=,推出AD2=AC•AE即可解决问题;(2)利用直角三角形斜边中线定理求出DF,再根据DF∥AC,可得===,由此即可解决问题;(1)证明:∵AD⊥BC于D,作DE⊥AC 于E,∴∠ADC=∠AED=90°,∵∠DAE=∠DAC,∴△DAE∽△CAD,∴=,∴AD2=AC•AE,∵AC=AB,∴AD2=AB•AE.(2)解:如图,连接DF.∵AB=3,∠ADB=90°,BF=AF,∴DF=AB=,∵AB=AC,AD⊥BC,∴BD=DC,∴DF∥AC,∴===,∴=.【点评】本题考查相似三角形的判定和性质、平行线分线段成比例定理等知识,解题的关键是准确寻找相似三角形解决问题,学会添加常用辅助线,构造平行线解决问题,属于中考常考题型.25.(12 分)如图,抛物线y=ax2+bx+c(a≠0)经过A(4,﹣5),与x轴的负半轴交于点B,与y轴交于点C(0,﹣5),且tan∠OCB=(1)求这条抛物线的表达式;(2)连接AB,BC,CD,DA,求四边形ABCD的面积(如图1);(3)如图2,点P是直线AB下方的抛物线上的一动点(不与点A,B重合),过点P作y轴的平行线交直线AB于点E,交x轴于点H,过点P作PF⊥AB 于点F,设△PEF的周长为l,点P的横坐标为x,求l 的最大值.【分析】(1)先求得OC 的长,然后依据锐角三角函数的定义可求得OB 的长,则可得到点B 的坐标,然后将点A、B、C 的坐标代入抛物线的解析求解即可;(2)连接AC,先求得点D的坐标,然后依据四边形ABCD的面积=S△ABC+S△ACD求解即可;(3)由点A、B的坐标可求得tan∠HBH=1,然后证明∠EBH=∠EPF,则EF =PF=PE,接下来求得直线AB的解析式,设点P的坐标为(x,x2﹣4x﹣5),则点E(x,﹣x﹣1),从而可得到PE的长与x之间的函数关系式,然后再求得PE的最小值,最后,依据l=(1+)EP可得到l 的最小值.解:(1)∵点C 的坐标为(0,﹣5),∴OC=5.∵tan∠OCB=,∴OB=1,∴B(﹣1,0).将点A、B、C的坐标代入抛物线的解析式得,,解得,a=1,b=﹣4,c=﹣5,∴抛物线的解析式为y=x2﹣4x﹣5.(2)如图1 所示:连接AC.∵y=x2﹣4x﹣5=(x﹣2)2﹣9,∴点D的坐标为(2,﹣9).∵C(0,﹣5),A(4,﹣5),∴AC=4.+S△ACD=×4×5+×4×4=18.∴四边形ABCD的面积=S△ABC(3)∵B(﹣1,0),A(4,﹣5),∴tan∠HBH==1.∵∠EHB=∠EFP=90°,∠BEH=∠PEF,∴∠EBH=∠EPF.∴tan∠EPF=1.∴EF=PF=PE.∴PE+EF+PF=(1+)EP.设直线AB的解析式为y=kx+b,则,解得k=﹣1,b=﹣1.∴直线AB 的解析式为y=﹣x﹣1.设点P的坐标为(x,x2﹣4x﹣5),则点E(x,﹣x﹣1),PE=(﹣x﹣1)﹣(x2﹣4x﹣5)=﹣x2+3x+4.∴当x=时,PE有最小值y=.∴l的最小值=(1+ )EP=+.【点评】本题主要考查的是二次函数的综合应用,用含x 的式子表示PE 的长以及发现EF、PF 与PE 的数量关系是解题的关键.。