飞机结构一百年
- 格式:pdf
- 大小:6.71 MB
- 文档页数:57
飞机结构一百年(下)一战后的飞机结构第一次世界大战期间的飞机结构科技发展非常迅速,战后由于缺少刺激而使步伐变慢。
大战期间各国共生产超过15万架的飞机,大部分使用木材制造,使得木料来源濒临枯竭,大战末期由于杉木缺乏,设计人员只得采用夹板而非实木来设计支柱和翼梁。
也由于木材的供应有问题,英国的航空部(Air Ministry)宣布未来英国飞机将采用全金属的设计,不过二战时期英国著名的蚊式战斗机(Mosquito),还是以三合板做为结构材料,该机也是全世界最后一架全木制生产型飞机。
1919年,容克斯把J.10的经验融入单发民用机F.13的设计里。
这是一架全金属、铝质波纹蒙皮、悬臂式下单翼飞机,可乘坐两名机组和四名乘客,时速167公里,到1932年底共生产了350架。
接着是可乘坐15名乘客,时速278公里,非常成功的Ju 52民航机,并成为纳粹德国空军第二次世界大战时的空运主力。
Ju 52是下单翼机,方方正正的机身覆盖铝质波纹蒙皮,看外观就是典型容克斯飞机,机鼻和左右机翼的发动机舱内共安装3具星型发动机。
等待最后组装的F.13容克斯波纹蒙皮的代表作——Ju 52美国福特汽车公司(Ford Motor Company)从1926年起也开始生产外型方正、全金属、厚实上单翼、波纹蒙皮、和Ju 52一样3具发动机的“锡天鹅”(Tin Goose)3发飞机(Trimotor),该机可乘坐12名乘客、时速232公里。
虽然福特和容克斯的波纹蒙皮非常耐用,但蒙皮事实上承受的负载很少,却产生不小的风阻,以结构效率而言这种设计没什么前途。
同样是波纹蒙皮三发的福特“锡天鹅”1916年,一位二十多岁热衷于飞机的年轻小伙子诺斯洛普毛遂自荐加入加州圣芭芭拉,由劳黑德兄弟创立才一年的劳黑德飞机制造公司,他最初负责设计F-1(Flying Boat No.1)的机身外形,接着则设计翼展长达22.86米的机翼。
F-1是一架双发、可乘坐10名乘客的双翼水上飞机,也是当时全世界最大的飞机,1918年3月28日由阿伦进行首飞。
飞机结构详细讲解机翼机翼是飞机的重要部件之一,安装在机身上。
其最主要作用是产生升力,同时也可以在机翼内布置弹药仓和油箱,在飞行中可以收藏起落架。
另外,在机翼上还安装有改善起飞和着陆性能的襟翼和用于飞机横向操纵的副翼,有的还在机翼前缘装有缝翼等增加升力的装置。
由于飞机是在空中飞行的,因此和一般的运输工具和机械相比,就有很大的不同。
飞机的各个组成部分要求在能够满足结构强度和刚度的情况下尽可能轻,机翼自然也不例外,加之机翼是产生升力的主要部件,而且许多飞机的发动机也安装在机翼上或机翼下,因此所承受的载荷就更大,这就需要机翼有很好的结构强度以承受这巨大的载荷,同时也要有很大的刚度保证机翼在巨大载荷的作用下不会过分变形。
机翼的基本受力构件包括纵向骨架、横向骨架、蒙皮和接头。
其中接头的作用是将机翼上的载荷传递到机身上,而有些飞机整个就是一个大的飞翼,如B2隐形轰炸机则根本就没有接头。
以下是典型的梁式机翼的结构。
一、纵向骨架机翼的纵向骨架由翼梁、纵樯和桁条等组成,所谓纵向是指沿翼展方向,它们都是沿翼展方向布置的。
* 翼梁是最主要的纵向构件,它承受全部或大部分弯矩和剪力。
翼梁一般由凸缘、腹板和支柱构成(如图所示)。
凸缘通常由锻造铝合金或高强度合金钢制成,腹板用硬铝合金板材制成,与上下凸缘用螺钉或铆钉相连接。
凸缘和腹板组成工字型梁,承受由外载荷转化而成的弯矩和剪力。
* 纵樯与翼梁十分相像,二者的区别在于纵樯的凸缘很弱并且不与机身相连,其长度有时仅为翼展的一部分。
纵樯通常布置在机翼的前后缘部分,与上下蒙皮相连,形成封闭盒段,承受扭矩。
靠后缘的纵樯还可以悬挂襟翼和副翼。
* 桁条是用铝合金挤压或板材弯制而成,铆接在蒙皮内表面,支持蒙皮以提高其承载能力,并共同将气动力分布载荷传给翼肋。
二、横向骨架机翼的横向骨架主要是指翼肋,而翼肋又包括普通翼肋和加强翼肋,横向是指垂直于翼展的方向,它们的安装方向一般都垂直于机翼前缘。
* 普通翼肋的作用是将纵向骨架和蒙皮连成一体,把由蒙皮和桁条传来的空气动力载荷传递给翼梁,并保持翼剖面的形状。
飞机结构和外形飞机外形的演变50年代后飞机进入了超音速时代飞机的速度越来越快。
飞机速度的提高除了应归功于喷气发动机技术的进展外还应归功于超音速空气动力学的突破飞机的外形随着空气动力学的发展而不断变化。
首先是机翼外形在飞机速度较低时机翼外形一般都为矩形的直机翼。
而超音速飞机的机翼除了采用薄翼型外还必须用向后斜的后掠机翼以减少波阻。
后掠机翼可使飞机速度提得更高。
由后掠机翼演变而来的三角机翼已在战斗机中广泛采用。
其次是机身外形典型的超音速机身是蜂腰形的像一个可口可乐瓶子。
理论和试验证明这种机身外形可大大减小波阻。
尖的机头、蜂腰机身和三角机翼成为超音速飞机的典型气动布局。
在后掠机翼的基础上后来又发展出了变后掠机翼等气动外形近年来又在研究前掠翼、斜机翼等布局形式。
变后掠机翼大后掠机翼的主要缺点是:低速时气动效率低升力特性不好但低速性能好的小后掠角、大展弦比机翼又会使超音速性能变坏。
于是能在不同飞行状态下改变机翼后掠角的变后掠翼飞机应运而生。
世界上第一架实用的变后掠翼战斗机为美国的F-111战斗机。
以后这种机翼也被用到了对地攻击机和轰炸机上。
前掠机翼和斜机翼超音速飞行也可用前掠翼和斜机翼方案。
前掠翼的好处是在超音速减波阻的前提下亚音速时能大迎角飞行而不发生后掠角因翼尖失速丧失安定性的弊病。
但其困难在于保证大速度时不出现机翼弹性失稳。
目前仅有美国X-29和俄罗斯S-37两种试验机。
斜机翼离实用更为遥远仅有美国的AD-1小型试验机。
鸭式布局和三翼面布局一般把取消平尾、在机身前面设置一对前翼的称鸭式布局因为看起来像个鸭子主要为了改善起飞和大迎角性能这时机翼后缘襟翼起到一定的升降舵的作用。
现在还有些飞机既有平尾又有前翼称为三翼面布局。
飞机基本结构飞机结构一般由五个主要部分组成:机翼、机身、尾翼、起落装置和动力装置主要介绍机翼和机身。
机翼薄蒙皮梁式主要的构造特点是蒙皮很薄常用轻质铝合金制作纵向翼梁很强有单梁、双梁或多梁等布置.纵向长桁较少且弱梁缘条的剖面与长桁相比要大得多当布置有一根纵梁时同时还要布置有一根以上的纵墙。
飞机结构一百年近代人类在航空器上惊人的发展,起源于一百多年前莱特兄弟完成的人类首次动力飞行。
人类历史上首先问世的飞机是架全木制、桥梁衍架式双机翼,谈不上有机身的简陋结构,随着两次世界大战的军事需求,以及20世纪30年代开始萌芽的民航事业的强烈需求下,今日的飞机已逐步演进成全金属、单悬臂式机翼、庞大机身的精密结构,与百年前天差地别。
上世纪末由于隐身的需求,复合材料成为飞机结构材料的新宠,只是虽然有助于飞机性能的提升,但对结构设计的本质却影响甚微。
前言1903年12月17日,在美国北卡罗来纳州东北部的小鹰镇(Kitty Hawk, NorthCarolina),一架装着螺旋桨,比空气重的航空器“飞行者”(Flyer)飞离地面,在人为操纵下飞行了36.5米,完好无损地降落在不比起飞位置低的地面上,完成人类历史上首次的动力飞行。
操控这次简短但深具历史意义飞行的是32岁的奥维尔·莱特(OrvilleWright)。
他和年长4岁的哥哥威尔伯·莱特(Wilbur Wright)以掷铜板的方式决定由奥维尔来飞,而威尔伯则在一旁观看。
在俄亥俄州德顿市(Dayton,Ohio)以制造自行车为业的莱特兄弟,又轮流操纵了三次时间更久、距离更远的飞行,威尔伯在最后一次飞行中持续了59秒,距离259.7米。
在接下来的第五次飞行中,飞机遭遇到强劲的阵风而向前翻覆,由于损伤严重再也无法飞行,但全新的航空时代就在当天正式开始。
首飞前莱特兄弟正在练习“飞行者”的操纵技术奥维尔·莱特(左)和威尔伯·莱特(右)“飞行者”的设计基础来自之前莱特兄弟的一系列滑翔机,其中莱特兄弟的忘年好友沙努特(OctaveChanute)贡献最大。
沙努特比莱特兄弟年长35岁,在43岁时才对航空发生兴趣,此后的余生就埋首于航空信息中,因此他对全世界的航空器发展了如指掌。
沙努特是个优秀的土木工程师,他舍弃了当时试飞成功的鸟或蝙蝠的翅膀造型,在1896年以桥梁的衍架(truss)设计方式,成功制造出双翼滑翔机。
飞机结构的五大组成部分
飞机的五大组成部分包括:
1. 机身:机身是飞机的主要结构部分,承载着机翼、发动机和其他的系统和部件。
机身通常由钢铝合金、复合材料等材料制成,包括机头、机身段和机尾等部分。
2. 机翼:机翼是飞机的承载部分,负责产生升力。
它由主翼和副翼组成,主翼通常呈梯形或矩形的平面形状,下面通常有弯曲的气动剖面,使得空气在上下两侧产生不同的压力。
3. 垂直尾翼:垂直尾翼是飞机的稳定器,通常位于机尾上方,由垂直安定面和方向舵组成。
它通过改变方向舵的偏转角度来改变飞机的方向。
4. 水平尾翼:水平尾翼也是飞机的稳定器,通常位于垂直尾翼下方,由水平安定面和升降舵组成。
它通过改变升降舵的偏转角度来改变飞机的升降姿态。
5. 发动机:发动机是飞机的动力来源,通常安装在机翼或机身前部。
发动机可以是涡喷发动机、螺旋桨发动机或喷气式发动机等,它们通过燃烧燃料产生推力,驱动飞机前进。
飞机构造之结构 The manuscript was revised on the evening of 2021第一章飞机结构概述飞机载荷载荷、变形和应力的概机翼结构机身结构尾翼和副翼机体开口部位的构造和受力分析定位编码系统1.1.概述固定机翼飞机的机体由机身、机翼、安定面、飞行操纵面和起落架五个主要部件组成。
直升机的机体由机身、旋翼及其相关的减速器、尾桨(单旋翼直升机才有)和起落架组成。
机体各部件由多种材料组成,并通过铆钉、螺栓、螺钉、焊接或胶接而联接起来。
飞机各部件由不同构件构成。
飞机各构件用来传递载荷或承受应力。
单个构件可承受组合应力。
对某些结构,强度是主要的要求;而另一些结构,其要求则完全不同。
例如,整流罩只承受飞机飞行过程中的局部空气动力,而不作为主要结构受力件。
1.2.飞机载荷飞行中,作用于飞机上的载荷主要有飞机重力,升力,阻力和发动机推力(或拉力)。
飞行状态改变或受到不稳定气流的影响时,飞机的升力会发生很大变化。
飞机着陆接地时,飞机除了承受上述载荷外,还要承受地面撞击力,其中以地面撞击力最大。
飞机承受的各种载荷中,以升力和地面撞击力对飞机结构的影响最大。
1.2.1.平飞中的受载情况飞机在等速直线平飞时,它所受的力有:飞机重力G、升力Y、阻力X和发动机推力P。
为了简便起见,假定这四个力都通过飞机的重心,而且推力与阻力的方向相反。
则作用在飞机上的力的平衡条件为:升力等于飞机的重力,推力等于飞机的阻力。
即:Y = GP = X图 1 - 1 平飞时飞机的受载飞机作不稳定的平飞时,推力与阻力是不相等的。
推力大于阻力,飞机就要加速;反之,则减速。
由于在飞机加速或减速的同时,飞行员减小或增大了飞机的迎角,使升力系数减小或增大,因而升力仍然与飞机重力相等。
平飞中,飞机的升力虽然总是与飞机重力相等,但是,飞行速度不同时,飞机上的局部气动载荷(局部空气动力)是不相同的。
飞机以小速度平飞时,迎角较大,机翼上表面受到吸力,下表面受到压力,这时的局部气动载荷并不很大;而当飞机以大速度平飞时,迎角较小,对双凸型翼型机翼来说,除了前缘要受到很大压力外,上下表面都要受到很大的吸力。
飞机结构一百年发布时间:2014‐12‐20 原作者:魏楞杰近代人类在航空器上惊人的发展,起源于一百多年前莱特兄弟完成的人类首次动力飞行。
人类历史上首先问世的飞机是架全木制、桥梁衍架式双机翼,谈不上有机身的简陋结构,随着两次世界大战的军事需求,以及20世纪30年代开始萌芽的民航事业的强烈需求下,今日的飞机已逐步演进成全金属、单悬臂式机翼、庞大机身的精密结构,与百年前天差地别。
上世纪末由于隐身的需求,复合材料成为飞机结构材料的新宠,只是虽然有助于飞机性能的提升,但对结构设计的本质却影响甚微。
前言1903年12月17日,在美国北卡罗来纳州东北部的小鹰镇(Kitty Hawk, North Carolina),一架装着螺旋桨,比空气重的航空器“飞行者”(Flyer)飞离地面,在人为操纵下飞行了36.5米,完好无损地降落在不比起飞位置低的地面上,完成人类历史上首次的动力飞行。
操控这次简短但深具历史意义飞行的是32岁的奥维尔•莱特(Orville Wright)。
他和年长4岁的哥哥威尔伯•莱特(Wilbur Wright)以掷铜板的方式决定由奥维尔来飞,而威尔伯则在一旁观看。
在俄亥俄州德顿市(Dayton, Ohio)以制造自行车为业的莱特兄弟,又轮流操纵了三次时间更久、距离更远的飞行,威尔伯在最后一次飞行中持续了59秒,距离259.7米。
在接下来的第五次飞行中,飞机遭遇到强劲的阵风而向前翻覆,由于损伤严重再也无法飞行,但全新的航空时代就在当天正式开始。
首飞前莱特兄弟正在练习“飞行者”的操纵技术奥维尔•莱特(左)和威尔伯•莱特(右)“飞行者”的设计基础来自之前莱特兄弟的一系列滑翔机,其中莱特兄弟的忘年好友沙努特(Octave Chanute)贡献最大。
沙努特比莱特兄弟年长35岁,在43岁时才对航空发生兴趣,此后的余生就埋首于航空信息中,因此他对全世界的航空器发展了如指掌。
沙努特是个优秀的土木工程师,他舍弃了当时试飞成功的鸟或蝙蝠的翅膀造型,在1896年以桥梁的衍架(truss)设计方式,成功制造出双翼滑翔机。
莱特兄弟选择沙努特的衍架式双翼(biplane)构型,除了强度高之外,也因为升力面最大,而且通过拉绳改变双翼对角拉线张力卷起翼尖,能适度控制飞机,这是莱特兄弟飞机和当时其它飞机最大的不同,其它飞机虽然也能飞行,但只有“飞行者”可以操控。
奥克塔夫·沙努特沙努特的衍架式双翼滑翔机“飞行者”结构“飞行者”的结构很简单:两片外型完全相同的上下机翼由垂直支撑柱和对角线拉力钢线连接,翼展12.31米,弦长1.98米,莱特兄弟根据在自行车店里自制的风洞,确定了翼剖面形状和展弦比。
机翼前后梁和垂直支撑柱是杉木制连续梁,上下机翼的前梁、垂直支撑柱、对角线拉力钢线三者构成了衍架结构,飞行员俯卧在下机翼的中央偏左位置。
莱特兄弟设计制造了四缸水冷式,81.6千克重、12马力的汽油发动机,安装在下机翼正中央,发动机动力由链条和齿轮传送到两副反向旋转、直径2.44米、安装在机翼后方的推进式螺旋桨上,使“飞行者”能以每小时55.56公里的速度巡航。
螺旋桨枢轴位于上下翼间,由独立钢管焊接而成的衍架固定在两翼的后梁上。
螺旋桨叶的材料为杉木夹板,由莱特兄弟以手工自行弯制,外型也是根据洞测试结果而确定。
1903年“飞行者”号三面图“飞行者”的机翼很薄,每片机翼上大约有40根松木翼肋,都由蒸气加热整形以配合翼剖面的形状,并和前后梁搭接。
翼肋前缘是一个平面,用钉子和胶水与前梁的后表面搭接,翼肋后缘则以轮胎线(tire cord)与后梁捆扎,机翼外表面用粗棉布包覆,再用钉地毯的扁头钉把布固定在翼肋上。
粗棉布不但承受飞行负载,也承受结构的阻力和惯性力。
“飞行者”号的翼肋和机翼下表面蒙布“飞行者”的机头有两片小鸭翼来控制升降,机尾有个方向舵,配合机翼翼尖后缘向上或向下的扭转,可控制飞机的偏航和滚转。
威尔伯观察到大型飞鸟遇到阵风干扰飞行时会稍微扭转翼尖来重新获得横向稳定性,莱特兄弟的“飞行者”就是利用了这种技巧。
“飞行者”号依靠上翼翼尖的扭转进行偏航和滚转控制在“飞行者”飞行成功后,莱特兄弟回到家中开始进行一系列的改进,以改善性能、操控和稳定性。
1904年制造出的“飞行者二号”外观大小和“飞行者”大致相同,但换装了15马力的新发动机。
莱特兄弟以这架飞机进行了大约80次的短时间飞行,练习动力飞行的控制及飞行动作。
“飞行者三号”现代复刻机1905年制造出来的“飞行者三号”时速64.82公里,是第一架真正的全动力飞机,其基本外型和前两架相同,也沿用“飞行者二号”的发动机,但机身较长控制面也较大。
和前两架不同的是这是一架可完全操控的飞机,很容易侧倾、转弯、或做8字型的飞行动作。
1911年莱特兄弟制造的军用“飞行者”B飞机把升降舵移到后机身,以铰链式副翼取代扭转机翼,并增加轮子供飞机起降,飞行员和一名乘客可以坐在机翼的前端,不用俯卧了。
军用“飞行者”B已经很完善了当时在美国和欧洲已经有许多人成功制造出飞行器,虽然外型千奇百怪,但双机翼构型被公认为世界设计标准,杉木成为标准结构材料,杉木夹板螺旋桨也随处可见。
优质的杉木在早期供应充足,加工和修理都很容易,单位重量强度比铝好,因此没人考虑用铝。
大家都以粗棉布覆盖在飞机外表,由于当时飞机的速度很慢,粗棉布承受气动力负载的情况良好,即使破裂也很容易修理。
莱特兄弟之后的飞机结构1903年之后10年内出现的飞机大多模仿莱特兄弟的“飞行者”,衍架式双机翼和前置式升降舵,飞行员、发动机、油料、载荷……全部物品都装下翼的开放空间上。
法国这时出现了新的结构设计概念,有单机翼(monoplane)设计的趋势,由路易·布莱里奥(Louis Bleriot)和雷蒙·索尼耶(Raymond Saulnier)设计的布莱里奥十一型(Bleriot Model XI)就是其中一个著名的例子。
这架飞机首飞于1909年1月,最高速度每小时87.04公里,安装一具25马力、3汽缸、气冷式星型发动机,衍架式木质机身的左右两侧局部覆盖着粗棉布。
路易·布莱里奥(左)和雷蒙·索尼耶(右)布莱里奥十一型现代复刻机这架飞机和“飞行者”有相同的薄机翼设计,机翼外表面覆盖粗棉布,上下翼面弯曲弧度很大,机翼前后梁的上下缘都被削薄,使翼肋的上下缘条能跨于翼梁上。
由于翼梁强度不足以支撑飞行和降落时的负载,故需要外露式拉力钢线辅助。
飞行时升力使翼梁向上弯,上半部拉线不受力,下半部的拉线受张力;降落时机翼的惯性力使机翼向下弯,上半部拉线受张力,下半部拉线不受力。
拉线受力时,垂直于翼梁的分力会承担翼梁上的部分剪力负载,这和双翼机的垂直支柱作用一样,不过拉线上的张力有个沿着翼梁指向机身方向的分量,会对翼梁产生压迫的作用,当时颇受大家的关注。
因为木头并不耐压,机翼两端被向内压挤下可能会使机翼屈曲(buckling)破坏。
布莱里奥十一型三面图,机翼由外露式拉力钢线辅助支撑“布莱里奥十一型”原本有着枢轴副翼(pivoting ailerons),但飞机的横向稳定性并不好。
1908年8月在法国的勒芒(Le Mans)附近的赛马场,布莱里奥目睹威尔伯驾驶“飞行者A型”在一次促销展示飞行中,重复表演了令人激赏的操控侧弯,留下深刻印象,于是把“飞行者”的机翼扭转方式用在了他的飞机上,才使“布莱里奥十一型”有了真正的横向控制能力。
由于布莱里奥对飞机操控性深具信心,因此在1909年6月25日一个大雨的早上,完成了人类首次动力飞行飞越英吉利海峡的壮举。
“布莱里奥十一型”后来进入批生产,到第一次世界大战爆发时已生产多架,成为世界知名飞机之一。
布莱里奥的枢轴副翼,升降舵也采用这种形式当布莱里奥在英吉利海峡对岸的多佛降落的时候,第一个迎接他的是当地一名警察同时期法国还出现了多种外型类似的单翼机,德国在1915年也有外形差不多的福克E-Ⅲ单翼机(Fokker E-Ⅲ),在大战末期还发展出更先进的内置拉线单翼机。
英国因为考虑强度和耐用性,对单翼构型并不热衷,所以整个第一次世界大战期间,英国只在1917年出现一种单翼机——布里斯托M.1C(Bristol M.1C)。
福克E-Ⅲ单翼机布里斯托M.1C现代复刻机一战期间飞机结构第一次世界大战期间最重要的两大结构创新是悬臂式机翼(cantilever wing)和硬壳式机身(monocoque fuselage)。
不需要任何拉力钢线的机翼被称为悬臂式机翼,其基本架构仍是翼梁与翼肋,但单凭主翼梁的强度就足以支撑机翼的飞行负载。
第一次世界大战时第一架实际生产的悬臂式机翼战斗机,是当时由荷兰飞机设计师福克(Anthony Fokker)为德国空军所制造的时速213公里的福克Dr-I三翼机,这架飞机由1912年进入福克公司担任首席设计师的普拉茨(Reinhold Platz)设计。
1917年出厂的福克Dr-I 木制机翼上没有会产生阻力的拉力钢线,三翼的翼尖由一根薄而流线、非结构的垂直支撑条贯穿,用来控制某些飞行状况下的飞机颤振,机翼的强度来自一根强壮的方型翼梁。
由于普拉茨精通焊接,因此Dr-I的衍架式盒状机身就以焊接钢管取代了木条,但仍然保留交叉钢线。
悬臂式机翼的主翼梁的强度足以支撑飞行负载安东尼·福克福克Dr-I取消了机翼之间的拉力钢线机身则是焊接钢管和交叉钢线结构由普拉茨设计并于1918年服役的福克D.VII双翼机,把Dr-I的无拉力钢线、盒状翼梁、高升力机翼、交叉钢线金属焊接机身更为发扬光大,这两架飞机的特征都是外覆帆布,有着盒状翼梁的悬臂式机翼。
而同年出现的机身纤细D.VIII单翼机,则有着后来成为标准设计的厚翼根、外覆三合板的机翼。
莱因霍尔德·普拉茨福克D.VII双翼机现代复刻机早在福克飞机之前,就有人设计出厚实的悬臂式机翼和全金属飞机了。
1910年一位德国热动力学教授容克斯(Hugo Junkers)对航空产生了狂热兴趣,首先设计了内置拉力钢线的金属悬臂式厚机翼,虽然没有真正生产,但容克斯把这个机翼应用到1915年设计制造的单翼机J.1上,比福克的设计要早。
J.1是第一架成功的全金属飞机,相当笨重,飞行时速194公里,只能容纳一名飞行员,机身钢管结构外部覆盖薄铁片,因此被昵称为“锡驴子”,机翼安装在机身中间(中置式),翼根很厚,逐渐向翼尖收薄。
雨果·容克斯荣克斯J.1单翼机容克斯曾想使用木材,但经过详细考虑之后,他认为只有金属材料才能实现设计理念。
容克斯认为自然生长的树干和树枝只能提供大小、形状固定的木料;而金属所能提供的特性与尺寸几乎毫无限制,而且容易加工成形,可靠性和强度值可以正确掌握,又不受天候及大气的影响。
虽然德国军方对容克斯的设计抱有怀疑和排斥态度,但容克斯深信飞机本来就应该以金属制造,并继续改进他的设计。