等量代换
- 格式:ppt
- 大小:847.00 KB
- 文档页数:11
一年级等量代换在数学的世界里,有一个非常重要的概念叫做等量代换。
这是我们在学习加法和减法之后,进一步理解数学的基础之一。
这个概念对于我们理解更复杂的数学概念,如代数和几何,也是至关重要的。
等量代换是指用一种量来代替与其相等的另一种量。
例如,我们可以说10个苹果等于5个橙子。
在这个例子中,我们用10个苹果的重量来代替5个橙子的重量。
这就是等量代换。
在一年级的数学课程中,我们通常会学习如何使用等量代换。
我们会用数字来代替量,比如用10来代替10个苹果,用5来代替5个橙子。
然后我们可以通过简单的算术运算来找出两种量之间的关系。
例如,如果我们有10个苹果和5个橙子,我们可以通过等量代换来找出1个橙子等于多少个苹果。
如果我们设1个橙子等于x个苹果,那么我们可以建立如下方程:10 = 5x,解这个方程可以得到x=2。
所以,1个橙子等于2个苹果。
通过这样的学习,我们可以更好地理解数量的概念,掌握基本的算术运算,提高我们的数学素养。
我们也可以了解到数学在现实生活中的应用,比如在购物和做交易时如何进行数量的比较和转换。
等量代换是数学学习中一个非常基础但非常重要的概念。
通过学习等量代换,我们可以更好地理解数学的基础知识,为以后的学习打下坚实的基础。
在人生中,有些看似复杂的难题,其实可以用简单的等量代换来解答。
今天,我想和大家分享一个我在一年级时学到的重要概念——等量代换。
在一年级的数学课上,我们开始学习用数字来描述世界。
老师让我们认识数字,学习加减法,这都很有趣。
但最让我印象深刻的,是老师给我们讲的一个故事。
老师告诉我们,有一个古老的村庄,村子里的人们非常善良。
每当有外来人来到村子里,村民们都会给他们一些食物。
但这个村子的食物非常特别,它叫做“公平食”。
每份公平食都是用两个苹果和三个橘子做成的。
有一天,一个外来人来到了村子里,他非常饿。
村民们给了他一份公平食。
这个人吃了一半的公平食,发现自己已经饱了。
他看着剩下的食物,想把它们带走。
数学中的等量代换1. 等量代换的定义等量代换(substitution)是指在代数式或方程中,用一个或多个字母或数用另一个或多个字母或数替代其出现的位置。
等量代换是代数表达式和方程中常用的基本操作之一,是解决复杂代数问题的重要工具。
2. 等量代换的基本原理等量代换的基本原理是代数式的值在代数运算中不变,因此用一个具有等价意义的代数式替换原有的代数式时,代数式的值不变。
例如,代数式a+b和b+a在加法运算中具有等价性质,它们的值是相等的。
因此,我们可以用a+b代替b+a,而不改变代数式的值。
3. 等量代换的常见形式等量代换的常见形式有以下几种。
3.1 代数式内部的等量代换代数式内部的等量代换是指在代数式中,用具有等价意义的代数式替换原有的代数式。
例如,我们可以用2*ab代替a*b+a*b,因为它们的值相等。
3.2 等式两端的等量代换等式两端的等量代换是指在等式两端分别用具有等价意义的代数式替换原有的代数式。
例如,对于等式a+b=c,我们可以用c-b代替等式右端的c,得到a+b=c-b。
3.3 代数式中的变量替换代数式中的变量替换是指用一个或多个变量替换代数式中的某个或某些变量。
例如,我们可以用x=y+2替换原来在代数式中的变量y,得到a+x。
3.4 代数式中的常数替换代数式中的常数替换是指用一个或多个常数替换代数式中的某个或某些常数。
例如,我们可以用3替换代数式中的常数2,得到3x。
4. 等量代换的应用等量代换在数学中有广泛的应用。
下面介绍几个常见的应用。
4.1 消元在解方程组或化简代数式时,我们经常需要进行消元操作。
消元通常包括替换变量或常数,以消除方程中的某些项,从而简化方程或达到解方程的目的。
例如,在解二元一次方程组时,可以将其中一个未知数表示为另一个未知数的函数,然后用等量代换消元。
4.2 合并同类项在化简代数式或解方程时,我们需要合并具有相同指数或相同系数的项。
合并同类项通常需要进行等量代换操作,例如,将2x+3x替换为5x。
(三年级) 等量代换→ (三年级) 等价替换简介本文档介绍了(三年级)等量代换和(三年级)等价替换的概念和应用。
通过等量代换和等价替换,我们可以简化数学表达式,推导等式和求解方程。
等量代换等量代换是指用一个等值的数或表达式替换另一个数或表达式,使得两者在数值上相等。
在解题过程中,我们可以使用等量代换来简化数学表达式,方便计算和推导。
等量代换可以应用于加减乘除、代数式、方程等数学问题中。
加减法的等量代换在加减法中,我们可以使用等量代换将复杂的计算简化为更简单的形式。
例如,可以将加法转换为减法,或者将减法转换为加法:- a + b = c 可以等量代换为 a = c - b- a - b = c 可以等量代换为 a = c + b代数式的等量代换对于代数式,我们可以使用等量代换将代数式中的变量替换为等效的表达式。
等量代换的目的是简化代数式,方便计算和推导。
例如:- 2x + 3x = 5x 可以等量代换为 5x = 5x等价替换等价替换是指将一个数或表达式替换为另一个等价的数或表达式,使得原始等式仍然成立。
等价替换常用于方程求解和推导等式的过程中。
方程的等价替换在解方程的过程中,我们可以使用等价替换来简化方程,方便求解。
例如,对于方程 2x + 5 = 9,我们可以进行如下等价替换:- 将 2x + 5 替换为 7,得到 7 = 9- 将 9 替换为 7,得到 7 = 7等式的等价替换在推导等式的过程中,我们可以使用等价替换来变换等式的形式,以达到简化推导和证明的目的。
例如,在证明过程中,我们可以进行如下等价替换:- 将等式两边同时加上或减去相同的数或表达式- 将等式两边同时乘以或除以相同的数或表达式结论通过等量代换和等价替换,我们可以在数学问题的求解和推导过程中简化复杂的数学表达式,方便计算和理解。
在解题和证明过程中,我们可以灵活运用等量代换和等价替换的原理和方法,提高数学问题的解决效率和准确性。
等量代换简介在数学和数值计算中,等量代换是一种常用的技术,用于简化复杂的计算过程。
等量代换指的是将一个复杂的表达式或方程,通过引入新的变量或变换,将其转换为一个简化的形式。
这样做的目的是为了使计算更加方便、快捷,并且能够更好地揭示问题的本质。
等量代换的基本原理等量代换的基本原理是通过引入一个新的变量或变换,将原本复杂的表达式或方程转化为一个等价的简单形式。
在这个过程中,新的变量或变换必须满足一定条件,以确保等式的等价性。
等量代换可以通过以下几个步骤进行: 1. 分析原始表达式或方程的特点和结构;2. 引入新的变量或变换,将原始表达式或方程进行转化;3. 验证等式的等价性,并进行必要的推导和化简; 4. 最终得到转化后的简单形式。
等量代换的应用数学中的等量代换在数学中,等量代换常常用于解决复杂的方程和求积分等问题。
通过引入新的变量或变换,可以将复杂的数学问题转化为更简单的形式,从而方便进行计算和解答。
例如,在求解一些积分问题时,通过进行适当的等量代换,可以将原本复杂的积分转化为更简单的形式,进而可以使用常见的积分公式进行求解。
这一技巧在微积分和高等数学中经常被使用。
计算机科学中的等量代换在计算机科学中,等量代换也经常被用于算法设计和性能优化。
通过引入新的变量或变换,可以简化算法的计算过程,提高代码的可读性和性能。
等量代换在算法设计中的典型应用包括动态规划和图算法等领域。
例如,在动态规划算法中,通过进行等量代换,可以将原始的问题划分成若干个子问题,并定义合适的状态转移方程。
这样做的目的是为了简化问题的复杂程度,通过递推的方式进行求解,将原本的指数级计算复杂度转化为多项式级别的复杂度。
物理学中的等量代换在物理学中,等量代换被广泛应用于物理定律和方程的求解中。
通过引入新的变量或变换,可以将复杂的物理情况转化为更简单的形式,从而方便进行数值计算和实验验证。
例如,在求解传热方程时,通过引入新的变量或变换,可以将复杂的偏微分方程转化为更简单的形式,进而可以使用数值计算方法进行求解。
七年级数学等量代换一、等量代换的概念。
1. 定义。
- 在数学中,等量代换是指一个量用与它相等的量去代替。
例如,如果a = b,b = c,那么就可以得出a = c。
这里就是把b这个中间量,利用它与a和c的相等关系,实现了a和c的等量代换。
- 在等式的性质中,等量代换是一种基本的逻辑推理方法。
它基于等式两边相等的量可以互相替换的原则。
2. 简单示例。
- 已知:x+3 = 5,且y=x + 3。
- 那么根据等量代换,就可以得出y = 5。
这里把x+3这个量,因为它既等于5又等于y,所以可以用5代替x + 3得到y的值。
二、等量代换在几何中的应用。
1. 线段的等量代换。
- 在几何图形中,经常会遇到线段相等的情况。
例如,在三角形ABC中,如果AD 是角平分线,且AB = AC,那么根据角平分线的性质可知BD=CD。
- 证明过程中可能会用到其他等量关系来进行代换。
已知∠BAD = ∠CAD,AD = AD(公共边),AB = AC,根据三角形全等判定定理(SAS)可以得到△ABD≌△ACD,从而得出BD = CD。
这里利用三角形全等得到的线段相等就是一种等量代换。
2. 角的等量代换。
- 在几何中,角的等量代换也很常见。
例如,在平行四边形ABCD中,因为AB∥CD,所以∠A+∠D=180°(两直线平行,同旁内角互补),又因为AD∥BC,所以∠A+∠B = 180°。
- 由此可以得出∠D=∠B(等量代换),这里是利用了两个等式中∠A与不同角的和都等于180°,从而实现了∠D和∠B的等量代换。
三、等量代换在方程中的应用。
1. 解一元一次方程。
- 在解方程的过程中,等量代换经常被用到。
例如,解方程3x+5=2x + 8。
- 我们可以将方程中的2x移到左边,5移到右边(根据等式的性质),得到3x - 2x=8 - 5。
这里其实就是一种等量代换,把等式左边的2x用 - 2x在等式右边表示,5在等式左边用 - 5在等式右边表示。
等量代换知识框架(1)生活中有很多相等的量,如平衡的天平、平衡的跷跷板两边的重量相等.我们可以根据这些相等的关系进行推理,进而可以等量代换,找到答案(2)“等量代换”是指一个量用与它相等的量去代替,它是数学中一种基本的思想方法,也是代数思想方法的基础.重难点(1)寻找等量关系例题精讲一、看的见的等量代换【例 1】看下图,右边要站几只小鸟跷跷板才能平衡.【考点】等量代换【难度】1星【题型】解答【解析】1只小兔的重量等于6只鸟的重量,右边要放6只鸟,跷跷板才能保持平衡.【答案】6【巩固】下图中第三个盘子应放几个小方块才能保持平衡?【考点】等量代换【难度】1星【题型】解答【解析】1个香蕉的重量=3个方块的重量,右边要放3个方块天平才能保持平衡.【答案】3【例 2】水果兄弟们也组成了各种不同的图文算式,它们各代表一个数,你能猜出它们各代表几吗?【考点】等量代换【难度】1星【题型】解答【解析】这是一个很基础的题,通过这个题的练习,可让学生初步掌握代换的方法,为后面的学习打下基础.(1)因为,所以,又因为3+3+3=9,所以=3.(2)根据,想12+8=20,那么可以推出,因为4+4=8,所以可以得出一个=4.(3)因为,,这样我们可以得出=5+5+5+5=20.(4)根据得,观察算式,就相当于没加也没减还得0,这样我们就可以得出=25.【答案】=3 =4 =20 =25【巩固】下面的花朵各表示什么数?【考点】等量代换【难度】1星【题型】解答【解析】=9,=3.【答案】=9,=3【例 3】巳知=60克,求=?克.【考点】等量代换【难度】2星【题型】解答【解析】从左边的图可得:3个白球=2个黑球的重量,也就是等于6060120÷=(克),+=(克),120340所以每个白球的重量等于40克.从右图可得:1个正方体=4个白球的重量,一个白球的重量等于40克,1个正方体的重量就是:404160⨯=(克).【答案】160克【巩固】第三个盘子应放几个玻璃球才能保持平衡.【考点】等量代换【难度】2星【题型】解答【解析】第三个盘子应放6个玻璃球才能保持平衡.【答案】6个【例 4】有一天,小狗老师要在动物学校挑选队员参加数学竞赛,小松鼠很高兴也跑来了.小狗老师说:“那我就来考考你!你把下面的题做对了就可以参加了.”小松鼠看了半天说:“老师,你写的这是什么?”小狗老师说:“哈哈!看来你要好好学一学图文算式了,欢迎你下次再来.”小朋友们,上面的题你会吗?【考点】等量代换【难度】2星【题型】解答【解析】通过这个故事引入新课,在这里不要求学生能马上做出来,可放在最后来解决.如果学生的能力较强,也可把这两个题作为引入新课的切入点进行讲解.(1)因为,所以=5,又因为,把=5替换,就变成,这样我们就可以得出=10.(2)我们把上下两个算式进行比较,我们发现下面比上面多了一个,得数多了18-14=4,所以我们可以推断出=4,,根据第一个算式我们可以得出;那么=5.【答案】=5 =10 =4 =5【巩固】求下面图形所表示的数.【考点】等量代换【难度】1星【题型】解答【解析】(1)△=( 9 ),○=( 6 ),☆=( 7 );(2)△=( 3 ),□=( 4 ).【答案】(1)△=( 9 ),○=( 6 ),☆=( 7 );(2)△=( 3 ),□=( 4 )【例 5】和是一对好朋友,它们各代表一个数,你知道它们是几吗?【考点】等量代换【难度】1星【题型】解答【解析】从第一个算式可以看出西瓜比菠萝大6,而菠萝加上西瓜又得12,我们把10以内符合要求的数分组列举:10和4,9和3,8和2,7和1,发现只有9+3=12符合要求,所以西瓜=9,菠萝=3. 【答案】西瓜=9,菠萝=3【巩固】根据下面算式,算出△、○、□各表示几?【考点】等量代换【难度】1星【题型】解答【解析】根据三个算式的等量关系通过等量代换,分别算出△、○、□的得数,△=2、○=3、□=1.【答案】△=2、○=3、□=1【例 6】下面的天平是不平衡的,但除了天平上的砝码,周围已找不到别的砝码了.你能通过移动天平上的砝码,使天平平衡吗?【考点】等量代换【难度】2星【题型】解答【解析】我们可先看看天平两边各有多少克:天平左边:551020++++=++=(克).天平右边:10421118 (克).显然,天平左边如果减少1克,放到天平右边,20119-=(克),18+1=19(克),天平两边就都平衡了,但天平左边没有l克的砝码,怎么办?可以用天平左边5克的砝码和天平右边4克的砝码交换一下,就可以达到要求了.这样天平左边是541019++++=++=(克).右边是10521119 (克).【答案】左边5克的砝码和天平右边4克的砝码交换一下【巩固】你能通过移动天平上的砝码,使下面的天平平衡吗?【考点】等量代换【难度】2星【题型】解答【解析】可引用线段图帮助学生理解多的部分给少的部分多少,可达到一样多,然后再讲解此题.左边= ++=克,右边=1016430++=克,左边比右边多8克.只有从左边拿4克到右边,两边1020838的重量才一样多.这样可以把左边8克的砝码和右边4克的砝码互换一下,左右两边重量都是34克,天平平衡.【答案】左边8克的砝码和右边4克的砝码互换一下【例 7】1头大象的重量等于4头牛的重量,l头牛的重量等于3匹马的重量,则1头大象的重量等于多少匹马的重量?【考点】等量代换【难度】1星【题型】解答【解析】因为1头大象的重量=4头牛的重量,1头牛的重量=3匹马的重量,那么4头牛的重量=12匹马的重量,所以1头大象的重量等于12匹马的重量.【答案】1头大象的重量等于12匹马的重量【巩固】1头猪的重量等于8只兔的重量,而1只兔的重量又等于2只公鸡的重量,那么1只猪的重量是几只公鸡的重量?【考点】等量代换【难度】1星【题型】解答【解析】1头猪的重量等于8只兔子的重量,而1只兔子的重量又等于2只公鸡的重量.那么8只兔子的重量就等于2816⨯=(只)公鸡的重量,而1头猪的重量等于8只兔子也就是16只公鸡的重量.所以l 头猪的重量等于16只公鸡的重量.【答案】l头猪的重量等于16只公鸡的重量【例 8】1个西瓜的重量等于2个哈密瓜的重量,1个哈密瓜的重量等于8个苹果的重量,2个苹果的重量等于3个柿子的重量,那么1个西瓜的重量等于几个柿子的重量?【考点】等量代换【难度】2星【题型】解答【解析】因为2个苹果的重量等于3个柿子的重量,所以8个苹果的重量等于12个柿子的重量.又因为1个哈密瓜的重量等于8个苹果的重量,所以1个哈密瓜的重量等于12个柿子的重量.而1个西瓜的重量等于2个哈密瓜的重量,因此1个西瓜的重量=12224⨯=个柿子的重量.【答案】24个柿子【巩固】2只兔子的重量等于6只小鸡的重量,3只袋鼠的重量相当于4只兔子的重量,那么1只袋鼠的重量相当于多少只小鸡的重量?【考点】等量代换【难度】2星【题型】解答【解析】2只兔相当于6只小鸡的重量,那么4只兔相当于12只小鸡的重量.3只袋鼠的重量相当于4只兔子的重量,所以3只袋鼠相当于12只小鸡的重量.1234÷=,即1只袋鼠相当于4只小鸡的重量.【答案】4只【例 9】★+■=24,■+●=30,●+★=36.■=_________ ●=________ ★=_______.【考点】等量代换【难度】2星【题型】解答【关键词】2008年,第八届,春蕾杯,初赛【解析】(243036)245++÷=,所以■表示的数为:45369-=,★表示的-=,●表示的数为:452421数为:453015-=.【答案】■9=,★15=,●21【巩固】已知1个排球和1个足球共重5千克.1个排球和1个篮球共重6千克.1个足球和1个篮球共重7千克.求每一种球各重多少千克?【考点】等量代换【难度】2星【题型】解答【解析】由5+6+7=18(千克)知:2个排球+2个足球+2个篮球=18千克,那么有1个排球+1个足球+1个篮球=9千克.-=(千克)……足球的重量-=(千克)……篮球的重量, 963954-=(千克)……排球的重量972【答案】篮球重4千克,足球重3千克,排球重2千克【例 10】学校第一次买了3个水瓶和20个茶杯,共用去134元;第二次又买了同样的3个水瓶和16个茶杯,共用去118元.问水瓶和茶杯的单价各是多少元?【考点】等量代换【难度】2星【题型】解答【解析】引导学生学会审题,找出两次购买的相同点及差异,让学生思考解决.我们用数量关系式来比较对应的未知数量的情况:320134316118416+=+==个水瓶的价钱个茶杯的价钱元-个水瓶的价钱个茶杯的价钱元个茶杯的价钱元比较上面两个等式,我们可以看出,134元和118元的差正好是4个茶杯的价钱.利用这一条件,把3个水瓶的价钱消去,先求出每个茶杯的价钱,再求出每个水瓶的价钱. 每个茶杯的价钱:(134118)(2016)-÷-164=÷4=(元)每个水瓶的价钱:(134420)318-⨯÷=(元)或(118416)318-⨯÷=(元)【答案】每个茶杯的价钱: 4元;每个水瓶的价钱:18元【巩固】 奶奶去买水果,如果她买4千克梨和5千克荔枝,需要花掉58元;如果她买6千克梨和5千克荔枝,需要花掉62元.问1千克梨和1千克荔枝各多少元?【考点】等量代换 【难度】2星 【题型】解答 【解析】 我们可以把两次的情况进行比较:4千克梨的价钱5+千克荔枝的价钱58=(元) ⑴ 6千克梨的价钱5+千克荔枝的价钱62=(元) ⑵比较⑴和⑵式,发现两式中荔枝的千克数相等.⑵式比⑴式多了642-=千克梨,也就是62584-=元,说明1千克梨的价钱为422÷=元.那么1千克荔枝的价钱也就好求了.(6258)(64)2-÷-=(元),(5824)510-⨯÷=(元)或(6226)510-⨯÷=(元)【答案】1千克梨的价钱为2元;1千克荔枝的价钱10元课堂检测【随练1】 下图中0,1,2,3,4,5,6,7,8,9十个兄弟玩跷跷板,8和6先坐在一头,让哪两个兄弟坐在另一头,才能使跷跷板平衡?【考点】等量代换 【难度】1星 【题型】解答 【解析】 右边8+6=14,左边只能放9和5,9+5=14. 【答案】14【随练2】 第三个盘子应放几个玻璃球才能保持平衡?【考点】等量代换【难度】2星【题型】解答【解析】⑴4个,⑵15个.【答案】⑴4个,⑵15个【随练3】3只小花猫的重量等于1只狗的重量,1只小花猫等于3只鸭的重量,1只狗重9千克,1只猫与1只鸭各重多少千克?【考点】等量代换【难度】1星【题型】解答【解析】抓住突破口,利用倒推逐步推理.3只猫等于1只狗的重量,1只狗重9千克,3只猫也就重9千克,933÷=(千克),所以1只猫就等于3千克.1只猫等于3只鸭的重量,1只猫重3千克,3只鸭也就重3千克.331÷=(千克),所以1只鸭等于1千克.【答案】1只猫重3千克1只鸭等于1千克家庭作业【作业1】一个苹果等于()个草莓.【考点】等量代换【难度】1星【题型】解答【解析】一个苹果等于4个草莓.【答案】4【作业2】下面的符号各代表一个数,相同的符号代表相同的数,它们各代表几呢?【考点】等量代换【难度】1星【题型】解答【解析】根据两个算式来进行推理,通常我们要先根据一个算式的得数推理出其中一个符号表示的数,然后再把这个得数代换到另一个算式里,求出另外一个符号表示的数.具体分析如下:(1)根据●+●=6,想3+3=6,可推出●=3,把●=3替换▲+●=8,可得到新的算式▲+3=8,这样我们就可得出▲=5.(2)根据第二个算式12-■=5,可得■=7;把■=7替换第一个算式◆+■=15的◆+7=15,可以得出◆=8. 【答案】●=3 ▲=5 ■=7 ◆=8【作业3】根据下面的算式,你知道、、各代表数字几?【考点】等量代换【难度】1星【题型】解答【解析】根据第三个算式:圆柱体+圆柱体=球,我们可以替换第一个算式中的球可得:正方体+圆柱体+圆柱体=10,我们把这个算式和第二个算式:圆柱体+正方体=8进行比较,发现多了一个圆柱体,而得数多了10-8=2,这样我们就可以得出:圆柱体=2,根据第三个算式就得:球=2+2=4,根据第一个算式得:正方体+4=10,于是可推出:正方体=6.【答案】正方体=6,球=4,圆柱体=2【作业4】你能通过移动天平上的砝码,使下面的天平平衡吗?【考点】等量代换【难度】2星【题型】解答【解析】把左边的3克和右边的6克对换.或把左边的4克和右边的7克对换.【答案】左边的4克和右边的7克对换【作业5】1个苹果和1个香蕉的重量是7个小铁块的重量,而1个苹果的重量是4个小铁块的重量,1个香蕉的重量是多少个小铁块的重量?【考点】等量代换【难度】1星【题型】解答【解析】简单的代换,可通过画图对学生进行讲解,利用拓展加强学生的认识.题中告诉我们一个苹果和一个香蕉的重量等于7个小正方体的重量.且一个苹果的重量等于4个小正方体的重量,通过比较,我们知道一个香蕉的重量就应该是3个小正方体的重量.【答案】一个香蕉的重量就应该是3个小正方体的重量【作业6】 甲、乙两人共储蓄32元,乙、丙两人共储蓄30元,甲、丙两人共储蓄22元.三人各储蓄多少元?【考点】等量代换 【难度】2星 【题型】解答【解析】 可先让学生自己去思考,教师巡视指正.此题要求三个未知数,甲储蓄多少元?乙储蓄多少元?丙储蓄多少元?关系较为复杂,为了化繁为简,采用消去法来解.首先用加减消去法消去乙和丙,只剩下甲,然后求出甲储蓄多少元,再求乙、丙各储蓄多少元.解法1:()甲乙→32元+甲丙→22元2甲乙丙→54元-乙丙→30元2甲→24元由2倍甲储蓄为24元,可求出甲储蓄多少元.列表:(322230)2+-÷24212=÷=(元)……甲储蓄款.321220-=(元)……乙储蓄款,302010-=(元)……丙储蓄款.此题也可用另一种方法求解.解法2:甲乙+乙丙+甲丙32223084=++=(元),即2倍的(甲+乙+丙)等于84元.甲+乙+丙84242=÷=(元).423210-=(元)……丙储蓄款,423012-=(元)……甲储蓄款,422220-=(元)……乙储蓄款.【答案】甲储蓄12元,乙储蓄20元,丙储蓄10元,教学反馈。
第二讲:等量代换一、等量代换的意义相等的量可以互相替换比如:曹冲称象中 大象重量=石头重量,想称大象,就换为称石头兑换积分卡时 10小印章=1积分卡,10个小印章,就找老师换一张积分卡买东西时 1元=1瓶矿泉水 ,拿1元钱,去超市“换”一瓶矿泉水二、会写等式1、看图写等式如:表示为:3 苹果 = 1 菠萝2、读句子写等式如:5只熊与2只长颈鹿一样重表示为:5熊=2长颈鹿三、会找“传话员”1 一只猫相当于几只小甲壳虫的重量?(图片略)解析:根据题意有等式1猫=2鸡1鸡=3鱼1鱼=4甲壳虫题目问的是猫与甲壳虫的关系,那么鸡和鱼就是传话员,我们要想办法把传话员“换掉”。
猫 = 2鸡 = 6鱼 = 24甲壳虫(2×3=6) (6×4=24)四、小技巧(等式性质)1、等式两边相同的东西可以抵消 (等式两边同时加/减同一个数,等式不变)1兔 = 2鸡2兔 = 4鸡 (左边×2,右边也×2)2兔=1兔+2鸡两边各减去1只兔子,得到 4苹果=40樱桃1苹果=10樱桃(左边÷4,右边也÷10)1兔=2鸡2、等式的扩倍/缩倍(等式两边同时乘/除以同一个不为零的数,等式不变)例2 1只流氓兔的重量等于2只唐老鸭的重量,3只流氓兔的重量等于1只唐老鸭和1只飞天猪的重量,神奇涛的体重等于2只飞天猪的重量,算一算神奇涛的体重与几只唐老鸭的重量一样重? 解析:根据题意写出等式1×流氓兔=2×唐老鸭 (1)3×流氓兔=1×唐老鸭 + 1×飞天猪 (2)1×神奇涛=2×飞天猪 (3)流氓兔和飞天猪是“传话员”,要替换掉,观察以上等式,流氓兔比较好换,由(1)式知,1只流氓兔的地方就换为2只唐老鸭,那么(2)式可写为1×唐老鸭 + 1×飞天猪 = 6×唐老鸭左右都有唐老鸭,可以抵消,最后得到1×飞天猪 = 5×唐老鸭 (4)再把(3)式中的1只飞天猪换成5只唐老鸭就可以了。
等量代换知识点总结一、等量代换的基本概念1.1 等量代换的定义等量代换是一种将一个变量替换为另一个变量的数学方法。
这种替换必须是等价的,也就是说,替换后的表达式必须和原始表达式等价。
这意味着,无论在原始表达式中使用哪个变量,或者在替换后的表达式中使用哪个变量,两者的求值结果必须始终相同。
1.2 等量代换的作用等量代换通常用于简化表达式、解决方程、求积分等数学问题。
通过适当的替换,我们可以将原问题转化为更容易解决的形式,从而节省时间和精力。
另外,等量代换也可以帮助我们更清晰地理解问题的本质。
1.3 等量代换的基本方法等量代换有多种基本方法,包括代数代换、三角代换、参数代换等。
每种方法都有其适用范围和特点,我们需要根据具体情况选择合适的方法。
二、等量代换在微积分中的应用2.1 代数代换在微积分中,我们经常使用代数代换来简化复杂的积分问题。
例如,当遇到含有平方根的积分时,我们可以使用代数代换将根号内的表达式替换为一个新的变量,从而将原积分转化为更简单的形式。
2.2 三角代换三角代换是微积分中另一个常用的等量代换方法。
当遇到含有三角函数的积分时,我们可以使用三角代换将三角函数的表达式替换为一个角度的函数,然后再进行求解。
这种方法可以大大简化积分的计算过程。
2.3 参数代换在一些特殊的积分问题中,我们可以使用参数代换来简化问题。
通过引入一个新的参数,我们可以将原积分转化为一个更容易解决的形式,然后再进行求解。
2.4 等量代换在微积分中的重要性等量代换在微积分中扮演着非常重要的角色,它帮助我们简化积分问题、加速求解过程,并且扩展了我们对积分的理解范围。
因此,熟练掌握等量代换是学习微积分的关键。
三、等量代换在代数中的应用3.1 代数式的等价变形在代数中,我们经常需要进行代数式的等价变形,从而简化问题或者得到更深入的理解。
等量代换是实现代数式等价变形的基本手段之一。
3.2 代数方程的解在解代数方程的过程中,等量代换可以帮助我们简化问题、消除冗余变量,并且得到更清晰的解题思路。
等量代换知识框架(1) 生活中有很多相等的量,如平衡的天平、平衡的跷跷板两边的重量相等.我们可以根据这些相等的关系进行推理,进而可以等量代换,找到答案(2) “等量代换”是指一个量用与它相等的量去代替,它是数学中一种基本的思想方法,也是代数思想方法的基础.重难点(1) 寻找等量关系例题精讲【例 1】 ★+■=24,■+●=30,●+★=36.■=_________ ●=________ ★=_______.【考点】等量代换 【难度】2星 【题型】解答【关键词】2008年,第八届,春蕾杯,初赛【解析】 (243036)245++÷=,所以■表示的数为:45369-=,●表示的数为:452421-=,★表示的数为:453015-=.【答案】■9=,●21=,★=15【巩固】 甲、乙两人共储蓄32元,乙、丙两人共储蓄30元,甲、丙两人共储蓄22元.三人各储蓄多少元?【考点】等量代换 【难度】2星 【题型】解答【解析】 可先让学生自己去思考,教师巡视指正.此题要求三个未知数,甲储蓄多少元?乙储蓄多少元?丙储蓄多少元?关系较为复杂,为了化繁为简,采用消去法来解.首先用加减消去法消去乙和丙,只剩下甲,然后求出甲储蓄多少元,再求乙、丙各储蓄多少元.解法1:()甲乙→32元+甲丙→22元2甲乙丙→54元-乙丙→30元2甲→24元由2倍甲储蓄为24元,可求出甲储蓄多少元.列表:(322230)2+-÷24212=÷=(元)……甲储蓄款.321220-=(元)……乙储蓄款,302010-=(元)……丙储蓄款.此题也可用另一种方法求解.解法2:甲乙+乙丙+甲丙32223084=++=(元),即2倍的(甲+乙+丙)等于84元.甲+乙+丙84242=÷=(元).423210-=(元)……丙储蓄款,423012-=(元)……甲储蓄款,422220-=(元)……乙储蓄款.【答案】甲储蓄12元,乙储蓄20元,丙储蓄10元.【例 2】 小芳在文具店买了5枝彩色铅笔和6个练习本,共用去17元.小花买了同样的铅笔8枝和6个练习本,共用去20元.一枝彩色铅笔和一个练习本的价格各是多少?【考点】等量代换 【难度】2星 【题型】解答【解析】 从题设条件进行比较,小芳和小花都买了6个练习本(同样多),只是买的彩色铅笔枝数不同,引起付款多少不同.因此我们可以采用消去法先消去购买练习本的钱数而只剩下买彩色铅笔的钱数,从而先求出彩笔的单价.86205617303-枝彩色铅笔个练习本共价元枝彩色铅笔个练习本共价元枝彩色铅笔个练习本共价元列式:(2017)(85)1-÷-=(元)……一枝彩笔价格,(2018)62-⨯÷=(元)……一个练习本的价格.【答案】一枝彩笔价格1元;一个练习本的价格2元【巩固】 学校第一次买了3个水瓶和20个茶杯,共用去134元;第二次又买了同样的3个水瓶和16个茶杯,共用去118元.问水瓶和茶杯的单价各是多少元?【考点】等量代换 【难度】2星 【题型】解答【解析】 引导学生学会审题,找出两次购买的相同点及差异,让学生思考解决.我们用数量关系式来比较对应的未知数量的情况:320134316118416+=+==个水瓶的价钱个茶杯的价钱元-个水瓶的价钱个茶杯的价钱元个茶杯的价钱元比较上面两个等式,我们可以看出,134元和118元的差正好是4个茶杯的价钱.利用这一条件,把3个水瓶的价钱消去,先求出每个茶杯的价钱,再求出每个水瓶的价钱.每个茶杯的价钱:(134118)(2016)-÷-164=÷4=(元)每个水瓶的价钱:(134420)318-⨯÷=(元)或(118416)318-⨯÷=(元)【答案】每个茶杯的价钱: 4元;每个水瓶的价钱:18元【例 3】 3头牛和8只羊每天共吃青草93千克,5头牛和15只羊每天共吃青草165千克.问一头牛和一只羊每天各吃青草多少千克?【考点】等量代换 【难度】2星 【题型】解答【解析】 3头牛吃草的重量8+只羊吃草的重量93=千克 ⑴5头牛吃草的重量15+只羊吃草的重量165=千克 ⑵如果把⑴式扩大5倍,⑵式扩大3倍,那么两个式子中牛的数量就一样多了.这样就得到:⑴5⨯:15头牛吃草的重量40+只羊吃草的重量465=千克⑶ ⑵3⨯:15头牛吃草的重量45+只羊吃草的重量495=千克⑷⑷-⑶:5只羊吃草的重量30=千克1只羊吃草的重量6=千克1头牛每天吃草的重量:(9368)3-⨯÷453=÷15=(千克)【答案】1只羊吃草6千克;1头牛每天吃草15千克【巩固】 学校要买足球和排球.买3个足球和4个排球共需190元,如果买6个足球和2个排球需要230元.一个足球和一个排球各需要多少元?【考点】等量代换 【难度】2星 【题型】解答【解析】 我们可以把两次情况进行比较;3个足球的价钱4+个排球的价钱190=(元)⑴ 6个足球的价钱2+个排球的价钱230=(元) ⑵我们发现两组条件不管相加还是相减,都不可能求出足球和排球的单价,因为这里没有一个相同的条件可减去.再观察,我们发现,如果把⑴式扩大2倍,可以得到6个足球和8个排球共380元,即⑴2⨯:6个足球的价钱8+个排球的价钱380=元 ⑶⑶-⑵,可知6个排球的价钱150=元.容易得出排球和足球的价钱各是多少.排球:150625÷=(元),足球:(190254)330-⨯÷=(元)【答案】排球为25元,足球为30元【例 4】李宁的妈妈去菜市场买菜,买了6斤土豆和5斤柿子椒,共花了13元5角.己知3斤土豆的价钱与2斤柿子椒的价钱相等.那么1斤土豆和1斤柿子椒各多少钱?【考点】等量代换【难度】2星【题型】解答【解析】可引导学生读题、审题,让学生自己思考解答.老师可以画图进行分析,已知条件为:6斤土豆+5斤柿子椒=13元5角.3斤土豆=2斤柿子椒.从第一个式子不能算出1斤土豆、1斤柿子椒的价钱.若把土豆转化成柿子椒或把柿子椒转化成土豆的价钱就可求该种菜的价钱了.由第二个式子知3斤土豆=2斤柿子椒,则6斤土豆应等于4斤柿子椒的价钱.即:6斤土豆+5斤柿子椒=13元5角,6斤土豆=4斤柿子椒.4斤柿子椒+5斤柿子椒=13元5角,9斤柿子椒=13元5角.13元÷=(角)= 1元5角.4 5角等于135角,135角买了9斤柿子椒,所以1斤柿子椒的价钱为:135915斤柿子椒的价钱为:15460÷=(元).所以1斤土豆的⨯=(角)=6(元).1斤土豆的价钱为:661价钱为1元,1斤柿子椒的价钱为1元5角.【答案】1斤土豆的价钱为1元,1斤柿子椒的价钱为1元5角【巩固】3米绵绸的价格与6米花布的价格相等.王云买了6米绵绸和18米花布,共花费了120元.棉绸和花布的单价各是多少?【考点】等量代换【难度】2星【题型】解答【解析】由题意可知3米棉绸与6米花布的价格相等,由此可推知1米棉绸与2米花布的价格相等.因此可用花布的价格去替换棉绸的价格,而使棉绸价格转变为花布的价格.消去棉绸价格这个未知数量可以先求出花布的单价,进而求出棉绸的单价.120(2618)÷⨯+120304=÷=(元)……每米花布的单价428⨯=(元)……每米棉绸的单价.【答案】每米花布的单价4元每米棉绸的单价8元【例 5】学校买2张桌子和3把椅子共用90元钱,每张桌子的价钱是每把椅子价钱的3倍.每张桌子多少钱?【考点】等量代换【难度】2星【题型】解答【解析】引导学生读题、审题,让学生自己思考解答,教师集体订正.2张桌子的价钱3=(元) ⑴+把椅子的价钱901张桌子的价钱3=把椅子的价钱⑵将⑵代入⑴式,消去桌子这个未知量,问题就可以解决.(32=(元)⨯)把椅子的价钱3+把椅子的价钱90=(元)9把椅子的价钱901把椅子的价钱10=(元)1张桌子的价钱10330=⨯=(元)【答案】1张桌子的价钱30元【巩固】红、黄、蓝三个纸盒里共有彩票56张,其中红色纸盒里的彩票是黄色纸盒里彩票张数的2倍,蓝色纸盒里的彩票是红色纸盒里彩票张数的2倍.红、黄、蓝三个纸盒里各有多少张彩票?【考点】等量代换【难度】2星【题型】解答【解析】以黄色纸盒里的彩票张数为1倍数.红纸盒里的彩票张数是这样的2倍.蓝纸盒是红纸盒里彩票张数的2倍,也就是黄纸盒里彩票张数的4倍.一共是(124)++倍.这样就可以消去两个未知量而先求出黄纸盒里彩票的张数,再分别求出红色和蓝色盒子里彩票的张数.÷++56756(124)=÷8=(张)……黄盒里的彩票张数,⨯=(张)……蓝盒里的彩票张数.⨯=(张)……红盒里的彩票张数,84328216【答案】黄盒里的彩票张数8张红盒里的彩票张数16张蓝盒里的彩票张数32张【例 6】甲、乙两队共同整修一段公路.甲队工作6小时,乙队工作8小时,一共整修公路300米.已知甲队5小时的工作量等于乙队2小时的工作量.两队每小时各整修公路多少米?【考点】等量代换【难度】2星【题型】解答【解析】甲队5小时的工作量=乙队2小时的工作量甲队20小时的工作量=乙队8小时的工作量甲队6小时的工作量+乙队8小时的工作量=甲队6小时的工作量+甲队20小时的工作量=甲队26小时的工作量甲队25小时的工作量=312米,甲队每小时修312÷26=12(米)乙队每小时修125230⨯÷=(米)【答案】甲队每小时修12米,乙队每小时修30米.【巩固】甲、乙二人合做一批零件,甲做了8小时,乙做了6小时,一共做了360个零件.甲2小时的工作量等于乙3小时的工作量.两人每小时各做多少个零件?【考点】等量代换【难度】2星【题型】解答【解析】甲2小时的工作量=乙3小时的工作量甲4小时的工作量=乙6小时的工作量甲8小时的工作量+乙6小时的工作量=甲8小时的工作量+甲4小时的工作量=甲12小时的工作量甲12小时的工作量=360个,甲每小时做360÷12=30(个)乙每小时做302320⨯÷=(个)【答案】甲每小时做30个,乙每小时做20个.【例 7】 第一只茶壶能装10大杯水,第二只茶壶可以装15小杯水.已知5大杯水与9小杯水同样多,哪个茶壶大?【考点】等量代换 【难度】2星 【题型】解答【解析】 读题,抓住大杯数目,引导学生进行扩倍来解决题目.因为5大杯水与9小杯水同样多,那么10大杯水就等于18小杯的水,而现在只有15小杯的水,10大杯水和15小杯水比较,10大杯水要多一些,所以第一个茶壶大.【答案】第一个茶壶大【巩固】 如图,第一只壶里的茶只有一半,小华倒出了5大杯,第二只壶里的茶是一满壶,小明倒出了15小杯.已知3小杯的茶与2大杯的茶同样多,现在问你哪个壶大?【考点】等量代换 【难度】2星 【题型】解答【解析】 我们可以按以下三个步骤来思考:⑴第二只壶满壶茶倒出15小杯,而每3小杯可以倒满2杯,所以第二只壶可以装茶10大杯.⑵一只壶的一半倒出了5大杯,那么满壶茶可以倒出10大杯.由⑴⑵可知,两个茶壶一样大.【答案】两个茶壶一样大【例 8】 1只鸡的重量+1只猴的重量=15千克1只鸭的重量+1只猴的重量=18千克1只鸡的重量+1只鸭的重量=13千克求这三种动物各多少千克?【考点】等量代换 【难度】2星 【题型】解答【解析】 15+18+13=2323-15=8,23-18=5,23-13=10.÷()2,【答案】一只鸡5千克,一只猴10千克,一只鸭8千克.【巩固】1筐苹果的重量+1筐橘子的重量=90千克1筐香蕉的重量+1筐橘子的重量=140千克1筐苹果的重量+1筐香蕉的重量=150千克求这三种水果各多少千克?【考点】等量代换【难度】2星【题型】解答【答案】1筐苹果重50千克,1筐橘子重40千克,1筐香蕉重100千克.【例 9】1个苹果的重量+1个桃子的重量+1个菠萝的重量=630克1个桃子的重量+1个菠萝的重量+1个梨的重量=730克1个苹果的重量+1个桃子的重量+1个梨的重量=330克1个苹果的重量+1个菠萝的重量+1个梨的重量=800克求这四种水果各多少克?【考点】等量代换【难度】2星【题型】解答【答案】一个苹果重100克,一个桃子重30克,一个菠萝重500克,一个梨重200克.【巩固】红气球的个数+蓝气球的个数+绿气球的个数=35只白气球的个数+蓝气球的个数+绿气球的个数=43只红气球的个数+白气球的个数+绿气球的个数=33只红气球的个数+蓝气球的个数+白气球的个数=48只求这四种气球各有多少只?【考点】等量代换【难度】2星【题型】解答【答案】红气球有10个,蓝气球有20个,绿气球有5个,白气球有18个.【例 10】如下图,淡黄色部分是正方形,求出最大的长方形的周长.5厘米【考点】等量代换【难度】3星【题型】解答【解析】因为图的中间是正方形,正方形的4边相等,所以DF=FE=BE=BD (1)长方形ABCD的周长为7×2=14(厘米),长方形EHGF的周长为5×2=10(厘米),又因为最大的长方形AHGC的周长等于:AB+AC+CD+DF+FG+GH+EH+BE (2)根据(1)对(2)式进行等量代换,就得到所求最大长方形的周长正好等于长方形ABCD的周长加上长方形EHGF的周长:7×2+5×2=24(厘米)【答案】24厘米课堂检测【随练1】已知1个排球和1个足球共重5千克.1个排球和1个篮球共重6千克.1个足球和1个篮球共重7千克.求每一种球各重多少千克?【考点】等量代换【难度】2星【题型】解答【解析】由5+6+7=18(千克)知:2个排球+2个足球+2个篮球=18千克,那么有1个排球+1个足球+1个篮球=9千克.-=(千克)……足球的重量-=(千克)……篮球的重量, 963954-=(千克)……排球的重量972【答案】篮球重4千克,足球重3千克,排球重2千克【随练2】李老师第一次买回5个篮球和3个排球,用去318元.第二次又买回7个篮球和6个排球,用去510元.问:一个篮球和一个排球的价格各是多少元?【考点】等量代换 【难度】2星 【题型】解答【解析】 可引导学生读题、审题,找出此题与例7的不同之处,并转化成例7的模型.此题有篮球单价与排球单价两个未知数量,而从题里所给条件分析,两次购买篮球与排球的数量各不相同,不能直接用消去法消去哪一个未知数,所以解题关键是使篮球或排球中的某一对未知数变换得相同,则可消去其中一个.通过比较,第一次购买的排球为3个;第二次购买的排球为6个,恰为第一次的2倍.若将第一次购买的排球、篮球各扩大2倍,付的钱也扩大2倍,则能使购买的排球个数与第二次购买的排球个数相同,从而设法消去排球这个未知数量,先求出每个篮球的价格,再求每一个排球的价格.533182106636⨯个篮球个排球元个篮球个排球元 106636765103126-个篮球个排球元个篮球个排球元个篮球元列式:(3182510)(527)⨯-÷⨯-126342=÷=(元)……篮球的单价.(318425)3-⨯÷108336=÷=(元)……排球的单价.【答案】篮球的单价42元;排球的单价36元【随练3】 用两台水泵抽水,小水泵抽7小时,大水泵抽8小时,一共抽水324立方米.小水泵5小时的抽水量等于大水泵2小时的抽水量,两种水泵每小时各抽水多少立方米?【考点】等量代换 【难度】2星 【题型】解答【解析】 小水泵5小时的抽水量=大水泵2小时的抽水量小水泵20小时的抽水量=大水泵8小时的抽水量小水泵7小时的抽水量+大水泵8小时的抽水量=小水泵7小时的抽水量+小水泵20小时的抽水量=甲队27小时的抽水量小水泵27小时的抽水量=324米,小水泵每小时抽水324÷27=12(立方米)大水泵每小时抽水125230⨯÷=(立方米)【答案】小水泵每小时抽水12立方米,大水泵每小时抽水30立方米.家庭作业【作业1】 图书室里的故事书与科技书共有720本,又知故事书比科技书多160本,这两种图书各有多少本?【考点】等量代换 【难度】2星 【题型】解答【解析】 题目中给出了两个未知量“故事书”和“科技书”的数量关系,即已知故事书与科技书共有720本和故事书与科技书本数之差,属于典型应用题中的“和差问题”,一般用消去法来解.7201602880++-故事书本数科技书本数本故事书本数科技书本数本倍故事书本数本消去科技书本数后,可先求出故事书的本数.列式:(720160)2440+÷=(本)……故事书,440160280-=(本)……科技书.也可以先求出科技书的本数.【答案】故事书440本,科技书280本【作业2】 奶奶去买水果,如果她买4千克梨和5千克荔枝,需要花掉58元;如果她买6千克梨和5千克荔枝,需要花掉62元.问1千克梨和1千克荔枝各多少元?【考点】等量代换 【难度】2星 【题型】解答【解析】 我们可以把两次的情况进行比较:4千克梨的价钱5+千克荔枝的价钱58=(元) ⑴6千克梨的价钱5+千克荔枝的价钱62=(元) ⑵比较⑴和⑵式,发现两式中荔枝的千克数相等.⑵式比⑴式多了642-=千克梨,也就是62584-=元,说明1千克梨的价钱为422÷=元.那么1千克荔枝的价钱也就好求了.(6258)(64)2-÷-=(元),(5824)510-⨯÷=(元)或(6226)510-⨯÷=(元)【答案】1千克梨的价钱为2元;1千克荔枝的价钱10元【作业3】 池塘里的莲花繁殖得特别快,每天增多1倍.到第15天的时候长了半个池塘,那么第几天能长满整个池塘呢?【考点】等量代换 【难度】1星 【题型】解答【解析】 16天还是30天呢?有的同学认为15天长了半个池塘,当然30天长满整个池塘了.其实不然,因为池塘的莲花每天增多1倍,所以在长满全池塘的前一天就是半个池塘.15天长满了半个池塘,自然是16天长满整个池塘.此题关键要明确每天增多1倍就是每天扩大2倍.【答案】16天长满整个池塘【作业4】 小华要称1粒米的重量,天平自带的砝码只有1克,2克,4克,8克,16克,32克,64克各一个.⑴1粒米远远没有1克,小华该怎么办? ⑵小华要称100克的米,天平应放哪几个砝码?【考点】等量代换【难度】2星【题型】解答【解析】⑴小华可以用1克的砝码去称1克米,天平平衡的时候,再去数一数有几粒米,就可以说多少粒米是1克.如果数出有10粒米.这10粒米就是1克的米,也就是1克,一粒米就是0.1克.⑵使用大的砝码64克,再考虑加哪几个?100=64+32+4,应放64克,32克,4克的砝码.【答案】⑴略⑵应放64克,32克,4克的砝码【作业5】百货商店运来300双球鞋,分别装在2个木箱、6个纸箱里.如果2个纸箱同1个木箱装的球鞋一样多,想一想:每个木箱和每个纸箱各装多少双球鞋?【考点】等量代换【难度】2星【题型】解答【解析】2个纸箱装鞋的数量=1个木箱装鞋的数量6个纸箱装鞋的数量=3个木箱装鞋的数量6个纸箱装鞋的数量+2个木箱装鞋的数量=3个木箱装鞋的数量+2个木箱装鞋的数量=5个木箱装鞋的数量5个木箱装鞋的数量=300双,1个木箱装300560(÷=双)鞋1个纸箱装602=30÷(双)鞋【答案】1个木箱装60双鞋,1个纸箱装30双鞋.【作业6】甲乙两数之差是18,如果把乙数扩大10倍,就与甲数相等,求甲、乙两数各是多少?【考点】等量代换【难度】3星【题型】解答【解析】把乙数扩大10倍,才与甲数相等,可见甲数是乙数的10倍.把题目中的条件简写成这样的两个关系式:甲数-乙数= 18 ,乙数×10=甲数.用“乙数×10”可代换甲数,则:乙数×10-乙数= 18,变化为乙数×(10-1)=18 .由此,我们可得出,乙数:18÷(10-1)=2,甲数:2×10= 20.【答案】甲:20,;乙:2教学反馈。