4 插值、拟合与数值微积分建模案例
- 格式:ppt
- 大小:366.50 KB
- 文档页数:27
数学建模数学实验插值及案例在科学研究和工程实践中,数学建模扮演着至关重要的角色。
通过建立数学模型,我们可以对现实世界的现象进行模拟和预测。
其中,插值方法是一种重要的数学建模工具,用于估计在给定数据点之间的未知值。
本文将探讨插值方法的基础理论以及一个具体的数学实验案例。
插值方法是一种数学技术,通过在给定的数据点之间估计未知的值。
最常用的插值方法包括线性插值、多项式插值和样条插值等。
线性插值是最简单的插值方法,它将数据点之间的变化视为线性的,即变化率保持恒定。
多项式插值方法则通过构建一个多项式函数来逼近数据点的变化趋势。
样条插值则通过将数据点连接成平滑的曲线来进行插值。
本案例将利用多项式插值方法对房价进行预测。
我们收集了一组房屋价格数据,包括房屋的面积、房龄、位置等信息。
然后,我们使用多项式插值方法构建一个函数来描述房价与这些因素之间的关系。
通过调整多项式的阶数,我们可以控制模型的复杂性。
我们使用该模型来预测新的房价。
在本案例中,我们使用了200个样本数据进行训练,并使用另外100个数据点进行测试。
我们发现,通过增加多项式的阶数,模型的预测精度可以得到提高。
然而,当阶数增加到一定程度后,模型的性能改善不再明显。
我们还发现模型的预测结果对训练数据的分布非常敏感,对于分布偏离较大的新数据点,预测结果可能会出现较大误差。
通过本次数学实验,我们深入了解了插值方法在数学建模中的应用。
在实际问题中,插值方法可以帮助我们更好地理解数据的变化趋势和预测未知的值。
然而,插值方法也存在一定的局限性,如本实验中模型对训练数据分布的敏感性。
未来工作中,我们可以尝试采用其他更加复杂的模型,如神经网络、支持向量机等来提高预测精度。
我们还应充分考虑数据的分布特性,以提高模型的泛化能力。
插值方法是数学建模中的重要工具之一,它可以让我们更好地理解和预测数据的趋势。
通过本次数学实验,我们深入了解了多项式插值方法的工作原理和实现过程,并成功地将其应用于房价预测问题中。
数学建模插值与拟合实验题
1.处理2007年大学生数学建模竞赛A题:“中国人口增长预测”附件中的数据,得到以下几个问题的拟合结果,并绘制图形
(1)对1994-2005年出生婴儿的性别比进行拟合,并以此预测2006-2022年间的性别比。
(2)生育率随年龄的变化而变化,试以生育年龄为自变量,生育率为因变量,对各年的育龄妇女生育率进行拟合;
(3)按时间分布对城、镇、乡生育率进行分析,以时间为自变量,生育率为因变量,对城、镇、乡的生育率进行拟合,并预测2006-2022年间的生育率。
(4)将某年的城镇化水平PU(t)定义为当年的城镇人口数与总人口数之
比,Karmehu(1992年)研究发现20世纪50年代以来发达国家随着经济发展水平的提高,城镇人口的增长相对农村要快一些,但是随着城镇化水平的提高,并趋向100%时,速度会减缓,城镇化水平的增长曲线大致表现为一条拉伸的“S”型Logitic曲线[4],对附录2中所给出2001年—2005年中国人口1%调查数据进行曲线拟合,求得该曲线,并绘制2001-2050年的城镇化水平的曲线图。
2.处理2022年大学生数学建模竞赛A题:“城市表层土壤重金属污染分析”附件中的数据,完成下列问题
(1)以城区取样点位置为节点进行插值,绘制城区的地形图和等高线图;(2)绘制城区的8种重金属浓度的空间分布图。
并指出浓度最高和最低的点所在的位置。
插值的方法可用三次插值、kriging插值、Shepard插值等。
工具可用Matlab,也可用urfer软件实现。
插值与拟合1. 插值与拟合的基本概念插值与插值函数:已知由()g x (可能未知或非常复杂)产生的一批离散数据(,),0,1,,i i x y i n = ,且n+1个互异插值节点011n n a x x x x b -=<<<<= ,在插值区间内寻找一个相对简单的函数 ()f x ,使其满足下列插值条件:再利用已求得的 ()f x 计算任一非插值节点的近似值,这就是插值。
其中()f x 称为插值函数, ()g x 称为被插函数。
最小二乘拟合: 已知一批离散的数据 (,),0,1,,i i x y i n = ,i x 互不相同,寻求一个拟合函数 ()f x ,使()i f x 与i y 的误差平方和在最小二乘意义下最小。
在最小二乘意义下确定的 ()f x 称为最小二乘拟合函数。
温度问题在12小时内,每隔1小时测量一次温度。
温度依次为:5,8,9,15,25,29,31,30,22,25,27,24。
(单位:℃)(1) 试估计在3.2h ,6.5h ,7.1h ,11.7h 的温度值,并画出其图形。
(2) 每隔1/10h 估计一次温度值,并画出其图形。
请你找出跟上述12个数据拟合的最好的一条曲线,请分别用分段线性插值、三次样条插值方法(至少用两条不同的曲线,并比较它们拟合好坏的程度)hours=1:12;temps=[5,8,9,15,25,29,31,30,22,25,27,24];t=interp1(hours,temps,[3.2,6.5,7.1,11.7]) %线性插值 T=interp1(hours,temps,[3.2,6.5,7.1,11.7],'spline') %三次样条插值 计算结果为 t =10.2000 30.0000 30.9000 24.9000 T =9.6734 30.0427 31.1755 25.3820每隔1/10h 估计一次温度值并画出其图形: hours=1:12;temps=[5,8,9,15,25,29,31,30,22,25,27,24]; h=1:0.1:12;t=interp1(hours,temps,h,'spline');plot(hours,temps,'+',h,t,hours,temps,'r:') xlabel('时间'),ylabel('温度')三次多项式拟合: hours=1:12;temps=[5,8,9,15,25,29,31,30,22,25,27,24]; a=polyfit(hours,temps,3) temps1=polyval(a,hours);plot(hours,temps,'ro',hours,temps1,'b.')得到320.00650.32837.1281 4.4343y x x x =--+-,图形如下:四次多项式拟合:得到4320.02730.7158 5.770712.225112.5884y x x x x =-+-+比较拟合的好坏:设ˆi y为拟合函数的值,i y 为测量值,则残差2ˆ()iiie y y=-∑ 。
第4章 插值与拟合方法插值与拟合方法是用有限个函数值(),(0,1,,)i f x i n =⋅⋅⋅去推断或表示函数()f x 的方法,它在理论数学中提到的不多。
本章主要介绍有关解决这类问题的理论和方法,涉及的内容有多项式插值,分段插值及曲线拟合等。
对应的方法有Lagrange 插值,Newton 插值,Hermite 插值,分段多项式插值和线性最小二乘拟合。
4.1 实际案例4.2 问题的描述与基本概念先获得函数(已知或未知)()y f x =在有限个点n x x x ⋅⋅⋅,,10上的值x0x 1x … n x y0y 1y … n y 由表中数据构造一个函数P (x )作为f (x ) 的近似函数,去参与有关f (x )的运算。
科学计算中,解决不易求出的未知函数的问题主要采用插值和拟合两种方法。
1)插值问题的描述已知函数()y f x =在[a,b ]上的n +1个互异点x ,0处的函数值()i i y f x =,求f (x ) 的一个近似函数P (x ),满足()()(0,1,,)i i P x f x i n ==⋅⋅⋅ (4.1)● P (x ) 称为f (x )的一个插值函数;● f (x ) 称为被插函数;点i x 为插值节点; ● ()()(0,1,,)i i P x f x i n ==⋅⋅⋅称为插值条件; ● ()()()R x f x P x =-称为插值余项。
当插值函数P (x )是多项式时称为代数插值(或多项式插值)。
一个代数插值函数P (x )可写为0()()()mkm k k k P x P x a x a R ===∈∑若它满足插值条件(4.1),则有线性方程组20102000201121112012m m mm m nn m n n a a x a x a x y a a x a x a x y a a x a x a x y ⎧+++⋅⋅⋅=⎪+++⋅⋅⋅=⎪⎨⎪⎪+++⋅⋅⋅=⎩ (4.2)当m=n ,它的系数行列式为范德蒙行列式)(1110212110200j i ni j nnnn nn x x x x x x x x x x x D -∏==≤≤≤因为插值节点互异,0D ≠,故线性方程组(4.2)有唯一解,于是有定理 4.1 当插值节点互异时,存在一个满足插值条件()()(0,1i i P x f x i n ==⋅⋅⋅的n 次插值多项式。
插值法和拟合实验报告一、实验目的1.通过进行不同类型的插值,比较各种插值的效果,明确各种插值的优越性;2.通过比较不同次数的多项式拟合效果,了解多项式拟合的原理;3.利用matlab 编程,学会matlab 命令;4.掌握拉格朗日插值法;5.掌握多项式拟合的特点和方法。
二、实验题目1.、插值法实验将区间[-5,5]10等分,对下列函数分别计算插值节点kx 的值,进行不同类型的插值,作出插值函数的图形并与)(x f y =的图形进行比较:;11)(2x x f += ;arctan )(x x f = .1)(42x x x f +=(1) 做拉格朗日插值; (2) 做分段线性插值; (3) 做三次样条插值.2、拟合实验给定数据点如下表所示:分别对上述数据作三次多项式和五次多项式拟合,并求平方误差,作出离散函数),(i i y x 和拟合函数的图形。
三、实验原理1.、插值法实验∏∑∏∏∏∑∑≠==≠=≠=≠=+-==--==-===-=-=----==++==ji j ji i i i i ni i n nji j jnji j ji i nji j jn i i i ni i n nn o i ni i n x x x x x y x l x L x x c ni x x c x x x cx x x x x x x x c y x l x L y x l y x l y x l x L ,00,0,0,0110000)(l )()()(1,1,0,1)()(l )()())(()()()()()()()(,故,得再由,设2、拟合实验四、实验内容1.、插值法实验1.1实验步骤:打开matlab软件,新建一个名为chazhi.m的M文件,编写程序(见1.2实验程序),运行程序,记录结果。
1.2实验程序:x=-5:1:5;xx=-5:0.05:5;y1=1./(1+x.^2);L=malagr(x,y1,xx);L1=interp1(x,y1,x,'linear');S=maspline(x,y1,0.0148,-0.0148,xx);hold on;plot(x,y1,'b*');plot(xx,L,'r');plot(x,L1,'g');plot(xx,S,'k');figurex=-5:1:5;xx=-5:0.05:5;y2=atan(x);L=malagr(x,y2,xx);L1=interp1(x,y2,x,'linear');S=maspline(x,y2,0.0385,0.0385,xx);hold on;plot(x,y2,'b*');plot(xx,L,'r');plot(x,L1,'g');plot(xx,S,'k');figurex=-5:1:5;xx=-5:0.05:5;y3=x.^2./(1+x.^4);L=malagr(x,y3,xx);L1=interp1(x,y3,x,'linear');S=maspline(x,y3,0.0159,-0.0159,xx);hold on;plot(x,y3,'b*');plot(xx,L,'r');plot(x,L1,'g');plot(xx,S,'k');1.3实验设备:matlab软件。