最新整理初中数学试题试卷初一级数学角的度量测试题.doc
- 格式:doc
- 大小:111.50 KB
- 文档页数:3
初一上册数学角试题及答案一、选择题(每题2分,共20分)1. 下列哪个选项不是角的分类?A. 锐角B. 直角C. 钝角D. 线段答案:D2. 一个角的度数是60°,这个角是:A. 锐角B. 直角C. 钝角D. 平角答案:A3. 一个角的度数是180°,这个角是:A. 锐角B. 直角C. 钝角D. 平角答案:D4. 一个角的度数是90°,这个角是:A. 锐角B. 直角C. 钝角D. 平角答案:B5. 一个角的度数是360°,这个角是:A. 锐角B. 直角C. 钝角D. 周角答案:D6. 一个角的度数是120°,这个角是:A. 锐角B. 直角C. 钝角D. 平角答案:C7. 一个角的度数是30°,这个角是:A. 锐角B. 直角C. 钝角D. 平角答案:A8. 如果一个角的度数是45°,那么它的补角是:A. 45°B. 90°C. 135°D. 180°答案:B9. 如果一个角的度数是75°,那么它的余角是:A. 15°B. 45°C. 75°D. 90°答案:A10. 如果一个角的度数是150°,那么它的补角是:A. 30°B. 45°C. 60°D. 90°答案:A二、填空题(每题2分,共20分)1. 一个角的度数是90°,它是一个________。
答案:直角2. 一个角的度数是180°,它是一个________。
答案:平角3. 一个角的度数是360°,它是一个________。
答案:周角4. 如果一个角的度数是120°,那么它的补角是________。
答案:60°5. 如果一个角的度数是45°,那么它的余角是________。
答案:45°6. 锐角是指度数小于________的角。
角与角的度量[基础训练]1、下列说法中,正确的是 ( )A 、有公共端点的两条射线组成的图形叫做角;B 、两条射线组成的图形叫做角;C 、两条线段组成的图形叫做角;D 、一条射线从一个位置移到另一个位置所形成的图形叫做角。
2、下列各图中表示角的是( )3、一个周角等于________º;一个平角等于_______º。
4、1º=_______分,1分=_______秒。
5、钟面上时针1小时转______度,分针每分钟转_______度。
6、如图,角的顶点是_________,边是__________,用三种不同的方法表示该角____________________。
7、如图,由点O 引射线OA 、OB 、OC ,则这三条射线 组成_______个角,分别是_______,其中∠AOB 用数 字表示为________,∠2用三个字母表示为_________________。
8、计算:(1)用度、分、秒表示32.260; (2)用度表示35025'48"(3)14400"等于多少分?等于多少度? (4)20026'+35054';(5)900-43018';综合提高一、选择题:1、下列语句正确的是 ( )A 、两条直线相交组成的图形叫角;B 、一条直线可以看成一个平角;C 、一个平角的两边可以看成一条直线;D 、周角就是一条射线 2、下列四个图形中,能同时用∠1,∠ABC ,∠B 三种方法表示同一个角的图形是( )B A OACD A(A) (B) (C) (D)ABB(D)(C)(B)(A)B A A3、如图中,在下列表示角的方法中正确的是( )A 、∠FB 、∠DC 、∠AD 、∠B4、若∠1=5005' ∠2=50.50 则∠1与∠2的大小关系是( )A 、∠1=∠2B 、∠1>∠2C 、∠1<∠2D 、无法确定5、下列关于角的描述正确的是:( ) A 、角的边是两条线段; B 、角是由两条射线组成的图形 C 、角可以看成一条射线绕着它的端点旋转而成图形; D 、角的大小与边的长短有关6、如图,∠α的另一种正确的表示方法是:( )A 、∠1B 、∠C C 、∠ACBD 、∠ABC 7、时钟的分钟走过5分钟的角度是( ) A 、300 B 、130 C 、120 D 、508、时钟显示为8:30时,时针与分针所夹角度是( )A 、900B 、1200C 、750D 、8409.下列说法中,正确的是。
与角度有关的计算问题(解答题35题)(基础题&提升题&压轴题)题型一基础题1.(2023秋•同安区期末)如图,点O在直线AB上,∠BOC=20°,∠COD=90°,OE是∠BOD的角平分线,求∠COE的度数.2.(2023秋•吉安期末)如图,已知∠1:∠3:∠4=1:2:4,∠2=80°,求∠1、∠3、∠4的度数.3.(2023秋•西峡县期末)如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.试求∠COE 的度数.4.(2023秋•天心区期末)如图,O为直线AB上一点,OC平分∠AOD,∠AOC=60°,∠BOD=3∠DOE,求∠DOE的度数.5.(2023秋•泉港区期末)如图,∠COD=45°,∠BOD=13∠COD,OC是∠AOB的平分线,求∠AOD的度数.6.(2023秋•泸县校级期末)如图,OE是∠COA的平分线,∠AOB=∠COD.(1)若∠AOE=50°,∠COD=18°,求∠BOC的度数;(2)比较∠AOC和∠BOD7.(2023秋•南沙区期末)如图,将一副三角尺叠放在一起.三角尺ABC的三个角是45°,45°,90°,三角尺ADE的三个角是30°,60°,90°.(1)若∠CAE=58°,求∠BAE的度数;(2)若∠CAE=2∠BAD,求∠CAD的度数.8.(2023秋•大荔县期末)将一副直角三角板ABC和BDE的一个顶点B重合在一起,按如图所示方式摆放,其中∠ACB=∠DBE=90°,∠ABC=30°,三角板ABC在∠DBE内可任意转动.(1)以点B为顶点的所有锐角有 个.(2)求以点B9.(2023秋•九龙坡区校级期末)如图,∠AOB:∠BOC=1:4,OM平分∠AOB,∠BON:∠NOC=3:1,若∠MON=91°.(1)∠AOB ∠NOC(填“>”或“<”或“=”)(2)求∠AOC的度数.10.(2023秋•娄底期末)如图,点O在直线AB上,∠COD=60°,∠AOE=2∠DOE.(1)若∠BOD=60°,求∠COE的度数;(2)试猜想∠BOD和∠COE的数量关系,并说明理由.11.(2023秋•瑶海区校级期末)已知点O为直线AB上一点,∠MON=90°,在∠MON内部作射线OC,且OC恰好平分∠MOB.(1)若∠CON=20°,求∠AOM的度数;(2)若∠BON=2∠NOC,求∠AOM的度数.12.(2023秋•高安市期末)如图,已知∠AOB=80°,OC是∠AOB的平分线,OD是∠BOC的平分线.(1)求∠AOD的度数;(2)若∠COE=14∠COB,求∠的度数.题型二提升题13.(2023秋•福田区校级期末)如图,点A,O,B在同一条直线上,OD,OE分别平分∠AOC和∠BOC.(1)求∠DOE的度数;(2)如果∠COD=65°,求∠AOE的度数;(3)如果∠COD:∠COE=3:2,求∠AOE的度数.14.(2023秋•慈溪市期末)如图,直角三角板DOE的直角顶点O在直线AB上,OD平分∠AOF.(1)比较∠EOF和∠EOB的大小,并说明理由;(2)若OF平分∠AOE,求∠的度数.15.(2023秋•武昌区期末)已知∠AOB=50°,∠COD=20°.(1)如图1,若∠AOD=80°,∠COD在OB的左侧,则∠BOC= ;(2)如图2,OP平分∠AOD,OQ平分∠BOC,求∠POQ.16.(2023秋•无为市期末)利用折纸可以作出角平分线,如图1折叠,则OC为∠AOB的平分线,如图2、图3,折叠长方形纸片,OC,OD均是折痕,折叠后,点A落在点A',点B落在点B',连接OA′.(1)如图2,若点B'恰好落在OA′上,且∠AOC=32°,则∠BOD= ;(2)如图3,当点B'在∠COA'的内部时,连接OB′,若∠AOC=44°,∠BOD=61°,求∠A'OB'的度数.17.(2023秋•彭水县期末)已知∠AOB内部有三条射线OD,OC,OE且在同一个平面内,∠AOC=2∠BOC,射线OD始终在射线OE的上方,∠AOB=108°,∠DOE=36°.(1)如图1,当OE平分∠BOC时,求∠AOD的度数;(2)如图2,若∠AOD=5∠COE时,求∠BOE的度数.18.(2023秋•沙坪坝区校级期末)如图1,已知∠AOC=160°,OB是∠AOC内的射线,且∠AOB=3 5∠BOC,射线OD、OE将∠AOC分割,使得∠AOD:∠BOD:∠COE=1:2:3.(1)求∠DOE.(2)如图2,作∠BOD,∠EOC的平分线OM,ON.求∠MON的值.19.(2023秋•渝北区期末)OC ,OD ,OE 在∠AOB 内,∠AOC =2∠BOC ,∠AOB =108°,∠DOE =66°.(1)如图1,当OE 为∠BOC 的角平分线时,求∠AOD 的度数;(2)如图2,当∠AOD =53∠COE ,求∠BOE 的度数.20.(2023秋•汉中期末)如图,已知∠AOB =120°,从∠AOB 的顶点O 引出一条射线OC ,射线OC 在∠AOB 的内部,将射线OC 绕点O 逆时针旋转到OD ,且∠COD =60°.(1)如图①,若∠AOD =90°,试判断∠AOC 与∠BOD 之间的大小关系并说明理由;(2)如图②,作射线OE ,射线OE 为∠AOD 的平分线,设∠AOC =α,当0°<α<60°时,若射线OC 恰好平分∠AOE ,求∠BOD 的度数.21.(2023秋•宿豫区期末)已知,将一副三角板的直角顶点O按如图所式叠放在一起.(1)若∠BOD=55°,则∠BOC= ,∠BOC ∠AOD(填>、<、=);(2)①若∠BOD=50°,则∠AOC= ;若∠AOC=120°,则∠BOD= ;②猜想∠BOD与∠AOC之间的数量关系,并说明理由.22.(2023秋•庄河市期末)如图,点O为直线上AB一点,∠COD=90°,∠BOD=18°,若OE是∠BOC 的平分线,(1)求∠BOE的度数;(2)若点F是平面内一点,连接射线OF,且∠AOF=13∠AOC,求∠COF的度数.23.(2023秋•黄陂区校级期末)将三角板COD的直角顶点O放置在直线AB上.(1)如图,且∠AOC=40°射线OE平分∠BOC,则∠BOE的大小为 ;(2)在(1)的条件下,射线OE平分∠BOC,射线OF平分∠BOD,求∠EOF的度数;(3)若将三角板COD绕点O旋转,射线OE平分∠BOC,射线OF平分∠BOD.请写出∠COD与∠EOF 度数的等量关系: .题型二压轴题24.(2023秋•斗门区期末)如图①,OC是∠AOE内部的一条射线,OB、OD分别平分∠AOC,∠EOC.(1)若∠AOE=140°,∠COD=30°,求∠BOC= ;(2)∠AOE与∠BOD的大小有什么关系,写出你的结论并说明理由.(3)如图②,如果OC是∠AOE外部的一条射线,OB、OD分别平分∠AOC,∠EOC.那么(2)中∠AOE与∠BOD的大小关系还成立吗?请说明理由.25.(2023秋•海陵区校级期末)已知∠AOB=2∠COD=140°,OE平分∠AOD.(1)如图①,若∠COE=10°,求∠AOC的度数;(2)将∠COD绕顶点O按逆时针方向旋转至如图②的位置,∠BOD和∠COE有怎样的数量关系?请说明理由;(3)将∠COD绕顶点O按逆时针方向旋转至如图③的位置,(2)中的关系是否成立?请说明理由.26.(2023秋•思明区校级期末)如图,点M,O,N在同一条直线上,将一直角三角板的60°锐角顶点放在点O处,一边OA在射线OM上,另一边OB在直线MN的上方.OC平分∠BON,OD平分∠CON.(1)求∠BOD的度数;(2)把三角板绕点O沿逆时针方向旋转,当OB转到射线OM上时停止,若在旋转过程中,∠AOM=(x﹣120)°,同时在∠BOC内部有一条射线OE,使得∠BOE=(34x―90)°,试探究在旋转过程中,射线OE始终是哪个角的平分线?27.(2023秋•宝安区期末)将一副三角板如图1放置(∠AOB=90°,∠A=45°,∠OCD=90°,∠COD =30°),在∠BOD、∠AOC(∠BOD≤180°、∠AOC≤180°)内作射线OM、ON,且∠MOB=2∠DOM,∠NOA=2∠NOC,将三角板OCD绕着点O顺时针旋转.(1)如图1,当点O、A、C在一条直线上时,∠MON= ;(2)如图2,若旋转角为α(0°<α<90°),∠MON的度数是否会发生改变?若不变,求其值;若变化,说明理由.(3)如图3,当三角板OCD旋转到∠AOB内部时,求∠MON的值.28.(2024•两江新区校级开学)将一副三角板的两个锐角顶点重合,∠AOB=45°,∠COD=30°,OM,ON分别是∠AOC,∠BOD(1)如图①所示,当OB与OC重合时,则∠MON的大小为 ;(2)当∠COD绕着点O旋转至如图②所示,当∠BOC=14°,则∠MON的大小为多少?(3)当∠COD绕着点O旋转至如图③所示,当∠BOC=α时,求∠MON的大小.29.(2023秋•于洪区期末)【提出问题】已知点O是直线AB上一点,∠COD=90°,射线OE是∠AOD的平分线.(1)如图1,若∠BOD=110°,求∠COE的度数.请补充完成下列解答过程:解:∵∠AOB=180°,∠BOD=110°,∴∠AOD= °.∵∠COD=90°,∴∠AOC=∠COD﹣∠AOD= °.∵OE是∠AOD的平分线,∴∠AOE= ∠AOD= °.∴∠COE=∠AOC+ = °.【类比分析】(2)如图2,设∠COE=α,求∠BOD的度数(用含α的代数式表示).【变式探索】(3)如图3,若3∠COE﹣2∠BOD=78°,求∠COE的度数.30.(2023秋•渑池县期末)如图.已知∠MON=140°,∠AOC与∠BOC互余,OC平分∠MOB.(1)在图①中.若∠AOC=40°,则∠BOC= °.∠NOB= °;(2)在图①中,设∠AOC=α,∠NOB=β,请探究α与β之间的数量关系(必须写出推理的主要过程,但每一步后面不必写出理由);(3)在图①中,当∠AOB绕着点O顺时针转动到如图②的位置时,(2)中α与β之间的数量关系是否还成立?若成立,请说明理由;若不成立,请直接写出此时α与β之间的数量关系.31.(2023秋•青岛期末)如图,OM是∠AOC的平分线,ON是∠BOC的平分线.(1)如图1,当∠AOB是直角,∠BOC=60°时,求∠MON的度数是多少?(2)如图2,当∠AOB=α,∠BOC=60°时,尝试发现∠MON与α的数量关系.(3)如图3,当∠AOB=α,∠BOC=β时,猜想:∠MON与α、β有数量关系吗?直接写出结论即可.32.(2024春•高青县期末)【实践活动】如图1,将一副三角板的直角顶点重合摆放.(1)∠ACE与∠BCD的大小关系是∠ACE ∠BCD.(填“>”“=”或“<”)(2)∠ACB与∠DCE之间的数量关系是 .【拓展探究】(3)如图2,若∠ACD≠∠BCE,且∠ACD+∠BCE=180°,探索∠ACB与∠DCE之间的数量关系,并说明理由.33.(2023秋•和平区校级期末)已知∠AOB=120°,从∠AOB的顶点O引出一条射线OC,射线OC在∠AOB的内部,将射线OC绕点O逆时针旋转60°形成∠COD.(1)如图1,若∠AOD=90°,比较∠AOC和∠BOD的大小,并说明理由;(2)作射线OE,射线OE为∠AOD的平分线,设∠AOC=α.①如图2,当0°<α<60°,若射线OC恰好平分∠AOE,求∠BOD的度数;②当α≠60°时,请探究∠EOC与∠BOD之间的数量关系.34.(2023秋•山西期末)综合与探究特例感知:(1)如图1.线段AB=16cm,C为线段AB上的一个动点,点D,E分别是AC,BC的中点.①若AC=4cm,则线段DE的长为 cm.②设AC=a cm,则线段DE的长为 cm.知识迁移:(2)我们发现角的很多规律和线段一样,如图2,若∠AOB=120°,OC是∠AOB内部的一条射线,射线OM平分∠AOC,射线ON平分∠BOC,求∠MON的度数.拓展探究:(3)已知∠COD在∠AOB内的位置如图3所示,∠AOB=α,∠COD=30°,且∠DOM=2∠AOM,∠CON=2∠BON,求∠MON的度数.(用含α的代数式表示)35.(2023秋•青羊区校级期末)如图所示,O是直线AB上的一点,∠COD是直角,OE平分∠BOC.(1)如图1,若∠AOC=30°,求∠DOE的度数.(2)在图1中,若∠AOC=α,直接写出∠DOE的度数: (用含α的代数式表示).(3)将图1中的∠COD绕顶点O顺时针开始旋转.①当∠COD旋转至如图2的位置时,请探究∠AOD与∠BOE的度数之间的关系,写出你的结论,并说明理由;②过点O的一条射线OF,使得OC恰好平分∠BOF,在图1和图2中分别探究∠AOF与∠DOE的度数之间的关系,请直接写出结论.。
初一数学角与角的度量试题1.下列各图中表示角的是()【答案】D【解析】本题主要考查的是角的定义根据角的定义:有公共端点的两条射线组成的图形叫做角,依次分析各项即可。
根据角的定义:有公共端点的两条射线组成的图形叫做角,可知只有D选项中的图表示角,故选D.思路拓展:有公共端点的两条射线组成的图形叫做角,注意不要忽略“公共端点”.2.钟面上时针1小时转______度,分针每分钟转_______度。
【答案】30,6【解析】本题考查的是钟表表盘与角度相关的特征钟表表盘被分成12大格,每一大格所对角的度数为30°,每一大格又被分为5小格,故表盘共被分成60小格,每一小格所对角的度数为6°,根据时针1小时转一大格,分针每分钟转一小格即可得到结果。
钟面上时针1小时转30度,分针每分钟转6度。
思路拓展:钟表表盘被分成12大格,每一大格又被分为5小格,故表盘共被分成60小格,每一小格所对角的度数为6°.分针转动一圈,时间为60分钟,则时针转1大格,即时针转动30°,逆过来同理.3.14400"等于多少分?等于多少度?【答案】240¹,4º【解析】本题考查的是度、分、秒的转化运算进行度、分、秒的转化运算,注意以60为进制.先将秒的部分除以60化为分,再将分的部分除以60化为度.根据1°=60′,1′=60″得,14400"÷60=240′,240′÷60=4°,所以14400"等于240¹,等于4º.思路拓展:由度化分应乘以60,由分化度应除以60,注意度、分、秒都是60进制的,由小单位化大单位要除以60,由大单位化小单位要乘以60.4.下列语句正确的是()A.两条直线相交组成的图形叫角;B.一条直线可以看成一个平角;C.一个平角的两边可以看成一条直线;D.周角就是一条射线【答案】C【解析】此题考查了角的定义根据角的组成、平角、周角的定义解答,只要举出一个反例即可证明命题错误.A、有公共端点的两条射线组成的图形叫做角,故本选项错误;B、直线和平角是两个概念,平角是由处在同一直线上方向相反的两条射线构成的角,不能将直线和射线混为一谈,故本选项错误;C、平角等于180 º,故一个平角的两边可以看成一条直线,本选项正确;D、有公共端点的两条射线组成的图形叫做角,周角等于360 º,周角的两边重合,故本选项错误;思路拓展:解答此题,必须明确角的边、顶点、平角与直线的区别与联系,侧重于对基本概念的理解.5.下列四个图形中,能同时用∠1,∠ABC,∠B三种方法表示同一个角的图形是()【答案】B【解析】本题考查的是角的表示方法根据角的表示方法进行逐一分析,即角可以用一个大写字母表示,也可以用三个大写字母表示.其中顶点字母要写在中间,唯有在顶点处只有一个角的情况,才可用顶点处的一个字母来记这个角,否则分不清这个字母究竟表示哪个角.角还可以用一个希腊字母(如∠α,∠β,∠γ、…)表示,或用阿拉伯数字(∠1,∠2…)表示.A、因为顶点B处有四个角,所以这四个角均不能用∠B表示,故本选项错误;B、因为顶点B处只有一个角,所以这个角能用∠1,∠ABC,∠B表示,故本选项正确;C、因为顶点B处有三个角,所以这三个角均不能用∠B表示,故本选项错误;D、因为顶点B处有三个角,所以这三个角均不能用∠B表示,故本选项错误.故选B.思路拓展:角的表示方法一般有以下几种:①一个大写字母,②一个希腊字母,③一个阿拉伯数字,④三个大写字母且表示顶点的字母写在中间.要注意,当顶点处有多个角时,不能用一个大写字母表示,以免混淆.6.下列关于角的描述正确的是:()A.角的边是两条线段;B.角是由两条射线组成的图形C.角可以看成一条射线绕着它的端点旋转而成图形;D.角的大小与边的长短有关【答案】C【解析】本题主要考查的是角的定义根据角的定义:有公共端点的两条射线组成的图形叫做角,角的大小与边的长短无关,只与两边张开的程度有关,依次分析各项即可。
七年级数学《角》练习题及答案一、选择题1.下列说法正确的是( )A.两点之间直线最短B .用一个放大镜能够把一个图形放大,也能够把一个角的度数放大C .把一个角分成两个角的射线叫角的平分线D .直线l 经过点A ,那么点A 在直线l 上呢2. 下列4个图形中,能用∠1,∠AOB ,∠O 三种方法表示同一角的图形是( )3.下列关于平角、周角的说法正确的是( ).A .平角是一条直线B .周角是一条射线C .反向延长射线OA ,就形成一个平角D .两个锐角的和不一定小于平角4、右图中,小于平角的角有( )A.5个B.6个C.7个D.8个5. 如图所示,射线OA 表示的方向,射线OB 表示的方向,则∠AOB=( )A.155 °B.205 °C.85°D.105°6、一个人从A 点出发向北偏东60°方向走到B 点,再从B 点出发向南偏西15°方向走到C 点,那么∠ABC=( )A .60°B .15° C.45° D.70°二、填空题:7. 角也可以看作由 旋转面形成的图形。
8. 2周角= 1平角=9. 1°的_____ 是1′10. 1周角= 平角= 直角= ;南东75︒40︒O A 4题图 5题图 6题图11. 换算:42°27′= °,68°45′36″= °;12.2点15分,钟表的时针与分针所成的锐角是度;13.钟面上从4点到5点,时针与分针重合时,此时4点________分14.计算:(1)53°18′36″-16°51′(2)(43°13′28″÷2-10°5′18″)×315.如图,货轮O在航行过程中,发现灯塔A在它南偏东60°的方向上,同时,在它北偏东40°,南偏西10°,西北(即北偏西45°)方向上又分别发现了客轮B,货轮C和海岛D,仿照表示灯塔方位的方法画出表示客轮B,货轮C和海岛D方向的射线.16.(如图,B处在A处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B处的北偏东80°方向,求∠ACB17、(如图,已知:∠AOE=100°,∠BOF=80°,OE平分∠BOC,OF平分∠AOC,求∠EOF的度数。
7年级角的度量的试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 角是由两条具有共同端点的线段组成的图形,这个共同的端点称为角的()。
A. 顶点B. 边C. 射线D. 弦2. 下列哪个角的度数等于180度?A. 直角B. 钝角C. 平角D. 锐角3. 一个角的度数是45度,这个角是()。
A. 钝角B. 直角C. 锐角D. 无法确定4. 两个角的和是180度,这两个角是()。
A. 补角B. 对顶角C. 邻补角D. 同位角5. 一个角的度数是90度,这个角是()。
A. 钝角B. 直角C. 锐角D. 无法确定二、判断题(每题1分,共5分)1. 所有的角都有两条边。
()2. 一个角的度数可以大于180度。
()3. 两个角的和一定是180度。
()4. 两个角的差一定是90度。
()5. 所有的角都是锐角、直角或钝角中的一种。
()三、填空题(每题1分,共5分)1. 一个角的度数是60度,这个角是______。
2. 两个角的和是360度,这两个角是______。
3. 一个角的度数是120度,这个角是______。
4. 两个角的差是90度,这两个角是______。
5. 一个角的度数是30度,这个角是______。
四、简答题(每题2分,共10分)1. 请简要解释什么是角。
2. 请简要解释什么是补角。
3. 请简要解释什么是邻补角。
4. 请简要解释什么是同位角。
5. 请简要解释什么是对顶角。
五、应用题(每题2分,共10分)1. 画出两个互补的角,并标出它们的度数。
2. 画出两个邻补的角,并标出它们的度数。
3. 画出两个同位角,并标出它们的度数。
4. 画出两个对顶角,并标出它们的度数。
5. 画出两个角的和为180度,并标出它们的度数。
六、分析题(每题5分,共10分)1. 分析并解释为什么两个角的和可以是180度。
2. 分析并解释为什么两个角的差可以是90度。
七、实践操作题(每题5分,共10分)1. 使用量角器测量一个角的度数,并记录下来。
角度的计算(专题)一、单选题(共10道,每道10分)1.如图,∠AOC=∠BOD=90°,若∠AOB=150°,则∠DOC的度数为( )A.30°B.40°C.50°D.60°答案:A解题思路:∵∠AOB=150°,∠AOC=90°,∴∠BOC=∠AOB-∠AOC=150°-90°=60°.∵∠BOD=90°,∴∠DOC=∠BOD-∠BOC=90°-60°=30°.故选A.试题难度:三颗星知识点:余角2.如图,已知直线AB,CD相交于点O,OA平分∠EOC,且∠EOC=110°,则∠AOC的度数为( )A.25°B.35°C.45°D.55°答案:D解题思路:.故选D.试题难度:三颗星知识点:角平分线3.如图,已知∠COD为平角,OA⊥OE,且,则∠DOE的度数为( )A.30°B.45°C.60°D.75°答案:A解题思路:∵∠COD为平角∴∠COD=180°,即∠AOC+∠AOE+∠DOE=180°.∵OA⊥OE∴∠AOE=90°.∴∠AOC+∠DOE=180°-∠AOE=180°-90°=90°.∴∠AOC=2∠DOE,∴2∠DOE+∠DOE=3∠DOE=90°,∴∠DOE=30°.故选A.试题难度:三颗星知识点:平角的定义4.如图,直线AB与EO相交于点O,∠EOB=90°,∠FOD=90°,如果∠AOD=140°,那么∠EOF 的度数为( )A.60°B.50°C.40°D.30°答案:C解题思路:∵∠AOD=140°∴∠BOD=40°∵∠EOB=90°∴∠EOD+∠BOD=90°∵∠FOD=90°∴∠FOE+∠EOD=90°∴∠FOE=∠BOD=40°故选C.试题难度:三颗星知识点:平角5.已知∠AOB=70°,以O端点作射线OC,使∠AOC=28°,则∠BOC的度数为( )A.42°B.98°C.42或98°D.82°答案:C解题思路:如图,当点C与点C1重合时,∠BOC=∠AOB-∠AOC=70°-28°=42°当点C与点C2重合时,∠BOC=∠AOB+∠AOC=70°+28°=98°故选C.试题难度:三颗星知识点:角度的计算6.已知从点O出发的三条射线OA,OB,OC,若∠AOB=50°,∠AOC=30°,则∠BOC的度数为( )A.80°或20°B.40°或10°C.40°或20°D.80°或10°答案:A解题思路:分析:根据题意,先作∠AOB,因为射线OC的位置不确定,且∠AOC∠AOB,故需分以下两种情况:①射线OC在射线OA的右边,如图1,求∠BOC,设计方案:∠BOC=∠AOB+∠AOC=50°+30°=80°②射线OC在射线OA的左边,如图2,求∠BOC的度数,设计方案:∠BOC=∠AOB-∠AOC=50°-30°=20°综上,∠BOC的度数为80°或20°.故选A.试题难度:三颗星知识点:角度的计算7.已知∠AOB为直角,∠AOC=40°,若OM平分∠AOB,则∠MOC的度数为( )A.65°或25°B.65°或85°C.5°或65°D.5°或85°答案:D解题思路:分析:根据题意,先作∠AOB,因为射线OC的位置不确定,且∠AOB∠AOC,故需分以下两种情况:①射线OC在射线OA的左边,如图1,求∠MOC的度数,设计方案:②射线OC在射线OA的右边,如图2,求∠MOC的度数,设计方案:综上,∠MOC的度数为5°或85°.故选D.试题难度:三颗星知识点:角平分线8.已知∠AOB=60°,∠AOC=4∠BOC,则∠AOC的度数为( )A.12°或20°B.12°或48°C.48°或80°D.20°或80°答案:C解题思路:由题意,射线OC的位置不确定,需要分类讨论.因为∠AOC=4∠BOC,所以∠AOC∠BOC,则射线OC只能在射线OA的右边,分以下两种情况.①当射线OC在∠AOB的内部时,如图1所示,求∠AOC的度数,设计方案:设∠BOC=x,则∠AOC=4x,依题意得x+4x=60°,解得x=12°,所以∠AOC=4×12°=48°.①当射线OC在∠AOB的外部时,如图2所示,求∠AOC的度数,设计方案:设∠BOC=x,则∠AOC=4x,依题意得4x-x=60°,解得x=20°,所以∠AOC=4×20°=80°.综上所述,∠AOC的度数为48°或80°.故选C.试题难度:三颗星知识点:角度的计算9.已知∠AOB=54°,∠AOC=2∠BOC,OM平分∠AOB,则∠MOC的度数为( )A.9°或81°B.72°或54°C.9°或18°D.81°或18°答案:A解题思路:由题意,射线OC的位置不确定,因此需要分类讨论.①当射线OC在∠AOB的内部时,如图1所示,由∠AOB=54°,∠AOC=2∠BOC,得∠BOC=18°,所以.②当射线OC在∠AOB的外部时,如图2所示,求∠MOC的度数,设计方案:由∠AOB=54°,∠AOC=2∠BOC,得∠BOC=54°,所以.综上所述,∠MOC的度数为9°或81°.故选A.试题难度:三颗星知识点:角度的计算10.已知∠AOB=20°,∠AOC=4∠AOB,且∠BOC∠AOC,OD平分∠AOB,OM平分∠AOC,则∠MOD的度数为( )A.30°或50°B.20°或60°C.30°D.50°答案:C解题思路:分析知射线OC的位置不确定,需要分类讨论,又因为∠BOC∠AOC,所以符合题意的只有一种情况.如下图所示,由∠AOB=20°,∠AOC=4∠AOB,得∠AOC=80°,所以.综上所述,∠MOD的度数为30°.故选C.试题难度:三颗星知识点:角度的计算。
七年级数学角度计算专项练习题及答案1. 角度的定义和计算角度是指由两条射线或线段所围成的部分,可以用度进行表示。
角度的计算主要有以下几个方面:(1) 同界角:同界角是指角的顶点和两边分别相等的角。
如果两个角是同界角,那么它们的度数也相等。
(2) 互补角:互补角是指两个角的度数加起来等于90度。
例如,30度的互补角是60度。
(3) 补角:补角是指两个角的度数加起来等于180度。
例如,80度的补角是100度。
(4) 相邻补角:相邻补角是指两个角的度数加起来等于180度,并且这两个角共享一条边。
例如,120度和60度是相邻补角。
2. 角度计算的基本步骤计算角度时,我们需要根据给定的信息进行分析,然后采取适当的计算方法。
下面是角度计算的基本步骤:(1) 首先,仔细观察题目中给出的图形和信息,理解题目所求的具体内容。
(2) 其次,在图形上标出已知的角度和线段长度。
(3) 根据已知信息,应用与角度计算相关的定理和公式进行计算。
(4) 最后,检查计算结果是否符合题目要求,并进行合理的解释。
3. 角度计算专项练习题及答案:现在我们来进行一些角度计算的练习,解答如下:题目一:在直线AB上,两点C和D分别位于B的两侧,且∠ACD = 40度,∠CBD = 70度,求∠ABC的度数。
解答:根据角度相加定理,可以得知∠ABC = ∠ACD + ∠CBD = 40度 + 70度 = 110度。
题目二:在平行线AB和CD之间,直线AC和BD相交于点O,如果∠AOC = 50度,求∠DOB的度数。
解答:由于直线AC和BD是平行线AB和CD的交线,所以根据同位角定理可知∠AOC = ∠DOB。
因此,∠DOB的度数也是50度。
题目三:在平行四边形ABCD中,∠C = 110度,求∠A和∠B的度数。
解答:根据平行四边形的性质可知,对角线是互补角。
所以,∠A + ∠C = 180度,∠B + ∠C = 180度。
由此可得,∠A = 180度 - ∠C = 180度 - 110度 = 70度,∠B = 180度 - ∠C = 180度 - 110度 = 70度。
初一数学角度题30道1. 一个角的补角比这个角大30°,求这个角的度数。
- 咱设这个角是x度哦。
那它的补角就是180 - x度。
题目说补角比这个角大30°,那就可以列方程啦,180 - x=x + 30。
移项可得180 - 30 = x+x,也就是150 = 2x,解得x = 75度。
2. 已知∠A = 50°,它的余角是多少度呢?- 余角的定义就是两个角加起来等于90°嘛。
那∠A的余角就是90 - 50 = 40°,简单吧。
3. 一个角是它的余角的2倍,这个角是多少度?- 设这个角的余角是x度,那这个角就是2x度。
因为它们是余角关系,所以x+2x = 90。
3x = 90,解得x = 30度,那这个角就是2x = 60度。
4. 若∠α和∠β互为补角,且∠α - ∠β = 40°,求∠α和∠β的度数。
- 因为∠α和∠β互为补角,所以∠α+∠β = 180°。
又知道∠α - ∠β = 40°。
把这两个方程相加,就是2∠α=180 + 40 = 220°,所以∠α = 110°,那∠β = 180 - 110 = 70°。
5. 一个角的补角与这个角的余角的和是120°,求这个角。
- 设这个角是x度,它的补角是180 - x度,余角是90 - x度。
根据题意,(180 - x)+(90 - x)=120。
化简一下就是270 - 2x = 120,移项得到2x = 270 - 120 = 150,解得x = 75度。
6. 在一个直角三角形中,一个锐角是另一个锐角的3倍,求这两个锐角的度数。
- 直角三角形里,两个锐角和是90°。
设小的锐角是x度,那大的锐角就是3x度。
x + 3x = 90,4x = 90,解得x = 22.5度,3x = 67.5度。
7. 已知∠AOB = 80°,OC是∠AOB内的一条射线,∠AOC = 30°,求∠BOC的度数。
一、选择题(每题3分,共30分)1. 角的度量单位是()A. 度B. 分C. 秒D. 周角2. 一个直角等于()A. 30°B. 45°C. 60°D. 90°3. 下列哪个图形不是平面图形()A. 三角形B. 圆形C. 长方形D. 三棱锥4. 在下列角度中,哪个角度最大()A. 100°B. 120°C. 150°D. 180°5. 下列哪个图形是锐角三角形()A. 三个角都是90°的三角形B. 三个角都是60°的三角形C. 三个角都是120°的三角形D. 三个角都是小于90°的三角形6. 一个圆的圆心角是()A. 360°B. 180°C. 90°D. 45°7. 一个半圆的圆心角是()A. 180°B. 360°C. 90°D. 45°8. 下列哪个角度是钝角()A. 100°B. 110°C. 120°D. 130°9. 一个圆的周角是()A. 180°B. 360°C. 540°D. 720°10. 下列哪个图形是直角梯形()A. 两个底角都是90°的梯形B. 两个底角都是45°的梯形C. 两个底角都是60°的梯形D. 两个底角都是90°的平行四边形二、填空题(每题5分,共25分)11. 一个圆的圆心角是360°,那么这个圆的圆心角是________°。
12. 一个直角三角形的两个锐角分别是30°和60°,那么这个直角三角形的第三个角是________°。
13. 一个等腰三角形的底角是40°,那么这个等腰三角形的顶角是________°。
D A B
C 3.3 角的度量
一、选择:
1.下列关于角的说法正确的个数是( )
①角是由两条射线组成的图形;②角的边越长,角越大; ③在角一边延长线上取一点D;④角可以看作由一条射线绕着它的端点旋转而形成的图形.⑤∠AOB=90°∠BOC=30°则∠AOC=120°
A.1个
B.2个
C.3个
D.4个
2.下列4个图形中,能用∠1,∠AOB,∠O 三种方法表示同一角的图形是( )
A
A
1
B
O B
A
1
B O
C
A B O
C
D
A 1
B
O
D
3.图中,小于平角的角有( )
A.5个
B.6个
C.7个
D.8个
二、填空: 4.将一个周角分成360份,其中每一份是______°的角, 直角等于____°,平角等于______°.
5.30.6°=_____°_____′=_______′;30°6′=_______′______°. 三、解答题:
6.计算:
(1)49°38′+66°22′; (2)180°-79°19′; (2)22°16′×5; (4)182°36′÷4.
7.根据下列语句画图: (1)画∠AOB=100°;
(2)在∠AOB 的内部画射线OC,使∠BOC=50°; (3)在∠AOB 的外部画射线OD,使∠DOA=40°;
(4)在射线OD 上取E 点,在射线OA 上取F,使∠OEF=90°. 8.任意画一个三角形,估计其中三个角的度数, 再用量角器检验你的估计是否准确.
9.分别确定四个城市相应钟表上时针与分钟所成的角的度数.
10.九点20分时,时钟上时钟与分钟的夹角a等于多少度?
11.马路上铺的地砖有很多种图案,如图所示的图案是某街面方砖铺设的示意图,请你用量角器量一下其中出现的所有的角度?
12.如图,在∠AOB的内部引一条射线OC,可得几个小于平角的角? 引两条射线OC、OD呢?引三条射线OC、OD、OE呢?若引十条射线一共会有多少个角?
A
B
O
13.请用直线、线段、角等图形设计成表示客观事物的图画,如图, 并为你的图画命名.
一盏吊灯
一帆风顺
答案:
1.A
2.B
3.D
4.1,90,180
5.30,36,1836;1806,30.1
6.(1)116°;(2)100°41′;(3)111°20′;(4)45°39′.
9.30°;0°;120°;90°
10.160°
12. 引1条射线有2+1=3个角;
引2条射线有3+2+1=6个角;
引3条射线有4+3+2+1=10个角;
引10条射线有11+10+9+……+3+2+1=66个角.。