分式方程培优提高练习
- 格式:doc
- 大小:381.50 KB
- 文档页数:7
分式提高题一.选择题(共6小题)1.若分式的值为零,则*的值是()A.1 B.﹣1 C.±1 D.22.若a2﹣ab=0(b≠0),则=()A.0 B.C.0或D.1或 23.已知m2+n2=n﹣m﹣2,则﹣的值等于()A.1 B.0 C.﹣1 D.﹣4.若关于*的分式方程的解为非负数,则a的取值范围是()A.a≥1 B.a>1 C.a≥1且a≠4 D.a>1且a≠45.若数a使关于*的不等式组有且仅有四个整数解,且使关于y 的分式方程+=2有非负数解,则所有满足条件的整数a的值之和是()A.3 B.1 C.0 D.﹣36.若数a使关于*的分式方程+=4的解为正数,且使关于y的不等式组的解集为y<﹣2,则符合条件的所有整数a的和为()A.10 B.12 C.14 D.16二.填空题(共3小题)7.已知﹣=3,则=.8.如果*2+*﹣5=0,则代数式(1+)÷的值是.9.已知a+=4,则(a﹣)2=.三.解答题(共16小题)10.化简:(﹣)÷.11.先化简,再求值:(﹣)÷,请在2,﹣2,0,3当中选一个合适的数代入求值.12.先化简÷(﹣*+1),然后从﹣<*<的范围内选取一个合适的整数作为*的值代入求值.13.化简:(a+1﹣)÷,然后给a从1,2,3中选取一个合适的数代入求值.14.先化简,再求值:(﹣)÷,其中*=2y(*y≠0).15.先化简,再求值:(﹣)(﹣),其中*=4.16.解方程:=1﹣.17.解方程:﹣=1.18.解分式方程:﹣=.19.甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队每天比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.(1)求甲、乙两个工程队每天各修路多少千米?(2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过5.2万元,甲工程队至少修路多少天?20.如图,Rt△ABC中,∠B=90°,AB=3cm,BC=4cm.点D在AC上,AD=1cm,点P从点A出发,沿AB匀速运动;点Q从点C出发,沿C→B→A→C的路径匀速运动.两点同时出发,在B点处首次相遇后,点P的运动速度每秒提高了2cm,并沿B→C→A的路径匀速运动;点Q保持速度不变,并继续沿原路径匀速运动,两点在D点处再次相遇后停止运动,设点P原来的速度为*cm/s.(1)点Q的速度为cm/s(用含*的代数式表示).(2)求点P原来的速度.21.*商店用1000元人民币购进水果销售,过了一段时间,又用2400元人民币购进这种水果,所购数量是第一次购进数量的2倍,但每千克的价格比第一次购进的贵了2元.(1)该商店第一次购进水果多少千克?(2)假设该商店两次购进的水果按相同的标价销售,最后剩下的20千克按标价的五折优惠销售.若两次购进水果全部售完,利润不低于950元,则每千克水果的标价至少是多少元?注:每千克水果的销售利润等于每千克水果的销售价格与每千克水果的购进价格的差,两批水果全部售完的利润等于两次购进水果的销售利润之和.22.星期天,小明和小芳从同一小区门口同时出发,沿同一路线去离该小区1800米的少年宫参加活动,为响应"节能环保,绿色出行”的号召,两人都步行,已知小明的速度是小芳的速度的1.2倍,结果小明比小芳早6分钟到达,求小芳的速度.23."2017年张学友演唱会”于6月3日在我市观山湖奥体中心举办,小张去离家2520米的奥体中心看演唱会,到奥体中心后,发现演唱会门票忘带了,此时离演唱会开始还有23分钟,于是他跑步回家,拿到票后立刻找到一辆"共享单车”原路赶回奥体中心,已知小张骑车的时间比跑步的时间少用了4分钟,且骑车的平均速度是跑步的平均速度的1.5倍.(1)求小张跑步的平均速度;(2)如果小张在家取票和寻找"共享单车”共用了5分钟,他能否在演唱会开始前赶到奥体中心?说明理由.24.已知a、b、c为实数,且.求的值25.因汛期防洪的需要,黄河河务局计划对*段河堤进行加固.此项工程若由甲、乙两队同时干,需要天完成,共支付费用180 000元;若甲队单独干2天后,再由乙队单独完成还需3天,共支付费用179 500元.但是为了便于管理,决定由一个队完成.(以下均需通过计算加以说明)(1)由于时间紧迫,加固工程必须在5天内完成,你认为应选择哪个队?(2)如果时间充裕,为了节省资金,你认为应选择哪个队?分式提高题参考答案与试题解析一.选择题(共6小题)1.若分式的值为零,则*的值是()A.1 B.﹣1 C.±1 D.2【解答】解:∵分式的值为零,∴|*|﹣1=0,*+1≠0,解得:*=1.故选:A.2.若a2﹣ab=0(b≠0),则=()A.0 B.C.0或D.1或 2【解答】解:∵a2﹣ab=0(b≠0),∴a=0或a=b,当a=0时,=0.当a=b时,=,故选C.3.已知m2+n2=n﹣m﹣2,则﹣的值等于()A.1 B.0 C.﹣1 D.﹣【解答】解:由m2+n2=n﹣m﹣2,得(m+2)2+(n﹣2)2=0,则m=﹣2,n=2,∴﹣=﹣﹣=﹣1.故选:C.4.若关于*的分式方程的解为非负数,则a的取值范围是()A.a≥1 B.a>1 C.a≥1且a≠4 D.a>1且a≠4【解答】解:去分母得:2(2*﹣a)=*﹣2,解得:*=,由题意得:≥0且≠2,解得:a≥1且a≠4,故选:C.5.若数a使关于*的不等式组有且仅有四个整数解,且使关于y 的分式方程+=2有非负数解,则所有满足条件的整数a的值之和是()A.3 B.1 C.0 D.﹣3【解答】解:解不等式组,可得,∵不等式组有且仅有四个整数解,∴﹣1≤﹣<0,∴﹣4<a≤3,解分式方程+=2,可得y=(a+2),又∵分式方程有非负数解,∴y≥0,且y≠2,即(a+2)≥0,(a+2)≠2,解得a≥﹣2且a≠2,∴﹣2≤a≤3,且a≠2,∴满足条件的整数a的值为﹣2,﹣1,0,1,3,∴满足条件的整数a的值之和是1.故选:B.6.若数a使关于*的分式方程+=4的解为正数,且使关于y的不等式组的解集为y<﹣2,则符合条件的所有整数a的和为()A.10 B.12 C.14 D.16【解答】解:分式方程+=4的解为*=且*≠1,∵关于*的分式方程+=4的解为正数,∴>0且≠1,∴a<6且a≠2.,解不等式①得:y<﹣2;解不等式②得:y≤a.∵关于y的不等式组的解集为y<﹣2,∴a≥﹣2.∴﹣2≤a<6且a≠2.∵a为整数,∴a=﹣2、﹣1、0、1、3、4、5,(﹣2)+(﹣1)+0+1+3+4+5=10.故选A.二.填空题(共3小题)7.已知﹣=3,则= ﹣.【解答】解:∵﹣=3,∴3y﹣2*=3*y∴原式===故答案为:﹣8.如果*2+*﹣5=0,则代数式(1+)÷的值是 5 .【解答】解:当*2+*=5时,∴原式=×=*2+*=5故答案为:59.已知a+=4,则(a﹣)2= 12 .【解答】解:∵(a+)2=42,∴a2++2=16∴a2+﹣2=14﹣2,∴(a﹣)2=12,故答案为:12三.解答题(共16小题)10.化简:(﹣)÷.【解答】解:(﹣)÷=====.11.先化简,再求值:(﹣)÷,请在2,﹣2,0,3当中选一个合适的数代入求值.【解答】解:原式=(﹣)×=×﹣×=﹣=,∵m≠±2,0,∴当m=3时,原式=312.先化简÷(﹣*+1),然后从﹣<*<的范围内选取一个合适的整数作为*的值代入求值.【解答】解:÷(﹣*+1)====,∵﹣<*<且*+1≠0,*﹣1≠0,*≠0,*是整数,∴*=﹣2时,原式=﹣.13.化简:(a+1﹣)÷,然后给a从1,2,3中选取一个合适的数代入求值.【解答】解:原式=•=•=2(a+2)=2a+4,当a=3时,原式=6+4=10.14.先化简,再求值:(﹣)÷,其中*=2y(*y≠0).【解答】解:(﹣)÷====,当*=2y时,原式=.15.先化简,再求值:(﹣)(﹣),其中*=4.【解答】解:原式=[+]•[﹣]=•(﹣)=•=*﹣2,当*=4时,原式=4﹣2=2.16.解方程:=1﹣.【解答】解:去分母得:2*=*﹣2+1,移项合并得:*=﹣1,经检验*=﹣1是分式方程的解.17.解方程:﹣=1.【解答】解:(*+3)2﹣4(*﹣3)=(*﹣3)(*+3)*2+6*+9﹣4*+12=*2﹣9,*=﹣15,检验:*=﹣15代入(*﹣3)(*+3)≠0,∴原分式方程的解为:*=﹣15,18.解分式方程:﹣=.【解答】解:去分母得:6*﹣3﹣4*﹣2=*+1,解得:*=6,经检验*=6是分式方程的解.19.甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队每天比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.(1)求甲、乙两个工程队每天各修路多少千米?(2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过5.2万元,甲工程队至少修路多少天?【解答】解:(1)设甲每天修路*千米,则乙每天修路(*﹣0.5)千米,根据题意,可列方程:1.5×=,解得*=1.5,经检验*=1.5是原方程的解,且*﹣0.5=1,答:甲每天修路1.5千米,则乙每天修路1千米;(2)设甲修路a天,则乙需要修(15﹣1.5a)千米,∴乙需要修路=15﹣1.5a(天),由题意可得0.5a+0.4(15﹣1.5a)≤5.2,解得a≥8,答:甲工程队至少修路8天.20.如图,Rt△ABC中,∠B=90°,AB=3cm,BC=4cm.点D在AC上,AD=1cm,点P从点A出发,沿AB匀速运动;点Q从点C出发,沿C→B→A→C的路径匀速运动.两点同时出发,在B点处首次相遇后,点P的运动速度每秒提高了2cm,并沿B→C→A的路径匀速运动;点Q保持速度不变,并继续沿原路径匀速运动,两点在D点处再次相遇后停止运动,设点P原来的速度为*cm/s.(1)点Q的速度为* cm/s(用含*的代数式表示).(2)求点P原来的速度.【解答】解:(1)设点Q的速度为ycm/s,由题意得3÷*=4÷y,∴y=*,故答案为:*;(2)AC===5,CD=5﹣1=4,在B点处首次相遇后,点P的运动速度为(*+2)cm/s,由题意得=,解得:*=(cm/s),答:点P原来的速度为cm/s.21.*商店用1000元人民币购进水果销售,过了一段时间,又用2400元人民币购进这种水果,所购数量是第一次购进数量的2倍,但每千克的价格比第一次购进的贵了2元.(1)该商店第一次购进水果多少千克?(2)假设该商店两次购进的水果按相同的标价销售,最后剩下的20千克按标价的五折优惠销售.若两次购进水果全部售完,利润不低于950元,则每千克水果的标价至少是多少元?注:每千克水果的销售利润等于每千克水果的销售价格与每千克水果的购进价格的差,两批水果全部售完的利润等于两次购进水果的销售利润之和.【解答】解:(1)设该商店第一次购进水果*千克,则第二次购进水果2*千克,(+2)×2*=2400整理,可得:2000+4*=2400解得*=100经检验,*=100是原方程的解答:该商店第一次购进水果100千克.(2)设每千克水果的标价是*元,则(100+100×2﹣20)×*+20×0.5*≥1000+2400+950整理,可得:290*≥4350解得*≥15∴每千克水果的标价至少是15元.答:每千克水果的标价至少是15元.22.星期天,小明和小芳从同一小区门口同时出发,沿同一路线去离该小区1800米的少年宫参加活动,为响应"节能环保,绿色出行”的号召,两人都步行,已知小明的速度是小芳的速度的1.2倍,结果小明比小芳早6分钟到达,求小芳的速度.【解答】解:设小芳的速度是*米/分钟,则小明的速度是1.2*米/分钟,根据题意得:﹣=6,解得:*=50,经检验*=50是原方程的解,答:小芳的速度是50米/分钟.23."2017年张学友演唱会”于6月3日在我市观山湖奥体中心举办,小张去离家2520米的奥体中心看演唱会,到奥体中心后,发现演唱会门票忘带了,此时离演唱会开始还有23分钟,于是他跑步回家,拿到票后立刻找到一辆"共享单车”原路赶回奥体中心,已知小张骑车的时间比跑步的时间少用了4分钟,且骑车的平均速度是跑步的平均速度的1.5倍.(1)求小张跑步的平均速度;(2)如果小张在家取票和寻找"共享单车”共用了5分钟,他能否在演唱会开始前赶到奥体中心?说明理由.【解答】解:(1)设小张跑步的平均速度为*米/分钟,则小张骑车的平均速度为1.5*米/分钟,根据题意得:﹣=4,解得:*=210,经检验,*=210是原方程组的解.答:小张跑步的平均速度为210米/分钟.(2)小张跑步到家所需时间为2520÷210=12(分钟),小张骑车所用时间为12﹣4=8(分钟),小张从开始跑步回家到赶回奥体中心所需时间为12+8+5=25(分钟),∵25>23,∴小张不能在演唱会开始前赶到奥体中心.24.已知a、b、c为实数,且.求的值【解答】解:将已知三个分式分别取倒数得:,即,将三式相加得;,通分得:,即=.25.因汛期防洪的需要,黄河河务局计划对*段河堤进行加固.此项工程若由甲、乙两队同时干,需要天完成,共支付费用180 000元;若甲队单独干2天后,再由乙队单独完成还需3天,共支付费用179 500元.但是为了便于管理,决定由一个队完成.(以下均需通过计算加以说明)(1)由于时间紧迫,加固工程必须在5天内完成,你认为应选择哪个队?(2)如果时间充裕,为了节省资金,你认为应选择哪个队?【解答】解:(1)设甲乙两队单独完成任务分别需要*,y天.由题意得:,解得:.经检验:*=4,y=6是原方程组的解.∵4<5,6>5,∴应选择甲队.(2)设给甲乙两队每天需支付的费用分别为m,n元.由题意得:,解得:.∵甲单独完成任务需支付的费用为m*=45500×4=182000.乙单独完成任务需支付的费用为ny=29500×6=177000.显然m*>ny又∵时间充裕,∴应选择乙队.。
八年级分式培优习题一、填空题1、下列分式中,有意义的分式是()A、 B、 C、 D、2、下列各分式中,最简分式是()A、 B、 C、 D、3、下列各分式中,当x取何值时,分式有意义?()A、 B、 C、 D、4、下列各分式中,分式的值等于零的是()A、 B、 C、 D、5、下列各分式中,分式的值不存在的是()A、 B、 C、 D、二、解答题6、请解以下分式方程:(1)(2)61、请解以下分式方程:(1)(2)611、请解以下分式方程:(1)(2)6111、请解以下分式方程:(1)(2)请解以下分式方程:(1)(2)八年级培优计划一、目标:通过培优,使优生更上一层楼,提高优生的学习能力和思维能力,提高他们的竞争意识和一定的应试技巧,但也帮助他们发现不足,进一步提高他们学习的自觉性,以真正取得理想的成绩。
二、具体措施:1、思想方面培优辅差。
做好学生的思想工作,经常和学生谈心,关心他们,关爱他们,让学生觉得老师是重视他们的,激发他们学习的积极性。
了解学生们的学习态度、学习习惯、学习方法等。
从而根据学生的思想心态进行相应的辅导。
定期与学生家长、班主任沟通了解学生的家庭、生活、思想等各方面的情况,以利于教师做好学生的思想引导工作。
2、培优辅差内容:数学方面:在讲完新课后,编拟一些较高思维层次的专题知识渗透到教学中,培养优生的发散思维能力、探究能力和创新思维能力。
3、辅差内容:对差生主要从以下几个方面进行:1)认真备课,设计好每一节课的层次教学,利用多种多样的教学手段吸引差生的注意力,让差生有机会表现自己,多设计一些对应差生的问题,提高差生的学习信心。
2)经常与家长,了解差生各方面的情况,对症下药,讲究方法。
3)采用“一帮一”的方法,安排学习优秀的学生对后进生进行辅导训练。
并开展“手拉手”活动,让优生和差生结成对子。
4)注意保持和蔼可亲的态度去面对学生,不能对他们采用强硬的态度和手段。
这样会使他们对老师既亲近又尊重,更愿意接近老师并乐于接受教育。
中考数学总复习《分式方程》专项提升练习题及答案(人教版)学校:___________班级:___________姓名:___________考号:___________【考点一】分式方程的概念1.分式方程:分母中含有未知数的方程叫做分式方程.2.分式方程的解法:(1)解分式方程的基本思路是去分母把分式方程转化为整式方程.(2)解分式方程的一般步骤:分式方程去分母→ 整式方程解整式方程→ x =a 检验→ {分式方程的分母不为零则x =a 是分式方程的解分式方程的分母为零则x =a 是分式方程的增根(3)增根:在进行分式方程去分母的变形时,有时可能产生使原方程分母为“0”的根,称为方程的增根. 因此,解分式方程时必须验根,验根的方法是代入最简公分母,使最简公分母为“0”的根是增根应舍去.(4)产生增根的原因:将分式方程化为整式方程时,在方程两边同乘以使最简公分母为“0”的因式.(5)分式方程的无解与增根:分式方程有增根与无解并非用一个概念,无解既包含产生增根这一情况,也包含原方程去分母后的整式方程无解.【考点二】分式方程的应用列分式方程解应用题的一般步骤,与列整式方程解应用题的步骤一样,都是按照审、设、列、解、验、答六步进行.(1)在利用分式方程解实际问题时,必须进行 “双检验”,既要检验去分母化成整式方程的解是否为分式方程的解,又要检验分式方程的解是否符合实际意义.(2)分式方程应用题常见类型有行程问题、工作问题、销售问题等,其中行程问题中又出现逆水、顺水航行这一类型.一、单选题 1.已知实数x 满足22110x x x x +++=,那么x 的值为( )3.学校用500元钱到商场去购买“84”消毒液,经过还价,每瓶便宜1.5元,结果比用原价多买了10瓶,求A .()111x --=B .()111x +-=C .()112x x --=-D .()112x x +-=- 5.为了美化环境,某地政府计划对辖区内260km 的土地进行绿化,为了尽快完成任务,实际平均每月的绿602=;乙:A .x 表示原计划平均每月的绿化面积B .y 表示实际完成这项工程需要的月数C .□表示1.5xD .◇表示2y -6.甲、乙两地相距160千米,一辆汽车从甲地到乙地的速度比原来提高了25%,结果比原来提前0.4小时到达,那么这辆汽车原来的速度为( )是非负数,则所有满足条件的整数a 的值之和是( )A .10B .13C .15D .18二、填空题9.分式方程4122mx x x =+--无解,则m 的值为 . 10.若关于x 的方程2233x m x x x++=--的解是正数,则m 的取值范围为 . 11.为锻炼身体,小陈由开车上班改为骑自行车上班,已知小陈家距离上班地点14千米,开车每小时行驶的路程比骑自行车每小时行驶的路程的3倍还多5千米,且骑自行车上班所需时间是开车上班所需时间的3.5倍,则小陈骑自行车上班需要 小时.12.已知关于x 的分式方程()()212323nx x x x x =+----的解为正整数,且关于y 的不等式组()6131n y y y -<-⎧⎨-≥-⎩无解,则满足条件的所有整数n 的和为 .13.黄金分割总能给人以美的享受,从人体审美学的角度看,若一个人上半身长与下半身长之比满足黄金比的话,则此人符合和谐完美的身体比例.如图,一芭蕾舞演员的身高为160cm ,但其上半身长与下半身长之比大于黄金比,当其表演时掂起脚尖,身高就可以增加10cm ,这时上半身长与下半身长之比就恰好满足黄金比,那么该演员的上半身长为 cm .(黄金分割比0.6≈)三、解答题14.解分式方程:(1)522112x x x +=-- (2)214111x x x +-=--a a>的正方形去掉一个边长为1m的正方形蓄水池后余下17.如图,“丰收1号”小麦的试验田是边长为m(1)a-的正方形,两块试验田的小麦都收获了1500kg.的部分,“丰收2号”小麦的试验田是边长为()1m(1)哪种小麦的单位面积产量高?(2)若高的单位面积产量是低的单位面积产量的1.05倍,求“丰收2号”小麦的试验田的边长.18.今年初冬,受强冷空气影响,12月13日早晨开始,北京市出现强降雪天气,截至14日18时,北京市共出动专业作业人员11.5万人次,出动扫雪铲冰作业车辆1.7万车次,分成若干个小组,及时开展扫雪除冰工作,保障道路畅通及市民出行安全.其中甲、乙两组共同负责一条大街的扫雪工作,若由甲、乙两组合作则2小时可完成扫雪工作;若甲组先单独扫雪4小时,再由乙组单独扫雪1小时可完成扫雪工作.(1)求甲、乙两组单独完成此项工作各需要多少小时?(2)如果甲、乙两组合作时对道路交通有影响,单独工作时对交通无影响,且要求完成扫雪工作不超过2.5小时,问如何安排扫雪工作,对道路交通的影响会最小?参考答案 1.C2.D3.B4.D5.D6.A7.A8.B9.1或210.6m >-且3m ≠-11.1.412.2-13.63.7514.(1)=1x -(2)1x =15.(1)1x =(2)1a =或2a =16.小颖有道理17.(1)“丰收2号”小麦试验田的单位面积产量高;(2)“丰收2号”小麦试验田的边长为40m .18.(1)甲组单独完成此项工作需要6小时,乙组单独完成此项工作需要3小时(2)应安排甲乙合作1小时,然后再由乙组单独施工1.5小时,对道路交通的影响会最小。
《分式》练习(适合提高班)1、若311=-yx ,则=---+y xy x y xy x 33535 。
=-=n m 11mn n -m ,则若 。
2、若分式方程4242-=--x m x x 有增根,则m = 。
3、若04422=+-y xy x ;则=+-y x y x 。
若=-+=++964181732122y y y x ,则 。
4、=-≠-+ba ab b a 11,011则互为倒数,且与若 。
5、=+=+-2221,015xx x x 则若 。
X 2/(X 4+X 2+1)=__________。
6、已知为:的代数式表示则用含y x y y x ,11+-=。
7、当m= 时,方程1121=--+x m mx 的解与方程34=+x x 的解互为相反数。
8、若=-=-++a x xx b x a 则,44222 ,b= 。
9、若方式方程=-=-=--a x x a a x ,则的解为352)1()(2 。
10、若=-+∙+==4422)(;2006,2005yx y x y x y x 则 。
12、=-∙-=20062005)(1,109xy x x y x y )则(若。
11、当x 时,122+-x x的值为负数。
当x 时,112--x x 的值为0。
12、当x 时,11-x 有意义。
当x 取何值时,422--x x 的值为零 。
13、阅读下列材料,并填空。
方程;31,33133101;21;22122512121====+====+x x x x x x x x 的解为的解为,;41;4414417121====+x x x x 的解为,…根据你发现的规律: ①、请写出第7个方程: 。
它的解为=1x =2x②、方程===--1212251x x x 的解为 ,=2x 。
③、方程===-+-1515526111x x x 的解为 。
=2x 。
14、阅读下列材料,并填空。
中考数学复习《分式方程》专项提升训练(附答案)学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列关于x 的方程,是分式方程的是( )A.3+x 2-3=2+x 5B.2x -17=x 2C.x π+1=2-x 3D.12+x =1-2x2.分式方程2x -2+3x 2-x=1的解为( ) A.x =1 B.x =2 C.x =13D.x =0 3.若x =3是分式方程a -2x -1x -2=0的解,则a 的值是( ) A.5 B.-5 C.3 D.-34.分式方程x +1x +1x -2=1的解是( ) A.x =1 B.x =-1 C.x =3 D.x =-35.分式方程x x -1-1=3(x -1)(x +2)的解为( ) A.x =1 B.x =2 C.x =-1D.无解6.解分式方程1x -5﹣2=35-x,去分母得( ) A.1﹣2(x ﹣5)=﹣3 B.1﹣2(x ﹣5)=3C.1﹣2x ﹣10=﹣3D.1﹣2x +10=37.如果分式方程113122=x++-x a+无解,那么a 的值为( )A.2B.﹣2C.2或﹣2D.﹣2或48.解分式方程2x +1+3x -1=6x 2-1分以下几步,其中错误的一步是( ) A.方程两边分式的最简公分母是(x -1)(x +1)B.方程两边都乘以(x -1)(x +1),得整式方程2(x -1)+3(x +1)=6C.解这个整式方程,得x=1D.原方程的解为x=19.某生态示范园计划种植一批梨树,原计划总产量30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x 万千克,根据题意,列方程为( )A.30x ﹣361.5x =10B.30x ﹣301.5x=10 C.361.5x ﹣30x =10 D.30x +361.5x=10 10.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务. 设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是( ) A.60x -60(1+25%)x =30 B.60(1+25%)x -60x=30 C.60×(1+25%)x -60x =30 D.60x -60×(1+25%)x=30 二、填空题11.下列方程:①x -12=16;②x ﹣2x =3;③x (x -1)x =1;④4-x π=π3;⑤3x +x -25=10;⑥1x +2y=7,其中是整式方程的有 ,是分式方程的有 . 12.若关于x 的方程211=--ax a x 的解是x=2,则a= . 13.方程2x +13-x =32的解是 . 14.关于x 的方程2x +a x -1=1的解满足x >0,则a 的取值范围是________. 15.A ,B 两市相距200千米,甲车从A 市到B 市,乙车从B 市到A 市,两车同时出发,已知甲车速度比乙车速度快15千米/小时,且甲车比乙车早半小时到达目的地.若设乙车的速度是x 千米/小时,则根据题意,可列方程____________________.16.对于实数a ,b ,定义一种新运算⊗为:a ⊗b =1a -b 2,这里等式右边是实数运算.例如:1⊗3=11-32=﹣18,则方程x ⊗(﹣2)=2x -4﹣1的解是__________. 三、解答题17.解分式方程:xx-1﹣2x=1;18.解分式方程:2x-3=3x;19.解分式方程:1-xx-2=x2x-4﹣1;20.解分式方程:xx-1-1=3(x-1)(x+2)21.对于分式方程x-3x-2+1=32-x,小明的解法如下:解:方程两边同乘(x﹣2) 得x﹣3+1=﹣3①解得x=﹣1②检验:当x=﹣1时,x﹣2≠0③所以x=﹣1是原分式方程的解.小明的解法有错误吗?若有错误,错在第几步?请你帮他写出正确的解题过程.22.当x为何值时,分式的值比分式的值小2?23.某小区为了排污,需铺设一段全长为720米的排污管道,为减少施工对居民生活的影响,须缩短施工时间,实际施工时每天铺设管道的长度是原计划的1.2倍,结果提前2天完成任务,求原计划每天铺设管道的长度.24.随着中国特色社会主义进入新时代,作为“中国名片”的高速铁路也将踏上自己的新征程,跑出发展新速度,这就意味着今后外出旅行的路程与时间将大大缩短,但也有不少游客根据自己的喜好依然选择乘坐普通列车;已知从A地到某市的高铁行驶路程是400千米,普通列车的行驶路程是高铁行驶路程的1.3倍,请完成以下问题:(1)普通列车的行驶路程为多少千米?(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求普通列车和高铁的平均速度.25.某中学在商场购买甲、乙两种不同的足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍,且购买一个乙种足球比购买一个甲种足球多花20元(1)求购买一个甲种足球,一个乙种足球各需多少元?(2)这所学校决定再次购买甲、乙两种足球共50个,预算金额不超过3000元.去到商场时恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%,如果该学校此次需购买20个乙种足球,请问该学校购买这批足球所用金额是否会超过预算?答案1.D2.A3.A4.A5.D6.A7.D8.D9.A10.C11.答案为:①④⑤,②③⑥.12.答案为:54 .13.答案为:x=1.14.答案为:a<-1 且a≠-2.15.答案为:200x﹣200x+15=12.16.答案为:x=517.解:去分母得x2﹣2x+2=x2﹣x解得x=2检验:当x=2时,x(x﹣1)≠0故x=2是原方程的解;18.解:(1)方程两边乘x(x﹣3),得2x=3(x﹣3).解得x=9.检验:当x=9时,x(x﹣3)≠0.所以,原方程的解为x=9;19.解:去分母,得2(1﹣x)=x﹣(2x﹣4),解得x=﹣2 检验:当x=﹣2时,2(x﹣2)≠0故x=﹣2是原方程的根;20.解:方程两边同乘(x-1) (x+2)得x(x+2)-(x-1) (x+2)=3化简,得 x+2=3解得x=1检验:x=1时(x-1) (x+2)=0,x=1不是分式方程的解所以原分式方程无解.21.解:有错误,错在第①步,正确解法为:方程两边同乘(x﹣2)得x﹣3+x﹣2=﹣3解得x=1经检验x=1是分式方程的解所以原分式方程的解是x=1.22.解:由题意,得﹣=2,解得,x=4经检验,当x=4时,x﹣3=1≠0,即x=4是原方程的解.故当x=4时,分式的值比分式的值小2.23.解:设原计划每天铺设管道x米.由题意,得.解得x=60.经检验,x=60是原方程的解.且符合题意.答:原计划每天铺设管道60米.24.解:(1)普通列车的行驶路程为:400×1.3=520(千米);(2)设普通列车的平均速度为x千米/时,则高铁的平均速度为2.5千米/时则题意得:=﹣3,解得:x=120经检验x=120是原方程的解则高铁的平均速度是120×2.5=300(千米/时)答:普通列车的平均速度是120千米/时,高铁的平均速度是300千米/时.25.解:(1)设购买一个甲种足球需要x元=×2,解得,x=50经检验,x=50是原分式方程的解∴x+20=70即购买一个甲种足球需50元,一个乙种足球需70元;(2)设这所学校再次购买了y个乙种足球70(1﹣10%)y+50(1+10%)(50﹣y)≤3000解得,y≤31.25∴最多可购买31个足球所以该学校购买这批足球所用金额不会超过预算.。
分式提高培优练习题一、填空题➢ 1、若311=-y x ,则=---+yxy x y xy x 33535 。
➢ 2、若04422=+-y xy x ;则=+-y x y x 。
➢ 3、若=-+=++964181732122y x y x ,则 。
➢ 4、=-=nm 11mn n -m ,则若 。
➢ 5、=-≠-+b a ab b a 11,011则互为倒数,且与若 。
➢ 6、=+=+-2221,015xx x x 则若 。
➢ 7、已知为:的代数式表示则用含y x y y x ,11+-= 。
➢ 8、若=-+•+==4422)(;2006,2005yx y x y x y x 则 。
➢ 9、当x 时,122+-x x 的值为负数。
当x 时,112--x x 的值为0。
➢ 10、当x 时,11-x 有意义。
当x 取何值时,422--x x 的值为零 二、选择题:➢ 1在一段坡路,小明骑自行车上坡的速度为每小时V 1千米,下坡时的速度为每小时V 2千米,则他在这段路上、下坡的平均速度是每小时( )。
A 、221v v +千米 B 、2121v v v v +千米 C 、21212v v v v +千米 D 无法确定 ➢ 2、甲、乙两地相距S 千米,某人从甲地出发,以v 千米/小时的速度步行,走了a 小时后改乘汽车,又过b 小时到达乙地,则汽车的速度( ) A. S a b + B.S av b - C. S av a b -+ D. 2S a b+ ➢ 3、如果关于x 的方程2313x m x m -=--有增根,则的值等于() A. -3B. -2C. -1D. 3三、计算:(1))225(262---÷--x x x x (2)aa --+242(3))1(2x x x x -+÷ (4)⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-b a b a a b 11(5)112122122--÷+++-+x x x x x x (6)⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛+-n m n m n n m mn 12四、列方程解应用题:⑴甲地经过乙地到达丙地的距离为132.5千米,某人从甲地步行12.5千米到达乙地,再从乙地改乘汽车到达丙地,共用5小时30分钟,已知汽车的速度是步行速度的8倍,求:此人步行速度及汽车速度各为多少?⑵一水池装有进出水管各一个,同时开放两管,36分钟就能使空池注满,若同时开放6分钟后关上出水管再进10分钟也能使空池注满,单独开进水管要多少时间才能把空池注满?(3). 甲、乙两个工程队共同完成一项工程,乙队先单独做1天后,再由两队合作2天就完成了全部工程。
《分式与分式方程》单元提高训练题(培优卷)一.选择题(共10小题)1.某工厂现在平均每天比原计划多生产50台机器,现在生产400台机器所需时间比原计划生产450台机器所需时间少1天,设现在平均每天生产x台机器,则下列方程正确的是()A.﹣=1B.﹣=1C.﹣=50D.﹣=502.为迎接建党一百周年,某校举行歌唱比赛.901班啦啦队买了两种价格的加油棒助威,其中缤纷棒共花费30元,荧光棒共花费40元,缤纷棒比荧光棒少20根,缤纷棒单价是荧光棒的1.5倍.若设荧光棒的单价为x元,根据题意可列方程为()A.﹣=20B.﹣=20C.﹣=20D.﹣=203.若关于x的一元一次不等式组的解集为x≥6,且关于y的分式方程+=2的解是正整数,则所有满足条件的整数a的值之和是()A.5B.8C.12D.154.已知关于x的不等式组有解,且关于y的分式方程=4﹣有正整数解,则所有满足条件的整数a的值的个数为()A.2B.3C.4D.55.某施工队计划修建一个长为600米的隧道,第一周按原计划的速度修建,一周后以原来速度的1.5倍修建,结果比原计划提前一周完成任务,若设原计划一周修建隧道x米,则可列方程为()A.=+2B.=﹣2C.=+1D.=﹣16.若整数a使关于x的不等式组有且只有两个整数解,且关于y的分式方程﹣=﹣2的解为正数,则满足上述条件的a的和为()A.3B.4C.5D.67.若数m使关于x的不等式组有解且至多有3个整数解,且使关于x的分式方程有整数解,则满足条件的所有整数m的个数是()A.5B.4C.3D.28.若关于x的一元一次不等式组有且仅有3个整数解,且关于x的分式方程+=1有正数解,则所有满足条件的整数a的和为()A.12B.13C.14D.159.甲、乙、丙三名打字员承担一项打字任务,已知如下信息如果每小时只安排1名打字员,那么按照甲、乙、丙的顺序至完成工作任务,共需()A.13小时B.13小时C.14小时D.14小时10.设x<0,x﹣=,则代数式的值()A.1B.C.D.二.填空题(共10小题)11.若关于x的一元一次不等式组的解集为x≥5,且关于y的分式方程+=﹣1有非负整数解,则符合条件的所有整数a的和为.12.中秋、国庆“双节”前,某酒店推出甲,乙两种包装的月饼,其中甲种包装有五仁饼3个,莲蓉饼3个,豆沙饼2个,乙种包装有五仁饼1个,莲蓉饼1个,豆沙饼2个,每种包装每盒月饼的成本价为该盒中所有月饼的成本价之和.已知每个五仁饼与每个莲蓉饼的成本价之比为5:4,每盒乙包装月饼售价98元,利润率是40%,两种包装的月饼共50盒总价6123元,总利润率是30%.中秋节后,为降价促销,甲种包装每盒每类月饼各少装一个,乙种包装每盒少装月饼后售价降为原来的一半,利润率不变,那么这样包装的两种月饼共50盒的总成本是元(其中甲种包装少装月饼后的盒数与节前50盒中甲种包装月饼的盒数相同,当然乙种包装盒数也相同).13.若数a使关于x的不等式组有且只有四个整数解,且使关于y的方程=2的解为非负数,则符合条件的所有整数a的和为.14.已知x2﹣5x+1=0,则的值是.15.已知,则=.16.已知实数x,y,z,a满足x+a2=2010,y+a2=2011,z+a2=2012,且xyz=6,则代数式++﹣﹣﹣的值等于.17.“非洲猪瘟”本是一种只在家畜之间传播的瘟疫,但最近已严重威胁到广大人民群众的生命安全,现我市有一组检疫工作人员(工作人员每人每天生猪检疫的效率相等),需对甲、乙两个生猪养殖场的所有生猪逐一检疫,已知,甲养殖场的生猪比乙养殖场的生猪多1倍.上午全部工作人员在甲养殖场检疫,为了尽快完成检疫,下午所有工作人员的平均工作效率提高了20%,但下午有一人因事离开,剩下的工作人员的一半仍留在甲养殖场(上、下午的工作时间相等),到下班前刚好把甲养殖场的生猪检疫完毕,另一半工作人员去乙养殖场检疫,到下班前还剩下一小部分生猪未检疫,最后由6人以提高前的检疫速度,再用不到半天的工作时间就完成了检疫.则这组工作人员最多有人.18.临近端午,甲、乙两生产商分别承接制作白粽,豆沙粽和蛋黄粽的任务(三种粽子都有成品,甲生产商安排200名工人制作白粽和豆沙粽,每人只能制作其中一种粽子,乙生产商安排100名工人制作蛋黄粽,其中豆沙粽的人均制作数量比白粽的人均制作数量少15个,蛋黄粽的人均制作数量比豆沙粽的人均制作数量少20%,若本次制作的白粽、豆沙粽和蛋黄粽三种粽子的人均制作数量比白粽的人均制作数用少20%,且豆沙粽的人均制作量为偶数个,则本次可制作的粽子数量最多为个.19.依据如图流程图计算﹣,需要经历的路径是(只填写序号),输出的运算结果是.20.设2016a3=2017b3=2018c3,abc>0,且=+ +,则++=三.解答题(共10小题)21.市政府为美化城市环境,计划在某区城种植树木2000棵,由于青年志愿者的加入,实际每天植树棵数是原计划的2倍,结果提前4天完成任务.求实际每天植树多少棵?22.某体育用品商店计划购进一些篮球和排球.已知每个篮球的进价和每个排球的进价的和为200元,用2400元购进的篮球数量是用800元购进排球数量的2倍.(1)求每个篮球和每个排球的进价各是多少元;(2)若该体育用品商店计划购进篮球和排球共40个,且购进的总费用不超过3800元,则该体育用品商店最多可以购进篮球多少个?23.岳阳市区某中学为了创建“书香校园”,今年春季购买了一批图书,其中科普类图书平均每本的价格比文学类图书平均每本的价格多5元,已知学校用20000元购买的科普类图书的本数与用15000元购买的文学类图书的本数相等.(1)求学校购买的科普类图书和文学类图书平均每本的价格各是多少元?(2)学校计划在五月份再添置600本这两类图书,且费用不超过10000元,问最多可以购买科普类图书多少本?24.为了抗击“新型肺炎”,我市某医药器械厂接受了生产一批高质量医用口罩的任务,任务要求在30天之内(含30天)生产A型和B型两种型号的口罩共200万只.在实际生产中,由于受条件限制,该工厂每天只能生产一种型号的口罩.已知该工厂每天可生产A 型口罩的个数是生产B型口罩的2倍,并且加工生产40万只A型口罩比加工生产50万只B型口罩少用6天.(1)该工厂每天可加工生产多少万只B型口罩?(2)若生产一只A型口罩的利润是0.8元,生产一只B型口罩的利润是1.2元,在确保准时交付的情况下,如何安排工厂生产可以使生产这批口罩的利润最大?25.)已知(x+a)(x+b)=x2+mx+n.(1)若a=﹣3,b=2,则m=,n=;(2)若m=﹣2,,求的值;(3)若n=﹣1,当时,求m的值.26.小红、小刚、小明三位同学在讨论:当x取何整数时,分式的值是整数?小红说:这个分式的分子、分母都含有x,它们的值均随x取值的变化而变化,有点难.小刚说:我会解这类问题:当x取何整数时,分式的值是整数?3是x+1的整数倍即可,注意不要忘记负数哦.小明说:可将分式与分数进行类比.本题可以类比小学里学过的“假分数”,当分子大于分母时,可以将“假分数”化为一个整数与“真分数”的和.比如:==2+(通常写成带分数:2).类比分式,当分子的次数大于或等于分母次数时,可称这样的分式为“假分式”,若将化成一个整式与一个“真分式”的和,就转化成小刚说的那类问题了!小红、小刚说:对!我们试试看!…(1)解决小刚提出的问题;(2)解决他们共同讨论的问题.27.已知非零实数a、b满足等式,求的值.28.阅读下面的材料,并解答后面的问题材料:将分式拆分成一个整式与一个分式(分子为整数)的和(差)的形式.解:由分母为x+1,可设3x2+4x﹣1=(x+1)(3x+a)+b.因为(x+1)(3x+a)+b=3x2+ax+3x+a+b=3x2+(a+3)x+a+b,所以3x2+4x﹣1=3x2+(a+3)x+a+b.所以,解得.所以==﹣=3x+1﹣.这样,分式就被拆分成了一个整式3x+1与一个分式的差的形式.根据你的理解解决下列问题:(1)请将分式拆分成一个整式与一个分式(分子为整数)的和(差)的形式;(2)若分式拆分成一个整式与一个分式(分子为整数)的和(差)的形式为:5m﹣11+,求m2+n2+mn的最小值.29.近年来,安全快捷、平稳舒适的中国高铁,为世界高速铁路商业运营树立了新的标杆.随着中国特色社会主义进入新时代,作为“中国名片”的高速铁路也将踏上自己的新征程,跑出发展新速度,这就意味着今后外出旅行的路程与时间将大大缩短,但也有不少游客根据自己的喜好依然选择乘坐普通列车;已知从A地到某市的高铁行驶路程是400千米,普通列车的行驶路程是高铁行驶路程的1.3倍,请完成以下问题:(1)普通列车的行驶路程为多少千米?(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求普通列车和高铁的平均速度.。
分式培优训练含答案专训一:分式求值的方法分式的求值是数学方法运用的考查,既要突出式子的化简计算,又要灵活选用方法。
常见的分式求值方法有设参数求值、活用公式求值、整体代入法求值、巧变形法求值等。
直接代入法求值需要先化简,再代入参数求值,例如题目a+2a÷(a+1)(a-1)+2/(a-1),其中a=5.活用公式求值需要熟悉公式,例如题目x2-5x+1=(x2+3xy+y2)/(2xy),求x4+(x4)/(x2+3xy+y2)的值。
整体代入法求值需要将分式整体代入,/(x2y2z2)+4/(x+y+z)=1,且x+y+z≠0,求(x+y)/(z+x)+y/(z+y)的值。
巧变形法求值需要巧妙变形,例如题目4x2-4x+1=1/(2x),求2x+(2x)/(4x2-4x+1)的值。
设参数求值需要设定参数,例如题目x2-y2+/(xy+yz+xz)=2/3,y+z/x+z+x+y=4/3,求x/y的值。
专训二:六种常见的高频考点本章主要考查分式的概念、分式有意义的条件、分式的性质及运算,考试中题型以选择题、填空题为主,分式的化简求值主要以解答题的形式出现。
分式方程是中考必考内容之一,一般考查解分式方程,并要求会用增根的意义解题。
考题常以解答题的形式出现,有时也会出现在选择题和填空题中。
分式的概念是指由两个整式相除得到的表达式,分式有意义的条件是分母不能为0.选择题和填空题常考查分式的有、无意义条件。
分式的基本性质包括分式的加减乘除和约分,考试中常以选择题和填空题的形式出现。
1.4x^2 - 2x + 12.分式的有关运算3.下列运算中,正确的个数是(2)4.m^4n^4m^2/n^3 = mnx-y/11 ÷(y-x)/22 = -2mn/(m-n) = n/(m-n)a-b)/(a-2) = 1/25.a-21/2 + 34/a-16.10.计算:(a+1)/(a-2) ÷ 1/(a-1) 的结果是 (B) a-1/a+111.计算:-1/(a+2) + 2/(a^2+2a+2) = -a^2+1/a^2+2a+212.化简:1/(m+1) - 1/(m+2) = -1/(m^2+3m+2)13.(1) (2a^2+2a)/(a-1)^2 + (a-4a^4)/(a-1+a) = (2a^2-2a)/(a-1)2) x^2+2x(1-1/x)/(x-1) = (x+1)/(x-1)选x=3,原式的值为 10/314.先化简:(x^2-1)/(x-1) = x+1整数指数幂15.下列计算正确的是 (B) x^2/x^6 = x^-416.下列说法正确的是 (A) -1/2 + 2 = 3/217.计算(π-3) + (-2)^3 = -1+8 = 718.由2×10^5个直径为5×10^-5cm的圆球体细胞排成的细胞链的长是 5cm19.分式方程 (x+2a)/(x-13) = x-3/(x-3)20.若关于x的方程 (x-1)/(x-2) = 1/a+1 的解为x=3,则a 等于 (C) -221.解分式方程:(x-2)/(x-1) + 1/(x-2) = 1/x,得到 x=322.2x+1/x-3 = 1,得到 x=11.解:原式 = [a/(a+1) + 2/(a-1) - 12/(a+1)(a-1)],化简后得到 (3a+1)/(a+1),再代入a=5,得到原式的值为 2/3.2.解:由 x^2 - 5x + 1 = 0,解出x = (5 + √21)/2,代入 x + 1/x = 5,得到 x^2 + 1/x^2 = 23,代入原式,化简得到 (x^2 + 3)/(x^4 + 1) - 2 = 527/4.3.解:将分子化简得到 xy(x+y)/(x+y)^3,代入 x+y=12,xy=9,得到原式的值为 1/8.4.解:将等式两边同时乘以 (x+y+z),化简得到(xy+yz+zx)/(xyz) + 1 = (x+y+z)/(x+y)(y+z)(z+x),代入已知条件,化简得到 (x+y+z)/(xy+yz+zx) = 0,所以原式的值为 0.5.解:将等式移项得到 4x^2 - 4x + 1 = 0,化简得到 (2x-1)^2 = 0,解得 x = 1/2,代入原式得到 2.6.解:设k ≠ 0,代入已知条件,解出 x = 2k,y = 3k,z = 4k,代入原式化简得到 2.1.B2.A3.A4.B2.(答案不唯一) a+1/(x+y+z) + y(x+y+z)/(z+x) =(a(x+y+z)+y(x+y+z))/(z+x) = (ax+ay+yz+y^2+z^2)/(z+x)3.26.D4.删除此段落5.解:(1) 原式 = (a+2)(a-2)a+2/[(a-2)(2a-2)] = (a+2)/2(a-2) - 1/(a-2) = (a^2-2)/2(a-2) = -3/2 (a=0) (2) 原式 = (x-11)/[(x-1)(2x-1)] = -1/(2x-1) + 3/(x-1) = (4x-3)/(2x-1)(x-1)6.删除此段落7.解:(1) 最简公分母是15m^2n^2.840n/39m * 2/5mn^2 = -8/13m^2n (2) 最简公分母是(a+1)^2(a-1)。
分式方程应用题能力提升训练一、行程问题1、甲、乙两地相距828km ,一列普通快车与一列直达快车都由甲地开往乙地,直达快车的平均速度是普通快车平均速度的1.5倍.直达快车比普通快车晚出发2h ,比普通快车早4h 到达乙地,求两车的平均速度.解析:设普通快车的平均速度为km /h ,则直达快车的平均速度为1.5km /h ,依题意,得:=,解得经检验,是方程的根,且符合题意.∴当时, 答:普通快车的平均速度为46km /h ,直达快车的平均速度为69km /h .2、轮船在顺水中航行30千米的时间与在逆水中航行20千米所用的时间相等,已知水流速度为2千米/时,求船在静水中的速度.【答案】设船在静水中速度为千米/时,则顺水航行速度为千米/时,逆水航行速度为千米/时,依题意,得: =,解得. 经检验,是原方程的根.答:船在静水中的速度是10千米/时.二、营销类应用性问题1、某校办工厂将总价值为2000元的甲种原料与总价值为4800元的乙种原料混合后,其平均价比原甲种原料每0.5kg 少3元,比乙种原料每0.5kg 多1元,问混合后的单价每0.5kg 是多少元?解析:设混合后的单价为每0.5kg x 元,则甲种原料的单价为每0.5kg(x +3)元,乙种原料的单价为每0.5kg(x -1)元,混合后的总价值为(2000+4800)元,混合后的重量为斤,甲种原料的重量为斤,乙种原料的重量为斤,依题意,得+=,解得x =17经检验,x =17是原方程的根,所以x =17.答:混合后的单价为每0.5kg 17元.2、先阅读下列文字,再解答下列问题:初中数学课本中有这样一段叙述:“要比较a 与b 的大小,可先求出a 与b 的差,再看这个差是正数、负数还是零。
”由此可见,要判断两个代数式值的大小,只要考虑它们的差就可以了。
试问:甲乙两人两次同时在同一粮店购买粮食(假设两次购买粮食的单价不相同),甲每次购买粮食100千克,乙每次购粮用去100元。
分式方程培优提高练习
一、选择题(每题5分,共30分)
1.若73212++y y 的值为8
1,则96412-+y y 的值是() (A )21-
(B )171-(C )71-(D )71 2.已知x z z y x +=+=531,则z
y y x +-22的值为() (A
3(4.(A 5.若(A 6A ,所用(A 7.8.9.方程71011=++z
y x 的正整数解()z y x ,,是_____. 10.若关于x 的方程122-=-+x a x 的解为正数,则a 的取值范围是_____. 11.若11,11=+=+z
y y x ,则=xyz _____. 12.设y x ,是两个不同的正整数,且
5211=+y x ,则._____=+y x
三、解答题(每题10分,共40分)
13.已知2+x a 与2-x b 的和等于4
42-x x ,求b a ,之值. 14.解方程:
708
115209112716512311222222-+=+++++++++++++x x x x x x x x x x x x . 15.a 为何值时,分式方程()
01113=++++-x x a x x x 无解? 16.某商场在一楼与二楼之间装有一部自动扶梯,以均匀的速度向上行驶,一男孩与一女孩同时从自
(1)(2),
参考答案
一、选择题
1.解:根据题意,8
173212=++y y .可得1322=+y y . 所以().7932296422-=--=-+y y y y 所以719
6412-=-+y y .
2.3.4.60
21=++++x x x . 根据题意,得⎪⎪⎩⎪⎪⎨⎧⨯<+⨯>.3
604721,360471x x 解得.4739347391<<x 因x 是正整数,所以2=x 或3=x .
经检验2=x 适合原方程.
故选(B )
5.解:设k a
d d c c b b a ====,则ak d dk c ck b bk a ====,,,. 上述四式相乘,得4abcdk abcd =.从而1±=k .
当1=k 时,d c b a ===,12
222=++++++d c b a da cd bc ab ; 当1-=k 时,d c b a -==-=.1442
2
2222-=-=++++++a a d c b a da cd bc ab . 故选(D )
9.解:由7101
1
=++z y x ,得73111
+=++z y x . 因为是正整数,故必有1=x ,因而
3
12371+==+z y . 又因为z y ,也是正整数,故又必有3,2==z y .
经检验()3,2,1是原方程的根.
因此,原方程的正整数解()z y x ,,是()3,2,1.
10.解:由方程122-=-+x a x ,得x a x -=+22,从而.3
2a x -= 又由题意,得⎪⎪⎩⎪⎪⎨⎧≠->-.23
2,032a a 所以⎩⎨⎧-≠<.4,2a a 故a 的取值范围是2<a 且4-≠a .
11.解:由11,11=+=+z y y x ,得y
z y y y x -=-=-=11,111.
()()x x b x a 422=++-.
去括号,整理得
()()x a b x b a 42=-++.
比较两边多项式系数,得
0,4=-=+a b b a .
解得2==b a .
14.解:因为方程的左边
()()()()()()()()()
()
.5551151414131312121111115414313212111120
911271651231122222+=+-=⎪⎭
⎫ ⎝⎛+-++⎪⎭⎫ ⎝⎛+-++⎪⎭⎫ ⎝⎛+-++⎪⎭⎫ ⎝⎛+-++⎪⎭⎫ ⎝⎛+-=+++++++++++++=+++++++++++++x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x 故原方程可
变为()708115552-+=+x x x x .
15.当=x 当+x 16.解x 级/分,
⎪⎪⎩
⎪⎪⎨⎧-==.1818227y s x x ① 把方程组①中的两式相除,得
18
2743--=s s ,解得54=s . 因此楼梯有54级.
(2)设男孩第一次追上女孩时,走过扶梯m 次,走过楼梯n 次,则这时女孩走过扶梯()1-m 次,走过楼梯()1-n 次.
将54=s ?代入方程组①,得x y 2=,即男孩乘扶梯上楼的速度为x 4级/分,女孩乘扶梯上楼的速度为x 3级/分.于是有 从而1
13124-+-=+n m n m ,即166=+m n . 无论男孩第一次追上女孩是在扶梯上还是在下楼时,n m ,中必有一个为正整数,且
10≤-≤n m ,经试验知只有6
12,3==n m 符合要求. 这时,男孩第一次追上女孩所走过的级数是:198********=⨯+⨯(级).。