人教版数学五年级下册求最大公因数的3种方法
- 格式:doc
- 大小:27.50 KB
- 文档页数:3
人教版第四单元知识点汇总第四单元分数的意义和性质1、分数的意义:一个物体、一物体等都可以看作一个整体,把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。
2、单位“1”:一个整体可以用自然数1来表示,通常把它叫做单位“1”。
(也就是把什么平均分什么就是单位“1”。
)3、分数单位:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。
如4/5的分数单位是1/5。
4、分数与除法A÷B=A/B(B≠0,除数不能为0,分母也不能够为0)例如:4÷5=4/55、真分数和假分数、带分数1、真分数:分子比分母小的分数叫真分数。
真分数<1。
2、假分数:分子比分母大或分子和分母相等的分数叫假分数。
假分数≧1余数作为分子,如:(2)整数化为假分数,用整数乘以分母得分子如:(3)带分数化为假分数,用整数乘以分母加分子,得数就是假分数的分子,分母不变,如:(4)1等于任何分子和分母相同的分数。
如:7、分数的基本性质:8、最简分数:分数的分子和分母只有公因数1,像这样的分数叫做最简分数。
一个最简分数,如果分母中除了2和5以外,不含其他的质因数,就能够化成有限小数。
反之则不可以。
9、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。
如:24/30=4/510、通分:把异分母分数分别化成和原来相等的同分母分数,叫做通分。
如:2/5和1/4 可以化成8/20和5/2011、分数和小数的互化(1)小数化为分数:数小数位数。
一位小数,分母是10;两位小数,分母是100……如:0.3=3/10 0.03=3/100 0.003=3/1000(2)分数化为小数:方法一:把分数化为分母是10、100、1000……如:3/10=0.3 3/5=6/10=0.61/4=25/100=0.25方法二:用分子÷分母如:3/4=3÷4=0.75(3)带分数化为小数:先把整数后的分数化为小数,再加上整数12、比分数的大小:分母相同,分子大,分数就大;分子相同,分母小,分数才大。
第二单元因数和倍数1、因数、倍数:①一个数的因数的个数是有限的,最小的因数是1,最大的因数是它本身。
一个数的因数的求法:成对地按顺序找。
②一个数的倍数的个数是无限的,最小的倍数是它本身。
一个数的倍数的求法:依次乘以自然数。
③一个数的最大因数和最小倍数都是它本身。
如15的最大因数和最小倍数都是15。
2例题:1、从0、4、5、8、9中取出三个数字组成三位数,①在能被2整除的数中,最大的是(),最小的是()②在能被3整除的数中,最大的是(),最小的是()③在能被5整除的数中,最大的是(),最小的是()2、在四位数21□0的方框中填入一个数,使它能同时被2、3、5整除,最多能()种填法。
分别是。
3、质数和合数(1)质数和合数的意义:一个数,如果只有1和它本身两个因数,这样的数叫做质数;一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。
判断题:①所有的奇数都是质数。
()如②所有的偶数都是合数()如③在1,2,3……自然数中,除了质数以外都是合数。
()如④两个质数的和是偶数。
()如(2)质数×质数=合数每个合数都可以由几个质数相乘得到,质数相乘一定得合数。
(3)20以内的质数:有8个(2、3、5、7、11、13、17、19)100以内的质数有25个:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97100以内找质数、合数的技巧:看是否是2、3、5、7、11、13…的倍数,是就是合数,不是的就是质数。
4、最大、最小A的最小因数是:1;A的最大因数是:A;A的最小倍数是:A;最小的奇数是:1;最小的偶数是:0;最小的质数是:2;最小的合数是:4最小的自然数是:0;连续的两个质数是2、3。
例题:猜电话号码0592-A B C D E F G提示:A——5的最小倍数 B——最小的自然数 C——5的最大因数 D——它既是4的倍数,又是4的因数 E ——它的所有因数是1,2,3,6 F——它的所有因数是1, 3 G——它只有一个因数,这个号码就是附:判断(1)因为7×8=56,所以56是倍数,7和8是因数()因为(2)1是1,2,3,4,5…的因数()(3)14比12大,所以14的因数比12的因数多()(4)因为1.2÷0.6=2,所以1.2是0.6的倍数。
第六讲 最大公因数第一部分:趣味数学马小跳的生日会今天是马小跳的生日,他请了许多朋友来和他一起庆祝生日。
不一会儿,大家都到齐了。
唉!原来所有人都被马小跳骗了。
说是来聚会,谁知道是来干活的呀!张达、毛超、唐飞、安琪儿都被马小跳安排了各种活计。
马小跳给安琪一根长74厘米的蓝彩带和一根长 66厘米的黄彩带,还说要剪成同样长的小段,要最长的。
最后还要给他每根剩下2厘米。
过了一会儿,安琪儿嘟着嘴来了。
“马小跳,我不知道这个该怎么剪。
我本来就不聪明,你还出个这么绕的问题。
你要是嫌我笨,不喜欢我就直说,不需要这样拐弯抹角的。
”安琪儿好像有点生气。
“没有,没有,我绝对没有那个意思。
”马小跳连忙解释。
“是8厘米!”在他们谈话的过程中,路曼曼已经把答案心算出来了。
“你,你怎么知道的啊?”路曼曼这个突然的答案惊住了马小跳。
“是这样的。
你要安琪儿把两根彩带各剩下2厘米,那咱们就先剪掉这2厘米。
74-2=72厘米,66-2=64厘米。
你还要她剪成同样长的最长小段,也就是求72和64的最大公因数,最大公因数是8。
所以每小段最长是8厘米。
”路曼曼就像老师一样给大家上了一课。
第二部分:奥数小练例题1 一张长方形的纸,长7分米5厘米,宽6分米。
现在要把它裁成一块块正方形,而且正方形边长为整厘米数,有几种裁法?如果要使裁得的正方形面积最大,可以裁多少块?思路导航: 7分米5厘米=75厘米,6分米=60厘米。
因为裁成的正方形的边长必须能同时整除75和60,所以边长是75和60的公约数。
75和60的公约数有1、3、5、15,所以有4故事种裁法。
如果要使正方形面积最大,那么边长也应该最大,应该取75和60的最大公约数15作为正方形的边长,所以可以裁(75÷15)×(60÷15)=20块。
练习一1.把1米3分米5厘米长、1米5厘米宽的长方形纸,裁成同样大小的正方形,至少能裁多少块?2.一块长45厘米、宽30厘米的长方形木板,把它锯成若干块正方形而无剩余,所锯成的正方形的边长最长是多少厘米?3.将一块长80米、宽60米的长方形土地划分成面积相等的小正方形,小正方形的面积最大是多少?例题2 一个长方体木块,长2.7米,宽1.8分米,高1.5分米。
小学数学五年级下册:《最大公因数》教案授课人:步文新教学目标1.理解两个数的公因数和最大公因数的意义。
2.通过解决实际问题,初步了解两个数的公因数和最大公因数在现实生活中的应用。
3.培养学生抽象、概括的能力。
教学重点理解公因数和最大公因数的概念。
教学难点理解并掌握两个数的最大公因数的方法。
教学准备ppt、学案、前置研究部分的练习(每人一张)教学基本过程(一)复习导入1.提问:什么是因数?什么是倍数师:将之前准备好的前置研究部分练习发给大家,学生回顾前面的知识,在小组中交流汇报(在除法算式中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数。
)2.写出8和12 的所有因数。
说一说你是怎么写的?学生独立练习,然后交流检查(师板书例1)师提问:你是怎样找一个数的因数的?组织学生在小组中交流,相互说一说。
方法一:用除数:8÷1=8,8÷2=4,8÷8=1。
方法二:用乘法:1×8=8,2×4=8。
因此,8的因数有1,2,4,8。
8的倍数有1,2,3,4,6,12。
(二)探究新知1.教学公因数和最大公因数(1)出示例1 。
(2)引导学生审题,理解题意。
在8的因数中,12的因数中找出公有因数的问题的答案。
(指出:1,2,4是8和12公有的因数,其中,4是最大公因数。
)2.巩固小练习(1)完成教材61页做一做第1,2题。
(填在书上)(2)完成教材63页练习十五第1题。
(填在书上)3.教学求两个数的最大公因数的方法。
师:什么叫公因数?什么叫最大公因数?师:出示例2。
怎样求18 和27 的最大公因数?(l)学生先独立思考,用自己想到的方法试着找出18 和27 的最大公因数。
(2)小组讨论,互相启发,再在全班交流。
方法一:先分别写出18 和27 的因数,再圈出公有的因数,从中找到最大公因数。
方法二:先找出18 的因数:①,2 ,③,6 ,⑨,18。
人教版五年级下册数学《最大公因数和最小公倍数》知识点及重点题分析最大公因数一、基础知识(1)定义:几个数公有的因数中,其中最大的公因数叫做它们的最大公因数。
,(2)求最大公因数的方法①列举法:②短除法:把各个数公有的质因数从小到大依次作为除数,连续去除这几个数,一直除到各个商是互质数为止,(也可以用较大的合数质公因数去除)然后把左半圈所有除数相乘,所得的积就是这几个数的最大公因数。
3 2 4此时3与2,4都互质,这三个数的公因数只有1,停止短除.(即用短除法求最大公因数时,要使所有的数最后所得的商没有公因数就可,如果其中几个商有公因数,也不再除).因此,36,24,48的最大公因数是2×2×3=12。
(3)求两个数最大公因数的特殊情况:①当两个数成倍数关系时,较小数就是这两个数的最大公因数。
②互质的两个数最大公因数是1.(如连续的非零自然数、不同的质数等)(4)最大公因数和公因数的关系:所有的公因数都是这两个数的因数,最大公因数是这些公因数中最大的。
二、求最大公因数在计算中的应用作用:最大公因数在计算中的最重要的作用是约分,即把分数的分子和分母约成最大公因数为1的最简分数。
化最简分数最简捷的方法:①短除法求出最大公因数②用划线法分别约去分子分母的最大公因数,分别写出分子、分母被最大公因数除的商。
③练习:(1)填空:A α,b 都是非0自然数,如果a ÷b=10 ,那么α,b 的最大公因数是( ),最小公倍数是( )。
解题分析:由题可知,α是b 的倍数,此时两数的最大公因数是其中的较小数b,最小公倍数是其中的较大数α.B 甲=2×3×5,乙=2×3×7,甲和乙的最大公因数是( )。
(2)化最简分数6318、9824、7545、5036 (3)判断: A 6318比216的分数单位小,所以6318比216小。
( ) B 分子分母是不同的质数,分子、分母的最大公因数一定是1。
目标:学生能够理解什么是最大公因数,并能够找到一组数的最大公因数。
教学重点:最大公因数的概念和求解方法。
教学难点:较大数的最大公因数求解。
教具准备:数学习题,板书。
教学步骤:
一、引入
1.引导学生回顾一下之前学过的公因数和公倍数的概念,并告诉学生本节课将学习最大公因数的概念。
2.让学生回答一个问题:什么是最大公因数?是否所有的数都有最大公因数?为什么?
二、概念讲解
1.解释最大公因数的概念:最大公因数是指一组数中能够整除每个数的最大自然数。
例如,对于数7和14来说,它们的最大公因数是7
2.引导学生思考如何找到一组数的最大公因数,介绍辗转相除法和质因数分解法两种方法。
三、实例讲解
1.通过几个例子演示如何使用辗转相除法找到一组数的最大公因数,如20和30的最大公因数为10。
2.再通过几个例子演示如何使用质因数分解法找到一组数的最大公因数,如24和36的最大公因数为12
四、练习时间
1.让学生分组进行练习,计算一些给定数的最大公因数。
2.老师给出习题,并对学生进行及时的指导和纠正。
五、小结
1.总结学生在本课程中学到的知识点,复习最大公因数的求解方法。
2.引导学生思考最大公因数的实际应用场景,如化简分数、化简比例等。
六、作业布置
1.布置相应的练习题作为家庭作业,巩固学生对最大公因数的掌握。
2.鼓励学生主动积累更多的数学问题,提高解决问题的能力。
七、教学反思
1.思考本堂课的教学效果,是否有哪些地方可以改进。
2.总结学生的表现和反馈,为下一堂课的教学提供参考。
找三个数的最大公因数和最小公倍数五年级数学下册,我们学习了因数和倍数,而且在人教版的第四单元,我们知道了怎么找两个数的因数和倍数,不过,自第六单元分数的加减及混合运算中,经常会遇到三个及以上异分母分数的加减运算,所以我们在运用列举法,分解质因数法和短除法找三个数的最大公因数(简称大因)和最小公倍数(简称小倍)就有些困难了。
以下是我整理的找三个数的大因和小倍的小技巧,希望能够帮助你。
一、三个数,任意两个数是互质数。
互为互质数的数,他们的大因是1;小倍是他们的乘积。
例如:找3.4.5的大因和小倍,他们三个数任意两个数都是互质数,所以他们的大因是1,小倍是3×4×5=60.二、三个数中,有两组数是互质数。
它们的大因是:1;它们的小倍:先找出不是互质数的那两个数的最小公倍数,然后用找出来的最小公倍数与第三个数相乘,得到的积就是这三个数的最小公倍数。
例如:找5.8.12的大因和小倍,同第一种,互为互质数的数,大因是1;而这三个数中只有12和14不是互质数,所以先找12和14的小倍,是24;然后5×24=120。
所以5.8.12的最小公倍数是120。
三、三个数中,有一组数是倍数关系。
它们的大因:倍数关系中较小的数与第三个数的大因就是这三个数的大因;它们的小倍:倍数关系中较大的数与第三个数的小倍就是这三个数的小倍。
例如:找5.8.10的大因和小倍。
它们的大因就是5和8的大因:1;他们的小倍就是8和12的小倍:24。
四、三个数中,有两组倍数关系。
它们的大因:最小的那个数就是三个数的大因;它们的小倍:那两个大数的最小公倍数就是三个数的小倍。
例如:找5.10.15的大因和小倍。
它们的大因就是最小的数:5;它们的小倍就是10和15这两个大数的小倍:30 。
五、三个数中,既没有互质数,有没有倍数关系。
它们的大因:先找出两个数的大因,再用找出来大因与第三个数组合,找出它俩的大因,最后的大因就是这三个数的大因。
上课解决方案教案设计教学目标知识与技能1.理解公因数和最大公因数的意义,知道因数、公因数和最大公因数的区别和联系。
2.掌握求两个数的最大公因数的方法,会选择合适的方法求两个数的最大公因数。
过程与方法经历认识最大公因数和求最大公因数的过程,体会知识迁移、推理判断的学习方法。
情感、态度与价值观在学习活动中体会数学知识之间的密切联系,激发求知欲望,培养合作意识与探索精神,养成善于观察、勤于思考的良好学习习惯。
重点难点重点:理解公因数和最大公因数的意义,能正确求出两个数的最大公因数。
难点:掌握求两个数的最大公因数的方法。
课前准备教师准备卡片PPT课件学生准备练习本教学过程板块一复习旧知,游戏引入活动1生活引入,铺垫新知1.评评小明的行为。
班级发了两条新毛巾,小明拿一条放在自己的书桌里,留着自己用。
同学发现了,批评他,他不服说:“我又没拿家里去,放在这不也在班级里吗?”2.指名汇报。
生:小明的行为是不对的,班级的毛巾是公有的东西,是供大家使用的,小明放在自己的书桌里,只供自己使用,不让别人用,是自私的行为。
3.评价。
生:我也要给小明提意见,班级的东西是公共财产,是公用的,不能放在自己那供自己使用,应放在班级卫生角供大家使用。
4.提问:我们班级有公共东西,你知道社区、公园、街道等地方有哪些公共设施是公用的吗?生:垃圾箱、公用雨伞、共享单车、花、公用的健身器材……这些公共设施是公有的,是供大家使用的,不是自己的,不能占为己有。
生活中,东西有公用的,在数学领域,是否存在着“公有”的知识呢?活动2感受“公有”教师出示一组卡片,让学生说一说卡片上各数的因数有哪些。
你是怎样找出来的?预设生1:8的因数有1、2、4、8。
12的因数有1、2、3、4、6、12。
18的因数有1、2、3、6、9、18。
24的因数有1、2、3、4、6、8、12、24。
36的因数有1、2、3、4、6、9、12、18、36。
生2:我发现这组卡片上各数的因数中有“公有”的,即各数的因数有相同的。
约分与通分【约分】知识点一:最大公因数(1)几个数的因数叫做这几个数的公因数。
其中最大的一个叫做这几个数的。
(2)当两个数成倍数关系时,就是它们的最大公因数。
(3)当两个数的公因数只有1时,它们的最大公因数就是。
(4)叫做互质数。
知识点二:求两个数的最大公因数的方法(1)列举法:先分别找出两个数的因数,从中找出公因数,再找出公因数中最大的一个。
(2)筛选法:先找出两个数中较小数的因数,从中圈出较大数的因数,再看哪一个因数最大。
(3)分解质因数法:先将这两个数分别分解质因数,再从分解的质因数中找出这个两个数公有的质因数,公有的质因数相乘所得的积就是这两个数的最大公因数(4)短除法:先把这两个数公有的质因数按从小到大的的顺序依次作为除数,连续去除这两个数,直到得出的两个商只有公因数1为止,再把所有的除数相乘,所得的积就是这两个数的最大公因数。
知识点三:约分(1)约分的定义:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。
(2)约分的方法:1.逐次约分法:用分数的分子和分母的公因数逐次去除分子和分母,直到约成最简分数2.一次约分法:用分数和分子和分母的最大公因数去除分子和分母,能直接约成最简分数。
(3)最简分数的定义:分子和分母只有只有公因数1的分数叫做最简分数。
知识点一:最小公倍数一.叫做它们的公倍数,其中最小的一个叫做它们的。
知识点二:求两个数的最小公倍数的方法(1)列举法:先分别写出两个数各自的倍数,再从中找出公倍数和最小公倍数。
(2)筛选法:先写出两个数中较大数(或较小数)的倍数,然后从这组数中按从小到大的顺序圈出较小数(或较大数)的倍数,第一个圈出的数就是它们的最小公倍数。
(3)分解质因数法:分别把两个数分解质因数,公有的质因数对齐写,各自特有的质因数单独写,然后有的质因数取一个,各自特有的质因数都取出来,把它们连乘,所得的积就是它们的最小公倍数。
(4)短除法:用连个数公有的质因数按从小达到的顺序依次作为除数连续去除这两个数,一直除到所得的商只有公因数1为止,然后把所有的除数和最后所得的商连乘,所得的积就是它们的最小公倍数。
找最大公因数的方法
最大公因数,也称最大公约数,是指能够同时整除两个或多个整数的最大的正整数。
求最大公因数的方法有以下几种常见的方法:
1.辗转相除法(欧几里得算法):
- 将两个数中较大的数除以较小的数,得到商和余数。
- 如果余数为0,则较小的数即为最大公因数。
- 如果余数不为0,则将较小的数作为被除数,余数作为除数,继续进行上述步骤,直到余数为0。
- 最后一步的除数即为最大公因数。
2.质因数分解法:
- 将两个数分别进行质因数分解。
- 将两个数的质因数中相同的部分进行乘积。
- 乘积即为最大公因数。
3.更相减损术:
- 将两个数中较大的数减去较小的数,得到差值。
- 如果差值为0,则较小的数即为最大公因数。
- 如果差值不为0,则将差值作为新的较大数,较小的数作为
新的较小数,继续进行上述步骤,直到差值为0。
- 最后一步的较小数即为最大公因数。
这些方法都能有效地找到最大公因数,根据实际情况选择合适的方法进行计算。
人教版小学数学五年级下册《最大公因数》教学设计一. 教材分析人教版小学数学五年级下册《最大公因数》是本册教材的一个重要内容。
在此之前,学生已经学习了因数与倍数的概念,对求两个数的最大公因数和最小公倍数有一定的认识。
本节课通过实例讲解和练习,使学生掌握求两个数的最大公因数的方法,培养学生的逻辑思维能力和解决问题的能力。
二. 学情分析五年级的学生已经具备了一定的数学基础,对因数与倍数的概念有一定的了解。
但是,对于如何运用方法快速求两个数的最大公因数,还需要通过实例讲解和练习来提高。
此外,学生的学习兴趣和积极性也需要通过教学过程中的互动和鼓励来激发。
三. 教学目标1.让学生掌握求两个数的最大公因数的方法。
2.培养学生的逻辑思维能力和解决问题的能力。
3.激发学生的学习兴趣,提高学生积极参与课堂活动的积极性。
四. 教学重难点1.教学重点:让学生掌握求两个数的最大公因数的方法。
2.教学难点:如何引导学生运用方法快速求两个数的最大公因数。
五. 教学方法1.采用实例讲解法,通过具体例子使学生理解最大公因数的含义和求法。
2.采用练习法,让学生在实践中掌握求最大公因数的方法。
3.采用提问法,引导学生思考和探讨,提高学生的逻辑思维能力。
4.采用激励法,鼓励学生积极参与课堂活动,提高学习兴趣。
六. 教学准备1.准备PPT,包括最大公因数的定义、求法以及相关练习题。
2.准备练习纸,用于学生练习求最大公因数。
3.准备相关教具,如黑板、粉笔等。
七. 教学过程1.导入(5分钟)利用PPT展示两个数的图片,如数字36和48,引导学生思考:如何求这两个数的最大公因数?从而引出本节课的主题。
2.呈现(10分钟)通过PPT讲解最大公因数的定义,以及求两个数的最大公因数的方法。
讲解过程中,引导学生关注求最大公因数的步骤,如:先列出两个数的因数,然后找出最大的共同的因数。
3.操练(10分钟)让学生在练习纸上完成PPT上的练习题,如求36和48的最大公因数。
人教版数学《最大公因数》说课稿
◆您现在正在阅读的人教版数学《最大公因数》说课稿文章内容由收集!本站将为您提供更多的精品教学资源!人教版数学《最大公因数》说课稿各位领导、各位老师:你们好!
今天,我说课的题目是《最大公因数》,这是人教版义务教育课程标准实验教科书数学五年级下册第四单元7981页的内容。
一、教材分析和学情分析
(出示课件)这部分教材是建立在学生已经掌握因数、倍数的含义及其特点的基础上来学习。
通过本节课学习,为学生以后学习约分和分数四则运算奠定基础。
二、教学目标
(出示课件)根据《新课标》要求:数学教学应以学生发展为本,培养能力为重。
因此,我制定如下教学目标:
1、理解公因数和最大公因数的意义。
会求两个数的公因数和最大公因数。
2、通过解决实际问题,初步了解公因数和最大公因数在现实生活中的应用。
求最大公因数的三种方法
2008年10月02日星期四 15:12
公因数、最大公因数(a,b)是学生学好分数的前提条件。
尤其是分数约分、求最小公倍数、化简比等内容的依据,熟练地找最大公因数,为以后分数的再认识起到事半功倍的效果。
求最大公因数有三种方法:
列举法:
分解质因数法:
短除法:
人教版求最大公因数有详细的讲解,北师大版由于是课改教材,它只有简单的列举法,因为列举法符合学生感知——观察——分析——结论的认识规律。
但是后两者操作比较简便、实用,学生往往喜欢。
一、列举法:就是把几个数的所有因数都写出来,通过对比、观察、找出公因数——最大公因数。
求(12,18)。
12的因数有:1、2、3、4、6、12.
18的因数有:1、2、3、6、9、18.
12和18的公因数有:1、2、3、6.
(12,18)=6
二、分解质因数法:就是将几个数各自分解成质因数的形式,把公因数相乘得出最大公因数。
求(12,18)。
12=2×2×3
18=2×3×3
(12,18)=2×3=6
三、短除法:
三种方法各有优缺点:
列举法容易理解、思路直接,但是写的较多、而且找因数有时容易遗漏;
分解质因数法直观、简便,但是理解有一些难。
短除法实用性强,但是有时找公因数不方便。
请同学们结合自身的特点选择之。