核酸的组成与理化性质
- 格式:ppt
- 大小:5.21 MB
- 文档页数:71
核酸的理化性质及应用核酸是一类含有大量核苷酸单元的生物大分子,在细胞中起着重要的生物学功能。
核酸分为两类:脱氧核酸(DNA)和核糖核酸(RNA)。
下面我将介绍核酸的理化性质及应用。
一、核酸的理化性质:1. 化学成分:核酸由核苷酸单元组成,单个核苷酸由一个五碳糖(脱氧核糖或核糖)、一个含氮碱基和一个磷酸基团组成。
2. 结构:DNA是由两条互补的链以双螺旋结构排列而成,RNA是以单链形式存在。
DNA的碱基对是按照互补规则特异性配对的,腺嘌呤(A)与胸腺嘧啶(T)之间有两个氢键相连,鸟嘌呤(G)与胞嘧啶(C)之间有三个氢键相连,保持了DNA分子的稳定性。
3. 酸碱性:核酸是一种多酸性物质,可与碱性染料结合。
通过电泳技术可将核酸分离,由于核酸是多酸性的,具有负电荷,在电场中可被迁移,从而实现其分离和纯化。
4. 稳定性:由于DNA中的碱基对通过氢键相连,DNA分子具有较高的稳定性,可在适宜条件下长期储存。
二、核酸的应用:1. 遗传学研究:核酸是遗传物质的重要组成部分,在遗传学研究中发挥着关键作用。
通过对DNA或RNA的序列进行分析,可以揭示生物个体之间的遗传差异,并研究基因与功能的关系。
例如,人类基因组计划(Human Genome Project)使用DNA测序技术对人类整个基因组进行了测序,从而为深入研究人类遗传学奠定了基础。
2. 诊断医学:核酸在疾病诊断中的应用日益重要。
通过PCR(聚合酶链式反应)技术可以在体液或组织中检测到微量的病原体DNA或RNA,从而实现病原体的快速检测和诊断。
例如,在新冠疫情中,核酸检测成为最常用的方法之一。
3. 基因工程:核酸在基因工程领域具有重要应用。
通过将外源DNA或RNA导入细胞中,可以实现基因的插入、删除或替换,从而实现基因改造或修复。
这种技术在生物技术、农业、医学等领域中有着广泛的应用,如转基因作物的培育、基因治疗等。
4. 疾病治疗:核酸药物被广泛应用于疾病的治疗。
DNA和RNA都是遗传物质,但它们的结构组成不同,DNA的组成是:脱氧核糖核苷酸,它又是由脱氧核糖和核苷酸组成的,而RNA是由核糖核苷酸组成的,核糖核苷酸是由核糖和核苷酸组成的。
RNA有好几种,每种的功能也不相同,比如信使RNA,就是转录DNA上的碱基的,还有转录RNA是将信使RNA上的碱基翻译到蛋白质,DNA就只有储存遗传物质的功能。
一、核酸的化学组成核酸是以核苷酸为基本组成单位的生物大分子。
包括两类:一类为脱氧核糖核酸(DNA),另一类为核糖核酸(RNA )。
DNA存在于细胞核和线粒体内,携带遗传信息;RNA存在于细胞质和细胞核中,参与细胞内遗传信息的表达。
核酸的基本组成单质是核苷酸,而核苷酸又是由碱基、戊糖、磷酸组成。
(一)碱基构成核苷酸的碱基主要有五种,分属嘌呤和嘧啶两类。
嘌呤类化合物包括腺嘌呤A和鸟嘌呤G两种。
嘧啶类化合物有三种,胞嘧啶C、胸腺嘧啶T和尿嘧啶U。
(二)戊糖与核苷、核苷酸戊糖是核苷酸的另一个主要成分,构成DNA的核苷酸的戊糖是β-D-2-脱氧核糖,而构成DNA的核苷酸的戊糖为β-D—核糖。
即RNA糖环上2号碳原子处连的是-OH,而DNA 此处连的是-H。
表示碱基和糖环上各原子次序时,在碱基杂环上标以顺序1,2,3…;在糖环上标以l′,2′,3′…以作区别。
碱基与戊糖通过糖苷键连接成核苷。
连接位置是C-1′。
核苷与磷酸通过磷酸酯键连接成核苷酸连接位置是C-5′。
此处可连接一个、二个、三个磷酸基团,称为核苷一磷酸、核苷二磷酸、核苷三磷酸。
二、DNA的结构与功能DNA与蛋白质一样,也有其一级、二级、三级结构。
(一) DNA的一级结构指DNA分子中核苷酸的排列顺序。
由于核苷酸的差异主要表现在碱基上,因此也叫做碱基序列。
四种核苷酸按一定排列顺序,通过磷酸二酯键连成主要核苷酸链,连接都是由前一核苷酸3′-OH 与下一核苷酸5′-磷酸基形成3′-5′磷酸二酯键,故核苷酸链的两个末端分别是5′-游离磷酸基和3′-游离羟基,书写应从5′到3′。
一、实验目的1. 了解核酸的基本理化性质。
2. 掌握核酸的紫外吸收特性、变性、复性和杂交等现象。
3. 学会使用紫外分光光度计、电泳仪等实验仪器。
二、实验原理核酸是一类生物大分子,由核苷酸组成,具有多种理化性质。
本实验主要探讨核酸的紫外吸收特性、变性、复性和杂交等现象。
1. 紫外吸收特性:核酸分子中的嘌呤和嘧啶碱基具有共轭双键,能够吸收紫外光。
最大吸收峰在260nm附近,可用于核酸的定量分析。
2. 变性:在高温、酸、碱、尿素等理化因素作用下,核酸分子中的双螺旋结构被破坏,双链解开,形成单链。
此过程称为变性。
3. 复性:变性后的核酸在适当条件下,双链可以重新恢复天然的双螺旋结构,此过程称为复性。
4. 杂交:不同来源的核酸变性后,互补碱基序列可以形成杂化双链,此过程称为杂交。
三、实验材料与仪器1. 实验材料:DNA、RNA、双链DNA、单链DNA、变性DNA、复性DNA、杂交DNA等。
2. 仪器:紫外分光光度计、电泳仪、恒温水浴锅、移液器、吸管、离心机等。
四、实验方法与步骤1. 紫外吸收特性实验(1)将不同浓度的DNA、RNA溶液分别置于紫外分光光度计的样品池中。
(2)在260nm波长处测定溶液的吸光度值。
(3)根据吸光度值计算核酸浓度。
2. 变性实验(1)将双链DNA溶液置于恒温水浴锅中,分别在不同温度下加热一定时间。
(2)在260nm波长处测定溶液的吸光度值。
(3)分析吸光度值随温度的变化,确定DNA的变性温度。
3. 复性实验(1)将变性DNA溶液置于恒温水浴锅中,在不同温度下加热一定时间。
(2)在260nm波长处测定溶液的吸光度值。
(3)分析吸光度值随温度的变化,确定DNA的复性温度。
4. 杂交实验(1)将不同来源的DNA、RNA溶液混合,置于恒温水浴锅中,在不同温度下加热一定时间。
(2)在260nm波长处测定溶液的吸光度值。
(3)分析吸光度值随温度的变化,确定DNA、RNA的杂交温度。
五、实验结果与分析1. 紫外吸收特性实验实验结果显示,DNA、RNA溶液在260nm波长处的吸光度值随浓度增加而增加,符合朗伯-比尔定律。
高中生物核酸知识点总结1.核酸:(1)种类①脱氧核糖核酸(DNA);②核糖核酸(RNA)。
(2)功能:核酸是细胞内携带遗传信息的物质,在生物体的遗传、变异和蛋白质的生物合成中具有极其重要的作用。
2.核酸的组成元素:C、H、O、N、P3.核酸基本组成单位:核苷酸(1分子核苷酸包括1分子含氮碱基、1分子五碳糖、1分子磷酸)。
4.核苷酸的分类:①4种脱氧核苷酸:磷酸+脱氧核糖(C5H10O4)+含氮碱基(A/T/G/C)②4种核糖核苷酸:磷酸+核糖(C5H10O5)+含氮碱基(A/U/G/C)③DNA和RNA的比较分类脱氧核糖核酸(DNA)核糖核酸(RNA)组成单位脱氧核苷酸核糖核苷酸成分磷酸H3PO4五碳糖脱氧核糖核糖含氮碱基A/G/C/TA/G/C/U结构双链双螺旋一般为单链主要存在部位细胞核细胞质显色反应遇甲基绿呈绿色遇吡罗红呈红色5.水解产物①核酸初步水解产物:核苷酸;彻底水解产物:五碳糖、磷酸、含氮碱基。
②DNA初步水解产物:脱氧核苷酸;彻底水解产物:脱氧核糖、磷酸、含氮碱基(A/G/C/T)。
③RNA初步水解产物:核糖核苷酸;彻底水解产物:核糖、磷酸、含氮碱基(A/G/C/U)。
6.DNA和RNA的分布(1)真核细胞①DNA主要分布在细胞核里,少量分布在细胞质里(线粒体和叶绿体);②RNA主要分布在细胞质里。
(2)原核细胞①DNA主要分布在拟核,少量分布在质粒(细胞质里存在的小型环状DNA分子);②RNA主要分布在细胞质里。
7.总结对比核酸五碳糖碱基核苷酸原核生物和真核生物DNA和RNA2种5种8种病毒DNA或RNA1种4种4种8.病毒①病毒体内只含有1种核酸,DNA或者RNA;②如果某1种生物体内含有2种核酸,那么它一定不是病毒。
9.总结①DNA病毒和所有的细胞生物的遗传物质是DNA;②RNA病毒的遗传物质是RNA;③就整个生物界而言,DNA是主要的遗传物质;④就某一种具体的生物而言,它的遗传物质就是DNA,或者就是RNA(而非主要是)。
生物化学要点 _第二章核酸化学第二章核酸化学一、核酸的化学构成 :1、含氮碱 : 参加核酸与核苷酸构成的含氮碱主要分为嘌呤碱与嘧啶碱两大类。
构成核苷酸的嘧啶碱主要有三种——尿嘧啶 (U) 、胞嘧啶 (C)与胸腺嘧啶 (T),它们都就是嘧啶的衍生物。
构成核苷酸的嘌呤碱主要有两种——腺嘌呤 (A) 与鸟嘌呤 (G),它们都就是嘌呤的衍生物。
2、戊糖 :核苷酸中的戊糖主要有两种,即β-D- 核糖与β-D-2- 脱氧核糖 ,由此构成的核苷酸也分为核糖核苷酸与脱氧核糖核酸两大类。
3、核苷 :核苷就是由戊糖与含氮碱基经脱水缩合而生成的化合物。
由“罕有碱基”所生成的核苷称为“罕有核苷”。
如 :假尿苷 (ψ)二、核苷酸的构造与命名:核苷酸就是由核苷与磷酸经脱水缩合后生成的磷酸酯类化合物,包含核糖核苷酸与脱氧核糖核酸两大类。
核苷酸又可按其在 5’位缩合的磷酸基的多少 ,分为一磷酸核苷 (核苷酸 )、二磷酸核苷与三磷酸核苷。
别的 ,生物体内还存在一些特别的环核苷酸 ,常有的为环一磷酸腺苷 (cAMP) 与环一磷酸鸟苷 (cGMP),它们往常就是作为激素作用的第二信使。
核苷酸往常使用缩写符号进行命名。
第一位符号用小写字母 d 代表脱氧 ,第二位用大写字母代表碱基 ,第三位用大写字母代表磷酸基的数量 ,第四位用大写字母 P 代表磷酸。
三、核酸的一级构造 :核苷酸经过 3’ ,5-磷’酸二酯键连结起来形成的不含侧链的多核苷酸长链化合物就称为核酸。
核酸拥有方向性,5’-位上拥有自由磷酸基的尾端称为5’-端,3’-位上拥有自由羟基的尾端称为3’-端。
DNA 由 dAMP 、dGMP、dCMP 与 dTMP 四种脱氧核糖核苷酸所构成。
DNA 的一级构造就就是指 DNA 分子中脱氧核糖核苷酸的摆列次序及连结方式。
RNA由AMP,GMP,CMP,UMP 四种核糖核苷酸构成。
四、 DNA 的二级构造 :DNA 双螺旋构造就是 DNA 二级构造的一种重要形式 ,它就是 Watson与 Crick 两位科学家于 1953 年提出来的一种构造模型 ,其主要实验依照就是 Chargaff 研究小组对 DNA 的化学构成进行的剖析研究,即 DNA 分子中四种碱基的摩尔百分比为 A=T 、 G=C、 A+G=T+C(Chargaff 原则 ),以及由 Wilkins 研究小组达成的 DNA晶体 X 线衍射图谱剖析。
核酸检测物理知识点总结一、核酸的结构与性质1.1 核酸的化学结构核酸是一种由核苷酸经过磷酸二脂酸酯键连接形成的生物大分子,包括DNA和RNA两种类型。
DNA由脱氧核糖核苷酸组成,RNA由核糖核苷酸组成。
核苷酸由核苷和磷酸二脂酸组成,核苷包括一个含氮碱基和一个糖分子,磷酸二脂酸作为链的连接部分。
1.2 核酸的物理性质核酸具有许多特殊的物理性质,如双螺旋结构、碱基配对、DNA超螺旋等。
其中双螺旋结构是DNA的典型结构,由两条螺旋形成,而碱基配对是通过氢键将两条链连接在一起,碱基的配对规律是腺嘌呤(A)与胸腺嘧啶(T)之间形成两个氢键,鸟嘌呤(G)与胞嘧啶(C)之间形成三个氢键。
此外,DNA还具有超螺旋结构,这种结构形式使得DNA在细胞分裂时更容易分离。
1.3 核酸的光学性质核酸具有一定的光学性质,如吸收光谱、荧光光谱等。
DNA和RNA在紫外光下有显著的吸收,其中DNA在260nm处有最大吸收峰,而RNA在260nm处有一个稍微红移的吸收峰。
此外,核酸还具有荧光发射的性质,一些荧光染料可以与核酸结合产生荧光信号,用于核酸的检测和定量分析。
二、核酸检测的原理与技术2.1 核酸检测的原理核酸检测的原理是通过特定的技术手段来识别和检测样品中的核酸序列,常用的技术包括PCR(聚合酶链式反应)、分子杂交、核酸电泳、原位杂交等。
PCR是最常用的核酸扩增技术,通过模拟细胞内DNA复制的过程来扩增目标DNA序列,从而实现对目标基因的检测和分析。
2.2 核酸检测的技术手段核酸检测的技术手段包括一系列的实验方法和设备,如核酸提取、PCR扩增、凝胶电泳、原位杂交、微阵列技术等。
其中核酸提取是核酸检测的首要环节,其目的是从样品中提取出目标DNA或RNA序列,为后续的PCR扩增和检测做准备;PCR扩增是一种快速、高效、特异性强的核酸扩增技术,可将目标核酸的复制数量扩大上百万倍,从而实现对微量核酸的检测和分析。
2.3 核酸检测的应用核酸检测技术在临床医学、疾病预防和控制、食品安全监测等领域有着广泛的应用,如临床诊断中的传染病检测、肿瘤基因检测、遗传病筛查等;疾病预防和控制中的病毒核酸监测、病原微生物检测、环境污染监测等;食品安全监测中的食源性疾病的检测、转基因食品的检测等。