.
O
x (2)__k若_1_=直_k_2线,y=k1x+b与b1y≠=.k反2bx2之+b也平成行立,则.
y
3. 求交点坐标.
(0,b)
( ,bk 0) O
x
如何求直线 y=kx+b与坐标轴的交点坐标?
4、正比例函数y=kx(k≠0)的性质: ⑴当k>0时,图象过______象一限、;三y随x的增大而____。 ⑵当k<0时,图象过______象二限、;四y随x的增大而____。
根据图象解下列问题:
261.5
(1)分别写出当0≤x≤200、200<x≤400、 400<x时,y与x的函数解析式;z``x``xk
218
(2)利用函数解析式说明电力公司采用的收费
标准;
104
(3)若某用户7月用电300度,则应缴费多少元?
若该用户8月缴费479元,则该用户该月用了多
少度电?
O
200
解析式 图象
性质 应用
正比例函数
一次函数
y = k x ( k≠0 )
y=k x + b(k,b为常数,且k ≠0)
k>0
k<0
y
y
o
x
o
k>0
k>0,b>0
x k>0,b<0
k<0 y
o
x
y
o
x
k>0时,在一, 三象限; k<0时,在二, 四象限.
k>0,b>0时在一, 二,三象限; k>0,b<0时在一, 三, 四 象限 k<0, b>0时,在一,二, 四象限.