材料分析与表征综述
- 格式:pdf
- 大小:2.46 MB
- 文档页数:40
材料的表征方法2.3.1 X 一射线衍射物相分析粉末X 射线衍射法,除了用于对固体样品进行物相分析外,还可用来测定晶体 结构的晶胞参数、点阵型式及简单结构的原子坐标。
X 射线衍射分析用于物相分析 的原理是:由各衍射峰的角度位置所确定的晶面间距d 以及它们的相对强度Ilh 是物 质的固有特征。
而每种物质都有特定的晶胞尺寸和晶体结构,这些又都与衍射强 度和衍射角有着对应关系,因此,可以根据衍射数据来鉴别晶体结构。
此外,依 据XRD 衍射图,利用Schercr 公式:θλθβcos )2(L K = 式中p 为衍射峰的半高宽所对应的弧度值;K 为形态常数,可取0.94或0.89;为X 射线波长,当使用铜靶时,又1.54187 A; L 为粒度大小或一致衍射晶畴大小;e 为 布拉格衍射角。
用衍射峰的半高宽FWHM 和位置(2a)可以计算纳米粒子的粒径,由X 一射线衍射法测定的是粒子的晶粒度。
样品的X 一射线衍射物相分析采用日本理 学D/max-rA 型X 射线粉末衍射仪,实验采用CuKa 1靶,石墨单色器,X 射线管电压 20 kV ,电流40 mA ,扫描速度0.01 0 (2θ) /4 s ,大角衍射扫描范围5 0-80 0,小角衍 射扫描范围0 0-5 0o2.3.2热分析表征热分析技术应用于固体催化剂方面的研究,主要是利用热分析跟踪氧化物制 备过程中的重量变化、热变化和状态变化。
本论文采用的热分析技术是在氧化物 分析中常用的示差扫描热法(Differential Scanning Calorimetry, DSC)和热重法( Thermogravimetry, TG ),简称为DSC-TG 法。
采用STA-449C 型综合热分析仪(德 国耐驰)进行热分析,N2保护器。
升温速率为10 0C.1min - .2.3.3扫描隧道显微镜扫描隧道显微镜有原子量级的高分辨率,其平行和垂直于表面方向的分辨率 分别为0.1 nm 和0.01nm ,即能够分辨出单个原子,因此可直接观察晶体表面的近原 子像;其次是能得到表面的三维图像,可用于测量具有周期性或不具备周期性的表面结构。
最常见表面分析技术为三种:XPS、AES和SIMS。
(1)AES —空间分辨率最高。
适合做导体和半导体材料表面的微区成分、化学态和元素分布分析;(2)XPS —破坏性最小,化学信息丰富,定量分析较好。
适合做导体和非导体,有机和无机体材料的表面成分和化学态分析。
(3)SIMS—灵敏度最高。
可以做导体和非导体,有机和无机体材料中H、He以及元素同位素分析。
此三种技术相互补充,相互配合,可获得最有用的搭配。
AES俄歇电子能谱:1、俄歇电子能谱(AES)当采用聚焦电子束激发源时,亦称为:扫描俄歇微探针( SAM)AES分析是以e束(或X-射线束)为激发源, 激发出样品表面的Auger电子, 分析Auger电子的能量和强度,可获元素种类、含量与分布、以及化学态等信息。
2、AES的主要特点与局限性:主要特点:(1)由于e束聚焦后其束斑小,AES的分辨率高,适于做微区分析:可进行点分析,线和面扫描。
(2)仅对样品表面2nm以浅的化学信息灵敏。
(3)俄歇电子的能量为物质特有,与入射粒子能量无关。
(4)可分析除H和He以外的各种元素,轻元素的灵敏度较高.(5)AES可分析元素的价态。
由于很难找到化学位移的标准数据,因此谱图的解释比较困难。
(6)可借助离子刻蚀进行深度分析,实现界面和多层材料的剖析,深度分辨率较XPS更好。
局限:(1)e束带电荷,对绝缘材料分析存在荷电影响。
(2)e束能量较高,对绝热材料易致损伤。
(3)定量分析的准确度不高3、从Auger电子能谱图可以看出:(1)峰位(能量),由元素特定原子结构确定;(2)峰数,由元素特定原子结构确定(可由量子力学估计);(3)各峰相对强度大小,也是该元素特征;以上3点是AES定性分析的依据,这些数据均有手册可查.4、AES具有五个有用的特征量:①特征能量;②强度;③峰位移;④谱线宽;⑤线型。
由AES的这五方面特征,可获如下表面特征:化学组成、覆盖度、键中的电荷转移、电子态密度和表面键中的电子能级等。
材料的表征方法2.3.1 X 一射线衍射物相分析粉末X 射线衍射法,除了用于对固体样品进行物相分析外,还可用来测定晶体 结构的晶胞参数、点阵型式及简单结构的原子坐标。
X 射线衍射分析用于物相分析 的原理是:由各衍射峰的角度位置所确定的晶面间距d 以及它们的相对强度Ilh 是物 质的固有特征。
而每种物质都有特定的晶胞尺寸和晶体结构,这些又都与衍射强度和衍射角有着对应关系,因此,可以根据衍射数据来鉴别晶体结构。
此外,依据XRD 衍射图,利用Schercr 公式:θλθβc o s)2(L K = 式中p 为衍射峰的半高宽所对应的弧度值;K 为形态常数,可取0.94或0.89;为X射线波长,当使用铜靶时,又1.54187 A; L 为粒度大小或一致衍射晶畴大小;e 为布拉格衍射角。
用衍射峰的半高宽FWHM 和位置(2a)可以计算纳米粒子的粒径,由X 一射线衍射法测定的是粒子的晶粒度。
样品的X 一射线衍射物相分析采用日本理 学D/max-rA 型X 射线粉末衍射仪,实验采用CuKa 1靶,石墨单色器,X 射线管电压 20 kV ,电流40 mA ,扫描速度0.01 0 (2θ) /4 s ,大角衍射扫描范围5 0-80 0,小角衍 射扫描范围0 0-5 0o2.3.2热分析表征热分析技术应用于固体催化剂方面的研究,主要是利用热分析跟踪氧化物制备过程中的重量变化、热变化和状态变化。
本论文采用的热分析技术是在氧化物分析中常用的示差扫描热法(Differential Scanning Calorimetry, DSC)和热重法( Thermogravimetry, TG ),简称为DSC-TG 法。
采用STA-449C 型综合热分析仪(德 国耐驰)进行热分析,N2保护器。
升温速率为10 0C.1min - .2.3.3扫描隧道显微镜扫描隧道显微镜有原子量级的高分辨率,其平行和垂直于表面方向的分辨率分别为0.1 nm 和0.01nm ,即能够分辨出单个原子,因此可直接观察晶体表面的近原 子像;其次是能得到表面的三维图像,可用于测量具有周期性或不具备周期性的表面结构。
学术论文与综述的区别1.材料分析方面综述:目的,总结一批相关文献所表述的相关内容,对他人研究成果的总结研究。
通过阅读大量资料文献,在分析资料的过程中,发现提炼出共通问题,提纲挈领,简明扼要,全面,完整。
论文:先是有一定的资料阅读基础,选定论题,再根据论题focus论点,收集更多相关资料,整理分析出作为引证论点的论据。
2.撰写方法综述:不含个人观点,叙述客观,主要是对过去研究的介绍。
学术论文:必须要立论,论题、论点明确,论据充分,论证严谨。
两中文章格式相同。
3.语言方式:文献综述:以叙述性、介绍性的书面语言为主。
学术论文:则以理论性较强的语言进行逻辑性的论证与推理。
写作是艰苦的脑力劳动,通过论文和综述的撰写,丰富了语言运用的方式。
一篇好的论文有思想、观点明确而条理清晰的论文容易写,但是一篇客观的综述却是很难找到。
所以,客观的描述性的语言是要经过长期锤炼的!你所说的平常的论文就是指学术论文吧,内容主要是你对选题的学术见解,文献综述主要是综述别人对选题的学术见解,还要包括你对别人学术观点的评价。
文献综述也算是一篇学术论文,只不过和一般的论文在侧重点上有所差别。
综述是指就某一时间内,作者针对某一专题,对大量原始研究论文中的数据、资料和主要观点进行归纳整理、分析提炼而写成的论文。
综述属三次文献,专题性强,涉及范围较小,具有一定的深度和时间性,能反映出这一专题的历史背景、研究现状和发展趋势。
一定要注意写综述的一些重要问题:第一,文献要尽可能全面、前沿、有代表性,文献综述写的就是文献,而且是大量的文献,综述的文献不行文献综述基本就完蛋了。
第二,要有归纳总结整理,最好能够提炼出观点来,有对选题有个整体的理解及分析,文献综述不仅要综,而且要述要有评价和你自己的见解,千万不要仅仅是文献的堆砌,综述一定要有作者自己的综合和归纳。
第三,在写文献综述要注意引用来源,最好直接引用原文,避免间接转引他人引用不当的文献,也避免断章取义。
材料组织结构的表征与分析材料科学是研究材料的性质和结构的学科,而材料的组织结构对其性质和性能有着重要影响。
因此,对材料组织结构的表征与分析是材料科学研究的重要内容之一。
本文将探讨材料组织结构的表征方法和分析技术。
一、显微结构分析显微结构分析是研究材料组织结构的基础方法之一。
光学显微镜是最常用的显微结构观察工具,通过对材料进行金相制样和显微观察,可以获得材料的晶粒大小、晶界分布、相组成等信息。
此外,透射电子显微镜(TEM)和扫描电子显微镜(SEM)等高分辨率显微镜的应用,可以进一步观察材料的细微结构,如晶体缺陷、相界面等。
二、X射线衍射分析X射线衍射是一种非常重要的材料组织结构分析方法。
通过将X射线照射到材料上,利用材料晶体对X射线的衍射现象,可以得到材料的晶格参数、晶体结构和晶体取向等信息。
X射线衍射技术广泛应用于材料的晶体结构分析、相变研究和晶体取向分析等领域。
三、电子显微衍射分析电子显微衍射是一种利用电子束与材料相互作用的现象进行结构分析的方法。
通过电子束的散射现象,可以获得材料的晶格结构、晶体取向和晶体缺陷等信息。
电子衍射技术在材料科学领域中的应用十分广泛,尤其在纳米材料的研究中具有重要意义。
四、原子力显微镜分析原子力显微镜(AFM)是一种基于原子力相互作用的表面形貌观察技术。
通过探针与材料表面的相互作用力,可以得到材料的表面形貌、粗糙度和力学性质等信息。
AFM技术在材料科学研究中的应用非常广泛,尤其在纳米材料和薄膜的研究中具有独特的优势。
五、热分析技术热分析技术是通过对材料在不同温度下的物理和化学性质的变化进行分析的方法。
常用的热分析技术包括差示扫描量热法(DSC)、热重分析法(TGA)和热膨胀分析法(TMA)等。
这些技术可以用于研究材料的热稳定性、热分解行为和相变特性等。
六、电子能谱分析电子能谱分析是一种通过测量材料中电子能量分布来研究材料组织结构的方法。
常用的电子能谱分析技术包括X射线光电子能谱(XPS)和电子能量损失谱(EELS)等。
化学中的材料分析与表征技术材料分析和表征是化学研究的核心。
通过对材料的分析和表征,我们可以深入了解材料的化学性质、结构和组成成分,从而为材料的研究和开发提供有力的支持。
在本文中,我们将探讨化学中的材料分析和表征技术。
能谱学能谱学是一种广泛使用的材料分析技术。
它基于不同材料对不同能量的辐射的吸收和排放,来确定材料的化学成分和结构。
能谱学包括吸收谱学和发射谱学。
吸收谱学是通过测量材料的吸收谱来确定材料的成分和结构的技术。
X射线吸收光谱是吸收谱学的一种重要形式。
它基于材料吸收X射线的能力和所吸收的X射线的能量来确定材料的成分和结构。
可以通过比较不同材料的吸收谱来确定材料之间的差异。
发射谱学是一种测量材料的辐射谱的技术。
通过对材料的辐射谱进行分析,可以确定材料的成分和结构。
X射线荧光光谱是发射谱学的一种重要形式。
它基于材料受到激发时发射X射线的能力和所发射的X射线的能量来确定材料的成分和结构。
质谱学质谱学是另一种常用的材料分析技术。
它是基于对材料中化合物分子的电离和分离,来确定材料中的化学元素和分子组成的技术。
质谱学也可以用于确定材料的结构和类型,以及分析材料中的杂质和添加剂。
核磁共振(NMR)技术核磁共振技术是一种测量分子中原子核磁场变化的技术。
它常用于确定分子的化学结构和成分。
在核磁共振技术中,分子中的原子核会被放置在一个高强度的磁场中,并被给予较小的脉冲磁场。
这将导致原子核在不同磁场强度下发射不同的能量,从而提供有关分子结构的信息。
扫描电子显微镜(SEM)和透射电子显微镜(TEM)扫描电子显微镜和透射电子显微镜是化学中常用的表征技术之一。
这两种电子显微镜可以提供高分辨率的图像和信息,以了解材料的形态、结构和特性。
扫描电子显微镜通过扫描材料表面,测量表面形态和特性来分析材料的性质。
透射电子显微镜是通过将电子束引入材料中来进行分析。
这个过程可以提供更详细的信息,例如材料的晶格结构、化学成分以及反应行为。
材料表征与分析1红外光谱1.1.红外光谱的基本知识1800年赫舍尔测定太阳光谱时确认了红外辐射的存在。
可以说,这时已经有了红外光谱的萌芽。
但由于检测手段的限制,直到约100年后才有人测定了一些有机化合物的红外吸收谱。
1905年科伯伦次发表了128种化合物的红外吸收谱,揭示了分子结构与红外吸收谱之间的联系.给出了红外光谱方法有实用价值的结果。
从本世纪40年代末至今,红外光谱仪器从第一代以棱镜为分谱元件,第二代以光栅为分谱元件,直至70年代发展起来的第三代以干涉因为基础进行傅里叶变换获得分诺的红外分光光度计,经历了大约半个世纪的发展,形成很多有效的实用光谱技术。
特别是激光出现之后,给红外光谱技术注入了新的活力,诞生了更高级的红外光谱方法,推动了众多科技领域研究工作的发展。
红外光谱技术与激光技术以及计算技术的结合,无疑在今后的发展中将继续给它增添新的内容。
1.1.1红外光谱法的特点紫外、可见吸收光谱常用于研究不饱和有机物,特别是具有共轭体系的有机化合物,而红外光谱法主要研究在振动中伴随有偶极矩变化的化合物(没有偶极矩变化的振动在拉曼光谱中出现)。
因此,除了单原子和同核分子如Ne、He、O2、H2等之外,几乎所有的有机化合物在红外光谱区均有吸收。
除光学异构体,某些高分子量的高聚物以及在分子量上只有微小差异的化合物外,凡是具有结构不同的两个化合物,一定不会有相同的红外光谱。
通常红外吸收带的波长位置与吸收谱带的强度,反映了分子结构上的特点,可以用来鉴定未知物的结构组成或确定其化学基团;而吸收谱带的吸收强度与分子组成或化学基团的含量有关,可用以进行定量分析和纯度鉴定。
由于红外光谱分析特征性强,气体、液体、固体样品都可测定,并具有用量少,分析速度快,不破坏样品的特点。
因此,红外光谱法不仅与其它许多分析方法一样,能进行定性和定量分析,而且该法是鉴定化合物和测定分子结构的最有用方法之一。
红外光谱是一种吸收光谱.通常是指有机物质的分子在4000一400cm“红外线(中红外区)的照射下,选择性地吸收其中某些频率后,用红外光谱仪记录所形成的吸收谱带,就称为红外光谱.红外吸收光谱是研究分子结构与红外吸收间的关系一种重要手段.一张红外吸收光谱图(或曲线)可以提供与分子结构相适应的信息.反映在吸收峰的位置(峰位)、吸收峰的形状(峰形)、吸收峰的强度(峰强)上.1.1.2红外光区的划分红外光谱在可见光区和微波光区之间,波长范围约为 0.75 ~ 1000µm ,根据仪器技术和应用不同,习惯上又将红外光区分为三个区:近红外光区(0.75 ~ 2.5µm ),中红外光区(2.5 ~ 25µm ),远红外光区(25 ~ 1000µm )。
材料结构的表征与分析材料结构是指材料内部的原子、分子或晶体的排列方式,对于材料的性能和特性具有重要影响。
因此,准确地了解和表征材料结构是材料科学与工程领域的关键任务之一。
本文将探讨材料结构的表征与分析的方法和技术。
一、X射线衍射技术X射线衍射技术是一种常用的表征材料结构的方法。
通过使X射线束入射到材料上并测量衍射角度和强度,可以确定材料的晶体结构和晶体学参数。
这种方法适用于具有规则晶体结构的材料,如金属、陶瓷和无机晶体材料。
通过X射线衍射,可以确定晶格参数、晶面间距和晶体取向等重要信息。
二、扫描电子显微镜(SEM)扫描电子显微镜(SEM)是一种用来观察材料表面形貌和分析微观结构的强大工具。
它使用高能电子束对样品进行扫描,通过检测样品在电子束作用下发射的次级电子或背散射电子,可以获得高分辨率的表面形貌图像。
此外,通过SEM配合能谱仪,还可以进行元素分析,获得材料的成分信息。
三、透射电子显微镜(TEM)透射电子显微镜(TEM)通过透射电子束对样品进行照射和观察,可获得更高分辨率的材料图像。
TEM适用于研究纳米级材料结构和纳米颗粒的形貌与成分。
它可以观察到晶体缺陷、晶体结构和点缺陷等微观细节,以及观察到材料的析出相、晶体形态和晶体取向。
四、原子力显微镜(AFM)原子力显微镜(AFM)通过扫描样品表面与探针之间的相互作用力,可以获得样品表面的三维形貌信息。
相比于传统的光学显微镜,AFM具有更高的分辨率和更强的表征能力,能够观察到纳米级别的表面特征和纳米结构。
此外,AFM还可以通过力-距离曲线,获取样品的力学性能和材料刚度等信息。
五、核磁共振(NMR)核磁共振(NMR)技术是一种用来研究原子核自旋状态和材料内部有关结构的方法。
通过在外部磁场和射频辐射的作用下,激发样品中的原子核共振信号,并通过分析共振信号的频率和强度,可以获得材料的化学成分、分子结构和局域环境等信息。
NMR技术广泛应用于化学、生物学和材料科学领域。
材料的表征方法2.3.1 X 一射线衍射物相分析粉末X 射线衍射法,除了用于对固体样品进行物相分析外,还可用来测定晶体 结构的晶胞参数、点阵型式及简单结构的原子坐标。
X 射线衍射分析用于物相分析 的原理是:由各衍射峰的角度位置所确定的晶面间距d 以及它们的相对强度Ilh 是物 质的固有特征。
而每种物质都有特定的晶胞尺寸和晶体结构,这些又都与衍射强 度和衍射角有着对应关系,因此,可以根据衍射数据来鉴别晶体结构。
此外,依 据XRD 衍射图,利用Schercr 公式:θλθβc o s )2(L K = 式中p 为衍射峰的半高宽所对应的弧度值;K 为形态常数,可取0.94或0.89;为X 射线波长,当使用铜靶时,又1.54187 A; L 为粒度大小或一致衍射晶畴大小;e 为 布拉格衍射角。
用衍射峰的半高宽FWHM 和位置(2a)可以计算纳米粒子的粒径,由X 一射线衍射法测定的是粒子的晶粒度。
样品的X 一射线衍射物相分析采用日本理 学D/max-rA 型X 射线粉末衍射仪,实验采用CuKa 1靶,石墨单色器,X 射线管电压 20 kV ,电流40 mA ,扫描速度0.01 0 (2θ) /4 s ,大角衍射扫描范围5 0-80 0,小角衍 射扫描范围0 0-5 0o2.3.2热分析表征热分析技术应用于固体催化剂方面的研究,主要是利用热分析跟踪氧化物制 备过程中的重量变化、热变化和状态变化。
本论文采用的热分析技术是在氧化物 分析中常用的示差扫描热法(Differential Scanning Calorimetry, DSC)和热重法( Thermogravimetry, TG ),简称为DSC-TG 法。
采用STA-449C 型综合热分析仪(德 国耐驰)进行热分析,N2保护器。
升温速率为10 0C.1min - .2.3.3扫描隧道显微镜扫描隧道显微镜有原子量级的高分辨率,其平行和垂直于表面方向的分辨率 分别为0.1 nm 和0.01nm ,即能够分辨出单个原子,因此可直接观察晶体表面的近原 子像;其次是能得到表面的三维图像,可用于测量具有周期性或不具备周期性的 表面结构。