九年级第一次月考试卷(无答案)[上学期] 华师大版
- 格式:doc
- 大小:291.00 KB
- 文档页数:6
2014-2015学年山东省聊城市于集镇中学九年级(上)第一次月考数学试卷一、选择题(每题3分,共36分)1.下列说法中,正确的个数为()①所有的正三角形都相似;②所有的正方形都相似;③所有的等腰直角三角形都相似;④所有的矩形都相似.A.1个B.2个C.3个D.4个2.一个五边形的边长分别为2、3、4、5、6,另一个和它相似的五边形的最大边长为24,则这个五边形的最短边为()A.6 B.8 C.10 D.123.如图所示,在△ABC中,DE∥BC,D在AB上,E在AC上,DF∥AC交BC于点F.若AE=5,EC=3,BF=1.5,则BC=()A.2.5 B.4 C.3 D.54.一个三角形的三边的比为2:3:4,则这个三角形三条边上的高的比为()A.2:3:4 B.6:4:3 C.4:3:2 D.4:9:65.如图所示,D是△ABC的AC边上的一点,根据下列条件,可以得到△BDC∽△ABC的是()A.AC•CB=CA•CD B.AB•CD=BD•BC C.BC2=AC•DC D.BD2=CD•DA6.用一个4倍的放大镜去放大△ABC,下列说法正确的是()A.△ABC放大后,∠A是原来的4倍B.△ABC放大后,周长是原来的4倍C.△ABC放大后,面积是原来的4倍D.以上说法都不正确7.在Rt△ABC中,∠C=90°,若sinA=,则cosB的值为()A.B.C.D.18.直角三角形ABC中,斜边AB是直角边BC的4倍,则cosA是()A.B. C.D.9.下列各式正确的是()A.cos60°<sin45°<tan45°B.sin45°<cos60°<tan45°C.sin45°<tan45°<cos60 D.cos60°<tan45°<sin45°10.在Rt△ABC中,∠C=90°,如果AB=2,BC=1,那么sinB的值是()A.B.C.D.11.一辆汽车沿坡角为α的斜坡前进500米,则它上升的最大高度为()A.500sinα B.C.500cosα D.12.如果等腰三角形的底角为30°,腰长为6cm,那么这个三角形的面积为()A.4.5cm2B.9cm2C.18cm2D.36cm2二、填空题(每空4分,共24分)13.已知两个相似三角形的相似比为3:2,且它们的面积和为52cm2,则其中较小的三角形的面积为.14.如图所示,DE∥BC,AC=12,AD=AB,则EC= .15.已知cosA=,且∠B=90°﹣∠A,则sinB= .16.如图所示,D、E分别是△ABC的边AC,AB上的点,∠ADE=∠B,AE=4,AC=16,则△ADE与△ACB的面积之比为.17.在△ABC中,∠C=90°,AC=3,AB=5,则cosB= .18.如图,在坡度为1:2的山坡上种树,要求株距(相邻两树间的水平距离)是6m,则斜坡上相邻两树间的坡面距离是m.三、计算题(每小题16分,共16分)19.计算(1)cos60°+sin45°+tan30°•cos30°;(2)sin60°•cos60°+sin45°•cos45°﹣sin30°•cos30°.四、应用题(20、21题每题10分,22、23题每题12分,共44分)20.如图所示,已知△ABC中,DE∥BC,AD=2,BD=5,AC=5,求AE的长.21.如图所示,正方形ABCD的边长是1,P为CD的中点,PQ⊥AP,交BC于Q,求BQ的长.22.如图,在△ABC中,已知∠A=60°,∠B=45°,AC=20,求AB的长.(注:辅助线要在答案卷上画出)23.如图所示,某厂车间的人字屋架为等腰三角形,跨度AB=12m,∠A=30°,求中柱CD和上弦AC的长.(结果保留根号,注:sin30°=,cos30°=,tan30°=)2014-2015学年山东省聊城市于集镇中学九年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(每题3分,共36分)1.下列说法中,正确的个数为()①所有的正三角形都相似;②所有的正方形都相似;③所有的等腰直角三角形都相似;④所有的矩形都相似.A.1个B.2个C.3个D.4个考点:相似图形.分析:利用对应角相等,对应边的比相等的图形是相似图形即可判断对错,从而确定答案.解答:解:①所有的正三角形都相似,正确;②所有的正方形都相似,正确;③所有的等腰直角三角形都相似,正确;④所有的矩形都相似,错误.故选C.点评:本题考查对相似三角形性质的理解.(1)相似三角形周长的比等于相似比;(2)相似三角形面积的比等于相似比的平方;(3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.2.一个五边形的边长分别为2、3、4、5、6,另一个和它相似的五边形的最大边长为24,则这个五边形的最短边为()A.6 B.8 C.10 D.12考点:相似多边形的性质.专题:应用题.分析:根据相似多边形的对应边的比相等可得.解答:解:两个相似的五边形,一个最长的边是6,另一个最大边长为24,则相似比是6:24=1:4,根据相似五边形的对应边的比相等,设后一个五边形的最短边的长为x,则2:x=1:4,解得:x=8.即后一个五边形的最短边的长为8.故选B.点评:本题主要考查了相似多边形的性质,对应边的比相等,因而最长的边一定是对应边,最短的边一定也是对应边.3.如图所示,在△ABC中,DE∥BC,D在AB上,E在AC上,DF∥AC交BC于点F.若AE=5,EC=3,BF=1.5,则BC=()A.2.5 B.4 C.3 D.5考点:平行线分线段成比例.专题:计算题.分析:根据平行线分线段成比例定理,先由DE∥BC得到=,可计算出=,再利用比例性质得到=,然后由DF∥AC得到=,再利用比例性质可计算出BC.解答:解:∵DE∥BC,∴=,即==,∴==,即=,∵DF∥AC,∴=,即=,∴BC=4.故选B.点评:本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.也考查了比例的性质.4.一个三角形的三边的比为2:3:4,则这个三角形三条边上的高的比为()A.2:3:4 B.6:4:3 C.4:3:2 D.4:9:6考点:三角形的面积;比例的性质.专题:常规题型.分析:设首先设三角形三条边长分别为:2x、3x、4x,三边上高分别为a、b、c,根据三角形的面积公式可得×2x•a=×3x•b=×4x•c,再算出a:b:c即可.解答:解:设三角形三条边长分别为:3x、4x、5x,三边上高分别为a、b、c,×2x•a=×3x•b=×4x•c,解得:a:b:c=6:4:3,故选:B.点评:此题主要考查了三角形的面积公式,三角形的面积等于底边长与高线乘积的一半,即S△=×底×高.5.如图所示,D是△ABC的AC边上的一点,根据下列条件,可以得到△BDC∽△ABC的是()A.AC•CB=CA•CD B.AB•CD=BD•BC C.BC2=AC•DC D.BD2=CD•DA考点:相似三角形的判定.分析:利用相似三角形的判定利用=且夹角相等,进而得出答案.解答:解:当=,又∵∠C=∠C,∴△BDC∽△ABC,即BC2=AC•DC时,可以得到△BDC∽△ABC.故选:C.点评:此题考查了相似三角形的判定.此题难度不大,注意熟记定理是关键,注意数形结合思想的应用.6.用一个4倍的放大镜去放大△ABC,下列说法正确的是()A.△ABC放大后,∠A是原来的4倍B.△ABC放大后,周长是原来的4倍C.△ABC放大后,面积是原来的4倍D.以上说法都不正确考点:相似图形.分析:用4倍的放大镜放大一个△ABC,得到一个与原三角形相似的三角形;根据相似三角形的性质:相似三角形的面积比等于相似比的平方,周长比等于相似比.可知:放大后三角形的面积是原来的16倍,边长和周长是原来的4倍,而内角的度数不会改变.解答:解:∵放大前后的三角形相似,∴放大后三角形的内角度数不变,面积为原来的16倍,周长和边长均为原来的4倍.故选B.点评:本题考查对相似三角形性质的理解.(1)相似三角形周长的比等于相似比;(2)相似三角形面积的比等于相似比的平方;(3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.7.在Rt△ABC中,∠C=90°,若sinA=,则cosB的值为()A.B.C.D.1考点:特殊角的三角函数值.分析:根据特殊角的三角函数值及等腰直角三角形的性质解答.解答:解:∵Rt△ABC中,∠C=90°,sinA=,∴∠A=∠B=45°,∴cosB=.故选B.点评:本题考查特殊角三角函数值的计算,特殊角三角函数值计算在中考中经常出现,要熟练掌握.8.直角三角形ABC中,斜边AB是直角边BC的4倍,则cosA是()A.B. C.D.考点:锐角三角函数的定义;勾股定理.分析:首先根据勾股定理计算出AC的长,再利用锐角三角函数定义计算出∠A余弦即可.解答:解:设BC=x,则AB=4x,AC===x,cosA===,故选:B.点评:此题主要考查了锐角三角函数,以及勾股定理,关键是表示出AC的长.9.下列各式正确的是()A.cos60°<sin45°<tan45°B.sin45°<cos60°<tan45°C.sin45°<tan45°<cos60 D.cos60°<tan45°<sin45°考点:锐角三角函数的增减性.分析:先根据特殊角的三角函数值分别得出cos60°=,sin45°=,tan45°=1,再比较大小即可.解答:解:∵cos60°=,sin45°=,tan45°=1,又∵<<1,∴cos60°<sin45°<tan45°.故选A.点评:本题考查了特殊角的三角函数值,实数的大小比较,熟记特殊角的三角函数值是解题的关键.10.在Rt△ABC中,∠C=90°,如果AB=2,BC=1,那么sinB的值是()A.B.C.D.考点:锐角三角函数的定义;勾股定理.专题:计算题.分析:先由勾股定理求出AC的长,再根据正弦=对边÷斜边计算即可.解答:解:在Rt△ABC中,∵∠C=90°,AB=2,BC=1,∴AC=,∴sinB==,故选B.点评:本题考查了锐角三角函数的定义,解题时牢记定义是关键.11.一辆汽车沿坡角为α的斜坡前进500米,则它上升的最大高度为()A.500sinα B.C.500cosα D.考点:解直角三角形的应用-坡度坡角问题.分析:在三角函数中,根据坡度角的正弦值=垂直高度:坡面距离即可解答.解答:解:如图,∠A=α,AE=500.则EF=500sinα.故选A.点评:本题考查了解直角三角形的应用﹣坡度角问题,通过构造直角三角形,利用锐角三角函数求解.12.如果等腰三角形的底角为30°,腰长为6cm,那么这个三角形的面积为()A.4.5cm2B.9cm2C.18cm2D.36cm2考点:解直角三角形.分析:作底边上的高.运用等腰三角形的性质及三角函数定义分别求三角形的高和底边长,代入公式计算求解.解答:解:如图,作底边上的高AD.∠B=30°,AB=6cm,AD为高,则AD=ABsinB=ABsin30°=3,BD=ABcosB=6×=3.∴BC=2BD=6,S△ABC==×3×6=9.故选B.点评:利用等腰三角形中底边上的高也是底边上的中线求解.二、填空题(每空4分,共24分)13.已知两个相似三角形的相似比为3:2,且它们的面积和为52cm2,则其中较小的三角形的面积为16cm2.考点:相似三角形的性质.分析:根据相似三角形面积的比等于相似比的平方求出两个三角形的面积的比,然后求解即可.解答:解:∵两个相似三角形的相似比为3:2,∴它们的面积的比为9:4,∵它们的面积和为52cm2,∴较小的三角形的面积为52×=16cm2.故答案为:16cm2.点评:本题考查了相似三角形的性质,熟记性质并求出两个三角形的面积的比是解题的关键.14.如图所示,DE∥BC,AC=12,AD=AB,则EC= 4 .考点:平行线分线段成比例.专题:计算题.分析:先利用平行线分线段成比例,由DE∥BC得=,根据比例性质可计算出AE,然后利用EC=AC﹣AE求解.解答:解:∵DE∥BC,∴=,即=,∴AE=8,∴EC=AC﹣AE=12﹣8=4.故答案为4.点评:本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.15.已知cosA=,且∠B=90°﹣∠A,则sinB= .考点:特殊角的三角函数值.专题:计算题.分析:根据cosA的值可得出∠A的度数,然后求出∠B,继而可得出sinB的度数.解答:解:∵cosA=,∴∠A=30°,故可得∠B=90°﹣∠A=60°,∴sinB=.故答案为:.点评:此题考查了特殊角的三角函数值,属于基础题,解答本题的关键是熟练记忆一些特殊角的三角函数值.16.如图所示,D、E分别是△ABC的边AC,AB上的点,∠ADE=∠B,AE=4,AC=16,则△ADE与△ACB的面积之比为1:16 .考点:相似三角形的判定与性质.专题:常规题型.分析:易证△ADE∽ABC,可得对应边的比例,即可求得面积的比例.解答:解:∵∠A=∠A,∠ADE=∠B,∴△ADE∽△ACB,∴△ADE与△ACB的边长比为AE:AC=1:4,∴△ADE与△ACB的面积之比为1:16.点评:本题考查了相似三角形的判定,考查了相似三角形面积比是边长比的平方的性质.17.在△ABC中,∠C=90°,AC=3,AB=5,则cosB= .考点:锐角三角函数的定义.分析:根据勾股定理求出BC的长度,运用锐角三角函数的定义求解.解答:解:∵在△ABC中,∠C=90°,AC=3,AB=5,∴BC=4.∴cosB==.点评:本题考查了勾股定理和锐角三角函数的概念.18.如图,在坡度为1:2的山坡上种树,要求株距(相邻两树间的水平距离)是6m,则斜坡上相邻两树间的坡面距离是3m.考点:解直角三角形的应用-坡度坡角问题.专题:应用题.分析:利用垂直距离:水平宽度得到水平距离与斜坡的比,把相应的数值代入即可.解答:解:∵坡度为1:2,=,且株距为6米,∴株距:坡面距离=2:,∴坡面距离=株距×=3(米).另解:∵CB:AB=1:2,设CB=x,AB=2x,∴AC==x,∴=,∵AB=6m,∴AC=×6=3m.故答案为:3.点评:考查了解直角三角形的应用﹣坡度坡角问题,本题是将实际问题转化为直角三角形中的数学问题,可把条件和问题放到直角三角形中,进行解决.要注意坡度是坡角的正切函数.三、计算题(每小题16分,共16分)19.计算(1)cos60°+sin45°+tan30°•cos30°;(2)sin60°•cos60°+sin45°•cos45°﹣sin30°•cos30°.考点:特殊角的三角函数值.分析:(1)将特殊角的三角函数值代入求解;(2)将特殊角的三角函数值代入求解.解答:解:(1)原式=+×+×=++=(2)原式=×+×﹣×=.点评:本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.四、应用题(20、21题每题10分,22、23题每题12分,共44分)20.如图所示,已知△ABC中,DE∥BC,AD=2,BD=5,AC=5,求AE的长.考点:平行线分线段成比例.专题:计算题.分析:根据平行线分线段成比例由DE∥BC得到,然后根据比例的性质可计算出AE.解答:解:∵DE∥BC,∴,即=,∴AE=.点评:本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.21.如图所示,正方形ABCD的边长是1,P为CD的中点,PQ⊥AP,交BC于Q,求BQ的长.考点:相似三角形的判定与性质;正方形的性质.专题:常规题型.分析:易证△ADP∽△PCQ,可得,即可求BQ的值.解答:解:设BQ=x,则CQ=1﹣x,在正方形ABCD中,∠C=∠D=90°,∵∠APD+∠DAP=90°,∠APD+∠CPQ=90°,∴∠DAP=∠CPQ,∴△ADP∽△PCQ,∴,把AD=1,DP=PC=代入上式,解得x=,即BQ=.点评:本题考查了相似三角形的判定,考查了相似三角形对应边比例相等的性质.22.如图,在△ABC中,已知∠A=60°,∠B=45°,AC=20,求AB的长.(注:辅助线要在答案卷上画出)考点:解直角三角形.分析:过点C作CD⊥AB于D.先解Rt△ACD,得出AD=AC•cosA=AC=10,CD=AC•sinA=10,再解Rt△BCD,得出BD=CD=10,然后根据AB=AD+BD即可求解.解答:解:过点C作CD⊥AB于D.在Rt△ACD中,∵∠ADC=90°,∠A=60°,AC=20,∴AD=AC•cosA=AC=10,CD=AC•sinA=20×=10.在Rt△BCD中,∵∠BDC=90°,∠B=45°,∴BD=CD=10,∴AB=AD+BD=10+10.点评:本题考查了解直角三角形,锐角三角函数的定义,作出适当的辅助线构造直角三角形是解题的关键.23.如图所示,某厂车间的人字屋架为等腰三角形,跨度AB=12m,∠A=30°,求中柱CD和上弦AC的长.(结果保留根号,注:sin30°=,cos30°=,tan30°=)考点:解直角三角形的应用.分析:利用等腰三角形的性质结合锐角三角函数关系分别得出即可.解答:解:由题意可得:∵AB=12m,∠A=30°,∴AD=BD=6m,∴tan30°=,∴CD=6tan30°=2,∵cos30°=∴AC==4.答:中柱CD的长为2m和上弦AC的长为4m.点评:此题主要考查了解直角三角形的应用,熟练应用锐角三角函数关系是解题关键.初中数学试卷桑水出品。
——教学资料参考参考范本——华东师大版九年级数学(上)第一次月考试卷______年______月______日____________________部门姓名 考号 分数一、选择题:(每小题3分,共18分)1、式子:①;②;③;④;⑤;⑥;⑦;⑧中是二次根式的代号为 ( )a πx -12+x x -152-x 22+a 23bA 、①②④⑥B 、②④⑧C 、②③⑦⑧D 、①②⑦⑧2、若,则 的取值范围是( )02=+a a aA 、0B 、≥ 0C 、≤ 0D 、< 0a a a3、计算:÷×的结果是 ( )184334A 、0B 、C 、2D 、324224、已知关于的一元二次方程有一个解为0,则的值为( )x()043222=-++-k x x k kA 、±2B 、2C 、-2D 、任意实数5、解方程最简便的方法是( )()()091222=+--x x A 、直接开平方法 B 、因式分解法 C 、配方法 D 、公式法6、若,是方程的两个实数根,则下列说法中正确的是( )x 1x 202=++q px xA 、B 、C 、D 、p x x =+21qx x -=∙21p x x -=+21p x x =∙21二、填空题:(每小题3分,共27分)7、若有意义,则= .a a -+-33a8、写出一个的同类二次根式,可以是 .279、实数在数轴上的位置如图: ,化简= .ba ,()()()22211b a b a ---++10、已知,那么= .32+=x 242+-x x 11、方程的二次项系数、一次项系数和常数项分别是 .()312=-x x12、方程的解是 .x x =2313、已知方程的一个实根是,则代数式的值为 .012=--x x m 20092+-m m14、已知实数,,满足,则方程的根的情况是 .a b c ()0822=+++++-c c b a a 02=++c bx ax15、在实数范围内定义一种运算“*”,其规则为*=,如5*3=5-3=16,根据这一规则,解决问题:已知三角形的每条边都是方程*1=0的根,则此三角形的周长为 .a b 22b a -22()3-x 三、解答题:(本大题共75分)16、计算:(每小题4分,共8分) (1) (2)xx x916425-+()2123612-+-17、解方程:(每小题4分,共8分)(1) (2)()13312=+x 242=+x x18、阅读下列解题过程,请回答下列各问题:()()()()()25454545454545145122-=-=--=-+-⨯=+()()()()()565656565656156122-=--=-+-⨯=+(1)观察上面解题过程,请直接给出(为正整数)的结果,并写出化简过程;(4分)n n ++11n(2)利用上面提供的方法,请你化简下面的式子:(5分)++++++341231121…200920101++19、(9分)在解“当时,求(>2)的值.”这道题时,小马虎把错抄成,但他的计算结果仍然正确,请回答这是怎么回事?试说明理由.2010=x 222224444x x x x x x x x x --+--+---+x 2010=x 2001=x20、(9分)学校课外生物小组的试验园地是长35米,宽20米的矩形,为了便于管理,现要在中间开辟一横二纵三条等宽的小道(如右图),要使种植面积为627平方米,求小道的宽.21、(9分)为了加快小康社会建设,力争国民生产总值到2020比20xx年翻两番,在本世纪的头二十年(20xx年—2020年)要实现这一目标,以十年为单位计算,求每个十年的国民生产总值的增长率.22、用12m 长的一根铁丝围成长方形.(1)若长方形的面积为5m,则此时长方形的长和宽各是多少?如果面积为8m 呢?(5分)(2)能否围成面积为10m 的长方形?为什么?(5分)22223、(10分)小聪是个非常热爱学习的学生,学完一元二次方程的解法后,老师在黑板上写了这样一道题:若方程与有相同根,试求的值及相同根.思考片刻后,小聪解答如下:0162=---k x x 072=--kx x k解:设相同根为,根据题意,得m⎩⎨⎧=--=---;07 1 ,01622km m k m m①-②,得 ③()66-=-k m k显然,当时,两个方程相同,即两个方程有两个相同根-1和7;6=k当时,由③得,代入②式,得,此时两个方程有一相同根.6≠k 1=m 6-=k 1=x∴当时,有一相同根;当时,有两个相同根是-1和76-=k 1=x 6=k聪明的同学,请你仔细阅读上面的解题过程,解答问题:已知为非负实数,当取什么值时,关于的方程与有相同的实根.k k x 012=-+kx x 022=-++k x x。
九年级第一次月考试卷一选择题(每小题3分,共24分)1.如果a 为任意实数, 下列各式中一定有意义的是( )A.2.下列式子中,属于最简二次根式的是( )A 3. 下列方程是关于x 的一元二次方程的是( );A .02=++c bx axB .2112=+x xC .1222-=+x x xD .)1(2)1(32+=+x x4. 下列二次根式中与是同类二次根式的是( )A .5. .若关于x 的一元二次方程为ax 2+bx+5=0(a ≠0)的解是x=1,则2013﹣a ﹣b 的值是( )A . 2018B . 2008C . 2014D . 20126下列四条线段为成比例线段的是( )A 7,4,5,10====d c b aB 2,6,3,1====d c b aC 3,4,5,8====d c b aD 6,3,3,9====d c b a7. 兰州某广场准备修建一个面积为200平方米的矩形草坪,它的长比宽多10米,设草坪的宽为x 米,则可列方程为( )A. x(x-10)=200B. 2x+2(x-10)=200C. 2x+2(x+10)=200D. x(x+10)=2008. 如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3、4及x ,那么x 的值( )A .只有1个B .可以有2个C .可以有3个D .有无数个二填空(每小题3分,共18分)9.要使二次根式x 满足的条件是10. 若方程mx 2+3x -4=3x 2是关于x 的一元二次方程,则m 的取值范围是11. 若35=b a ,则__________=-bb a12. 用配方法解关于x 的一元二次方程x 2-2x -3=0,配方后的方程是 13.若=-<==b a ab b a 则且,0,2,32 .14. 如图,边长为1的菱形ABCD 中,∠DAB=60°.连结对角线AC ,以AC 为边作第二个菱形ACEF ,使∠FAC=60°.连结AE ,再以AE 为边作第三个菱形AEGH 使∠HAE=60°…按此规律所作的第n 个菱形的边长是三解答题(本大题共10小题,78分)15. (6分)计算 12327316. (614831224217. (6分)解方程:20152=+-x x18. (6分)解方程2(1)4x x +=19. (7分)已知菱形的周长是12cm ,一条对角线长是2cm ,求另一条对角线的长 20. (7分)在△ABC 中,AD AE DB EC=,AB=8,AE=4,EC=2,求AD 的长。
华东师大版九年级数学上册第一次月考考试【参考答案】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2-的相反数是( )A .2-B .2C .12D .12-2.若实数m 、n 满足 02m =-,且m 、n 恰好是等腰△ABC 的两条边的边长,则△ABC 的周长是 ( )A .12B .10C .8或10D .63.如果a b -=22()2a b a b a a b+-⋅-的值为( )A B .C .D .4.直线y x a =+不经过第二象限,则关于x 的方程2210ax x ++=实数解的个数是( ).A .0个B .1个C .2个D .1个或2个5.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x 名同学,那么依题意,可列出的方程是( )A .x (x+1)=210B .x (x ﹣1)=210C .2x (x ﹣1)=210D .12x (x ﹣1)=210 6.对于一个函数,自变量x 取a 时,函数值y 也等于a ,我们称a 为这个函数的不动点.如果二次函数y =x 2+2x +c 有两个相异的不动点x 1、x 2,且x 1<1<x 2,则c 的取值范围是( )A .c <﹣3B .c <﹣2C .c <14D .c <17.如图,直线AB ∥CD ,则下列结论正确的是( )A .∠1=∠2B .∠3=∠4C .∠1+∠3=180°D .∠3+∠4=180°8.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD9.如图,△ABC 中,AD 是BC 边上的高,AE 、BF 分别是∠BAC 、∠ABC 的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=( )A .75°B .80°C .85°D .90°10.如图,矩形ABCD 的对角线AC ,BD 交于点O ,6AB =,8BC =,过点O 作OE AC ⊥,交AD 于点E ,过点E 作EF BD ⊥,垂足为F ,则OE EF +的值为( )A .485B .325C .245D .125二、填空题(本大题共6小题,每小题3分,共18分)164__________.2.因式分解:x 3﹣4x=_______.3.已知抛物线21y x x =--与x 轴的一个交点为(0)m ,,则代数式m ²-m+2019的值为__________.4.在Rt ABC ∆中,90C =∠,AD 平分CAB ∠,BE 平分ABC ∠,AD BE 、相交于点F ,且4,2AF EF ==,则AC =__________.5.如图,直线y =x +2与直线y =ax +c 相交于点P (m ,3),则关于x 的不等式x +2≤ax +c 的解为__________.6.如图是一张矩形纸片,点E 在AB 边上,把BCE 沿直线CE 对折,使点B 落在对角线AC 上的点F 处,连接DF .若点E ,F ,D 在同一条直线上,AE =2,则DF =_____,BE =__________.三、解答题(本大题共6小题,共72分)1.解分式方程:12211x x x +=-+2.先化简,再求值:24211326x x x x -+⎛⎫-÷ ⎪++⎝⎭,其中21x =.3.如图,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O,点D为⊙O上一点,且CD=CB、连接DO并延长交CB的延长线于点E(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若BE=4,DE=8,求AC的长.4.如图,四边形ABCD内接于⊙O,∠BAD=90°,点E在BC的延长线上,且∠DEC=∠BAC.(1)求证:DE是⊙O的切线;(2)若AC∥DE,当AB=8,CE=2时,求AC的长.5.我国中小学生迎来了新版“教育部统编义务教育语文教科书”,本次“统编本”教材最引人关注的变化之一是强调对传统文化经典著作的阅读.某校对A 《三国演义》、B《红楼梦》、C《西游记》、D《水浒》四大名著开展“最受欢迎的传统文化经典著作”调查,随机调查了若干名学生(每名学生必选且只能选这四大名著中的一部)并将得到的信息绘制了下面两幅不完整的统计图:(1)本次一共调查了_________名学生;(2)请将条形统计图补充完整;(3)某班语文老师想从这四大名著中随机选取两部作为学生暑期必读书籍,请用树状图或列表的方法求恰好选中《三国演义》和《红楼梦》的概率.6.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、A4、D5、B6、B7、D8、D9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、2、x(x+2)(x﹣2)3、202045、x≤1.6、 1三、解答题(本大题共6小题,共72分)1、3x23、(1)相切,略;(2)4、(1)略;(2)AC.5、(1)50;(2)见解析;(3)16.6、(1)120件;(2)150元.。
九年级上册数学第一次月考试卷一、选择题(共10小题,每小题4分,满分40分.)1.(4分)有一组数据:1,2,3,3,4,这组数据的众数是( )A.1B.2C.3D.42.(4分)2020年6月23日,我国的北斗卫星导航系统(BDS)星座部署完成,其中一颗中高轨道卫星高度大约是21500000米.将数字21500000用科学记数法表示为( )A.0.215×108B.2.15×107C.2.15×106D.21.5×1063.(4分)下列几何体中,俯视图为三角形的是( )A.B.C.D.4.(4分)不等式组的解集是( )A.x>﹣1B.x>﹣C.x D.﹣15.(4分)用配方法解方程x2﹣2x﹣5=0时,原方程应变形为( )A.(x+1)2=6B.(x﹣1)2=6C.(x+2)2=9D.(x﹣2)2=9 6.(4分)如图,AB∥CD∥EF,AF与BE相交于点G,若BG=3,CG=2,CE=6,则的值是( )A.B.C.D.47.(4分)观察函数y1=k1x+b1和y2=k2x+b2的图象,当x=1,两个函数值的大小为( )A.y1=y2B.y1≥y2C.y1>y2D.y1<y28.(4分)四边形ABCD的对角线互相平分,要使它变为菱形,需要添加的条件是( )A.AD=BC B.AB=CD C.AC=BD D.AC垂直BD 9.(4分)有一个人患了流感,经过两轮传染后有若干人被传染上流感.假设在每轮的传染中平均一个人传染了m个人,则第二轮被传染上流感的人数是( )A.m+1B.(m+1)2C.m(m+1)D.m210.(4分)如图,点G是△ABC的重心,过点G作DE∥BC,分别交AB、AC于点D、E,则DG与GE的关系为( )A.DG=GE B.DG>GE C.DG<GE D.DG=GE二、填空题(共6小题,每小题4分,满分24分)11.(4分)点(﹣2,1)关于原点对称的点的坐标为.12.(4分)如果,那么= .13.(4分)分解因式:x2﹣4= .14.(4分)如图,AB和DE是直立在地面上的两根立柱,AB=6(m),AB在阳光下的影长BC=3(m),在同一时刻阳光下DE的影长EF=4(m),则DE的长为 米.15.(4分)设α,β是一元二次方程x2+3x﹣7=0的两个根,则α2+5α+2β= .16.(4分)如图,在△ABC中,AB=10,BC=7,AC=5,P是AB边上的动点(不与A、B重合),过点P的直线截△ABC,使截得的三角形与△ABC相似,我们不妨称这种直线为过点P的△ABC相似线.设AP=x,若经过点P能画△ABC的相似线最多只有3条,则x的取值范围是.三、解答题(本大题共9小题,共86分)17.(8分)计算:﹣8÷2++()﹣1.18.(8分)解方程:x2﹣8x+7=0.19.(8分)先化简,再求值(),其中x=2.20.(8分)如图,在▱ABCD中,AE∥CF,求证:AE=CF.21.(8分)如图,在△ABC中,∠ACB的平分线交AB于点D.(1)利用尺规在AC边上求作点E,使得EC=ED(不写作法,保留作图痕迹);(2)在(1)的条件下,若,BC=10,求DE的长.22.(10分)某班为了从甲、乙两同学中选出班长,进行了一次演讲答辩与民主测评.A、B、C、D、E五位老师作为评委,对“演讲答辩”情况进行评价,全班50位同学参与了民主测评.结果如下表所示:表1 演讲答辩得分表(单位:分)表2 民主测评票数统计表(单位:张)规定:演讲答辩得分按“去掉一个最高分和一个最低分再算平均分”的方法确定;民主测评得分=“好”票数×2分+“较好”票数×1分+“一般”票数×0分;综合得分=演讲答辩得分×(1﹣a)+民主测评得分×a(0.5≤a≤0.8).(1)当a=0.6时,甲的综合得分是多少?(2)a在什么范围时,甲的综合得分高?a在什么范围时,乙的综合得分高?23.(10分)如图:点(1,3)在函数y=(x>0)的图象上,矩形ABCD的边BC在x 轴上,E是对角线BD的中点,函数y=(x>0)的图象又经过A、E两点,点E的横坐标为m,解答下列问题:(1)直接写出k的值,k= ;(2)求点A的坐标;(用含m代数式表示)(3)当m=时,求证:矩形ABCD是正方形.24.(13分)如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根,且其中一个根为另一个根的2倍,那么称这样的方程为“倍根方程”.例如,一元二次方程x2﹣6x+8=0的两个根是2和4,则方程x2﹣6x+8=0就是“倍根方程”.(1)若一元二次方程x2﹣3x+c=0是“倍根方程”,则c= ;(2)若(x﹣2)(mx﹣n)=0(m≠0)是“倍根方程”,求代数式4m2﹣5mn+n2的值;(3)若关于x的一元二次方程ax2+bx+c=0(a≠0)是“倍根方程”,求a,b,c之间的关系.25.(13分)如图,已知点P在矩形ABCD外,∠APB=90°,P A=PB,点E,F分别在AD,BC上运动,且∠EPF=45°,连接EF.(1)求证:△APE∽△BFP;(2)若△PEF是等腰直角三角形,求的值;(3)试探究线段AE,BF,EF之间满足的等量关系,并证明你的结论.参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分.)1.【分析】找出数据中出现次数最多的数即可.【解答】解:∵3出现了2次,出现的次数最多,∴这组数据的众数为3;故选:C.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将21500000用科学记数法表示为2.15×107,故选:B.3.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:A、俯视图是有圆心的圆,故A不符合题意;B、俯视图是矩形,故B不符合题意;C、俯视图是三角形,故C符合题意;D、俯视图不是三角形,故D不符合题意;故选:C.4.【分析】求出第一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式2x≥﹣1,得:x≥﹣,又x>﹣1,∴不等式组的解集为x≥﹣,故选:C.5.【分析】方程常数项移到右边,两边加上1变形即可得到结果.【解答】解:方程移项得:x2﹣2x=5,配方得:x2﹣2x+1=6,即(x﹣1)2=6.故选:B.6.【分析】利用平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例求解.【解答】解:∵AB∥CD∥EF,∴===.故选:C.7.【分析】在图中找到两函数图象的交点,根据图象即可作出判断.【解答】解:由图象可知当x=1时,y1<y2.故选:D.8.【分析】证出四边形ABCD是平行四边形,再由对角线互相垂直,即可得出四边形ABCD 是菱形.【解答】解:需要添加的条件是AC⊥BD;理由如下:∵四边形ABCD的对角线互相平分,∴四边形ABCD是平行四边形,∵AC⊥BD∴平行四边形ABCD是菱形(对角线互相垂直的平行四边形是菱形);故选:D.9.【分析】由每轮传染中一人传染的人数,可得出经过一轮传染后有染上流感得人数,再利用第二轮被传染上流感的人数=经过一轮传染后有染上流感得人数×每轮传染中一人传染的人数,即可得出结论.【解答】解:∵在每轮的传染中平均一个人传染了m个人,∴经过一轮传染后有(m+1)人染上流感,∴第二轮被传染上流感的人数是m(m+1)人.故选:C.10.【分析】连接AG并延长交BC于F,如图,利用重心的性质可判断AF为BC边上的中线,则BF=CF,再根据平行线分线段成比例定理=,=,从而得到DG=GE.【解答】解:连接AG并延长交BC于F,如图,∵点G是△ABC的重心,∴AF为BC边上的中线,即BF=CF,∵DG∥BF,∴=,∵GE∥CF,∴=,∴DG=GE.故选:A.二、填空题(共6小题,每小题4分,满分24分)11.【分析】根据点P(a,b)关于原点对称的点P′的坐标为(﹣a,﹣b)即可得到点(﹣2,1)关于原点对称的点的坐标.【解答】解:点(﹣2,1)关于原点对称的点的坐标为(2,﹣1).故答案为(2,﹣1).12.【分析】首先由,求出a、b之间的关系,求得答案.【解答】解:∵,∴5a﹣5b=3a,∴2a=5b,∴=.13.【分析】直接利用平方差公式进行因式分解即可.【解答】解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).14.【分析】根据平行投影的性质可先连接AC,再过点D作DF∥AC交地面与点F,EF即为所求;根据平行的性质可知△ABC∽△DEF,利用相似三角形对应边成比例即可求出DE的长.【解答】解:DE在阳光下的投影是EF如图所示;∵△ABC∽△DEF,AB=6m,BC=3m,EF=4m,∴,∴∴DE=8,∴DE=8(m).故答案是:8.15.【分析】由α,β是一元二次方程x2+3x﹣7=0的两个根,得出α+β=﹣3,α2+3α=7,再把α2+5α+2β变形为α2+3α+2(α+β),即可求出答案.【解答】解:∵α,β是一元二次方程x2+3x﹣7=0的两个根,∴α+β=﹣3,α2+3α﹣7=0,∴α2+3α=7,∴α2+5α+2β=α2+3α+2(α+β)=7+2×(﹣3)=1,故答案为:1.16.【分析】分两种情况讨论,由相似三角形的性质可求解.【解答】解:如图,过点P作AC的平行线,或过点P作BC的平行线,都可以截得的三角形与△ABC相似,∵经过点P能画△ABC的相似线最多只有3条,∴∠ACP=∠B或∠BCP'=∠A,当∠ACP=∠B,∠A=∠A时,则△ACP∽△ABC,∴,∴10x=25,∴x=2.5,当∠BCP'=∠A,∠B=∠B时,△BCP'∽△BCA,∴,∴10×(10﹣x)=49,∴x=5.1,∴当0<x≤2.5或5.1≤x<10时,经过点P能画△ABC的相似线最多只有3条,故答案为:0<x≤2.5或5.1≤x<10.三、解答题(本大题共9小题,共86分)17.【分析】直接利用立方根的性质以及负整数指数幂的性质分别化简得出答案.【解答】解:原式=﹣4+(﹣3)+3=﹣4.18.【分析】利用因式分解法求解即可.【解答】解:分解因式可得(x﹣1)(x﹣7)=0,∴x﹣1=0或x﹣7=0,∴x=1或x=7.19.【分析】根据分式的混合运算法则把原式化简,代入计算即可.【解答】解:()=•(x+1)(x﹣1)=2(x+2),当x=2时,原式=2×(2+2)=8.20.【分析】证明四边形AECF是平行四边形,即可得出结论.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,又∵AE∥CF,∴四边形AECF是平行四边形,∴AE=CF.21.【分析】(1)由题意可知有两种方法:方法一,根据线段垂直平分线的性质,使点E在CD的垂直平分线上,方法二,根据等腰三角形的性质可利用平行线的性质、角平分线的性质推出∠ECD=∠EDC,从而有EC=ED;(2)根据方法一求解,先利用垂直平分线的性质得出EC=ED,从而推出∠EDC=∠DCE,再根据角平分线的性质推出∠BCD=∠,进而推出DE∥BC、△ADE∽△ABC,根据相似三角形的性质求解即可;根据方法二求解,由DE∥BC得到∠ADE=∠B,从而推出△ADE∽△ABC,根据相似三角形的性质求解即可;【解答】(1)方法一:作CD的垂直平分线交AC于点E.∴点E就是所求作的点.方法二:过点D作BC的平行线交AC于点E.∴点E就是所求作的点.(2)当第(1)问用方法一时:由(1)知DE=CE,∴∠EDC=∠DCE,∵CD平分∠BCE,∴∠BCD=∠DCE,∴∠BCD=∠EDC,∴DE∥BC,∴∠ADE=∠B,又∵∠A=∠A,∴△ADE∽△ABC,∴,∵,BC=10,∴,∴,∴DE=4;当第(1)问用方法二时:由(1)知DE∥BC,∴∠ADE=∠B,又∵∠A=∠A,∴△ADE∽△ABC,∴,∵,BC=10,∴,∴,∴DE=4.22.【分析】(1)由题意可知:分别计算出甲的演讲答辩得分以及甲的民主测评得分,再将a=0.6代入公式计算可以求得甲的综合得分;(2)同(1)一样先计算出乙的演讲答辩得分以及乙的民主测评得分,则乙的综合得分=89(1﹣a)+88a,甲的综合得分=92(1﹣a)+87a,再分别比较甲、乙的综合得分,甲的综合得分高时即当甲的综合得分>乙的综合得分时,可以求得a的取值范围;同理甲的综合得分高时即当甲的综合得分<乙的综合得分时,可以求得a的取值范围.【解答】解:(1)甲的演讲答辩得分=(分),甲的民主测评得分=40×2+7×1+3×0=87(分),当a=0.6时,甲的综合得分=92×(1﹣0.6)+87×0.6=36.8+52.2=89(分);答:当a=0.6时,甲的综合得分是89分;(2)∵乙的演讲答辩得分=(分),乙的民主测评得分=42×2+4×1+4×0=88(分),∴乙的综合得分为:89(1﹣a)+88a,甲的综合得分为:92(1﹣a)+87a,当92(1﹣a)+87a>89(1﹣a)+88a时,即有,又0.5≤a≤0.8,∴0.5≤a<0.75时,甲的综合得分高;当92(1﹣a)+87a<89(1﹣a)+88a时,即有,又0.5≤a≤0.8,∴0.75<a≤0.8时,乙的综合得分高.答:当0.5≤a<0.75时,甲的综合得分高,0.75<a≤0.8时,乙的综合得分高.23.【分析】(1)把(1,3)代入反比例函数解析式即可;(2)BG=CG,求出OB即可,A在反比例函数解析式上,求出AB,即A的纵坐标,代入反比例函数解析式即可求出A的横坐标;(3)当m=时,点A(,),点E(,)则点B(,0),AB=,由B、E的坐标求得D的坐标,进而即可求得AD=,即可证得AB=BD,从而证得矩形ABCD是正方形.【解答】解:(1)由函数y=(x>0)的图象过点(1,3),∴k=1×3=3,故答案为:3;(2)如图,连接AC,则AC过E,过E作EG⊥BC交BC于G点∵点E的横坐标为m,E在双曲线y=上,∴E的纵坐标是y=,∵E为BD中点,∴由平行四边形性质得出E为AC中点,∴BG=GC=BC,∴AB=2EG=,即A点的纵坐标是,代入双曲线y=得:A的横坐标是m,∴A(m,);(3)当m=时,点A(,),点E(,),∴点B(,0),AB=,∵E为BD中点,∴点D(,),∴AD=﹣=,∴AB=AD∴矩形ABCD是正方形.24.【分析】(1)由一元二次方程x2﹣3x+c=0是“倍根方程”,得到x1+2x1=3,2x12=c,即可得到结论;(2)解方程(x﹣2)(mx﹣n)=0(m≠0)得,x1=2,.由方程两根是2倍关系,得到x2=1或4,代入解方程即可得到结论;(3)根据“倍根方程”的概念得到原方程可以改写为a(x﹣t)(x﹣2t)=0,解方程即可得到结论.【解答】解:(1)∵一元二次方程x2﹣3x+c=0是“倍根方程”,∵x1+x2=3,x1x2=c,即x1+2x1=3,2x12=c,∴c=2,故答案为:2;(2)解方程(x﹣2)(mx﹣n)=0(m≠0)得,x1=2,.∵方程两根是2倍关系,∴x2=1或4,当x2=1时,,即m=n,代入代数式4m2﹣5mn+n2=0,当x2=4时,,即n=4m,代入代数式4m2﹣5mn+n2=0.综上所述,4m2﹣5mn+n2=0;(3)根据“倍根方程”的概念设一元二次方程ax2+bx+c=0(a≠0)的两个根为t和2t.∴原方程可以改写为a(x﹣t)(x﹣2t)=0,∴ax2+bx+c=ax2﹣3atx+2at2,∴.解得2b2﹣9ac=0.∴a,b,c之间的关系是2b2﹣9ac=0.25.【分析】(1)根据矩形的性质和相似三角形的判定得出△APE∽△BFP即可;(2)根据相似三角形的性质得出比例关系,分两种情况进行讨论解答即可;(3)分三种解法,利用全等三角形的判定和性质以及勾股定理解答即可.【解答】证明:(1)∵四边形ABCD是矩形,∴∠BAD=∠ABC=90°.∵∠APB=90°,P A=PB,∴∠P AB=∠PBA=45°.∴∠P AE=∠FBP=135°.∴∠APE+∠AEP=45°.∵∠EPF=45°,∠APB=90°,∴∠APE+∠BPF=45°.∴∠AEP=∠BPF.∴△APE∽△BFP.(2)∵△APE∽△BFP,∴.∵△PEF是等腰直角三角形,∠EPF=45°,∴可分为两种情况讨论:①当∠PEF=90°,PE=EF时,则.∴.∴,.∵AP=BP,∴.②当∠PFE=90°,PF=EF时,则.∴.∴,.∵AP=BP,∴.综上所述,的值为或2.(3)线段AE,BF,EF之间满足的等量关系是AE2+BF2=EF2.解法一:延长AB到G,使得BG=AE,连接PG,FG,∵∠PBA=45°,∴∠PBG=135°.∵∠P AE=135°,∵P A=PB,BG=AE,∴△PBG≌△P AE(SAS).∴BG=AE,PG=PE,∠BPG=∠APE.∵∠APE+∠BPF=∠EPF=45°,∴∠BPG+∠BPF=∠EPF.即∠GPF=∠EPF.又∵PF=PF,PG=PE,∴△PGF≌△PEF(SAS).∴GF=EF.∵∠ABC=90°,∴∠GBF=90°.∴由勾股定理得,BG2+BF2=GF2.∴AE2+BF2=EF2.解法二:以PE为对称轴,作△P AE的轴对称图形△PME,连接MF,则P A=PM,AE=ME,∠APE=∠MPE,∠P AE=∠PME=135°.∵P A=PB,∠APE+∠BPF=∠EPF=∠MPE+∠MPF,∴PB=PM,∠BPF=∠MPF.又∵PF=PF,∴△PBF≌△PMF(SAS).∴BF=MF,∠PBF=∠PMF=135°.∵∠PME+∠PMF+∠EMF=360°,由勾股定理得ME2+MF2=EF2.∴AE2+BF2=EF2.解法三:以PE为对称轴,作△PEF的轴对称图形△PNE,连接NA,则PN=PF,EN=EF,∠EPN=∠EPF.∵∠APE+∠APN=∠EPN,∠APE+∠BPF=∠EPF,∴∠APN=∠BPF.又∵P A=PB,PN=PF,∴△P AN≌△PBF(SAS).∴AN=BF,∠P AN=∠PBF=135°.∵∠P AB=45°,∠BAD=90°,∴∠NAE=90°.由勾股定理得AE2+AN2=EN2.∴AE2+BF2=EF2.。
九年级数学第一次月考时间:120分钟 分值:120分一.选择题(每小题3分,共36分)1、下列命题中,真命题是( )A .两条对角线相等的四边形是矩形B .两条对角线垂直的四边形是菱形C .两条对角线垂直且相等的四边形是正方形D .两条对角线相等的平行四边形是矩形2、下列图形:线段、正三角形、平行四边形、矩形、菱形、正方形、等腰梯形、直角梯形,其中既是中心对称图形,又是轴对称图形的共有 ( ) A 、3个 B 、4个 C 、 5个 D 、6个3、下列方程是一元二次方程的是( )A 、x 2+3x-2y =5B 、1x 2 -2x =1C 、(x-1) 2 +1= x 2D 、 5 x 2-8= 3 x 4、方程2650x x +-=的左边配成完全平方后所得方程为 ( )A 、 14)3(2=+xB 、 14)3(2=-xC 、 21)6(2=+x D 、 以上答案都不对 5、若m 是关于x 的一元二次方程02=++m nx x 的根,且m ≠0,则n m +的值为( )(A )1- (B )1 (C )21- (D )21 6、 下列说法正确的是( )A 平移不改变图形的形状和大小,而旋转则改变图形的形状和大小B 平移和旋转的共同点是改变图形的位置C 图形可以向某方向平移一定距离,也可以向某方向旋转一定距离7、如图,在△ABC 中,D 、E 分别是AB 、AC 边的中点,且AB = 10,AC = 14,BC = 16,则DE 等于 ( )A 、5B 、7C 、8D 、128、已知菱形的两条对角线长分别为4cm 和10cm ,菱形的边长为( )A 116cmB 29cmC 292cmD 29cm9、、若等腰梯形两底之差等于一腰的长,那么这个梯形一内角是( )A 、︒90B 、︒60C 、︒45D 、︒3010、、如图,共有5个正三角形,从位置来看,( )是由左边第一个图平移得到的.A B C D11、如图,ABCD 的周长是28㎝, △ABC 的周长是22㎝,则AC 的长为( )A .6㎝B . 12㎝C .4㎝D . 8㎝12、如图,等腰梯形ABCD 中,AB DC ∥,AC BC ⊥,点E 是AB 的中点,EC AD ∥,则ABC∠等于( )A .75︒B .70︒C .60︒D .30︒二.填空题(每小题3分,共24分)13、方程0)1)(2(=+-x x 的根是 ;14、若方程032=--k x x 无实数解,则k 的取值范围是_____________。
& 鑫达捷致力于精品文档 精心制作仅供参考 &九年级上数学第一次月考(201509)一、选择题:(每小题3分,共30分)1、式子:①a ;②π;③x -1;④2+x ;⑤x -;⑥152-x ;⑦22+a ⑧23b 中是二次根式的代号为 ( )A 、①②④⑥B 、②④⑧C 、②③⑦⑧D 、①②⑦⑧ 2、计算:18÷43×34的结果是 ( )A 、0B 、24C 、22D 、323、下列说法中,正确的是 ( )A 、如果d d c b a +=+b ,那么d c b a =B 、 b a ab •=C 、方程022=-+x x 的根是2,121=-=x xD 、1)1(2-=-x x4、若分式方程11)1(16=---+x m x x )(有增根,则它的增根是 ( )A 、0B 、1C 、-1D 、±15一元二次方程()043222=-++-k x x k 有一个解为0,则k 的值 ( )A 、±2 B 、2 C 、-2 D 、任意实数6、已知012=-+αα,012=-+ββ,且βα≠,βααβ++的值为 ( ) A 、2 B 、-2 C 、-1 D 、07、若方程042=++a x x 无实数根,则化简2a 8a -16+等于 ( )A 、4-aB 、a-4C 、-a-4D 、无法确定8、若正比例函数y=(a-1)x 的图像过第一、三象限,化简2)1(a -的结果是 ( )A 、a-1B 、1-aC 、(a-1)2D 、-(1-a)29、某工厂改进工艺降低了某种产品的成本,两个月内从每件产品250元,降低到了每 件160元,设平均每月的降低率为 x ,则可列方程 ( )A 、250(1-x )=160B 、250(1-x )2=160 C 、250(1-x 2)=160 D 、250(1-2x )=16010、已知三个关于y 的方程:02=+-a y y ,012)1(2=++-y y a 和012)2(2=-+-y y a , 若其中至少有两个方程有实根,则实数a 的取值范围是 ( )A 、2≤aB 、41≤a 或21≤≤x C 、1≥a D 、141≤≤a 二、填空题:(每小题3分,共18分)11、若a a -+-33有意义,则a = 。
嘉博教育阶段性测试试题华师大版九年级(上)数学第一次月考测试卷总分:120分 时间:90分钟姓名:______________ 得分:______________※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※【卷一】※※※ 此部分含两大题,共计17小题,共34分,每题2分。
答题完成后,请将答案转填至答题卡上。
※※※一.选择题。
本题共20分,共计10小题,每题2分。
1. 【2011•江苏徐州】若式子1x -实数范围内有意义,则x 的取值范围是( ) A 1≥x B x >1 C x <1 D x ≤12. 【2011·甘肃兰州】用配方法解方程x 2-2x -5=0时,原方程应变形为( )A (x +1)2=6 B (x +2)2=9 C (x -1)2=6 D (x -2)2=93. 【2011·山东日照】已知x 、y 为实数,且满足1+x -(y -1)1-y =0,则20112011y x -的值是( )A 0B -2C 2D 1 4. 【2011·福建福州】一元二次方程x (x -2)=0根的情况是( )A 有两个不相等的实数根B 有两个相等的实数根C 只有一个实数根D 没有实数根5. 【2011·贵州贵阳】如图,矩形OABC 的边OA 长为2 ,边AB 长为1,OA 在数轴上,以原点O 为圆心,对角线OB 的长为半径画弧,交正半轴于一点,则这个点表示的实数是( )A 2.5B 2 2C 3D 56. 【2011·台湾】若一元二次方程式()()()()22211=++++++x bx x x x ax 的两根为0和2,则b a 43+之值是( )A 2B 5C 7D 87. 【2011·山东威海】关于x 的一元二次方程()0122=++-+m x m x 有两个相等的实数根,则m 的值是( )A 0B 8C 4±2 2D 0或88. 【第22届“希望杯”全国数学邀请赛初二第一试】当1≥x 时,不等式211--≥-++x m x x 恒成立,那么实数m 的最大值是( )A 1B 2C 3D 49. 【2011·山东济宁】已知关于x 的方程02=++a bx x 的一个根是a -(0≠a ),则b a -值为( )A -1B 0C 1D 2 10. 【2011·四川内江】若=m 20112012-1,则34520112m m m --的值是( )A 1B -1C 0D -2二.填空题。
9月月考数学试卷一、选择题(30分)323.1.2.7..1a bD x C m B A +-)(式的是下列各式一定是二次根2、下列各式中与327x --是同类二次根式的是( )A .327xB .273x -C .2391x --D .3x3、已知二次三项式2X +2mx+4-2m 是一个完全平方式,则m= ( ) A:2 B:-2 C: 2 D: 2±4、若关于x 的一元二次方程2X +3x-k=0有实数根,则k 的取值范围是( )A .49-≥kB .49->kC .49-≥k 且k ≠0D .49->k 且k 0≠5、. 某商品降价20%后欲恢复原价,则提价的百分数为( )A 、18%B 、20%C 、25%、D 、 30%6、一个三角形的两边长为3和6,第三边的边长是(2)(4)0x x --=的根,则这个三角形的周长是( )A: 11 B. 11或13 C. 11和13 D 137、如果最简根式3a -8 与17-2a 是同类二次根式,那么使4a -2x 有意义的x 的范围是( )A 、 x ≤10B 、 x ≥10C 、 x<10D 、 x>108、若b b -=-3)3(2,则( )A .b>3B .b<3C .b ≥3D .b ≤39、一元二次方程2x -2x-4=0和 2x -x+2=0所有实数根的乘积等于( )A : -8B :8C :-4D :410、方程2x -4│x │+3=0的解是 ( )A.x=±1或x=±3B.x=1和x=3C.x= -1或x=-3D.无实数根二、填空题 (18分)11.有一个一元二次方程,未知数为y ,二次项的系数为-1,一次项的系数为3,常数项为-6,请你写出它的一般形式______________。
12.观察并分析下列数据,寻找规律: 0,3 ,6,3,23,15,32,…… 那么第10个数据应是_______。
华东师大版九年级数学上册第一次月考测试卷及答案【A4打印版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.下列二次根式中能与23合并的是( )A .8B .13C .18D .9 2.已知x+1x =6,则x 2+21x =( ) A .38 B .36 C .34 D .323.已知α、β是方程x 2﹣2x ﹣4=0的两个实数根,则α3+8β+6的值为( )A .﹣1B .2C .22D .304.今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为( )A .2.147×102B .0.2147×103C .2.147×1010D .0.2147×10115.下列对一元二次方程x 2+x ﹣3=0根的情况的判断,正确的是( )A .有两个不相等实数根B .有两个相等实数根C .有且只有一个实数根D .没有实数根6.关于x 的方程2(1)(2)x x ρ-+=(ρ为常数)根的情况下,下列结论中正确的是( )A .两个正根B .两个负根C .一个正根,一个负根D .无实数根7.下面四个手机应用图标中是轴对称图形的是( )A .B .C .D .8.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD9.如图,△ABC 中,AD 是BC 边上的高,AE 、BF 分别是∠BAC 、∠ABC 的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=( )A .75°B .80°C .85°D .90°10.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.计算:02(3)π-+-=_____________.2.分解因式:x 3﹣16x =_____________.3.若函数y=mx 2+2x+1的图象与x 轴只有一个公共点,则常数m 的值是_____.4.如图,已知△ABC 的周长是21,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =4,△ABC 的面积是__________.5.如图所示,在四边形ABCD 中,AD ⊥AB ,∠C=110°,它的一个外角∠ADE=60°,则∠B的大小是__________.6.PM2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学计数法表示为___________.三、解答题(本大题共6小题,共72分)1.解方程:12133xx x -+=--2.已知二次函数的图象以A(﹣1,4)为顶点,且过点B(2,﹣5)(1)求该函数的关系式;(2)求该函数图象与坐标轴的交点坐标;(3)将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△O A′B′的面积.3.如图,已知二次函数y=ax2+bx+3的图象交x轴于点A(1,0),B(3,0),交y轴于点C.(1)求这个二次函数的表达式;(2)点P是直线BC下方抛物线上的一动点,求△BCP面积的最大值;(3)直线x=m分别交直线BC和抛物线于点M,N,当△BMN是等腰三角形时,直接写出m的值.4.如图,AB为⊙O的直径,C为⊙O上一点,∠ABC的平分线交⊙O于点D,DE ⊥BC于点E.(1)试判断DE与⊙O的位置关系,并说明理由;(2)过点D作DF⊥AB于点F,若BE=33,DF=3,求图中阴影部分的面积.5.元旦期间,某超市开展有奖促销活动,凡在超市购物的顾客均有转动圆盘的机会(如图),如果规定当圆盘停下来时指针指向8就中一等奖,指向2或6就中二等奖,指向1或3或5就中纪念奖,指向其余数字不中奖.(1)转动转盘中奖的概率是多少?(2)元旦期间有1000人参与这项活动,估计获得一等奖的人数是多少?6.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、D4、C5、A6、C7、D8、D9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、32、x(x+4)(x–4).3、0或14、425、40°6、2.5×10-6三、解答题(本大题共6小题,共72分)1、1x2、(1)y=﹣x2﹣2x+3;(2)抛物线与y轴的交点为:(0,3);与x轴的交点为:(﹣3,0),(1,0);(3)15.3、(1)这个二次函数的表达式是y=x2﹣4x+3;(2)S△BCP最大=278;(3)当△BMN是等腰三角形时,m,1,2.4、(1)DE与⊙O相切,理由略;(2)阴影部分的面积为25、(1)34;(2)1256、(1)120件;(2)150元.。
初中年9月月考数学试卷(考试时间:120分钟 全卷满分120分)一、选择题:(本大题10个小题,每小题3分,共30分) 1、16的值是( ).A 、±4B 、 -4C 、4D 、 以上答案都不对 2、在式子4、5.0、321、22b a +中,是最简二次根式的有( ). A 、1个 B 、2个 C 、 3个 D 、 4个 3、根式2)3(-的值是 ( )A 、 -3B 、3或-3C 、3D 、9 4、要使x 24-有意义,则字母x 应满足的条件是( ).A 、 x =2B 、x <2C 、x ≤2D 、x ≥2 5、如果最简二次根式b-a3b 和2b -a+2 是同类二次根式,那么a ,b 的值为( )A.a=0,b=2 B.a=2,b=0 C.a=-1 ,b=1 D.a=1,b=-26、一元二次方程x 2-1=0的根为( )A .x =1B .x =-1C .x 1=1,x 2=-1D .x 1=0,x 2=1 7、方程2269x x -=的二次项系数、一次项系数、常数项分别为( ) A 、6 2 9 B 、2 -6 9 C 、2 -6 -9 D 、-2 6 9 8、用直接开方法解方程2(3)8x -=得方程的根为( )A 、 3x =+B 、1233x x =+=-C 、 3x =-D 、1233x x =+=-9、方程的2650x x +-=左边配成完全平方式后所得的方程为( )A.2(3)14x +=B.2(3)14x -= C.21(6)2x +=D.以上答案都不对 10、某型号的手机连续两次降阶,每个售价由原来的1185元降到580元,设平均每次降价的百分率为x ,则列出方程正确的是( )A 、 2580(1+x)=1185 B 、21185(1+x)=580C 、 2580(1-x)=1185D 、21185(1-x)=580 二、填空题:(本大题10个小题,每小题3分,共30分)1.一元二次方程(13)(3)2x x +-= 化为一般形式为: ,二次项系数为 ,一次项系数为 常数项为 .2.关于x 的方程023)1()1(2=++++-m x m x m ,当m ________时为一元一次方程;当m___________时为一元二次方程.3.方程()()21230y y +-=的根是___________;方程0162=-x 的根是_____________;方程 9)12(2=-x 的根是 .4.已知1x =-是方程260x ax -+=的一个根,则a=__________,另一个根为________. 5.若一个三角形的三边长均满足方程x 2-6x +8=0,则此三角形的周长为 .6=32。
华东师大版九年级数学上册第一次月考测试卷【参考答案】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.8的相反数的立方根是( )A .2B .12C .﹣2D .12- 2.已知抛物线24y x bx =-++经过(2,)n -和(4, )n 两点,则n 的值为( )A .﹣2B .﹣4C .2D .43.如果a 与1互为相反数,则|a+2|等于( )A .2B .-2C .1D .-14.如图,数轴上有三个点A 、B 、C ,若点A 、B 表示的数互为相反数,则图中点C 对应的数是( )A .﹣2B .0C .1D .45.下列说法正确的是( )A .负数没有倒数B .﹣1的倒数是﹣1C .任何有理数都有倒数D .正数的倒数比自身小6.对于一个函数,自变量x 取a 时,函数值y 也等于a ,我们称a 为这个函数的不动点.如果二次函数y =x 2+2x +c 有两个相异的不动点x 1、x 2,且x 1<1<x 2,则c 的取值范围是( )A .c <﹣3B .c <﹣2C .c <14D .c <17.如图,点B ,C ,D 在⊙O 上,若∠BCD =130°,则∠BOD 的度数是( )A .50°B .60°C .80°D .100°8.如图,A ,B 是反比例函数y=4x 在第一象限内的图象上的两点,且A ,B 两点的横坐标分别是2和4,则△OAB 的面积是( )A .4B .3C .2D .19.如图,在矩形ABCD 中,点E 是边BC 的中点,AE ⊥BD ,垂足为F ,则tan ∠BDE 的值是( )A .24B .14C .13D .2310.如图,矩形ABCD 的对角线AC ,BD 交于点O ,6AB =,8BC =,过点O 作OE AC ⊥,交AD 于点E ,过点E 作EF BD ⊥,垂足为F ,则OE EF +的值为( )A .485B .325C .245D .125二、填空题(本大题共6小题,每小题3分,共18分)1.计算618136的结果是_____________. 2.分解因式:244m m ++=___________.3.若函数y=mx 2+2x+1的图象与x 轴只有一个公共点,则常数m 的值是_____.4.在Rt ABC ∆中,90C =∠,AD 平分CAB ∠,BE 平分ABC ∠,AD BE 、相交于点F ,且4,2AF EF ==,则AC =__________.5.如图,点A ,B 是反比例函数y=k x(x >0)图象上的两点,过点A ,B 分别作AC ⊥x 轴于点C ,BD ⊥x 轴于点D ,连接OA ,BC ,已知点C (2,0),BD=2,S △BCD =3,则S △AOC =__________. 6.如图是一张矩形纸片,点E 在AB 边上,把BCE 沿直线CE 对折,使点B 落在对角线AC 上的点F 处,连接DF .若点E ,F ,D 在同一条直线上,AE =2,则DF =_____,BE =__________.三、解答题(本大题共6小题,共72分)1.解分式方程:21124x x x -=--2.先化简,再求值:22121244x x x x x x +-⎛⎫-÷ ⎪--+⎝⎭,其中3x =3.如图,在▱ABCD 中,E 是BC 的中点,连接AE 并延长交DC 的延长线于点F .(1)求证:AB=CF;(2)连接DE,若AD=2AB,求证:DE⊥AF.4.如图,已知P是⊙O外一点,PO交圆O于点C,OC=CP=2,弦AB⊥OC,劣弧AB的度数为120°,连接PB.(1)求BC的长;(2)求证:PB是⊙O的切线.5.某学校要开展校园文化艺术节活动,为了合理编排节目,对学生最喜爱的歌曲、舞蹈、小品、相声四类节目进行了一次随机抽样调查(每名学生必须选择且只能选择一类),并将调查结果绘制成如下不完整统计图.请你根据图中信息,回答下列问题:(1)本次共调查了名学生.(2)在扇形统计图中,“歌曲”所在扇形的圆心角等于度.(3)补全条形统计图(标注频数).(4)根据以上统计分析,估计该校2000名学生中最喜爱小品的人数为人.(5)九年一班和九年二班各有2名学生擅长舞蹈,学校准备从这4名学生中随机抽取2名学生参加舞蹈节目的编排,那么抽取的2名学生恰好来自同一个班级的概率是多少?6.某商场准备购进A,B两种书包,每个A种书包比B种书包的进价少20元,用700元购进A种书包的个数是用450元购进B种书包个数的2倍,A种书包每个标价是90元,B种书包每个标价是130元.请解答下列问题:(1)A,B两种书包每个进价各是多少元?(2)若该商场购进B种书包的个数比A种书包的2倍还多5个,且A种书包不少于18个,购进A,B两种书包的总费用不超过5450元,则该商场有哪几种进货方案?(3)该商场按(2)中获利最大的方案购进书包,在销售前,拿出5个书包赠送给某希望小学,剩余的书包全部售出,其中两种书包共有4个样品,每种样品都打五折,商场仍获利1370元.请直接写出赠送的书包和样品中,A种,B 种书包各有几个?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、B3、C4、C5、B6、B7、D8、B9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)12、()22m+3、0或14、55、5.6、 1三、解答题(本大题共6小题,共72分)1、32x=-.2、3 x3、详略.4、(1)2(2)略5、(1)50;(2)72°;(3)补全条形统计图见解析;(4)640;(5)抽取的2名学生恰好来自同一个班级的概率为13.6、(1)A,B两种书包每个进价各是70元和90元;(2)共有3种方案,详见解析;(3)赠送的书包中,A种书包有1个,B种书包有个,样品中A种书包有2个,B种书包有2个.。
华师大版九年级上第一次月考姓名:__________班级:__________考号:__________一、选择题(本大题共10小题)1.下列二次根式中,最简二次根式是()A. B. C. D.2.使二次根式有意义的x的取值范围是()A.x≠1 B.x>1 C.x≤1 D.x≥13.计算:2﹣=()A.3 B. C.2 D.14.下列根式中,不能与3合并的是()A.13 B.33C.23D.125.关于x的一元二次方程(a﹣1)x2+3x﹣2=0有实数根,则a的取值范围是()A. B. C.且a≠1 D.且a≠16.若α、β为方程2x2﹣5x﹣1=0的两个实数根,则2α2+3αβ+5β的值为()A.﹣13 B.12 C.14 D.157.定义[x]表示不超过实数x的最大整数,如[1.8]=1,[﹣1.4]=﹣2,[﹣3]=﹣3.函数y=[x]的图象如图所示,则方程[x]= x2的解为()A.0或 B.0或2 C.1或D.或﹣8.一个等腰三角形的两条边长分别是方程x2﹣7x+10=0的两根,则该等腰三角形的周长是()A.12 B.9 C.13 D.12或99.已知,则代数式的值是()A. B. C. D.10.已知三角形的三边长分别为a、b、c,求其面积问题,中外数学家曾经进行过深入研究,古希腊的几何学家海伦(Heron,约公元50年)给出求其面积的海伦公式S=,其中p=;我国南宋时期数学家秦九韶(约1202﹣1261)曾提出利用三角形的三边求其面积的秦九韶公式S=,若一个三角形的三边长分别为2,3,4,则其面积是()A. B. C. D.二、填空题(本大题共6小题)11.计算的结果等于.12.用教材中的计算器进行计算,开机后依次按下.把显示结果输人下侧的程序中,则输出的结果是____________.13.观察下列各式:…请你将发现的规律用含自然数n(n≥1)的代数式表达出来.14.已知若分式的值为0,则x的值为.15.关于x的一元二次方程(k﹣1)x2+6x+k2﹣k=0的一个根是0,则k的值是.16.若方程(x﹣m)(x﹣n)=3(m,n为常数,且m<n)的两实数根分别为a,b(a<b),则m,n,a,b的大小关系是.三、解答题(本大题共9小题)17.先化简,再求值:•(1+)÷,其中x=2﹣1.18.解方程(1)2x2﹣3x﹣2=0;(2)x(2x+3)﹣2x﹣3=0.19.(1)若|x﹣3|+(4+y)2+z =0,求3x+y+z的值.2(2)设2+7的小数部分是a,求a(a+2)的值.20.已知关于x的方程x2﹣(2m+1)x+m(m+1)=0.(1)求证:方程总有两个不相等的实数根;(2)已知方程的一个根为x=0,求代数式(2m﹣1)2+(3+m)(3﹣m)+7m﹣5的值(要求先化简再求值).21.如果一个三角形的三边的长分别为a、b、c,那么可以根据秦九韶﹣海伦公式S=(其中p=(a+b+c))或其它方法求出这个三角形的面积.试求出三边长分别为的三角形的面积.22.已知关于x的一元二次方程x2+(2m+1)x+m2﹣2=0.(1)若该方程有两个实数根,求m的最小整数值;(2)若方程的两个实数根为x1,x2,且(x1﹣x2)2+m2=21,求m的值.23.某市总预算a亿元用三年时间建成一条轨道交通线.轨道交通线由线路敷设、搬迁安置、辅助配套三项工程组成.从2015年开始,市政府在每年年初分别对三项工程进行不同数额的投资.2015年年初,对线路敷设、搬迁安置的投资分别是辅助配套投资的2倍、4倍.随后两年,线路敷设投资每年都增加b亿元,预计线路敷设三年总投资为54亿元时会顺利如期完工;搬迁安置投资从2016年初开始遂年按同一百分数递减,依此规律,在 2017年年初只需投资5亿元,即可顺利如期完工;辅助配套工程在2016年年初的投资在前一年基础上的增长率是线路敷设2016年投资增长率的1.5倍,2017年年初的投资比该项工程前两年投资的总和还多4亿元,若这样,辅助配套工程也可以如期完工.经测算,这三年的线路敷设、辅助配套工程的总投资资金之比达到3:2.(1)这三年用于辅助配套的投资将达到多少亿元?(2)市政府2015年年初对三项工程的总投资是多少亿元?(3)求搬迁安置投资逐年递减的百分数.24.如图所示,△ABC中,∠B=90°,AB=6cm,BC=8cm.点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动.如果P,Q分别从A,B同时出发,(1)如果P、Q同时出发,几秒后,可使△PBQ的面积为8平方厘米?(2)线段PQ能否将△ABC分成面积相等的两部分?若能,求出运动时间;若不能说明理由.25.阅读材料:各类方程的解法求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x3+x2﹣2x=0,可以通过因式分解把它转化为x(x2+x﹣2)=0,解方程x=0和x2+x﹣2=0,可得方程x3+x2﹣2x=0的解.(1)问题:方程x3+x2﹣2x=0的解是x1=0,x2= ,x3= ;(2)拓展:用“转化”思想求方程=x的解;(3)应用:如图,已知矩形草坪ABCD的长AD=8m,宽AB=3m,小华把一根长为10m的绳子的一端固定在点B,沿草坪边沿BA,AD走到点P处,把长绳PB段拉直并固定在点P,然后沿草坪边沿PD、DC走到点C处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C.求AP的长.沪科版九年级上第一次月考答案解析一、选择题1.【考点】最简二次根式.【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.解:A.被开方数不含分母;被开方数不含能开得尽方的因数或因式,故A符合题意;B、被开方数含能开得尽方的因数或因式,故B不符合题意;C、被开方数含分母,故C不符合题意;D、被开方数含能开得尽方的因数或因式,故D不符合题意;故选:A.2.【考点】二次根式有意义的条件.【分析】根据二次根式中的被开方数必须是非负数列出不等式,解不等式即可.解:由题意得,x﹣1≥0,解得x≥1,故选:D.3.【考点】二次根式的加减法.【分析】利用二次根式的加减运算性质进行计算即可.解:2﹣=(2﹣1)×=,故选B.4.【考点】同类二次根式【分析】此题实际上是找3的同类二次根式解:A选项可化为133,B3 D选项可化为3而C 1633故选C.5.【分析】根据一元而次方程的定义和判别式的意义得到a≠1且△=32﹣4(a﹣1)(﹣2)≥0,然后求出两个不等式的公共部分即可.解:根据题意得a≠1且△=32﹣4(a﹣1)(﹣2)≥0,解得a≥﹣且a≠1.故选D.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.6.【考点】根与系数的关系.【分析】根据一元二次方程解的定义得到2α2﹣5α﹣1=0,即2α2=5α+1,则2α2+3αβ+5β可表示为5(α+β)+3αβ+1,再根据根与系数的关系得到α+β=,αβ=﹣,然后利用整体代入的方法计算.21教育网解:∵α为2x2﹣5x﹣1=0的实数根,∴2α2﹣5α﹣1=0,即2α2=5α+1,∴2α2+3αβ+5β=5α+1+3αβ+5β=5(α+β)+3αβ+1,∵α、β为方程2x2﹣5x﹣1=0的两个实数根,∴α+β=,αβ=﹣,∴2α2+3αβ+5β=5×+3×(﹣)+1=12.故选B.7.【考点】解一元二次方程﹣因式分解法;实数大小比较;函数的图象.【分析】根据新定义和函数图象讨论:当1≤x≤2时,则x2=1;当﹣1≤x≤0时,则x2=0,当﹣2≤x<﹣1时,则x2=﹣1,然后分别解关于x的一元二次方程即可.解:当1≤x≤2时, x2=1,解得x1=,x2=﹣;当﹣1≤x≤0时, x2=0,解得x1=x2=0;当﹣2≤x<﹣1时, x2=﹣1,方程没有实数解;所以方程[x]= x2的解为0或.8.【考点】解一元二次方程-因式分解法;三角形三边关系;等腰三角形的性质.【分析】求出方程的解,即可得出三角形的边长,再求出即可解:x2﹣7x+10=0,(x﹣2)(x﹣5)=0,x﹣2=0,x﹣5=0,x1=2,x2=5,①等腰三角形的三边是2,2,5∵2+2<5,∴不符合三角形三边关系定理,此时不符合题意;②等腰三角形的三边是2,5,5,此时符合三角形三边关系定理,三角形的周长是2+5+5=12;即等腰三角形的周长是12.故选:A.9.【考点】二次根式、乘法公式【分析】把x的值代入代数式中利用乘法公式化简即可解:∵∴=(2+3)2()2+()()+=12+1+=2+故选C10.【考点】二次根式的应用.【分析】根据题目中的秦九韶公式,可以求得一个三角形的三边长分别为2,3,4的面积,从而可以解答本题.解:∵S=,∴若一个三角形的三边长分别为2,3,4,则其面积是:S==,故选B.二、填空题11.【考点】二次根式的混合运算.【分析】根据平方差公式进行计算即可.解:=16﹣7=9.故答案为:9.12.【考点】计算器-基础知识【分析】先根据计算器计算出输入的值,再根据程序框图列出算式,继而根据二次根式的混合运算计算可得.解:由题意知输入的值为32=9,则输出的结果为[(9+3)-]×(3+)=(12-)×(3+)=36+12-3-2=34+9,故答案为:34+9.【点睛】本题主要考查计算器-基础知识,解题的关键是根据程序框图列出算式,并熟练掌握二次根式的混合运算顺序和运算法则.13.【考点】规律型:数字的变化类.【分析】观察分析可得:=(1+1);=(2+1);…则将此题规律用含自然数n(n≥1)的等式表示出来解:∵=(1+1);=(2+1);∴=(n+1)(n≥1).故答案为:=(n+1)(n≥1).14.【考点】分式的值为零的条件;解一元二次方程-因式分解法.【分析】首先根据分式值为零的条件,可得;然后根据因式分解法解一元二次方程的步骤,求出x的值为多少即可.解:∵分式的值为0,∴解得x=3,即x的值为3.故答案为:3.点评:(1)此题主要考查了分式值为零的条件,要熟练掌握,解答此题的关键是要明确:分式值为零的条件是分子等于零且分母不等于零,注意:“分母不为零”这个条件不能少.(2)此题还考查了因式分解法解一元二次方程问题,要熟练掌握,解答此题的关键是要明确因式分解法解一元二次方程的一般步骤:①移项,使方程的右边化为零;②将方程的左边分解为两个一次因式的乘积;③令每个因式分别为零,得到两个一元一次方程;④解这两个一元一次方程,它们的解就都是原方程的解.15.【考点】一元二次方程的解.【分析】由于方程的一个根是0,把x=0代入方程,求出k的值.因为方程是关于x的二次方程,所以未知数的二次项系数不能是0.解:由于关于x的一元二次方程(k﹣1)x2+6x+k2﹣k=0的一个根是0,把x=0代入方程,得k2﹣k=0,解得,k1=1,k2=0当k=1时,由于二次项系数k﹣1=0,方程(k﹣1)x2+6x+k2﹣k=0不是关于x的二次方程,故k≠1.所以k的值是0.故答案为:016.【考点】抛物线与x轴的交点.【分析】由方程可得x﹣m和x﹣n同号,根据方程根的定义代入可得到a、b与m、n的关系,从而可得出其大小关系.解:∵(x﹣m)(x﹣n)=3,∴可得或,∵m<n,∴可解得x>n或x<m,∵方程的两根为a和b,∴可得到a>n或a<m,b>n或b<m,又a<b,综合可得a<m<n<b,故答案为:a<m<n<b.【点评】本题考查了一元二次方程的根与系数之间的关系,难度较大,关键是对m,n,a,b大小关系的讨论是此题的难三、解答题17.【考点】分式的化简求值【分析】直接分解因式,再利用分式的混合运算法则计算得出答案.解:•(1+)÷=••=,把x=2﹣1代入得,原式===.【点评】此题主要考查了分式的化简求值,正确进行分式的混合运算是解题关键.18.【考点】解一元二次方程-因式分解法.【分析】(1)利用因式分解法解方程;(2)先变形得到x(2x+3)﹣(2x+3)=0,然后利用因式分解法解方程.解:(1)(2x+1)(x﹣2)=0,2x+1=0或x﹣2=0,所以x1=﹣,x2=2;(2)x(2x+3)﹣(2x+3)=0,(2x+3)(x﹣1)=0,2x+3=0或x﹣1=0,所以x1=﹣,x2=1.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想)19.【分析】(1)根据绝对值,偶次方,二次根式的性质得出方程,求出每个方程的解,再代入求出即可;(2)先求出2+7的范围,根据求出a的值,再代入求出即可.解:(1)∵|x﹣3|+(4+y)2+z+2=0,∴x﹣3=0,4+y=0,z+2=0,∴x=3,y=﹣4,z=﹣2,∴3x+y+z=3×3﹣4﹣2=3;(2)∵2<7<3,∴4<2+7<5,∴a=2+7﹣4=7﹣2,∴a(a+2)=(7﹣2)(7﹣2+2)=7﹣27.【点睛】本题考查了绝对值,偶次方,二次根式的性质,估算无理数的大小的应用,主要考查学生的理解能力和计算能力,题目比较好,难度适中.20.【考点】根的判别式;一元二次方程的解.【分析】(1)找出a,b及c,表示出根的判别式,变形后得到其值大于0,即可得证.(2)把x=0代入方程即可求m的值,然后将其整体代入所求的代数式并求值即可.解:(1)∵关于x的一元二次方程x2﹣(2m+1)x+m(m+1)=0.∴△=(2m+1)2﹣4m(m+1)=1>0,∴方程总有两个不相等的实数根;(2)∵x=0是此方程的一个根,∴把x=0代入方程中得到m(m+1)=0,∴m=0或m=﹣1,把m=0或m=﹣1代入(2m﹣1)2+(3+m)(3﹣m)+7m﹣5=4m2﹣4m+1+9﹣m2+7m﹣5=3m2+3m+5,可得:(2m﹣1)2+(3+m)(3﹣m)+7m﹣5=5,或(2m﹣1)2+(3+m)(3﹣m)+7m﹣5=3﹣3+5=5.21.【分析】直接根据公式把三边长分别为分别代入S=即可求解.解:∵三边长分别为,∴p=(a+b+c)=(+3+2)=∴S2=×××=9∴S=3.22.【考点】根的判别式;根与系数的关系【分析】(1)利用判别式的意义得到△=(2m+1)2﹣4(m2﹣2)≥0,然后解不等式得到m的范围,再在此范围内找出最小整数值即可;(2)利用根与系数的关系得到x1+x2=﹣(2m+1),x1x2=m2﹣2,再利用(x1﹣x2)2+m2=21得到(2m+1)2﹣4(m2﹣2)+m2=21,接着解关于m的方程,然后利用(1)中m的范围确定m的值.解:(1)根据题意得△=(2m+1)2﹣4(m2﹣2)≥0,解得m≥﹣,所以m的最小整数值为﹣2;(2)根据题意得x1+x2=﹣(2m+1),x1x2=m2﹣2,∵(x1﹣x2)2+m2=21,∴(x1+x2)2﹣4x1x2+m2=21,∴(2m+1)2﹣4(m2﹣2)+m2=21,整理得m2+4m﹣12=0,解得m1=2,m2=﹣6,∵m≥﹣,∴m的值为2.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.也考查了根的判别式.23.【考点】一元二次方程的应用;分式方程的应用.【分析】(1)由线路敷设三年总投资为54亿元及这三年的线路敷设、辅助配套工程的总投资资金之比达到3:2,可得答案.(2)设2015年年初,对辅助配套的投资为x亿元,则线路敷设的投资为2x亿元,搬迁安置的投资是4x亿元,根据“线路敷设三年总投资为54亿元、辅助配套三年的总投资为36亿元”列方程组,解之求得x、b的值可得答案.(3)由x=5得出2015年初搬迁安置的投资为20亿元,设从2016年初开始,搬迁安置投资逐年递减的百分数为y,根据“2017年年初搬迁安置的为投资5亿”列方程求解可得.解:(1)三年用于辅助配套的投资将达到54×=36(亿元);(2)设2015年年初,对辅助配套的投资为x亿元,则线路敷设的投资为2x亿元,搬迁安置的投资是4x亿元,21教育网根据题意,得:,解得:,∴市政府2015年年初对三项工程的总投资是7x=35亿元;(3)由x=5得,2015年初搬迁安置的投资为20亿元,设从2016年初开始,搬迁安置投资逐年递减的百分数为y,由题意,得:20(1﹣y)2=5,解得:y1=0.5,y2=1.5(舍)答:搬迁安置投资逐年递减的百分数为50%.24.【考点】一元二次方程的应用【分析】(1)设出运动所求的时间,可将BP和BQ的长表示出来,代入三角形面积公式,列出等式,可将时间求出;(2)将△PBQ的面积表示出来,根据△=b2-4ac来判断.解:(1)设经过x秒,使△PBQ的面积等于8cm2,依题意有:12(6-x)•2x=8,解得x1=2,x2=4,经检验,x1,x2均符合题意,故经过2秒或4秒,△PBQ的面积等于8cm2;(2)不能,理由如下:设经过y秒,线段PQ能将△ABC分成面积相等的两部分,依题意有:S△ABC =12×6×8=24,12(6﹣y)•2y=12,y2﹣6y+12=0,∵△=b2﹣4ac=36﹣4×12=﹣12<0,∴此方程无实数根,∴线段PQ不能否将△ABC分成面积相等的两部分.25.【考点】一元二次方程的解法.解无理方程【分析】(1)因式分解多项式,然后得结论;(2)两边平方,把无理方程转化为整式方程,求解,注意验根;(3)设AP的长为xm,根据勾股定理和BP+CP=10,可列出方程,由于方程含有根号,两边平方,把无理方程转化为整式方程,求解,解:(1)x3+x2﹣2x=0,x(x2+x﹣2)=0,x(x+2)(x﹣1)=0所以x=0或x+2=0或x﹣1=0∴x1=0,x2=﹣2,x3=1;故答案为:﹣2,1;(2)=x,方程的两边平方,得2x+3=x2即x2﹣2x﹣3=0(x﹣3)(x+1)=0∴x﹣3=0或x+1=0∴x1=3,x2=﹣1,当x=﹣1时,==1≠﹣1,所以﹣1不是原方程的解.所以方程=x的解是x=3;(3)因为四边形ABCD是矩形,所以∠A=∠D=90°,AB=CD=3m设AP=xm,则PD=(8﹣x)m因为BP+CP=10,BP=,CP=∴+=10∴=10﹣两边平方,得(8﹣x)2+9=100﹣20+9+x2整理,得5=4x+9两边平方并整理,得x2﹣8x+16=0即(x﹣4)2=0所以x=4.经检验,x=4是方程的解.答:AP的长为4m.【点评】本题考查了转化的思想方法,一元二次方程的解法.解无理方程是注意到验根.解决(3)时,根据勾股定理和绳长,列出方程是关键.。
2024—2025学年第一学期月考质量监测试题(卷)九年级数学(华东师大版)(满分120分,时间120分钟)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑.)1.下列式子为最简二次根式的是( )A B C D2.一元二次方程2430x x +-=中一次项系数、常数项分别是( )A .2,3-B .0,3-C .1,3-D .1,0 3.若34a b =,则下列等式错误的是( ) A .43a b = B .:4:3a b = C .34a b = D .74a b b +=4.若m 的值为( )A .4m =B .3m =C .5m =D .6m =5.关于x 的一元二次方程2210x bx +-=的根的情况是( )A .实数根的个数由b 的值确定B .有两个不相等的实数根C .有两个相等的实数根D .没有实数根6.南宋数学家杨辉所著《田亩比类乘除算法》中记载:“直田积八百六十四步,只云阔与长共六十步,问阔及长各几步.”意思是,一块矩形田地的面积是864平方步,它的宽和长共60步,问它的宽和长各多少步?设它的宽为x 步,则可列方程为( )A .(60)864x x +=B .(602)864x x -=C .(30)864x x -=D .(60)864x x -=7.根据下面表格中的对应值判断方程20ax bx c ++=(0,,,a a b c ≠为常数)的一个解x 的范围是.( )A .3 3.23x <<B .3.23 3.24x <<C .3.24 3.25x <<D .3.25 3.26x <<8.已知一元二次方程220x x --=的一个根为m ,则22023m m -+的值是( )A .2020B .2021C .2023D .20259.已知方程2230x x +-=的解是121,3x x ==-,则另一个方程2(3)2(3):30x x +++-=的解是( )A .122,6x x ==B .122,6x x =-=-C .121,3x x =-=D .121,3x x ==-10.如图是一个按某种规律排列的数阵:1 第1行2 第2行3 第3行4 第4行根据数阵排列的规律,第n (n 是整数,且4n ≥)行从左向右数第(3)n -个数是.(用含n 的代数式表示) ( )A B C D二、填空题(本大题共5个小题,每小题3分,共15分.)11.请写出一个大于3小于4的最简二次根式_______12.边长为,a b 的长方形如图所示,若它的周长为2+22a b ab +的值为_______.13.如图,一农户要建一个280m 的矩形猪舍,猪舍的一边利用长为12m 的住房墙,另外三边用25m 长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m 宽的门,设垂直于住房墙的一边长度为m x ,则根据题意列方程为_______.14.如图,乐器上的二根弦80cm AB =,两个端点,A B 固定在乐器板面上,支撑点C 是靠近点B 的黄金分割点,(即AC AB =),则支撑点C 到端点B 的距离是_______.15.已知ABCF ,延长FC 至点D ,使得2CD FC =.若90,2,3FAE AE FC ∠=︒==,则AF =_______.三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.计算(本题共2个小题,每小题5分,共10分):(1|- (2)(11)+17.解方程:(本题共2个小题,每小题5分,共10分):(1)2210x x --= (2)2(2)24x x -=-18.(7分)已知关于x 的一元二次方程26(21)0x x m +++=有实数根.(1)求m 的取值范围;(2)如果方程的两个实数根为12x x 、,且121228x x x x --,求m 的取值范围.19.(7分)高空抛物是一种不文明的危险行为,据研究,从高处坠落的物品,其下落的时间()t s 和高度()h m 近似满足公式t =(1)求物体从40m 的高空落到地面的时间.(2)己知从高空坠落的物体所带能量(单位:J )10(kg)(m)E =⨯⨯物体质量高度,某质量为0.05kg 的鸡蛋经过6s 落在地上,这个鸡蛋在下落过程中所带能量有多大?你能得到什么启示?(注:杀伤无防护人体只需要65J 的能量)20.(10分)山西是时间的朋友,这片土地处处散发着时光的奇迹……”,2024年6月,董宇辉在直播电商平台的山西专场中展开了主题为“寻华夏之根,溯文明之源”的直播,直播刚开始时有2.56万人观看,2小时后人数达到4万人次,现场讲解山西的美食产品,深度介绍山西的文化古迹,传播三晋文化,实现了社会效应和经济效应的双丰收.其中山西老陈醋以色、香、醇、浓、酸五大特征,引得广大网友争相购买品尝.某商家抓住商机,以20元/壶的进价购入了一批山西老陈醋,在销售过程中发现,当售价为35元/桶时,一周可售出4000壶、且该商品的单价每降低1元,其销量可增加100壶.(1)求每小时观看直播人数的平均增长率(2)若商家销售该商品每周想要获利54600元,则该商品应降价多少元?21.(8分)阅读与思考下面是小文撰写的数学小论文,请仔细阅读并完成相应任务.任务:(1)已知,p q 是两个常数,一元二次方程20x px q ++=的两个实数根为127,3x x =-=,则二次三项式2x px q ++分解因式的结果是_______;(2)分解因式:220x x --=_______;(3)请用阅读内容中的方法,因式分解:23912x x +-;(4)通过阅读上述代数推理过程,请直接写出一个你发现的与一元二次方程的根相关的结论.22.综合与实践(11分)九年级课外小组计划用两块长为100cm ,宽为40cm 的长方形硬纸板做个收纳盒.图1 图2 图3善思组:把一块长方形硬纸板的四角剪去四个相同的小正方形,(如图1)然后沿虚线折成一个无盖的长方体收纳盒.问题解决:(1)若该收纳盒的底面积为21600cm ,求剪去的小正方形的边长.博学组:把另一块长方形硬纸板的四角剪去四个相同的小长方形,然后折成一个有盖的长方体收纳盒(如图2).问题解决:(2)若EF 和HG 两边恰好重合且无重叠部分,该收纳盒的底面积为2702cm .设收纳盒的高为a 厘米,则收纳盒底面的的长为_______,宽为_______,(用a 的代数式表示)则可列方程为:______________,若有一个玩具机械狗,其尺寸大小如图3所示,是否能把玩具机械狗完全放入该收纳盒,_______(填是或否)23.综合与探究(12分)问题情境:在ABC 中,AB AC =,在射线AB 上截取线段BD ,在射线CA 上截取线段CE ,连结,DE DE 所在直线交直线BC 于点M .猜想判断:(1)当点D 在边AB 的延长线上,点E 在边AC 上时,过点E 作//EF AB 交BC 于点F ,如图①.若BD CE =,则线段DM EM 、的大小关系为_______.深入探究:(2)当点D 在边AB 的延长线上,点E 在边CA 的延长线上时,如图②.若BD CE =,判断线段DM EM 、的大小关系,并加以证明.拓展应用:(3)当点D 在边AB 上(点D 不与A B 、重合),点E 在边CA 的延长线上时,如图③.若1,4BD CE ==,0.7DM =,求EM 的长.2024-2025学年第一学期月考质量监测试题(卷)九年级数学(华东师大版)参考答案一、选择题(每题3分,共30分)1.D 2.C 3.B 4.B 5.B 6.D 7.C 8.B 9.B 10.C1112.5+ 13.(262)80x x -=14.(120- 15.三、解答题(共75分)16.(1)解:原式=……3分=4分=5分(2)解:原式21(2)=---……3分212=-+……4分3=……5分17.(1)解:2,1,1a b c ==-=-224(1)42(1)9b ac -=--⨯⨯-=……2分134x ±===……3分 1211,2x x ==-……5分 (2)解:2(2)2(2)x x -=- 2(2)2(2)0x x ---=……1分(2)(4)0x x --=……2分20x -=或40x -=.……3分122,4x x ==……5分18.(1)解:一元二次方程有实数根24364(21)3280b ac m m ∴∆=-=-+=-≥……2分4m ∴≤.……3分(2)解:12,x x 是方程26(21)0x x m +++=的两个实数根12126,21x x x x m ∴+=-=+……4分()1212121222x x x x x x x x ∴--=-+2(21)(6)m =+--48m =+……5分121228x x x x --≥488m ∴+≥0m ∴≥…6分由(1)得:4m ≤04m ∴≤≤……7分19.(1)解:,405h t h ==t ∴====……2分答:物体从高空下落的时间是……3分 (2)解:,65h t t ==6= 365h ∴= 180(m)h ∴=……4分100.0518090(J)E ∴=⨯⨯=……5分答:这个鸡蛋下落过程中所带能量有90J ……6分启示:严禁高空抛物(答案不唯一,言之有理即可)……7分20.(1)解:设每小时观看直播人数的平均增长率为x ,由题意得:……1分22.56(1)4x +=……3分解得:121925%,44x x ===-(不符合题意,舍去)……4分答:每小时观看直播人数的平均增长率为25%……5分(2)解:该商品应降价y 元,由题意得:……6分(3520)(4000100)54600y y --+=……8分整理得:225540y y +-=解得:122,27y y ==-(不符合题意,舍去)……9分答:每周想要获利54600元,商品应降价2元……10分21.(1)(7)(3)x x +-……2分(2)(5)(4)x x -+…4分(3)解:解239120x x +-=得;91526b x a -±-±== 121,4x x ==-……5分239123(1)(4)x x x x +-=-+……7分(4)对于一元二次方程20(0)ax bx c a ++=≠的两个根12x x 、,则有1212,b c x x x x a a +=-=(答案不唯一,言之有理即可).…8分22.(1)解:设剪去的小正方形的边长为x 厘米,由题意得:……1分 (1002)(402)1600x x --=……3分整理得:2706000x x -+=解得:1210,60x x ==(不符合题意,舍去)……5分答:剪去的小正方形的边长为10cm ……6分(2)(50)cm;(402)cm a a --……8分(50)(402)702a a --=;……10分否……11分23.(1)DM EM =……2分(2)解:DM EM =……3分理由如下:如图,过点E 作//EF AB 交CB 的延长线于点F ……4分//EF ABEFC ABC EFM DBM∴∠=∠∠=∠=AB AC∴∠=∠ABC C∴∠=∠EFC C∴=EF CE=BD CEBD EF∴=……5分∠=∠在BDM和FEM中,EFM DBM∠=∠BMD FME=BD EF≌……6分BDM FEM∴=……7分DM EMEF AB交CB的延长线于点F……8分(3)解:如图,过点E作//EF AB//∴∠=∠F ABC=AB AC∴∠=∠ABC C∴∠=∠F C4CE=∴==……9分4EF CEBD EF//∴……10分BDM FEM~MD BD∴=ME FE===0.7,4,1DM EF BD0.71∴=……11分4ME∴=……12分EM2.8。
学年第一学期数学检测(一)
班级 姓名 学号
温馨提示:满分120分,时间100分钟请仔细审题,细心答题,相信你一定会有出色的表现! 一、选择题(每小题3分,共36分.请选出各题中一个符合题意的正确选项) 1. 下列运算正确的是( )。
A . a 2·a 3=a 6
B . a 8÷a 4=a 2
C . a 3+a 3=2a 6
D . (a 3)2=a 6 2. 已知分式
1
1
x x -+的值是零,那么x 的值是( ) A .-1 B. 0 C. 1 D. 1±
3. 如图,A 、B 、C 、是⊙O 上的三点,∠BAC=45°,则∠BOC 的大小是( ) A .60° B .90° C .45° D .22.5°
4. 生活处处皆学问.如图,眼镜镜片所在的两圆的位置关系是( ) A . 外离 B . 外切 C . 内含
D . 内切
5.如图,若△ABC 的三边长分别为9AB =,5BC =,6CA =,△ABC 的内切圆⊙O 切AB 、BC 、
AC 于D 、E 、F ,则AF 的长为( )
A . 4
B . 10
C . 7.5
D . 5
第3题 第4题 第5题
6.已知
114a b -=,则2227a ab b a b ab
---+的值等于( ) A . 6 B . -6 C . 215 D . 2
7
-
7.如图,⊙O 的半径为5 ,弦AB 的长为6 ,P 是弦AB 上的动点,则线段OP 长的最小值为( ) A .2 B .3 C .4 D .5
第7题 第8题 第9题
8. 如图, ⊙O 的半径OA=6, 以A 为圆心,OA 为半径的弧交⊙O 于B 、C 两点, 则BC= ( )
A. 23
B. 26
C. 33
D. 36
A
B
C
O
B
9.如图,△DAC 和△EBC 均是等边三角形,AE 、BD 分别与CD 、CE 交于点M 、N ,有如下结论:① △ACE ≌△DCB ; ② CM =CN ;③ AM =DN 。
其中正确结论的个数是( ) A . 3 B . 2 C . 1 D . 0 10. 已知:2
44A x =
-,11
22B x x
=++-,其中2x ≠±,则A 与B 的关系是( ) A . 互为倒数 B . 相等 C . 互为相反数 D . A 大于B
11.三角形的两边长分别为3和6,第三边的长是方程x 2-6x +8=0的一个根,则这个三角形的周
长是( )
A . 9
B . 11
C . 13
D . 11或13
12. 关于x 的方程(2-a)x 2
-4x-4=0有实数根,则a 的取值范围是( ) A. a ≤3 B. a ≤3且a ≠2 C. a ≥3 D. 以上都不对 二、填空题 (本题有6小题,每题4分,共24分)
13. 2006年4月21日,胡锦涛总书记在美国耶鲁大学演讲时谈到,我国国内生产总值从1978年的
1473亿美元增长到2005年的22257亿美元.若将2005年的国内生产总值用四舍五入法保留三个有效数字,其近似值用科学记数法表示为 亿美元. 14. 如图,D 、E 为AB 、AC 的中点,将△ABC 沿线段DE 折叠,使点A 落在点F 处,
若∠B=500,则∠BDF= .
15. 如图,圆锥的底面半径为6cm ,高为8cm ,那么这个圆锥的侧面积是 2
cm . 16.如图,点B 在AE 上,∠CAB=∠DAB ,要使△ABC ≌△ABD , 可补充的一个条件是: (写一个即可).
第14题 第15题 第16题
17. 下列是三种化合物的结构式及分子式,若CH 4为第1种化合物的分子式,请按其规律,写出第
2006种化合物的分子式... .
C 3H 8
C 2H 6
CH 4
H
H H H
H H
H
H H
H
H H
H H
C C C C C H
H H
H
C
18. 已知实数x 、y 满足(x 2+y 2)(x 2+y 2+1)-2=0,则x 2+y 2= 。
三、解答题 (第19 - 24题每题8分,第25题12分,共60分) 19. 有这样的一道题:“计算:(
2x x
2x x +-
-)÷4
42-x x 的值,其中x=2006” 。
甲同学把“x=2006”错抄成“x=2060”,但他的计算结果也是正确的。
你说这是怎么回事?
20. 已知关于x 的方程2
210x kx -+=的一个解与方程
21
41x x
+=-的解相同. ⑴求k 的值;⑵求方程2
210x kx -+=的另一个解.
AB 21.如图,将等腰直角三角形ABC 的直角顶点置于直线l 上,且过A 、B 两点分别作直线l 的垂线,
垂足分别为D 、E ,请你仔细观察后,在图中找出一对全等三角形,并写出证明它们全等的过程。
22.如图:某学校存放自行车的车棚的示意图(尺寸如图所示),车棚顶部是圆柱侧面的一部分,其展
开图是矩形.右边是车棚顶部截面的示意图,所在圆的圆心为O .车棚顶部是用一种帆布覆盖的,求覆盖棚顶的帆布的面积(不考虑接缝等因素,计算结果保留 ).
O B
A
·
23.近年来,由于受国际石油市场的影响,汽油价格不断上涨.请你根据下面的信息,帮小明计算
今年5
24.春秋旅行社为吸引市民组团去天水湾风景区旅游,推出了如下收费标准:
某单位组织员工去天水湾风景区旅游,共支付给春秋旅行社旅游费用27000元,请问该单位这次共有多少员工去天水湾风景区旅游?
25.如图,AB是⊙O的直径,CB、CE分别切⊙O于点B、D,CE与BA的延长线交于点E,连结OC、OD.
(1)求证:△OBC≌△ODC;
(2)已知DE=a,AE=b,BC=c,请你思考后,选用以上适当的数,设计出计算⊙O
半径r的一种方案:
①你选用的已知数是;
②写出求解过程.(结果用字母表示)。