ICEM网格导入ANSYS
- 格式:docx
- 大小:2.00 MB
- 文档页数:12
关于PROE、ANSYS, ANSYS-ICEM CFD, ANSYS WORKBENCH,ANSYS-CFX,(均10.0)的相互模型导入的若干问题研究总结***************大学****力学热学电磁学专业***********人前言:最近对ANSYS的所以产品感兴趣,对ANSYS, ANSYS-ICEM CFD, ANSYS WORKBENCH,ANSYS-CFX,的模型导入最近学习ANSYS系列产品,我将我得学习心得贡献给大家,欢迎大家一起交流,我的Email:banhuaiguojob@,******************************************************************************* **********************************1.ANSYS-CFD,是一个前处理工具,他的建模功能不如ANSYS WORKBENCH,甚至我个人认为不如ANSYS(不可以有命令流),但是ANSYS WORKBENCH不如PROE好使,我的做法是,用PROE建立模型,用CFD划分网格,在再ANSYS中求解结构问题,在ANSYS -CFX求解流体,划分的思想主要是,通过分块,关于具体方法在HELP->TUTORIAL MANNUAL->CFD Tutorials->学习了这里面的例子后我想你应该对在CFD划分网格和建立模型就知道了。
2.关于模型导入,1)用PROE生成ANSYS都可以接受的几何模型,先在PROE中建立模型,如下图所示然后点文件->保存副本弹出下图对话筐,输入新建明称,选择类型IGES(×igs),关闭PROE,记住文件所在文件夹,2)PROE的模型导入ANSYS ICEM CFD,打开ANSYS ICEM CFD指向你刚才生成的文件,然后模型就出现了,2)ANSYS中导入PROE模型3)ANSYS模型导入到ANSYS CFX中,在ANSYS的命令流筐中输入:这时在你的的ANSYS的工作目录下生成了一个banhuaiguo.cdb文件打开ANSYS CFX的前出理界面:最终结果:4)CFD模型导入cfx,打开ANSYSCFX5)CFX模型导入ANSYS,结论:ANSYS1.该方法在PROE野火版ANSYS系列产品10.0中通过测试,2.本人不怎么谦虚,因此有点小小的成绩愿意和大家共享!3.希望斑竹加点分!*******************************待续*******************************。
48Modeling and Meshing a Chemical Vapor Deposition ReactorFigure 1.3.5:Creating copies ofupcyl5.Begin renaming the newly created objects by first highlightingupcyl.1 from the tree. Click right mouse button and opt for EditObject. > inl1 and Sides family > inlet (this must be manuallyentered)7.Select Update and then Done to complete the operation.8.Highlight upcyl.2from tree.9.Change Name to docyl and press Apply.The model will now consist of three cylinders on top of each other.The sides of the central cylinder form the inlet. The intended flowis depicted in Figure 1.3.6.Modeling and Meshing a Chemical Vapor Deposition Reactor 49Figure 1.3.6:The intended flow forthe CVD reactor1.3.4: Creating ObjectsCreating CylindersCreate additional Cylinders by choosing Create cylinders iconfrom the top menu bar from each of following.Outduct1.Name > outduct 2.Plane > xz 3.C enter coordinates: (0.5, 0, 0.5)4.Height: 0.355.Radius: 0.156.Type > fluidNote: The changes are automatically implemented once the objectType is selected.Susceptor > susceptor2.Plane > xz3.C enter coordinates:(0.5, 0, 0.5)50Modeling and Meshing a Chemical Vapor Deposition Reactor4.Height: 0.375.Radius: 0.036.Type > hollowSusceptor Top > susc-top2.Plane > xz3.C enter coordinates: (0.5, 0.37, 0.5)4.Height: 0.035.Radius: 0.26.Type > hollowThe Cylinders created so far are shown in Figure 1.3.7.Figure 1.3.7:View of theCylinders created sofarCreating CirclesInlet1.Select Create circles icon from the top menu bar to create acircle. Select it from the tree and choose for Edit object uponclicking right mouse button. Together you get screen as shownin Figure 1.3.8.Modeling and Meshing a Chemical Vapor Deposition Reactor512.Change the Name to top-inl, signifying that this object will bethe top inlet to the reactor.3.Plane > X-Z4.C enter coordinates: (0.5, 0.5, 0.5)5.Radius: 0.036.Face family > inlet7.Press Update to complete the modifications.Figure 1.3.8:Circles edit windowwith specificationsfor top-inlNow create the remaining Circles using Create circles icon fromthe top menu barSubstrate > substrate2.Plane > X-Z3.C enter coordinates: (0.5, 0, 0.5)4.Radius: 0.25.Select Update and Done to complete the operation.Outlet > outlet52Modeling and Meshing a Chemical Vapor Deposition Reactor2.Plane > X-Z3.C enter coordinates: (0.5, 0, 0.5)4.Radius: 0.155.Face family > outlet (The user should enter this manually).6.Press Update and Done.The geometry for the CVD Reactor is now complete (Figure 1.3.9). Figure 1.3.9:Complete CVDreactor, with thecreated Circlesactivated1.3.5: Mesh GenerationCreating Cartesian Mesh1.From the AutoHexa viewing window, select Model > Gener-ate mesh to open the Mesh control window shown in Figure1.3.10. This is where all the mesh utilities are accessible.2.Select Mesh type > Cartesian to create a grid that is alignedwith the coordinate axes and quickly generated. Using thedefault parameters, select Generate mesh.Modeling and Meshing a Chemical Vapor Deposition Reactor53 Figure 1.3.10:Mesh controlwindow with thedefault parameters forthis tutorialCut planes1.Begin by Orienting the model to the Home position.2.Toggle on Mesh control > Display > Cut plane > Set position> Vertical - screen select.3.Click the left-mouse button in the center of the Domain in theAutoHexa viewing window.4.Orient > Orient positive X, and then select Mesh control >Display > Display mesh to obtain the diagram shown by Fig-ure 1.3.11.54Modeling and Meshing a Chemical Vapor Deposition ReactorFigure 1.3.11:Mesh cut plane asseen from thepositive X view usingdefault parametersLimiting Element Size1.The large element size may be controlled by adjusting the Uni-form spacing. Select Mesh control > Generate > Uniformspacing > (X count, Y count, Z count) > (50, 50, 50).2.Press Generate mesh to recalculate the mesh with the modi-fied counts. The new mesh should yield much finer mesh (i.e.50x50x50 nodes in a regular grid).3. Refer to Figure 1.3.12 to see the newly defined mesh cut plane. Figure 1.3.12:Diagram of the meshcut plane with newlyspecified X, Y, and Zcounts and higherelement count thanwhile using defaultparametersModeling and Meshing a Chemical Vapor Deposition Reactor55 Surface Elements1.To view the mesh on various parts of the reactor itself, first turnoff the Mesh control > Display > Cut plane utility for aclearer view.2.Select Display tab and turn on Surface and Current type. Thiscreates a mesh on the current object type that is selected fromthe Model menu. In this situation, the current object type isCircle. The mesh will appear as in Figure 1.3.13.Figure 1.3.13:Reactor with Surfaceelements meshdisplayed on currentobject type Circles.3.Select File > Save project from the AutoHexa viewing win-dow to save both the model and the mesh.56Modeling and Meshing a Chemical Vapor Deposition Reactor57Tutorial Example 1.4: Modeling and Meshing a LabOverview This tutorial, like the first tutorial, will focus on creating alaboratory for analyzation of the airflow through the room.Ventilation ducts on one side of the lab will supply air to the room,and a large fan on the other side of the lab will act as an outlet vent.The air will need to travel through the room, over and around thecreated obstructions, and depart through the exit vent. Thissimulation will illustrate the flow distribution inside of the room,allowing us to place the ventilation ducts at optimal locations thatare most beneficial to the occupant.Operations introduced in this example Starting a New Project•Initializing AutoHexa and beginning the projectCreating Objects•Developing the model, utilizing Domain, Hexas, Cylinders, Polygons, Circles andQuadsCopying Objects•Creating multiple entities by copy ing previously createdgeometryCreating Groups of Objects•Placing multiple objects into one Group, easing the copy ingprocessMoving Objects•Utilizing the Move function to translate geometrical entitiesinto new locationsMesh Generation•Generating Hexa mesh•Modifying the Per-object params•Generating Tetra meshConfiguration Options•Altering the Minimum object separation•Sorting the object edit lists, AlphabeticallyPrinting Screen•Doing Annotation, adding markers and getting a hardcopy ofthe modelSummary Creation•Accessing a summary of the specifications used in the cre-ation of the model1.4.1: Starting the Project1.Load ICEM CFD to open the main Mesh Editor viewingscreen, as well as the MED messages window and the Displaywindow. A File selection window should also appear, with theprompt to Select an ICEM CFD project to open,2.Type the new project name as tutorial-4 and pressAccept.3.Meshing > AutoHexa will initialize the AutoHexa modelingsystem.1.4.2: Creating ObjectsCreating the Domain1.Begin the creation of the territory of the laboratory by selectingModel > Domain from the tree.2.Resize the Domain with the following assignments: S tartpoints > (xS, yS, zS) -> (0, 0, 0) and E nd points > (xE, yE, zE)-> (10, 5, 6)3.Press Apply to activate the changes.4.Notice that the Domain is larger than the viewing window --select Orient > Isometric view to achieve a better view asshown in Figure 1.4.1.Figure 1.4.1:The modified domainCreating the HexasThe Divider1.To begin creation of the divider, select Create hexas icon fromthe top menu bar. > divider3.S tart points: (1, 0, 2.5) and E nd points: (6,4.5, 2.6)4.Select the object Type > hollow, since it is unnecessary to sim-ulate the heat transfer within the divider.Note: The changes are automatically activated when the objectType is assigned.5.Upon examination of the model, the user should notice that thedivider does not touch the wall on the low end of the X-axis.This entity may be moved by selecting Options > Interactiveediting from the tree. Toggle off Y and Z (Figure 1.4.2). Thisrestricts the motion of the divider to only along the X-axis. Figure 1.4.2:Restricting themotion of the divider6.Move the cursor to an edge of the divider. While holding theshift key down, press the middle mouse button, and drag thedivider towards the low end of the X axis, so that the divider isagainst the wall (Figure 1.4.3). The new S tart points are (0, 0,2.5), and the E nd points are (5, 4.5, 2.6).Figure 1.4.3:The new position ofthe dividerThe Worktable1.Click on Create hexas icon to create a new Hexa. > wktable3.S tart points: (6, 0, 3) and E nd points: (10, 1, 4)4.Type > solid5.Press ApplyThe Machine1. Click on Create hexas icon to create a new Hexa. > machine3.S tart points: (7, 1, 3.25) and E nd points: (10, 1.5, 3.75)4.Type > solid5.Press ApplyThe Person1.To begin creation of a person standing in front of the machine,click on Create hexas icon to create a new Hexa. > body3.S tart points: (6, 0,4.25) and E nd points: (7, 1.25, 4.5)4.Type > solid5.Press Apply6.To create the person’s head, click on Create hexas icon to cre-ate a new Hexa. > head8.S tart points: (6.25, 1.75, 4.25) and E nd points: (6.75, 2, 4.5)9.Type > solid10.Press Apply11.The person’s body and head is now complete. Refer to Figure1.4.4 to see the completed geometry created so far.Figure 1.4.4:The completegeometry created sofar1.4.3: Copying ObjectsThe Drawers1.The user will now add a file cabinet with three drawers to themodel. Click on Create hexas icon to create a new Hexa. > drawer13.S tart points: (0, 0, 0) and E nd points: (1, 0.5, 0.5)4.Type > solid5.The remaining drawers will have identical dimensions to thefirst drawer. To begin the Copy ing process, highlight drawer1from the Tree, click right mouse button on it and select Copyobject to obtain the Copy objects window, as shown in Figure1.4.5. Enter the following values.6.Number of copies > 27.Translate > Y offset > 0.5Figure 1.4.5:Copy panel8.Press Apply to create the remaining drawers. Proceed to pressDone.9.Highlight drawer1.1 from the tree and change its Name todrawer2. Select Apply when complete.10.Highlight drawer1.2 from the tree and change its Name todrawer3. Press Apply to update the change.Figure 1.4.6:The Hexas list can bemodifiedNote: Any of the three drawer s may be temporarily removed fromthe model in order to vary the conditions for the simulated flow.This is achieved by first selecting the desired object from the tree,pressing right button and then unselecting the Active option.Toggling on Active from the Inactive group from the tree, willreactivate the entity. To permanently remove an object from themodel, the user should first highlight the desired entity, and thenproceed to select Delete. This object then would show under Trashin the tree. The Undo option, however, can cancel the last action.1.4.4: Creating ObjectsCreating the PolygonThe Chair1.The user will now create a chair located next to the file cabinet.Click on Create polygons icon to create a new polygon.(Refer to Figure 1.4.7). > chair3.Plane > xy4. Height > 0.755.Highlight vert1 > (x1, y1, z1) -> (0, 1.25, 1)6.Highlight vert2 > (x2, y2, z2) -> (1.5, 0, ~)7.Highlight vert3 > (x3, y3, z3) -> (0, 0, ~)8.Type > solid9.Press Apply.Figure 1.4.7:Creation of chairusing polygons.10.Highlight vert1, as shown in Figure 1.4.711.Press Add once to create another vertex, vert2, and assign (x2,y2, z2) the values of (0.75, 0.5, ~).12.Press Add once again, creating vert3. (x3, y3, z3) > (1.5, 0.5, ~)13.To complete the chair and update the changes, select Apply.Refer to Figure 1.4.8 for the final shape of the chair.Figure 1.4.8:The final chairCreating the CylindersThe Table-legs1.Click on Create cylinders icon to create a new cylinder tobegin creation of the table-legs. > tleg13.Plane > xz4.C enter coordinates: (xC, yC, zC) > (2.25, 0, 0.5)5.Height: 0.756.Radius: 0.057.Type > solid8.To create tleg2, the user will copy tleg1. Highlight tleg1 fromthe tree,click right mouse button on it and select Copy object.This will open the Copy objects window.9.Number of copies > 110.Translate > X offset -> 1 > Y offset -> 0 > Z offset -> 011.Select Apply to create the copy, and then Done.12.Highlight tleg1.1 from the tree and change the Name to tleg2.13.Select Apply when complete with renaming the copied table-leg. Refer to Figure 1.4.9Figure 1.4.9:Geometry with Finaltable legs1.4.5: Creating Groups of Objects1.To place tleg1 and tleg2 into a group, access the tree. Clickright mouse button on Groups there and choose Create. > tlegs3.Select Orient > Orient negative Y. This will adjust the view,making tleg1 and tleg2 easily accessible.4.Right click on Groups > tlegs and choose Add > ScreenSelect.5.With the shift - left mouse button, select tleg1 and tleg2, turningthe entities red in color. Their names will appear under the treeas shown in Figure 1.4.10. Press shift - right mouse button toexit out of this selection mode.Figure 1.4.10:The tree6.To create the remaining table legs, the user should copy thenewly established group. In the tree, highlight tlegs underGroups, right click and then select Copy group. This willopen the Copy group tlegs window.7.Number of copies > 18.Translate > X offset -> 0 > Y offset -> 0 > Z offset -> 19.Press Apply to add the remaining table legs, and then Done.10.Highlight tleg1.1 from the tree, and change the Name to tleg3.Select Apply to activate the change.11.Highlight tleg2.1 from the tree, and change the Name to tleg4.Select Apply to activate the change.1.4.6: Creating ObjectsCreating the QuadsThe Table-top1.Click on Create quads icon to create a new quad. > ttop3.Plane > xz4.S tart points: (2, 0.75, 0.25) and E nd points: (3.5, ~, 1.75)5.Press Apply to complete the operationThe Inlet vents1.Click on Create quads icon to create a new quad > inl13.Plane > xy4.S tart points: (1, 0, 6) and E nd points: (4, 1, ~)5.Select this object from the tree, click right mouse button andchoose Edit object. Go to Properties and say Face family > inlet (The user will need to manually enter this assignment).6.Select Done to complete the first inlet.7.To create inl2, the user will need to copy inl1. Highlight inl1from the tree, click right mouse button and select Copy object to open the Copy objects window.8.Number of copies > 19.Translate > X offset -> 5 > Y offset -> 0 > Z offset -> 010.Select Apply > Done,11.Highlight inl1.1 and change the Name from inl1.1 to inl212.Select Apply to complete the operation. Refer to Figure 1.4.11for the completed quads.Figure 1.4.11:Geometry withcompleted quads1.4.7: Moving ObjectsThe air will enter the room via the inlet and exit via outlet fan thatwill be constructed during this section.Creating the CirclesThe Outlets1.Click on Create circles icon to create a new circle. > out13.Plane > xy4.C enter coordinates: (2.5, 2.5, 0)5.Radius: 0.756.Select this object from the tree, click right mouse button andchoose Edit object.Go to Properties and say Face family >outlet (The user will manually enter this assignment).7.Select Done to complete the outlet.8.Observing the configuration, the user should notice that out1 ispoorly situated behind the room divider. Alter its location byselecting Move object up on clicking right mouse button onout1 in the tree.9.Translate > X offset -> 5 > Y offset -> 0 > Z offset -> 010.Select Apply to move out1 to its new position, thus enabling itto remove hot air more efficiently.11.Select Done to complete the operation, and notice that the xCcenter coordinate in the Edit window has increased by 5 unitsto 7.5, as shown in Figure 1.4.12.Figure 1.4.12:New center positionof the circleThe Exhausting Create circles icon, the user will create an exhaust fan.Click on Create circles icon to create a new circle. > exhaust3.Plane > yz4.C enter coordinates: (10, 4, 3.5)5.Radius: 0.26.Select Apply to update the parameters.Creating the CylindersThe Tube1.The user will now create the tube needed to transport the hot airmoved by the exhaust fan, through the machine. Click on Cre-ate cylinders icon to create a new cylinder. > tube3.Plane > yz4.C enter coordinates: (7, 1.25, 3.5)5.Height: 1.256.Radius: 0.27.Type: fluid8.Select Apply to complete the task.Creating the CirclesThe Inlet Fan1.Click on Create circles icon to create a new circle. > inlfan3.Plane > yz4.C enter coordinates: (8.25, 1.25, 3.5)5.Radius: 0.26.Select this object from the tree, click right mouse button andchoose Edit object. Go to Properties and say Face family >source (The user will need to manually enter this assignment)7.Press Done to activate the modifications.When complete, the laboratory model should appear as in Figure1.4.13.Figure 1.4.13:Solid model of thelaboratory1.4.8: Mesh GenerationThe Hexa Mesh1.To begin mesh creation, select Model > Generate mesh. TheMesh control window depicted in Figure 1.4.14 will appear.2.Making sure that Mesh type > Hexa unstructured is selected,select Generate mesh, using the default parameters.Figure 1.4.14:Mesh ControlwindowNote: The mesh comes pretty decent in this geometry. Lessdistortion of the element quality means higher quality of mesh,providing the solver with an easier time with convergence. Checkthe AutoHexa messages window, and notice that there are nosignificantly distorted elements with a quality between 0 and0.25. There are a few between 0.25-0.5. To see where theseelements are located, go to Mesh control > Quality, replot thehistogram from 0.25 to 0.5 and then select the bars in the histogramto display the elements on the screen.1.4.9: The Tetra Meshing the same model, create a Tetra mesh by selecting Model> Generate mesh will open Mesh control window. From thiswindow select Generate > Mesh Type > Tetra. Unselect Maxtetra size, as well as Per-object params, as shown in Figure1.4.15.Figure 1.4.15:Tetra parameterwindow2.Continue by selecting Generate mesh. When complete, thenewly created tetra mesh should consist of approximately184000 elements and 42000 nodes.3.Select Display > Display mesh > Surface.4.Press Close to exit the Mesh control window.5.Select File > Save project to save the model and mesh.1.4.10: Configuration OptionsBefore a mesh is actually generated, AutoHexa will check themodel for gaps existing between objects that may interfere with thecreation of a uniform mesh.1.To modify the default Minimum object separation, selectOptions > Settings from the tree which will open the Config-uration options window seen in Figure 1.4.16.This feature is especially useful in cases where small gaps maypervade throughout the model, in which case AutoHexaautomatically closes any gaps that are larger than the specifiedMinimum object separation.Figure 1.4.16:ConfigurationOptions window2.The color of all the objects, text, and mesh lines are modifiableunder the Options > Graphical options.3.Since there were many Hexa objects created in this tutorial, itmay be beneficial to sort the object list alphabetically. From themain menu, select Tree > Sort > Alphabetical. Figure 1.4.17illustrates the difference between the two object lists.Figure 1.4.17:Left: before sorting,right: after sorting1.4.11: Hardcopy Creation1.At this point, it may be useful to print out a diagram of the finalmodel. Select File > Print screen to open the Print optionswindow shown in Figure 1.4.18Figure 1.4.18:Print options window2.The user may select Full screen or Mouse selection or Pixellocation.3.Select Color Mode > Color.4.Continuing on in the Print options window, select Print to getthe hardcopy.5.The user can change the Title of the project. In the tree go toProblem setup > Title/notes to get a window as shown in Fig-ure 1.4.19.Figure 1.4.19:Title/notes window6.The appearance of the printout may be further customized byaccessing the View > Add Marker from top menu bar. This willopen the Add Marker window shown in Figure 1.4.20. Thisallows the user to add text to the display at a specified location. Figure 1.4.20:Add marker window7.You can do the annotations on the screen by opting for Edit >Annotations from the top menu bar. This will open up a win-dow as shown in Figure 1.4.21.Figure 1.4.21:Annotations window1.4.12: Summary CreationAlong with a hardcopy of the model itself, a hardcopysummarizing the specifications you have used in its creation maybe useful. A printout of this information is accessible by selectingEdit > Summary from the top menu bar. This will open theParameter summary window as shown in Figure 1.4.22.78Modeling and Meshing a Lab Figure 1.4.22:Parameter summarywindow79Tutorial Example 1.5: Modeling and Meshing a WingOverview This tutorial will guide the user through creating a wing-shapedobject inside of a room in order to analyze the airflow over, under,and around the wing. On one side of the room, an inlet vent permitsair to flow into a duct that channels the airflow directly towards thewing. The airflow will pass by the wing and head directly towardthe outlet vent on the opposing room wall, passing over, under, andaround the wing during its travel.Operations introduced in this example Starting a New Project•Initializing AutoHexa and beginning the projectCreating Objects•Developing the model with the following geometrical entities: Domain, Ellipsoidal cylinders, Ellipsoids, Polygons andQuadsCopying Objects•Making modifications in the Copy window, copying the poly-gons80Modeling and Meshing a WingMesh Generation•Creating Tetra meshCreating a Cut Plane•Utilizing Cut plane techniques to obtain a clearer view of thetetra mesh around the wing1.5.1: Starting the Project1.Load ICEM CFD to open the main Mesh Editor viewingscreen, as well as the MED messages window and the Displaywindow. A File selection window should also appear, with theprompt to Select an ICEM CFD project to open.2.Type the new project name as tutorial-5 and pressAccept.3.Meshing > AutoHexa will initialize the AutoHexa modelingsystem.1.5.2: Creating ObjectsCreating the Domain1.Begin the creation of room by selecting Model > Domain fromthe tree.2.Resize the Domain with the following assignments: S tartpoints > (xS, yS, zS) -> (0, 0, 0) and E nd points > (xE, yE, zE)-> (100, 50, 40)3.Press Apply to activate the changes.4.Notice that the Domain is larger than the viewing window --select Orient > Isometric view to achieve a better view, asshown in Figure 1.5.1.Modeling and Meshing a Wing81 Figure 1.5.1:The Isometric viewof the modifiedDomainCreating the Ellipsoidal CylindersUtilizing an ellipsoidal cylinder will allow the user to create themain wing shape. Ellipsoidal cylinders are specified by twoellipses that are the ends of the object. Each end has a C entercoordinate (C1 on one end, and C2on the other), and twocorresponding radius vectors (vec1 and vec2 -- both assignedvalues at the Top and the Bottom of the wing.) If needed, theOnline Reference Manual provides a more detailed description ofthe ellipsoidal cylinder objects.1.From the AutoHexa top menu bar, select Create e. cylindersicon. Then proceed to select oval.1 from the right side tree,press right mouse button and choose option Edit object asshown in Figure 1.5.2.82Modeling and Meshing a WingFigure 1.5.2:E. cylinders editwindow with thespecified parameters2.Change the Name from oval.1 to wing13.Enter the bottom center (Bot cent) X, Y and Z coordinates as(48, 25, 0)4.Enter the top center (Top cent) X, Y and Z coordinates as (50,25, 18.25).5.(Bot vec1 x, Bot vec2 x, Top vec1 x, Top vec2 x) > (0, 4, 0, 2)6.(Bot vec1 y, Bot vec2 y, Top vec1 y, Top vec2 y) > (1, 0, 0.25,0)7.(Bot vec1 z, Bot vec2 z, Top vec1 z, Top vec2 z) > (0, 0, 0, 0)8.Family Type > Hollow from Properties9.Sides family > wing (manually typed)10.Select Update and Done to activate the changes as shown inFigure 1.5.3Modeling and Meshing a Wing83 Figure 1.5.3:wing1 with thelabeled top andbottom vectorsCreating the EllipsoidTo create the rounded tip of the wing, the user will implement anellipsoid object. An ellipsoid is a 3-dimensional ellipse where allthree axes are aligned to the coordinate axes. Like Hexa objects,Ellipsoids are specified by a bounding box. The Online ReferenceManual provides more information on ellipsoids.1.From the top menu bar, select Create ellipsoids icon. > wing-tip3.S tart points: (48, 24.75, 18) and E nd points: (52, 25.25, 18.5)4.Press Apply to confirm the changes.5.For a clearer view of the newly created Ellipsoid object, deacti-vate the wing by clicking right mouse button on wing1 fromthe tree and de-selecting Active. This temporarily removeswing1 from the display.6.Zoom in on the Ellipsoid object that is visible on the screenwith the right-mouse button.7.In the tree highlight wing-tip to apply more changes.8.Once in the Ellipsoid frame (Figure 1.5.4), unselect Corners >xyz, Xyz, xYz, XYz. Only half of the Ellipsoid is necessary torepresent the wing-tip.9.Type > hollow84Modeling and Meshing a WingFigure 1.5.4:Ellipsoids object editwindow with thespecifications10.Set the Outside family to wing from the edit window. Get thatwindow by clicking right mouse button on wing-tip in the treeand opting for Edit object.11.Press Update to activate the modifications, and then Done toclose the edit window. This should yield the model displayed inFigure 1.5.5.Figure 1.5.5:Close-up view of thewing-tip after settingthe parameters.12.Reactivate wing1 by toggling on Activate from Inactive groupfrom the tree to achieve Figure 1.5.6.。
对于习惯使用icem做六面体网格的朋友,更希望在workbench中使用(本文参考网络视例)1、首先建立dm模型,或在三维软件中建立三维模型,导入到workbench中
2、双击model,进入设置界面。
观察模型树中,记下Geometry下模型的名字Part 1。
3、右击mesh,设置如下网格选项。
右击mesh,产生网格,则自动调出icem,进入icem界面。
4、进入icem中,系统自动分块,而这个分块是我们不想要的,因此删除块,重新分块,生产新块时,注意手动选择part名称,保证与2中名字一致。
(part 1,这里是part_1_1_1)
5、icem中划分网格,结果如下
6、产生结构网格,File-Mesh-From....,保存网格,点击yes
7、进行简单的设置,简单的做了个计算,如图所示:。
ansys icem cfd网格划分技术实
例详解纪
ANSYS ICEM CFD网格划分技术实例详解纪:
1、首先,选择你要建立的几何图形,如某个物体的外形、内部结构等;
2、选择网格划分的方法,可以使用Tetrahedron、Hexahedron、Prism等划分方法;
3、设定网格划分的精度,即划分后各三角形面或者正方体面的边长,一般可以根据不同类型的流动情况来调整精度;
4、确定各个区域的网格密度,一般需要在边界层提高网格数量,以更好地模拟流体的运动情况;
5、检查网格的质量,消除网格中的闭合面,以保证网格的准确性;
6、计算流场,对网格进行求解,并作图显示。
ANSYS.ICEM-CFD中文教程ICEM差价合约工程讲解目录中的每个项目都是一个子目录。
每个项目目录下都有以下子目录:导入,零件,域,网格,与转让。
他们代表:•进口/:导入到ICEMCFD的收集模型交换文件,例如igs,STL等;•部分/:CAD模型•域/:非结构六面体网格文件(hex.unstruct),结构六面体网格分区文件(domain.n),非结构四面体网格文件(cut_domain.1)•网状/:边界条件文件(family_boco,boco),结构网格的拓扑定义文件(family_topo,topo_mulcad_out),与特丁几何文件(tetin1)。
•转让/:求解器输入文件(star.elem),用于妈妈3d。
分析数据网状在目录中特丁该文件表示将被网格化的几何。
包含B样条曲面定义和曲线信息以及组定义重播文件为六面体网格的块脚本鼠标和键盘操作鼠标或键盘操作特征鼠标左键单击并拖动旋转模型鼠标中键单击并拖动翻译模型右键点击单击并上下拖动缩放模型右键点击单击并左右拖动围绕屏幕的Z轴旋转模型运行期间模型运动F9 按住F9,然后单击任何鼠标按钮F10 按F10 紧急图像重置第二章ICEM CFD网格编辑器接口网格编辑器,创建用于修改网格的集成环境,包括三个窗口•ICEM差价合约主视窗•展示窗•ICEM差价合约讯息视窗主视窗除了主窗口中的图形显示区域外,还有6个单选按钮:文件,几何,网格划分,编辑网格和输出量。
文件菜单的文件菜单包含•打开,保存,另存为,关闭,退出,项目目录,Tetin文件,域文件,B.C文件,导入地理位置,导出地理位置,选项,实用程序,脚本,注释,导入网格,DDN零件。
几何菜单的几何菜单模型修复和编辑,边界条件设置,调用ICEM CFD DDN。
它包含了•DDN工具,约束条件,修理,实用工具,全局设置。
模型编辑模式,由一行彩色组成单选按钮控制•表面,曲线,点,材料,密度,Loop。
ICEM网格导入Workbench方法本人在论坛上看了两天才终于找到ICEM网格导入Workbench的方法,现分享给大家,希望对大家有帮助。
说明:本人用得是Ansys13.0版本。
总体思路:通过Finite Element Modeler将网格导入软件,之后通过Mechanical Model 将网格传到Static strutural的model中。
具体的导入过程为:(1)首先将Finite Element Modeler和Mechanical Model两个模块拖入主窗口中,拖入后如图1所示;图1(2)将A-2的model拖到B-4,即将Finite Element Modeler中的Model和Mechanical Model 的Model数据关联,关联后的界面如图2所示;图2(3)右击Finite Element Modeler中的Model,选择Add Input Mesh并选择要导入的网格*.uns;图3(4)Update整个工程文件;(5)将static structural模块拖到Mechanical Model的Model上(图4),系统自动建立Finite Element Modeler中的Model和static structural中的Model的数据传递关系,如图5;通过以上过程已经把ICEM的网格成功导入workbench中。
图4 拖动中的界面图5(6)设置边界条件、材料属性等并求解计算;(7)本人算例是一圆柱壳体,其求解变形结果如图6所示。
图6注意:打开workbench后不要急着建立Static Structural,否则里面带有Geometry项(如图7),此将使网格无法使用。
图7。
ICEM CFD 划好网格导入到ANSYS的成功案例第一步:导入几何文件Ug一般选择parasolid的x_t的格式,而proe导成step/iges 较好。
第二步:划分网格由于该部分不是导入的重点,就省略了,网格图如下。
第三步:打开solve option的工具条直接选择后,就会弹出如下对话框。
其中solver选择ansys求解器,edit option选择advanced这样就可以修改网格的材料,实常数,横截面,单元类型,但是这些都可以在ansys中修改除了单元类型。
单元类型的选择也直接关系到是否能导入成功以及导入后求解的精度。
所以这里主要讲一下单元类型的选择,至于其他参数在ansys 中可以修改。
单机,出现如下图。
选择单元类型的原则:按道理划分六面体后选择的单元类型要选择六面体单元,划分的网格是四面体网格时要选择四面体单元,六面体单元挺多,但是四面体单元有solid187但是行不通(现在还没找到原因)但是可以用solid45、65来代替,这样就会使多出来的节点消失了,(导入ansys观察节点数和单元数就可以发现),但影响不大。
第四步:选择完单元后单机apply出现下图提示你没有ansys.ansys.atr的工作目录,没关系,因为你刚创建本来就没有这个文件,这时单机创建attribute和parameter的文件,再单击还会弹出之前的单元选择对话框,这时要重新选择单元类型solid45。
完事单机accept出现下图;选择attribute的文件类型即可,表示可以有ansys.ansys.atr 的工作目录了。
最后单机apply就可成功导出。
第五步:ansys打开in文件。
上左图就是导入后的网格图。
接下来就是修改参数,由于是例子所以参数较简单,只是静态分析。
上图是icem导入后的单元属性,可以看出是一致的。
设置材料属性。
这些都完事后既可以施加约束和载荷了,由于导入的只有网格和单元,所以要通过component来实现载荷的施加。
ICEM导入ANSYS不知道发这里合不合适,如果不合适的话麻烦版主转到ANSYS前后处理区吧。
1 背景ANSYS是个好软件,只不过在用过ICEM后,就会发现它的网格划分功能相比之下就不如ICEM顺手了。
很简单的想法,ICEM划网,ANSYS求解。
虽然workbench一直在努力融合ANSYS旗下所有的工具,但是本人对越来越花哨不知所云的的界面感到无语。
所以,其中的交接还是希望人工完成。
不过其中的过程不如之前想象的简单,所以还是记录下来与各位分享下,希望对大家有所帮助,不当之处还望指正。
2 目标将在ICEM中建立的网格模型导出至ANSYS求解。
3 路线(1)ICEM建网具体过程略。
但是应当把需要施加边界条件的点、线、面、体等分为不同的parts,在ANSYS中它们会对应为component。
(2)ICEM中定义输出参数a. 在ICEM的solve option选项卡点击write/view input file按钮。
如果看不到这个选项卡或是按钮,点击主菜单栏的settings-〉product,将product setup选为fea模式b. 选择求解器为ANSYS。
ANSYS file是将输出到ANSYS的文件,attribute file和parameter file是保存输出参数的文件,将在下面定义,为此将edit options选为c. 点击edit parameters按钮,定义material和real constant。
ICEM这里提供了四类求解类型:结构、热、流体和电磁,相应的材料属性可以在对应的分类下找到。
点击create new就可以新建材料。
需要注意的是material id默认为从0开始,这里要改为1或者2、3、4等等,否则ANSYS中会将id=0的材料其识别为其它编号。
d. 新建了一个material后,可以继续定义具体的材料属性比如密度、弹性模量、热膨胀率等等。
看到括号中的TBPT和TBDATA是不是有种熟悉的感觉?这确实就是ANSYS中的命令,这里留个伏笔,稍后再详细说明。
ANSYSICEMCFD中⽂教程ANSYS.ICEM-CFD中⽂教程ICEM CFD ⼯程Tutorials⽬录中每个⼯程是⼀个次级⼦⽬录。
每个⼯程的⽬录下有下列⼦⽬录:import, parts, domains, mesh, 和transfer。
他们分别代表: import/: 要导⼊到ICEMCFD中的集合模型交换⽂件,⽐如igs,STL等;parts/: CAD模型domains/: ⾮结构六⾯体⽹格⽂件(hex.unstruct), 结构六⾯体⽹格分区⽂件(domain.n), ⾮结构四⾯体⽹格⽂件(cut_domain.1)mesh/: 边界条件⽂件(family_boco, boco),结构⽹格的拓扑定义⽂件(family_topo, topo_mulcad_out), 和Tetin⼏何⽂件(tetin1).transfer/: 求解器输⼊⽂件(star.elem), ⽤于Mom3d.的分析数据mesh⽬录中Tetin⽂件代表将要划分⽹格的⼏何体。
包含B-spline曲⾯定义和曲线信息,以及分组定义Replay ⽂件是六⾯体⽹格划分的分块的脚本⿏标和键盘操作第⼆章ICEM CFD Mesh Editor界⾯The Mesh Editor, 创建修改⽹格的集成环境,包含三个窗⼝The ICEM CFD 主窗⼝显⽰窗⼝The ICEM CFD 消息窗⼝主窗⼝主窗⼝中除了图形显⽰区域,外,还有6个radio按钮:File, Geometry, Meshing, Edit Mesh and Output.The File MenuThe File menu 包含Open, Save, Save as, Close, Quit, Project dir, Tetin file,Domain file, B.C file, Import geo, Export geo, Options, Utilities,Scripting, Annotations, Import mesh, DDN part.The Geometry MenuThe Geometry menu 模型修补和编辑,边界条件的设置,调⽤ICEM CFD DDN。
ICEM CFD网格导入Workbench或ANSYS Classic的方法习惯用ICEM的朋友们有福了!很多网格高手都习惯用ICEM CFD 划分网格,导入CFX计算流体,不亦乐乎。
但是类似偶们这样做流固耦合的,是不是经常遇到不好自动划分的网格呢,这里就需要用到ICEM的强大前处理功能,但是处理完了又出现问题,网格搞不到ANSYS里面,怎么办呢。
在下拜读了“如是我闻”版主的名帖《将模型从Classic导入WB(限V11)》网址如下:/thread-780946-1-1.html深受启发,遂在AWB中试验,终于被我搞定。
提醒大家,不要随意关闭DM和UG,因为ICEM需要对模型的链接才能和AWB链接,当然,这仅限于在一个project里面完成整个分析的朋友。
闲言碎语不要讲,上图细说。
1.UG中建立的模型,10×10×10的方块。
2.打开AWB,建立新的项目,这里不用细说了吧。
3.这个是主界面,注意,这里不要关闭UG,不关闭的话导入更便捷,直接点linkto active cad geometry就行了,如果不行的话就点link to geometry。
这里使用了更主流的方法,点New geometry,就是绿色的那个DM4.进入DM,File→import geometry,导入刚才的方块,保存,别退出。
5.回到主界面,有没有人兴奋的发现这里有个蓝色的小图标,Proceed to Advanced Meshing,没有发现或者不感到兴奋的人可能是因为没有选中绿色的DM项目。
6.画网格吧,这里省略1万字。
7.画完了保存,这里关不关闭这个就没所谓了,不过不差这一个窗口。
回到主界面,这回发现左边多了一个灰色图标:New FE Model,这个就是我们所要的关键一步了。
没有发现的药选中右边目录树中蓝色的图标才行。
8.这个界面大家不熟悉,我也不熟悉。
(别丢鸡蛋)先create skin components,之后在geometry synthesis上点右键选中initial geometry,这个模块里的内容就算完成了。
ICEM固体结构化网格并导入Ansys步骤:第一:建立solidworks模型,保存为passolid格式“x_t”第二:打开ICEM CFD,通过import导入passolid格式“x_t”第三:根据需要建立part,主要是约束边界条件,荷载边界条件。
对于作用在节点上的荷载,可以在导入ansys后进行加载。
(注意,ICEM中part必然包含geometry所有的信息,也包括所有定义的block,如果新定义的part部分在已有的part已经包含,则系统自动把新定义的part部分从既有part中分离出来,但是如果删除某一part,则将会永久删除,删除部分不会自动保存到其他part中)。
还需注意的是ICEM 非结构化网格,三维实体材料以及单元要通过建立body来寄存,对于结构化网格曾通过block来寄存(但是应注意block要在和几何体映射,pre-mesh 以及covert to unstrucmesh以后才可以定义材料和单元类型,否则会出错)。
注意:定义的part在赋予单元类型时不应该包含其他元素,比如说将要赋予实体单元的part不应该存在面元素和线元素以及点元素,赋予壳单元的几何元素不应该有实体元素和点元素。
(对于block通常不存在这种问题)。
第四:建立block,第五:建立block与结合体建立映射关系第六:设置block划分网格的参数第七:进行block下的pre-mesh第八:右击,选择covert to unstruct网格第九:建立材料,单元(对应材料),边界条件,几何元素荷载第十:选择solver option,选择ansys求解器,最后在write/view input file中点击Advanced,然后选择create attribute¶meter files产生.par和.atr文件,然后点击apply产生.in文件。
第十一:打开ansys,read input from,选择.in文件第十二:建立节点荷载,和节点边界条件。
ansys11 workbench如何使用icem生成网格大家也许比较熟悉了,但是12里面如何导入icem 的网格一直没有一个详细的教程,本人折腾了很久终于成功搞定,特此分享一下。
首先新建一个static strutural 分析,在geometry上依次右键transfer data from new-finite element modeler(FEM)。
如下图:双击新生成的FEM,选择需要导入的.uns 网格文件后进入FEM,如下:在FEM中我们可以在component里面看到ICEM中定义好的各个面,如下图中的IN、OUT、WALL三个面接着,右键geomery synthesis-insert-initial geometry ,如下图但是结果却令人失望,似乎wall这个面有些问题,如下图所示继续,在intial geometry 右键选covert to parasolid我们可以看到,新生成的parasolid geometry只有两个面,周围的面丢失了。
为什么会这样本人也不清楚,具体原因有待高手解答,既然导入ICEM的component不行那么就试试看skin detection tools。
首先,先把刚才生成的parasolid 和initial geometry删除,并且同时删除wall、in、out这三个ICEM中定义好的component,接着对skin detection tools 右键-create skin components,如下图所示:FEM自动检测到的面如下:接下来,重复上面的步骤,insert initial geometry,并且生成parasolid geometry,这时候的结果如下图,我们发现,parasolid里面全是面,没有实体。
接着,对parasolid geometry右键-add a sew tool选中这个立方体的6个面apply这时候我们已经把这六个面缝合成一个实体了保存FEM返回Workbench,点updata project,workbench会自动把FEM中的几何与网格导入static strutural导入后如下图:static strutural中的setup查看导入的几何与网格,OK!。
ANSYS12 ICEM导入Workbench步骤
ANSYS11,和ANSYS13都可以直接调用ICEM进行网格划分,单独12不可以,期间的导入只能靠手工操作。
1,在ICEM中生成网格后,通过转换成无结构或者结构网格,生成.uns文件并保存。
2,启动Workbench,在点选
右击model——import mesh,选择第一步中生成的.uns文件。
3,右击edit,进入编辑,删除part_1,右击
,insert---initial geometry
initial geometry 右键选covert to parasolid后,生成
4,此时生成的几何中只是面体,没有体积。
需要对生成的Parasolid进行缝合,右键parasolid geometry -选择add a sew tool
单击黄色区域出现
,
选择
所有的body,然后Apply。
出现
,在Sew1右击,选择。
(注:若在这一部中出现警告,或者不成功,可能是容差的问题,删除刚生成的Sew1,重新来过第4步,在
之前,将容差变大,
,例如将.01变成.1,然后再
)
5,保存,关闭
6,拖动到workbench,但不要与
进行连接。
8、拖动A2到B4
(一定是中的与
中的相连接,
9,点击,就完成了输入
注意问题
1,第3步中,一定要删除,不然在initial geometry时出现错误
此时生成的模型与原来的模型有很大区别
2,一定要在前5步完成之后再与其他模块连接,否则影响最后生成网格的质量
3,一定是model与model连接,不然不会生成网格。
关于ICEM CFD给ANSYS前处理的一点研究本文主要是参考ICEM CFD的帮助,由简入繁的探索ICEM CFD给ANSYS前处理的方法,还掺杂了一些对HyperMesh给ANSYS前处理的对比,因为三个软件使用都不是很熟练,所以其中的方法、观点定有不少疏漏甚至错误之处,还请个中高手勿以见怪为盼。
一、最简单的模型如下图所示,直径为φ5、长度为100的钢棒,在一端面固定时,求自身重力引起的变形和应力。
导入ICEM CFD后,划分网格如下:在下图所示两个位置定义材料属性和单元属性(本例为3D单元)。
当然了,常用材料可以定义属性后保存*.mat,以后再用直接读取。
接下来定义约束,在下图所示位置。
另外注意到定义接触功能有木有?!先小小激动一把,下文再研究吧,这个算例不需要定义接触了。
定义的约束都被添加到树形结构的Displacements结点下来,还可以修改。
里面加载就行了。
下面设定一些求解器参数,就可以输出网格了。
居然在分析参数设定的选项中看到重力、旋转速度、旋转加速度的选项了。
另外,子步设定在本次分析中也用不上了。
还有,ICEM CFD在这里默认的求解器是Nastran,所以如果在前面看到定义接触的按钮是灰色的,这里改成ANSYS就行了。
另外注意到,求解器还支持LS_Dyna、Abaqus、AUTODYN,基本囊括有限元分析软件了,ICEM CFD果不负通用前处理器之名!求解类型本例选择静力学,求解器默认。
求解类型还可以选择模态!需要注意的是,如果分析类型选项为None,则导入到ANSYS是不自动求解的(需要在ANSYS里面添加或修改约束载荷的情况下可以节省时间了);如果选择了分析类型,那么导入ANSYS后会自动计算。
总算到最后一步了,本例比较简单,因此输出的选项默认即可。
那个.in文件就是读入ANSYS时需要的。
理论上现在就可以关闭ICEM CFD,到ANSYS里了。
但是本着学习的态度,还是要探索一番。
Hypermesh⽹格模型导⼊到ANSYSWorkbench中的⽅法Hypermesh⽹格模型导⼊到ANSYS Workbench中的⽅法
1、在Hypermesh中正确设置单元类型、材料属性等,然后导出为cdb格式的⽂件;
2、在ANSYS Workbench中,拖⼊FE模块,,并邮件添加cdb⽂件,如下图所⽰:
3、添加分析类型:拖动分析类型到FE的Model上,如Static Structural分析,结果如下
图所⽰:
4、然后拖拽FE中的Model到Static下⾯的Model上,结果如下图所⽰:
5、最后点击Update Project按钮
在更新过程中,ANSYS Workbench会做两⽅⾯的⼯作:1、将你在Hypermesh
中创建的材料⾃动添加到Engineering Data中,只是材料名称可能显⽰为Unknown;2、为⽹格模型创建⼀个⼏何模型,⽅便添加载荷、约束条件等。
如果模型⽐较⼤,更新时间可能会略长⼀些。
祝⼤家⼯作学习顺利!
希望有百度积分的TX能下载本⽂,谢谢!。