高三数学等比数列2
- 格式:pdf
- 大小:932.00 KB
- 文档页数:9
专题11与等比数列相关的结论一、结论已知等比数列{}n a ,公比为q ,前n 项和为n S .(1)n mn m a a q(,m n N ).(2)若m n p q ,则m n p q a a a a (,,,m n p q N );反之,不一定成立.(3)123m a a a a ,122m m m a a a ,21223m m m a a a , 成等比数列(m N ).(4)公比1q 时,n S ,2n n S S ,32n n S S ,43n n S S 成等比数列(n N ).(5)若等比数列的项数为2n (n N ),公比为q ,奇数项之和为S 奇,偶数项之和为S 偶,则S q S 偶奇.(6){}n a ,{}n b 是等比数列,则{}n a ,1{}n a ,{}n n a b ,{}n na b 也是等比数列(0 ,n N ).(7)通项公式111n nn a a a qq q.从函数的角度来看,它可以看作是一个常数与一个关于n 的指数函数的积,其图象是指数函数图象上一群孤立的点.(8)只有同号的两个数才能有等比中项;两个同号的数的等比中项有两个,它们互为相反数.(9)三个数成等比数列,通常设为x q ,x ,xq ;四个数成等比数列,通常设为3x q ,xq,xq ,3xq .二、典型例题1.(2022·安徽·合肥市第十一中学高二期末)设等比数列 n a 的前n 项和为n S ,若63:1:2S S ,则93:S S ()A .1:2B .2:3C .3:4D .1:3【答案】C 【解析】解:因为数列 n a 为等比数列,则3S ,63S S ,96S S 成等比数列,设3S m ,则62m S ,则632mS S ,故633S S S 966312S S S S ,所以964m S S ,得到934S m ,所以9334S S .故选:C.【反思】公比1q 时,n S ,2n n S S ,32n n S S ,43n n S S 成等比数列(n N ),此结论可快速解题,解题时注意等比数列的正负性问题.2.(2022·全国·高三专题练习)已知一个等比数列首项为1,项数是偶数,其奇数项之和为85,偶数项之和为170,则这个数列的项数为()A .2B .4C .8D .16【答案】C 【解析】设这个等比数列 n a 共有 2k k N项,公比为q ,则奇数项之和为132185k S a a a 奇,偶数项之和为 2421321170n n S a a a q a a a qS 奇偶,170285S q S偶奇,等比数列 n a 的所有项之和为212212211708525512kkk a S,则22256k,解得4k ,因此,这个等比数列的项数为8.故选:C.【反思】利用结论若等比数列的项数为2n (n N ),公比为q ,奇数项之和为S 奇,偶数项之和为S 偶,则S q S 偶奇,可直接根据结论求出q ,进而求出其它量.三、针对训练举一反三一、单选题1.(2022·广东潮阳·高二期末)等比数列 n a 的各项均为正数,且383 a a ,则3132310log log log a a a ()A .5B .10C .4D .32log 5【答案】A 【解析】【详解】由题有293847561103a a a a a a a a a a ,则531323103293847561103log log log log ()lo 3g a a a a a a a a a a a a a =5.故选:A2.(2021·江苏·高二专题练习)在等差数列 n a 中,若100a ,则有等式121219n n a a a a a a (19n 且N n )成立,类比上述性质,在等比数列 n b 中,若111b ,则有()A .121219n n b b b b b b L L (19n 且N n )B .121221n n b b b b b b L L (21n <且N n)C .121921n n b b b b b b (19n 且N n )D .121122n n b b b b b b (21n <且N n )【答案】B 【详解】在等差数列 n a 中,若 ,,,N s t p q s t p q则s t p q a a a a ,若0m a ,则1222210n n m n m n a a a a ,所以121221n m n a a a a a a 成立,当10m 时,121219n n a a a a a a (19n 且N n )成立,在等比数列 n b 中,若 ,,,N s t p q s t p q则s t p q b b b b ,若1m b ,则1222211n n m n m n b b b b ,所以121221n m n b b b b b b 成立,当11m 时,12n b b b L =1221n b b b L (21n <且N n )成立,故选:B.3.(2022·全国·高三专题练习)已知等比数列 n a 的前n 项和为n S ,若43S ,89S ,则16S 的值为()A .12B .30C .45D .81【答案】C 【详解】显然公比不为-1,∵ n a 是等比数列,则4841281612,,,S S S S S S S 也成等比数列,483,9S S ∵,846S S ,12812S S ,则1221S ,161224S S ,则1645S .故选:C.4.(2020·四川·双流中学高二期中(理))设n S 是等比数列 n a 的前n 项和,若423S S ,则64S S ()A .2B .73C .310D .12或【答案】B 【详解】设24,3S k S k ,由数列 n a 为等比数列(易知数列 n a 的公比1q ),得24264,,S S S S S 为等比数列又242,2S k S S k644S S k67,S k 647733S k S k故选:B .5.(2021·全国·高二课时练习)已知等比数列 n a 中,11a ,132185k a a a ,24242k a a a ,则k ()A .2B .3C .4D .5【答案】B 【详解】设等比数列 n a 的公比为q ,则132112285k k a a a a a a q q ,即 2285184k q a a ,因为24242k a a a ,所以2q =,则 21123221112854212712k k k a a a a a ,即211282k ,解得3k ,故选:B.6.(2021·江西·奉新县第一中学高一阶段练习)等比数列的首项为1,项数是偶数,所有得奇数项之和为85,所有的偶数项之和为170,则这个等比数列的项数为()A .4B .6C .8D .10【答案】C设等比数列项数为2n 项,所有奇数项之和为S 奇,所有偶数项之和为S 偶,则85,170S S 奇偶,所以=2S q S偶奇,结合等比数列求和公式有:22122112==185112nn a q S q奇,解得n =4,即这个等比数列的项数为8.本题选择C 选项.7.(2022·上海·高考真题)已知{}n a 为等比数列,{}n a 的前n 项和为n S ,前n 项积为n T ,则下列选项中正确的是()A .若20222021S S ,则数列{}n a 单调递增B .若20222021T T ,则数列{}n a 单调递增C .若数列{}n S 单调递增,则20222021a aD .若数列{}n T 单调递增,则20222021a a 【答案】D 【详解】A :由20222021S S ,得20220a ,即202110a q,则1a 、q 取值同号,若100a q ,,则{}n a 不是递增数列,故A 错误;B :由20222021T T ,得20221a ,即202111a q,则1a 、q 取值同号,若100a q ,,则数列{}n a 不是递增数列,故B 错误;C :若等比数列11a ,公比12q ,则11(122(1)1212nn nS ,所以数列{}n S 为递增数列,但20222021a a ,故C 错误;D :由数列{}n T 为递增数列,得1n n T T ,所以1n a ,即1q ,所以20222021a a ,故D 正确.故选:D8.(2021·全国·高二课时练习)已知n S 是等比数列 n a 的前n 项和,若存在*m N ,满足22519,1m m m m S a m S a m ,则数列 n a 的公比为()A .2B .2C .3D .3【答案】B 【详解】设数列 n a 的公比为q ,若1q ,则22mmS S ,与题中条件矛盾,故212122111115111.19,8.8,111mm mmm m m m mm m a q S a a q m qq q q q S a a q m a q q∵∵33,8,2m q q .故选:B 二、填空题9.(2021·全国·高三专题练习)设正项等比数列 n a 的前n 项和为n S ,132,14a S ,若n nnb a,则数列 n b 中最大的项为_____.【答案】12【详解】根据题意,设正项等比数列 n a 的公比为q ,其中0q ,因为132,14a S ,可得2322214S q q ,解得2q =或3q ,因为0q ,所以2q =,所以112n n n a a q ,则2n n n n n b a,故122121,222b b ,当2n 时,则由11112(1)112(1)212n n n n nb n n b n n ,则有1234b b b b ,所以数列 n b 中最大的项为12.故答案为:12.10.(2020·江西省都昌县第二中学高二阶段练习)已知等比数列 n a 的首项为1a ,公比为q ,其前n 项和为n S ,下列命题中正确的是______.(写出全部正确命题的序号)(1)若等比数列 n a 单调递增,则10a ,且1q ;(2)数列:23243,,n n n n n n S S S S S S ,……,也是等比数列;(3) *11,2n n S qS a n N n ;【答案】(3)【详解】解:对于(1),若等比数列 n a 单调递增,则 11110n n n a a a q q ,所以101a q 或1001a q,故(1)错误;对于(2),若1q ,n 为偶数,则20,0n n S S ,即20n n S S ,因为等比数列中的项不可能为0,故此时23243,,n n n n n n S S S S S S ,……,不是等比数列,故(2)错误;对于(3),当*,2n N n 时,123n nS a a a a1111n a q a a a 11n qS a ,故(3)正确.故答案为:(3).三、解答题11.(2020·上海·高三专题练习)解答下列各题:(S 奇表示奇数项和,S 偶表示偶数项和)(1) n a 是等比数列,11a ,项数n 为偶数.S 奇=85,S 偶=170,求n ;(2) n a 是等差数列,共n 项,n 为奇数,77n S ,S 偶33 ,118 n a a ,求通项公式.【答案】(1)8;(2)323 n a n .【详解】(1) 2S q S偶奇,所以128517012nn S ,解得8n ;(2)S 奇=n S S 偶=44,12n a =S 奇-S 偶=44-33=11,即122 n a a ,由118 n a a ,可得120,2,7 n a a n ,∴220371d.所以通项公式为203(1)323n a n n ..。
人人教A 版数学高三等比数列精选试卷练习(含答案) 学校:___________姓名:___________班级:___________考号:___________一、单选题1.在等比数列{}n a 中,332a =,392S =,则1a =( ) A .32或6 B .3 C .32或3 D .6 2.若数列{a n }满足:a 1=1,2a n +1=2a n +1(n ∈N*),则a 1与a 5的等比中项为( )A .±2B .2C .D 3.等比数列{}n a 中,39a =,51a =,则6a 的值为( )A .13B .13- C .13± D .194.公比不为1的等比数列{}n a 的前n 项和为n S ,若1a ,3a ,2a 成等差数列,2mS ,3S ,4S 成等比数列,则m =( )A .78B .85 C .1 D .955.正项等比数列{}n a 中,153759216a a a a a a ++=,且5a 与9a 的等差中项为4,则{}n a 的公比是 ( )A .1B .2C .2D 6.已知一个等比数列项数是偶数,其偶数项之和是奇数项之和的3倍,则这个数列的公比为( )A .2B .3C .4D .6 7.已知等比数列{}n a ,若1231a a a ⋅⋅=,7894a a a ⋅⋅=,则129a a a ⋅=L ( ) A .4 B .6 C .8 D .8± 8.在等比数列{}n a 中,24681,4a a a a +=+=,则2a =( )A .2B .4C .12D .13 9.已知等比数列{}n a 满足114a =,()35441a a a =-,则2a =( )A .2B .1C .12D .1810.已知()f x 是定义在R 上不恒为0的函数,且对任意,a b ∈R ,有()()()f a b a f b b f a ⋅=⋅+⋅成立,()22f =,令()2n n a f =,()22n n n f b =则有( )A .{}n a 为等差数列B .{}n a 为等比数列C .{}n b 为等差数列D .{}n b 为等比数列 11.在等比数列{}n a 中,227a =,13q =-,则5a =( ) A .3- B .3 C .1- D .112.已知正项数列{}n a ,若点()4log n na ,在函数()3f x x =-的图像上,则()2357log a a a =( )A .12B .13C .14D .16 13.已知等比数列{}n a 中,141,8a a =-=,该数列的公比为A .2B .-2C .2±D .314.在正项等比数列{}n a 中,4a ,46a 为方程210090x x -+=的两根,则102540a a a ⋅⋅=( )A .9B .27C .64D .8115.已知数列{}n a 是等比数列,若2678492ma a a a a ⋅=-⋅,且公比2)q ∈,则实数m 的取值范围是()A .(2,6)B .(2,5)C .(3,6)D .(3,5) 16.已知等比数列{}n a ,若1472a a +=,232a a ⋅=-,则公比q =( ) A .-2 B .12- C .-2或12- D .-8或18- 17.在等比数列{}n a 中,34a =,516a =,则9a 等于( )A .256B .-256C .128D .-128 18.在正项等比数列{n a }中,274a a =,则212228log log log a a a +++…= A .2 B .4 C .6 D .819.已知数列{}n a 的前n 项和1n n S a =-(0a ≠),那么{}n a ( )A .一定是等差数列B .一定是等比数列C .或者是等差数列,或者是等比数列D .既不可能是等差数列,也不可能是等比数列20.等比数列{a n }中,a 4=2,a 7=5,则数列{lg a n }的前10项和等于( ) A .2B .lg 50C .5D .10二、解答题21.在我们的教材必修一中有这样一个问题,假设你有一笔资金,现有三种投资方案供你选择,这三种方案的回报如下:方案一:每天回报40元;方案二:第一天回报10元,以后每天比前一天多回报10元;方案三:第一天回报0.4元,以后每天的回报比前一天翻一番.记三种方案第n 天的回报分别为n a ,n b ,n c .(1)根据数列的定义判断数列{}n a ,{}n b ,{}n c 的类型,并据此写出三个数列的通项公式;(2)小王准备做一个为期十天的短期投资,他应该选择哪一种投资方案?并说明理由. 22.设数列{}n a 的前n 项和为n S ,若对于任意的正整数n ,总存在正整数m ,使得n m S a =,则称{}n a 是“H 数列”.(1)若数列{}n a 的前n 项和为*2()n n S n =∈N ,证明:{}n a 是“H 数列”.(2)设{}n a 是等差数列,其首项11a =,公差0d <,若{}n a 是“H 数列”,求d 的值.23.已知数列{}n a 中,13a =,132n n n a a ++=⋅,*n N ∈.(1)证明:数列{}2n n a -是等比数列,并求数列{}na 的通项公式; (2)在数列{}n a 中,是否存在连续三项成等差数列?若存在,求出所有符合条件的项;若不存在,请说明理由;(3)若1r s <<且r ,s ∈*N ,求证:使得1a ,r a ,s a 成等差数列的点列(),r s 在某一直线上.24. 由a n 与S n 的关系求通项公式(1)已知数列{}n a 的前n 项和为n S ,且23722n S n n =-()*n N ∈,求数列{}n a 的通项公式;(2)已知正项数列{}n a 的前n 项和n S 满足2(1)4n n a S +=(*n N ∈).求数列{}n a 的通项公式;(3)已知数列{a n }的前n 项和为S n ,a 1=1,S n =2a n +1,求S n(4)已知正项数列{}n a 中,11a =,22a =,前n 项和为n S ,且满足211111142n n n n n n n S S S S S S S +--++-+=-(*2,n n N ≥∈).求数列{}n a 的通项公式; (5)设数列{a n }的前n 项积为T n ,且T n +2a n =2(n ∈N *).数列1n T ⎧⎫⎨⎬⎩⎭是等差数列;求数列{}n a 的通项公式; 25.已知数列{}n a 为等比数列,且0n a >,数列{}n b 满足2log n n b a =,若14b =,23b =. (1)求数列{}n a 的通项公式;(2)设数列{}n b m +前n 项和为n S ,若当且仅当5n =时,n S 取得最大值,求实数m 的取值范围.26.已知公比为q 的等比数列{}()*n a n N∈中,22a =,前三项的和为7.(1)求数列{}n a 的通项公式;(2)若01q <<,设数列{}n b 满足12n n b a a a =⋅L L ,n *∈N ,求使01n b <<的n 的最小值.27.在等比数列{}n a 中,公比(0,1)q ∈,且满足42a =,232637225a a a a a ++=. (1)求数列{}n a 的通项公式;(2)设2log n n b a =,数列{}n b 的前n 项和为n S ,当312123n S S S S n +++⋯+取最大值时,求n 的值.28.已知数列{},{}n n a b 满足{}1,2n n n n a a b b +-=+为等比数列,且12a =,24a =,310a =.(1)试判断列{}n b 是否为等比数列,并说明理由;(2)求n a .29.等比数列{}n a 中,已知142,16a a ==.(1)求数列{}n a 的通项公式n a ;(2)若35,a a 分别是等差数列{}n b 的第4项和第16项,求数列{}n b 的通项公式及前n 项和n S .30.已知数列{}n a 是递增的等比数列,且14239,8.a a a a +==(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设n S 为数列{}n a 的前n 项和,11n n n n a b S S ++=,求数列{}n b 的前n 项和n T . 31.已知数列{}{},n n a b 满足:1112,,2n n n n a a n b a n b ++=+-==.(1)证明数列{}n b 是等比数列,并求数列{}n b 的通项;(2)求数列{}n a 的前n 项和n S .32.已知数列{}n a 满足11a =,且11123n n a a +=+,*n N ∈. (1)求证:23n a ⎧⎫-⎨⎬⎩⎭是等比数列;(2)求数列{}n a 的通项公式.33.已知等差数列{}n a 满足1210a a +=,432a a -=.(1)求{}n a 的通项公式;(2)设等比数列{}n b 满足2337,b a b a ==.若6k b a =,求k 的值.34.已知等差数列{}n a 的前n 项和为n S ,各项为正的等比数列{}n b 的前n 项和为n T ,11a =-,11b =,222a b +=.(1)若335a b +=,求{}n b 的通项公式;(2)若321T =,求3S三、填空题35.设数列{}n a 的前n 项和为n S ,若24S =,121n n a S +=+,*n N ∈,则{}n a 的通项公式为________.36.数列{}n a 满足()211122,3,1n n n n n a a a a n a -+--+==+L ,21a =,33a =,则7a =________.37.已知等比数列{}n a 满足114a =,()35441a a a =-,则2a =________. 38.已知实数()abc a b c <<,,三个数成等比数列,它们的和是21,积是64,那么这个数列的公比q =_____.39.已知等比数列{}n a 及等差数列{}n b ,其中10b =,公差0d ≠.将这两个数列的对应项相加,得一新数列1,1,2,L ,则等比数列{}n a 的前10项之和为________. 40.已知数列{}n a 是公差不为0的等差数列,11a =,且125,,a a a 成等比数列,那么数列{}n a 的前10项和10S 等于________.41.在如图的表格中,每格填上一个数字后,使每一横行成等差数列,每一纵行成等比数列,所有公比相等,则a b c ++值为42.已知等比数列{}n a 的前n 项和为n S ,且372S =,6632S =,则7a =__________. 43.已知等比数列{}n a 的首项为1a ,前n 项和为n S ,若数列{}12n S a -为等比数列,则32a a =____.44.已知等比数列{}n a 中,若451a a =,8916a a =,则67a a =_____.45.已知数列{}n a 是公差不为0的等差数列,11a =,且249112a a a --+,,成等比数列,则{}n a 的前9项和9S =_______.46.公比为2的等比数列{}n a 的各项都是正数,且31116a a ⋅=,则6a 的值为___________ 47.数列{}n a 是等比数列,21a =-,64a =-,则4a 的值是________. 48.在等比数列{}n a 中,11a =,公比2q =,若64n a =,则n 的值为 . 49.已知1,a ,b ,c ,4成等比数列,则b =______.50.各项都不为零的等差数列{}n a (*N n ∈)满足22810230a a a -+=,数列{}n b 是等比数列,且88a b =,则4911b b b =________.参考答案1.A2.C3.C4.D5.D6.B7.D 8.D9.C10.C11.C12.A13.B14.B15.C16.C17.A18.D19.C20.C21.(1){}n a 为常数列;{}n b 为等差数列;{}n c 是等比数列;40n a =,1100.42n n n b n c -==⨯,(2)应该选择方案二,详见解析22.(1)见解析在(2)1d =-23.(1)详见解析;(2),,成等差数列;(3)详见解析.24.(1) 35n a n =-;(2) 21n a n =-;(3) 132n n S -⎛⎫= ⎪⎝⎭; (4) 1,12,2n n a n =⎧=⎨≥⎩(5) 12n n a n +=+ 25.(1)52n n a -=;(2)()0,126.(1)12n n a -=或32n n a -=;(2)6.27.(1)52n n a -=(2)n 的值为8或928.(1)数列{}n b 不是等比数列.见解析(2)+122n n a n =-29.(1)n n a 2=;(2)2622n n -30.(Ⅰ)12n n a -=(Ⅱ)112221n n ++-- 31.(1)见证明;(2)n S 21222n n n ++=-- 32.(1)见解析;(2)1211332n n a -⎛⎫=+⋅ ⎪⎝⎭33.(1)22n a n =+;(2)63 34.(1)12n n b -=, (2)36s =- 35.13-=n n a 36.6337.1238.439.102340.10041.27242.32. 43.12 44.445.11746.247.2-48.749.250.8。
高中数学等比数列公式是什么高中数学等比数列公式1、等比数列的通项公式是:An=A1__q^(n-1)2、前n项和公式是:Sn=[A1(1-q^n)]/(1-q)且任意两项am,an的关系为an=am·q^(n-m)3、从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}4、若m,n,p,q∈N__,则有:ap·aq=am·an,等比中项:aq·ap=2arar则为ap,aq等比中项.记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列.在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的.性质:①若m、n、p、q∈N,且m+n=p+q,则am·an=ap__aq;②在等比数列中,依次每k项之和仍成等比数列.“G是a、b的等比中项”“G^2=ab(G≠0)”.在等比数列中,首项A1与公比q都不为零.高中数学解题方法与技巧1、不等式、方程或函数的题型,先直接思考后建立三者的联系。
首先考虑定义域,其次使用“三合一定理”。
2、在研究含有参数的初等函数的时候应该抓住无论参数怎么变化一些性质都不变的特点。
如函数过的定点、二次函数的对称轴等。
3、在求零点的函数中出现超越式,优先选择数形结合的思想方法。
4、恒成立问题中,可以转化成最值问题或者二次函数的恒成立可以利用二次函数的图像性质来解决,灵活使用函数闭区间上的最值,分类讨论的思想(在分类讨论中应注意不重复不遗漏)。
5、选择与填空中出现不等式的题,应优先选特殊值法。
6、在利用距离的几何意义求最值得问题中,应首先考虑两点之间线段最短,常用次结论来求距离和的最小值;三角形的两边之差小于第三边,常用此结论来求距离差的最大值。
4.2 等比数列(精讲)(基础版)思维导图考点一 等比数列基本量的计算【例1】(1)(2022·北京丰台·一模)若数列{}n a 满足12n n a a +=,且41a =,则数列{}n a 的前4项和等于( )考点呈现例题剖析A .15B .14C .158 D .78(2)(2022·重庆·模拟预测)已知等比数列{}n a 的前n 项和为n S ,且2a ,53a ,89a 成等差数列,则63S S =( ) A .13B .43C .3D .4【一隅三反】1.(2022·江西·新余四中)已知n S 为等比数列{}n a 的前n 项和,若38a =,324S =,则公比q =( ) A .12-B .13-C .12-或1D .13-或12.(2022·河北廊坊·高三阶段练习)已知n S 为等比数列{}n a 的前n 项和,且公比1q >,则“51a a >”是“40S >”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.(2022·全国·高三专题练习)已知{}n a 为等比数列,n S 为其前n 项和,若213S a =,223a a =,则4S =( )A .7B .8C .15D .314.(2022·河北石家庄·高三期末)等比数列{}n a 的前n 项和为n S ,33S =,69S =,则公比q =( )A .3B .2C .33D .325(2022·四川·三模(理))已知n S 是各项均为正数的等比数列{}n a 的前n 项和,若2481a a ⋅=,313S =,则6a =( ).A .21B .81C .243D .729考点二 等比中项【例2-1】(2022·江西·上饶市第一中学二模)等比数列{}n a 中,若59a =,则3436log log a a +=( ) A .2B .3C .4D .91.等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)便可迎刃而解.2.等比数列的前n 项和公式涉及对公比q 的分类讨论,当q =1时,{a n }的前n 项和S n =na 1;当q ≠1时,{a n }的前n 项和S n =a 1(1-q n )1-q =a 1-a n q1-q.温馨提示【例2-2】(2022·福建·模拟预测)已知数列{}n a 为等比数列,则“5a ,7a 是方程2202210x x ++=的两实根”是”61a =,或61a =-”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【一隅三反】1.(2022·安徽黄山·一模)在等比数列{}n a 中,1a ,13a 是方程21390x x -+=的两根,则2127a a a 的值为( ) AB .3 C.D .3±2.(2022·吉林吉林)已知各项均为正数的等比数列{}n a 中,23a =,93453a a a =,则3a =( ) A .6B .9C .27D .813.(2022·全国·高三专题练习)设a ,b ,c ,d 是非零实数,则“a ,b ,c ,d 成等比数列”是“ad bc =”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件4.(2022·广西柳州)在等比数列{}n a 中,已知22a =,8462a a =,则公比q =( ) A .2-BC .2D .2±考点三 等比数列前n 项和的性质【例3-1】(2022·全国·高三专题练习)已知等比数列{an }的前n 项和为Sn ,S 10=1,S 30=13,S 40=( ) A .﹣51B .﹣20C .27D .40【例3-2】(2022·全国·高三专题练习)等比数列{}n a 的前n 项和为n S ,若121n n S t -=⋅-,则t =( )A .2B .-2C .1D .-1【例3-3】(2022·全国·高三专题练习)已知数列}{n a 的前n 项和121n n S -=+,则数列}{n a 的前10项中所有奇数项之和与所有偶数项之和的比为( ) A .12B .2C .172341D .341172【例3-4】(2022·全国·高三专题练习)数列{}n a 中,12a =,对任意 ,,m n m n m n N a a a ++∈=,若155121022k k k a a a ++++++=-,则 k =( )A .2B .3C .4D .5【例3-5】(2022·全国·高三专题练习)各项均为正数的等比数列{}n a 的前n 项和n S ,若264a a =,31a =,则29()42n n S a +的最小值为( )A .4B .6C .8D .12【一隅三反】1.(2022·湖南·长沙一中)一个等比数列的前7项和为48,前14项和为60,则前21项和为( ) A .180 B .108 C .75D .632.(2022·全国·高三专题练习)已知一个等比数列首项为1,项数是偶数,其奇数项之和为85,偶数项之和为170,则这个数列的项数为( ) A .2B .4C .8D .163.(2022·全国·高三专题练习)等比数列{}n a 的前n 项和为213n n S r -=+,则r 的值为 A .13B .13-C .19D .19-4.(2021·全国·高三专题练习)已知等比数列{}n a 中,11a =,132185k a a a ++++=,24242k a a a +++=,则k =( ) A .2B .3C .4D .55.(2022·四川绵阳·一模)已知正项等比数列{}n a 的前n 项和为n S ,若5-,3S ,6S 成等差数列,则96S S -的最小值为( )A .25B .20C .15D .10考点四 等比数列定义及其运用【例4】(2022·全国·高三专题练习)已知数列{}n a 满足12a =,121nn n a a a +=+,则下列结论正确的是( )A .数列1n a ⎧⎫⎨⎬⎩⎭是公差为12的等差数列 B .数列1n a ⎧⎫⎨⎬⎩⎭是公差为2的等差数列C .数列11n a ⎧⎫-⎨⎬⎩⎭是公比为12的等比数列 D .数列11n a ⎧⎫-⎨⎬⎩⎭是公比为2的等比数列 【一隅三反】1.(2021·江苏盐城)(多选)设等比数列{}n a 的前n 项和为n S ,则下列数列一定是等比数列的有( )A .12a a +,23a a +,34a a +,…B .13a a ,35a a +,57a a +,…C .2S ,42S S -,64S S -,…D .3S ,63S S -,96S S -,…2.(2022·广东·佛山一中)已知数列{n a }满足:11232n n a a a +==+, (1)求证:数列{1n a +}是等比数列;(2)()3log 1n n b a =+,求数列{n a ·n b }的前n 项和n S .3.(2022·全国·高三专题练习)已知数列{}n a 的前n 项和为n S ,且112a =,11()*2n n n a a N n n ++=∈. (1)证明数列{}n an为等比数列,并求数列{}n a 的通项公式;(2)设(2)n n b n S =-,求数列32{}nn b -前n 项和n T . 考点五 等比数列的实际应用【例5-1】(2022·浙江省义乌中学模拟预测)我国古代的数学名著《九章算术》中有“衰分问题”:今有女子善织,日自倍,五日织五尺,问日织几何?其意为:一女子每天织布的尺数是前一天的2倍,5天共织布5尺,问第五天织布的尺数是多少你的答案是( ) A .531B .1C .52D .8031【例5-2】(2022·江苏·沭阳如东中学模拟预测)著名的“康托三分集”是数学理性思维的构造产物,具有典型的分形特征,其操作过程如下:将闭区间[0,1]均分为三段,去掉中间的区间段12,33⎛⎫⎪⎝⎭,记为第一次操作;再将剩下的两个区120,,,133⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦分别均分为三段,并各自去掉中间的区间段,记为第二次操作;…,如此这样,每次在上一次操作的基础上,将剩下的各个区间分别均分为三段,同样各自去掉中间的区间段.操作过程不断地进行下去,以至无穷,剩下的区间集合即是“康托三分集”.若使去掉的各区间长度之和不小于1415,则需要操作的次数n 的最小值为( ) 参考数据:lg2=0.3010,lg3=0.4771 A .6B .7C .8D .9【一隅三反】1.(2022·全国·模拟预测)在适宜的环境中,一种细菌的一部分不断分裂产生新的细菌,另一部分则死亡.为研究这种细菌的分裂情况,在培养皿中放入m 个细菌,在1小时内,有34的细菌分裂为原来的2倍,14的细菌死亡,此时记为第一小时的记录数据.若每隔一小时记录一次细菌个数,则细菌数超过原来的10倍的记录时间为第( )A .6小时末B .7小时末C .8小时末D .9小时末2.(2022·湖南湖南·二模)在流行病学中,基本传染数0R 是指在没有外力介入,同时所有人都没有免疫力的情况下,一个感染者平均传染的人数.0R 一般由疾病的感染周期、感染者与其他人的接触频率、每次接触过程中传染的概率决定,假设某种传染病的基本传染数02R =,平均感染周期为7天,那么感染人数由1(初始感染者)增加到999大约需要的天数为( )(初始感染者传染0R 个人为第一轮传染,这0R 个人每人再传染0R 个人为第二轮传染……参考数据:lg20.3010≈) A .42B .56C .63D .703.(2022·云南·高三阶段练习(理))为了更好地解决就业问题,国家在2020年提出了“地摊经济”为响应国家号召,有不少地区出台了相关政策去鼓励“地摊经济”.老王2020年6月1日向银行借了免息贷款10000元,用于进货.因质优价廉,供不应求,据测算:每月获得的利润是该月初投入资金的20%,每月底扣除生活费1000元,余款作为资金全部用于下月再进货,如此继续,预计到2021年5月底该摊主的年所得收入为( )(取()111.27.5=,()121.29=) A .32500元 B .40000元C .42500元D .50000元4.2 等比数列(精讲)(基础版)思维导图考点一 等比数列基本量的计算【例1】(1)(2022·北京丰台·一模)若数列{}n a 满足12n n a a +=,且41a =,则数列{}n a 的前4项和等于( )考点呈现例题剖析A .15B .14C .158 D .78(2)(2022·重庆·模拟预测)已知等比数列{}n a 的前n 项和为n S ,且2a ,53a ,89a 成等差数列,则63S S =( ) A .13B .43C .3D .4【答案】(1)C (2)B【解析】(1)因为12n n a a +=,且41a =,所以数列{}n a 是以2为公比的等比数列,又3411a a q ==,得118a =,所以44141(12)(1)1581128a q S q --===--.故选:C (2)设等比数列公比为q ,由2a ,53a ,89a 成等差数列可得,47111239a q a q a q ⨯⋅=⋅+⋅,化简得639610q q -+=,解得313q =,()()61363311411311a q S q q S a q q--==+=--.故选:B. 【一隅三反】1.(2022·江西·新余四中)已知n S 为等比数列{}n a 的前n 项和,若38a =,324S =,则公比q =( )A .12-B .13-C .12-或1D .13-或1【答案】C【解析】设等比数列{}n a 的公比为q .因为38a =,324S =,所以38a =,1216a a +=,即218a q =,()1116a q +=,所以212q q +=,解得12q =-或1q =.故选:C.2.(2022·河北廊坊·高三阶段练习)已知n S 为等比数列{}n a 的前n 项和,且公比1q >,则“51a a >”是“40S >”的( )1.等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)便可迎刃而解.2.等比数列的前n 项和公式涉及对公比q 的分类讨论,当q =1时,{a n }的前n 项和S n =na 1;当q ≠1时,{a n }的前n 项和S n =a 1(1-q n )1-q =a 1-a n q1-q.温馨提示A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】C【解析】由40S >,得1514011a a a a q q q--=>--,因为1q >,所以510a a ->,即51a a >.故必要性满足; 1514411a a a a q S q q--==--.因为1q >,51a a >,所以40S >.故充分性满足.所以“51a a >”是“40S >”的充要条件.故选:C3.(2022·全国·高三专题练习)已知{}n a 为等比数列,n S 为其前n 项和,若213S a =,223a a =,则4S =( )A .7B .8C .15D .31【答案】C【解析】设等比数列{}n a 的公比为q ,则21213S a a a =+=,则212a a =,所以,212a q a ==, 因为223a a =,即()21124a a =,10a ≠,解得11a =,因此,()441411215112a q S q--===--.故选:C.4.(2022·河北石家庄·高三期末)等比数列{}n a 的前n 项和为n S ,33S =,69S =,则公比q =( ) ABCD【答案】D【解析】依题意,等比数列{}n a 满足,33S =,69S =,则1q ≠,()()3611113,911a q a q qq--==--,两式相除得()()3363331113,1311q q q q q q-+-==+=--,32,q q ==故选:D 5(2022·四川·三模(理))已知n S 是各项均为正数的等比数列{}n a 的前n 项和,若2481a a ⋅=,313S =,则6a =( ).A .21B .81C .243D .729【答案】C【解析】224381a a a ⋅==,因为0n a >,所以0q >,39a =,又313S =,故124a a +=,设公比是q ,则()121149a q a q ⎧+=⎨=⎩,两式相除得:2149q q +=,解得:3q =或34q =-(舍去),故336393243a a q ==⨯=.故选:C 考点二 等比中项【例2-1】(2022·江西·上饶市第一中学二模)等比数列{}n a 中,若59a =,则3436log log a a +=( )A .2B .3C .4D .9【答案】C【解析】根据等比中项得2546a a a =,所以()2434334353663log log log log log 81log 34a a a a a +=====.故选:C.【例2-2】(2022·福建·模拟预测)已知数列{}n a 为等比数列,则“5a ,7a 是方程2202210x x ++=的两实根”是”61a =,或61a =-”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】在等比数列中,若5a ,7a 是方程2202210x x ++=的两实根,571a a ∴=,5720220a a +=-<,则50a <,70a <,则57661a a a a ==,则61a =或61a =-,即充分性成立,当61a =,或61a =-时,能推出57661a a a a ==,但无法推出572022a a +=-,即必要性不成立, 即“5a ,7a 是方程2202210x x ++=的两实根”是“61a =,或61a =-”的充分不必要条件,故选:A . 【一隅三反】1.(2022·安徽黄山·一模)在等比数列{}n a 中,1a ,13a 是方程21390x x -+=的两根,则2127a a a 的值为( ) AB .3 C.D .3±【答案】B【解析】因为1a 、13a 是方程21390x x -+=的两根,所以3119=a a ,11313+=a a ,所以10a >,130a >,又{}n a 为等比数列,则6710=>a q a ,所以213212719===a a a a a ,所以73a =或73a =-(舍去),所以212773==a a a a .故选:B. 2.(2022·吉林吉林)已知各项均为正数的等比数列{}n a 中,23a =,93453a a a =,则3a =( )A .6B .9C .27D .81【答案】B【解析】()3239335444,,3327a a a a a =∴==∴=,39a ∴=.故选:B 3.(2022·全国·高三专题练习)设a ,b ,c ,d 是非零实数,则“a ,b ,c ,d 成等比数列”是“ad bc =”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件【答案】A【解析】由a b c d ,,,成等比数列可得ad bc =,但当14,1,1,4a b c d ====时,a b c d ,,,不是等比数列,所以“a ,b ,c ,d 成等比数列”是“ad=bc ”的充分而不必要条件,故选:A.4.(2022·广西柳州)在等比数列{}n a 中,已知22a =,8462a a =,则公比q =( ) A.2- B C .2 D .2±【答案】D【解析】由等比数列284652a a a ==,解得452a =±,所以33522a q a ==±,所以2q =±,故选:D. 考点三 等比数列前n 项和的性质【例3-1】(2022·全国·高三专题练习)已知等比数列{an }的前n 项和为Sn ,S 10=1,S 30=13,S 40=( ) A .﹣51 B .﹣20 C .27 D .40【答案】D【解析】由{an }是等比数列,且S 10=1>0,S 30=13>0,得S 20>0,S 40>0,且1<S 20<13,S 40>13 所以S 10,S 20﹣S 10,S 30﹣S 20,S 40﹣S 30成等比数列, 即1,S 20﹣1,13﹣S 20,S 40﹣13构成等比数列,∴(S 20﹣1)2=1×(13﹣S 20),解得S 20=4或S 20=﹣3(舍去),∴(13﹣S 20)2=(S 20﹣1)(S 40﹣13),即92=3×(S 40﹣13),解得S 40=40.故选:D .【例3-2】(2022·全国·高三专题练习)等比数列{}n a 的前n 项和为n S ,若121n n S t -=⋅-,则t =( )A .2B .-2C .1D .-1【答案】A【解析】设等比数列的公比为q ,当1q =时,1n S na =,不合题意; 当1q ≠时,等比数列前n 项和公式()1111111n n n a q a aS q qq q-==-⋅+---, 依题意()111212110,222n nn S t t t t -=⋅-=⋅-⇒+-==.故选:A【例3-3】(2022·全国·高三专题练习)已知数列}{n a 的前n 项和121n n S -=+,则数列}{n a 的前10项中所有奇数项之和与所有偶数项之和的比为( ) A .12 B .2 C .172341D .341172【答案】C【解析】当2n ≥时,212n n n n a S S --=-=,又112a S ==,即前10项分别为2,1,2,4,8,16,32,64,128,256,所以数列}{n a 的前10项中5141023341143S -===-偶,)(421451022172143S -=+=+=-奇,所以172341S S =奇偶, 故选:C .【例3-4】(2022·全国·高三专题练习)数列{}n a 中,12a =,对任意 ,,m n m n m n N a a a ++∈=,若155121022k k k a a a ++++++=-,则 k =( )A .2B .3C .4D .5【答案】C【解析】在等式m n m n a a a +=中,令1m =,可得112n n n a a a a +==,12n na a +∴=, 所以,数列{}n a 是以2为首项,以2为公比的等比数列,则1222n nn a -=⨯=,()()()()1011011105101210122122212211212k k k k k k a a a a ++++++⋅-⋅-∴+++===-=---,1522k +∴=,则15k +=,解得4k =.故选:C.【例3-5】(2022·全国·高三专题练习)各项均为正数的等比数列{}n a 的前n 项和n S ,若264a a =,31a =,则29()42n n S a +的最小值为( )A .4B .6C .8D .12【答案】C【解析】因为264a a =,且等比数列{}n a 各项均为正数,所以2444,2a a ==,公比432,a q a ==首项114a =, 所以1(1)2114n n n a q S q --==- ,通项11124n n n a a q --==,所以29()2164448242n nn n S a +=++≥=,当且仅当216,342n n n =∴=,所以当3n =时,29()42n nS a+的最小值为8.故选:C.【一隅三反】1.(2022·湖南·长沙一中)一个等比数列的前7项和为48,前14项和为60,则前21项和为( ) A .180 B .108 C .75D .63【答案】D【解析】由题意得S 7,S 14-S 7,S 21-S 14组成等比数列48,12,3,即S 21-S 14=3,∴S 21=63. 故选:D2.(2022·全国·高三专题练习)已知一个等比数列首项为1,项数是偶数,其奇数项之和为85,偶数项之和为170,则这个数列的项数为( ) A .2 B .4 C .8 D .16【答案】C【解析】设这个等比数列{}n a 共有()2k k N *∈项,公比为q ,则奇数项之和为132185k S a a a -=+++=奇,偶数项之和为()2421321170n n S a a a q a a a qS -=+++=+++==奇偶,170285S q S ∴===偶奇, 等比数列{}n a 的所有项之和为()212212211708525512kkk a S -==-=+=-,则22256k=,解得4k =,因此,这个等比数列的项数为8.故选:C.3.(2022·全国·高三专题练习)等比数列{}n a 的前n 项和为213n n S r -=+,则r 的值为A .13B .13-C .19D .19-【答案】B【解析】当1n =时,113a S r ==+,当2n ≥时,212323223221118333(31)8383393n n n n n n n n n a S S --------=-=-=-=⋅=⋅⋅=⋅ 所以81333r r +=∴=-,故选B. 4.(2021·全国·高三专题练习)已知等比数列{}n a 中,11a =,132185k a a a ++++=,24242k a a a +++=,则k =( ) A .2 B .3 C .4 D .5【答案】B【解析】设等比数列{}n a 的公比为q ,则132112285k k a a a a a a q q +++++++==,即()2285184k q a a ++=-=,因为24242k a a a +++=,所以2q,则()21123221112854212712k k k a a a a a ++⨯-+++++=+==-,即211282k +=,解得3k =,故选:B.5.(2022·四川绵阳·一模)已知正项等比数列{}n a 的前n 项和为n S ,若5-,3S ,6S 成等差数列,则96S S -的最小值为( ) A .25 B .20 C .15 D .10【答案】B【解析】因为{}n a 是正项等比数列,所以3S ,63S S -,96S S -仍然构成等比数列,所以263396()()S S S S S -=-.又5-,3S ,6S 成等差数列,所以6352S S -=,6335S S S -=+,所以()()2263396333352510S S S S S S S S S -+-===++. 又{}n a 是正项等比数列,所以30S >,3325101020S S ++≥=,当且仅当35S =时取等号.故选:B.考点四 等比数列定义及其运用【例4】(2022·全国·高三专题练习)已知数列{}n a 满足12a =,121nn n a a a +=+,则下列结论正确的是( )A .数列1n a ⎧⎫⎨⎬⎩⎭是公差为12的等差数列 B .数列1n a ⎧⎫⎨⎬⎩⎭是公差为2的等差数列C .数列11n a ⎧⎫-⎨⎬⎩⎭是公比为12的等比数列 D .数列11n a ⎧⎫-⎨⎬⎩⎭是公比为2的等比数列【答案】C 【解析】∴121n n n a a a +=+,∴111111222n n n n a a a a ++==⋅+,1n a ⎧⎫∴⎨⎬⎩⎭既不是等比数列也不是等差数列; ∴1111112n n a a +⎛⎫-=- ⎪⎝⎭,∴数列11n a ⎧⎫-⎨⎬⎩⎭是公比为12的等比数列.故选:C【一隅三反】1.(2021·江苏盐城)(多选)设等比数列{}n a 的前n 项和为n S ,则下列数列一定是等比数列的有( ) A .12a a +,23a a +,34a a +,… B .13a a ,35a a +,57a a +,… C .2S ,42S S -,64S S -,… D .3S ,63S S -,96S S -,…【答案】BD【解析】设数列{}n a 的公比为q ,0q ≠,对于A 和C ,都有首项121(1)a a a q +=+,当1q =-时,120a a +=,不满足等比数列,故AC 错误;对于B ,2131(1)0a a a q +=+≠,且2235131313()a a q a a q a a a a ++==++, 同理25735a a q a a +=+,故数列13a a ,35a a +,57a a +,…为等比数列,B 正确; 对于D ,231231(1)0S a a a a q q =++=++≠,且3633S S q S -=,39663S S q S S -=-, 故数列3S ,63S S -,96S S -,…为等比数列,D 正确;故选:BD 2.(2022·广东·佛山一中)已知数列{n a }满足:11232n n a a a +==+, (1)求证:数列{1n a +}是等比数列;(2)()3log 1n n b a =+,求数列{n a ·n b }的前n 项和n S . 【答案】(1)证明见解析(2)()()12133142n nn n n S +-⨯++=-【解析】(1)因为11232n n a a a +==+,,所以1131n n a a ++=+(). 而113a +=,所以数列{1n a +}是以113a +=为首项,以3为公比的等比数列,所以13nn a +=,即31n n a =-.(2)由(1)可得()3log 1n n b a n =+=∴()31nn n a b n ⋅=-记1213233n n T n =⨯+⨯++⨯……∴所以()23131323133n n n T n n +=⨯+⨯++-⨯+⨯……∴∴-∴得:12123333nn n T n +-=+++-⨯ ()1313313n n n +-=-⨯-∴()121334n nn T +-⨯+=∴()()()1213311242n nn n n n S T n +-⨯++=-+++=-. 3.(2022·全国·高三专题练习)已知数列{}n a 的前n 项和为n S ,且112a =,11()*2n n n a a N n n ++=∈. (1)证明数列{}n an为等比数列,并求数列{}n a 的通项公式;(2)设(2)n n b n S =-,求数列32{}n n b -前n 项和n T . 【答案】(1)证明见解析;2n n na =;(2) 1(34)24(1)(2)n n n T n n ++=-++.【解析】(1)因为112n n n a a n ++=,所以1112n n a n a n++=,又因为11112a a ==,所以数列{}n a n是以首项为12,公比为12的等比数列,从而1111()()222n n n a n -=⨯=,故2n n n a =. (2)由(1)中结论可知,2311111112()3()(1)()()22222n n n S n n -=⨯+⨯+⨯++-+ ∴,所以23411111111()2()3()(1)()()222222n n n S n n +=⨯+⨯+⨯++-+ ∴,由∴-∴得,231111111()()()()222222n n n S n +=++++- 111[1()]122()1212n n n +-=-- 化简整理得,222n nn S +=-,所以222n n nn n b n S ()(), 故2232(32)22222()(2)22n n n n n n n n b n n n n n n ++--==-=--+++, 所以324351122222222222[()()()()()]132435112n n n n n T n n n n -++=--+-+-++-+--++,故1(34)24(1)(2)n n n T n n ++=-++. 考点五 等比数列的实际应用【例5-1】(2022·浙江省义乌中学模拟预测)我国古代的数学名著《九章算术》中有“衰分问题”:今有女子善织,日自倍,五日织五尺,问日织几何其意为:一女子每天织布的尺数是前一天的2倍,5天共织布5尺,问第五天织布的尺数是多少你的答案是( ) A .531B .1C .52D .8031【答案】D【解析】根据题意可知该女子每天织布的尺数成等比数列,设该等比数列为{}n a ,公比q =2, 则第1天织布的尺数为1a ,第5天织布的尺数为5a ,前5天共织布为55S =, 则()51112551231a a-=⇒=-,∴445158023131a a q =⋅=⨯=.故选:D.【例5-2】(2022·江苏·沭阳如东中学模拟预测)著名的“康托三分集”是数学理性思维的构造产物,具有典型的分形特征,其操作过程如下:将闭区间[0,1]均分为三段,去掉中间的区间段12,33⎛⎫⎪⎝⎭,记为第一次操作;再将剩下的两个区120,,,133⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦分别均分为三段,并各自去掉中间的区间段,记为第二次操作;…,如此这样,每次在上一次操作的基础上,将剩下的各个区间分别均分为三段,同样各自去掉中间的区间段.操作过程不断地进行下去,以至无穷,剩下的区间集合即是“康托三分集”.若使去掉的各区间长度之和不小于1415,则需要操作的次数n 的最小值为( ) 参考数据:lg2=0.3010,lg3=0.4771 A .6 B .7 C .8 D .9【答案】B【解析】第一次操作去掉13,设为1a ;第二次操作去掉29,设为2a ;第三次操作去掉427,设为3a , 依次类推,11233n n a -⎛⎫=⋅ ⎪⎝⎭.故0111222[()()()]3333n n S -=⨯+++ 2113121412331513n n⎡⎤⎛⎫⨯-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦=⨯=-≥ ⎪⎝⎭-, 整理,得12153n⎛⎫≥ ⎪⎝⎭,()21lg lg lg2lg3lg15315nn ⎛⎫∴≤∴-≤- ⎪⎝⎭,,()lg3lg5lg3lg5lg31lg211 6.7lg2lg3lg3lg2lg3lg2lg3lg2n -+++-∴≥===+≈----,故n 的最小值为7. 故选:B. 【一隅三反】1.(2022·全国·模拟预测)在适宜的环境中,一种细菌的一部分不断分裂产生新的细菌,另一部分则死亡.为研究这种细菌的分裂情况,在培养皿中放入m 个细菌,在1小时内,有34的细菌分裂为原来的2倍,14的细菌死亡,此时记为第一小时的记录数据.若每隔一小时记录一次细菌个数,则细菌数超过原来的10倍的记录时间为第( ) A .6小时末 B .7小时末C .8小时末D .9小时末【答案】A【解析】设n a 表示第n 小时末的细菌数,依题意有()11332242n n n a a a n --=⨯=≥,133242a m m =⨯=,则{}n a 是等比数列,首项为32m ,公比32q =,所以32nn a m ⎛⎫= ⎪⎝⎭.依题意,10n a m >,即3102n m m ⎛⎫> ⎪⎝⎭,所以3102n⎛⎫> ⎪⎝⎭, 由于563310,24372932102642⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝=⎭=<,又*N n ∈,所以6n ≥,所以第6小时末记录的细菌数超过原来的10倍, 故选:A.2.(2022·湖南湖南·二模)在流行病学中,基本传染数0R 是指在没有外力介入,同时所有人都没有免疫力的情况下,一个感染者平均传染的人数.0R 一般由疾病的感染周期、感染者与其他人的接触频率、每次接触过程中传染的概率决定,假设某种传染病的基本传染数02R =,平均感染周期为7天,那么感染人数由1(初始感染者)增加到999大约需要的天数为( )(初始感染者传染0R 个人为第一轮传染,这0R 个人每人再传染0R 个人为第二轮传染……参考数据:lg20.3010≈) A .42 B .56 C .63 D .70【答案】C【解析】设第n 轮感染的人数为n a ,则数列{}n a 是12a =,公比2q的等比数列,由()2121199912nn S ⨯-+=+=-,可得121000n +=,解得2500n =,两边取对数得lg 2lg500n =,则lg 23lg 2n =-,所以33118.979lg 20.3010n =-=-≈=, 故需要的天数约为9763⨯=. 故选:C3.(2022·云南·高三阶段练习(理))为了更好地解决就业问题,国家在2020年提出了“地摊经济”为响应国家号召,有不少地区出台了相关政策去鼓励“地摊经济”.老王2020年6月1日向银行借了免息贷款10000元,用于进货.因质优价廉,供不应求,据测算:每月获得的利润是该月初投入资金的20%,每月底扣除生活费1000元,余款作为资金全部用于下月再进货,如此继续,预计到2021年5月底该摊主的年所得收入为( )(取()111.27.5=,()121.29=)A .32500元B .40000元C .42500元D .50000元【答案】B 【解析】设010000a =,从6月份起每月底用于下月进货的资金依次记为1a ,2a ,…,12a ,()100120%1000 1.21000a a a =⨯+-=-,同理可得1 1.21000n n a a +=-, 所以()15000 1.25000n n a a +-=-, 而050005000a -=,所以数列{}5000n a -是等比数列,公比为1.2,所以50005000 1.2n n a -=⨯,12125000 1.2500050009500050000a =⨯+=⨯+=,∴总利润为500001000040000-=,故选:B .。
高三数学数列知识点总结归纳数列作为数学中的重要概念,在高中数学中占据着重要的地位。
掌握数列的相关知识点是高三学生成功应对数学考试的关键。
本文将对高三数学数列知识点进行总结归纳,帮助同学们更好地理解和应用数列知识。
一、等差数列等差数列是高中数学中最常见的数列类型之一。
等差数列的特点是,数列中每两个相邻的数之间的差都相等,这个差被称为公差。
1.通项公式等差数列的通项公式为:an = a1 + (n-1)d,其中an表示第n个数,a1表示首项,d表示公差。
2.前n项和公式等差数列的前n项和公式为:Sn = [n/2] * (a1 + an),其中Sn表示前n项和,[]表示取整函数。
二、等比数列等比数列是另一种常见的数列类型。
等比数列的特点是,数列中每两个相邻的数之间的比值都相等,这个比值被称为公比。
1.通项公式等比数列的通项公式为:an = a1 * r^(n-1),其中an表示第n个数,a1表示首项,r表示公比。
2.前n项和公式等比数列的前n项和公式为:Sn = a1 * (1 - r^n) / (1 - r),其中Sn表示前n项和。
三、数列的性质与判断除了上述常见的等差数列和等比数列,数列还有一些重要的性质,学生们需要掌握如下内容:1.递推公式数列的递推公式是指通过前一项或多项来求得下一项的公式。
对于等差数列和等比数列而言,递推公式分别为an = an-1 + d和an = an-1 * r。
2.数列的有界性数列的有界性是指数列中的数是否有上界或下界。
有界数列是指存在上界或下界的数列,无界数列是指没有上界或下界的数列。
3.数列的单调性数列的单调性是指数列中的数的排列顺序是否单调递增或单调递减。
如果数列中的数依次递增,则称该数列是递增数列;如果数列中的数依次递减,则称该数列是递减数列。
四、数列的应用数列在实际问题中有广泛的应用,以下是其中一些常见的应用场景:1.复利问题等比数列可应用于复利问题中,比如银行存款利息的计算等。
高三数学数列知识点归纳总结数列是数学中常见且重要的概念,它在高三数学中扮演着非常重要的角色。
为了帮助大家更好地掌握数列的知识点,下面对高三数学数列知识进行归纳总结。
一、等差数列等差数列是指数列中相邻两项之差相等的数列。
常见的等差数列公式可以表示为An = a1 + (n - 1)d,其中a1为首项,d为公差,n为项数。
1. 等差数列求和公式等差数列求和公式是等差数列中一个非常重要且常用的公式,可以帮助我们快速计算等差数列的和。
等差数列前n项和公式为Sn = n/2 * (a1 + an),其中Sn表示前n项和,a1为首项,an为第n项。
2. 等差中项公式等差中项公式是指通过等差数列的首项、末项和项数来计算等差数列的中项。
根据等差数列的性质,中项可以通过求首项与末项的平均值来得到。
等差中项公式为An = (a1 + an)/2,其中An表示中项,a1表示首项,an表示末项。
3. 等差数列的性质(1)任意项等于前一项加上公差,即An = An-1 + d。
(2)任意项等于首项加上与该项的差数乘以公差,即An = a1 + (n- 1)d。
(3)等差数列中,相等距离的两个项之和等于首项与末项之和。
二、等比数列等比数列是指数列中相邻两项之比相等的数列。
常见的等比数列公式可以表示为An = a1 * q^(n-1),其中a1为首项,q为公比,n为项数。
1. 等比数列求和公式等比数列求和公式是等比数列中一个非常重要且常用的公式,可以帮助我们快速计算等比数列的和。
等比数列前n项和公式为Sn = a1 * (q^n - 1) / (q - 1),其中Sn表示前n项和,a1为首项,q为公比。
2. 等比中项公式等比中项公式是指通过等比数列的首项、末项和项数来计算等比数列的中项。
根据等比数列的性质,中项可以通过将首项与末项的平方根相乘来得到。
等比中项公式为An = sqrt(a1 * an),其中An表示中项,a1表示首项,an表示末项。
高三数学一轮复习备考数列的求和说课高三数学一轮复习备考中,数列的求和是一个重要的考点。
在本文中,我将对数列的求和进行深入解析,包括常见的等差数列和等比数列的求和公式,以及一些应用题的解题方法。
首先,让我们来回顾一下数列的概念。
数列是由一系列按照一定规律排列的数所组成的集合。
数列的每一项称为数列的项,用ai表示,其中i表示项的位置。
数列中的规律可以用一个通项公式来表示。
对于等差数列来说,通项公式为an=a1+(n-1)d,其中a1为首项,d为公差;而对于等比数列来说,通项公式为an=a1*r^(n-1),其中a1为首项,r为公比。
接下来,我们来看一下等差数列的求和公式。
对于等差数列来说,其求和公式是非常有用的。
设等差数列的首项为a1,公差为d,前n项和为Sn。
那么等差数列的求和公式可以表示为Sn=n/2*(a1+an),其中an表示等差数列的第n项。
在使用等差数列的求和公式时,需要明确几个关键的概念。
首先,当n为奇数时,a1和an为等差数列中间的一项;当n为偶数时,a1和an分别为等差数列的相邻两项,此时中间没有项。
其次,等差数列的前n项和与等差数列的倒序前n项和相等。
例如,对于等差数列1,3,5,7,9来说,其首项为1,公差为2。
我们可以使用等差数列的求和公式来计算前3项的和。
根据公式,n=3,所以Sn=3/2*(1+5)=9。
除了等差数列外,我们还有等比数列的求和公式。
对于等比数列来说,其求和公式也是非常重要的。
设等比数列的首项为a1,公比为r,前n项和为Sn。
等比数列的求和公式可以表示为Sn=a1*(1-r^n)/(1-r),其中r不等于1。
在使用等比数列的求和公式时,需要注意一些特殊情况。
当公比|r|小于1时,等比数列的前n项和随着n的增加而趋近于一个常数,即Sn的极限存在;当公比|r|大于1时,等比数列的前n项和随着n的增加呈无穷趋近于正无穷或负无穷;当公比|r|等于1时,等比数列不存在有限的前n项和,但存在极限。
等比数列的递推公式
等比数列是数学范畴中比较重要的一类数列,其特点是随着数列中元素的增加,每一项的值都是前一项的某个常数倍,这个常数称为等比数列的比值。
等比数列的递推公式可以写成:
a_n=a_1 * q^n-1
其中,a_n表示该等比数列中第n项的值,a_1表示该等比数列中第一项的值,q是该等比数列的比值。
在等比数列中,比值q的取值不同,等比数列的特性也不同,具体可以分为如下几种情况:
1. 当q>1时,表示该等比数列中每一项都比前一项大,这种等比数列称为递增等比数列。
2. 当q<1时,表示该等比数列中每一项都比前一项小,这种等比数列称为递减等比数列。
3. 当q=1时,表示该等比数列中每一项都等于前一项,这种等比数列称为常数等比数列。
等比数列在日常生活中也有很多应用,比如金融领域中的本息和,金融产品收益率的计算,还有电力领域中的功率计算等等。
此外,由于等比数列的特性,我们也可以把它用来解决一些复杂的数学问
题。
总之,等比数列的递推公式是一个重要的数学工具,它在日常生活中有着广泛的应用,而且也可以用来解决一些复杂的数学问题。
高三等比数列知识点数列是数学中非常重要的一个概念,它是由一堆有规律的数按特定顺序排列组成的,可以在数学、物理、经济等领域中得到广泛应用。
其中,等比数列是一种重要的数列类型,在高中数学中被广泛应用于数列与数列极限、指数函数、对数函数等知识点的学习中。
本文将从等比数列的定义、性质及应用等方面对高三等比数列知识点进行阐述。
一、等比数列的定义与性质1. 定义等比数列是指一个数列中,从第二项开始,每一项与它的前一项之比等于同一个常数,该常数称为等比数列的公比。
即对于数列$a_1, a_2,a_3,\cdots,a_n,\cdots$,若满足$$\frac{a_{n+1}}{a_n}=q(q\neq0)$$ 则称为等比数列,其中$q$为该等比数列的公比。
2. 性质(1)前$n$项和公式:对于等比数列$a_1,a_2,a_3,\cdots,a_n,\cdots$,前$n$项和公式为$$\begin{aligned}S_n&=a_1+a_2+a_3+\cdots+a_n\\&=a_1(1+q+q^2+\cdots+q^{n-1})\\ &=\frac{a_1(1-q^n)}{1-q}\end{aligned}$$(2)通项公式:对于等比数列$a_1, a_2,a_3,\cdots,a_n,\cdots$,通项公式为$$a_n=a_1q^{n-1}$$(3)任意两项之比:对于等比数列$a_1,a_2,a_3,\cdots,a_n,\cdots$,任意两项之比为$$\frac{a_m}{a_n}=q^{m-n}(q\neq0)$$(4)等比数列的性质:等比数列的性质包括以下几点:①当公比$q>1$时,等比数列为递增数列;当公比$q<1$时,等比数列为递减数列;当公比$q=1$时,等比数列为等差数列;②取绝对值时,等比数列的每一项都是正数;③等比数列的任意项与它的前一项之商等于公比$q$,即$\dfrac{a_n}{a_{n-1}}=q$。
高三数学等比数列知识点数学在高中阶段是一个重要的学科,其中等比数列也是其中的一个重要知识点。
等比数列是数学中常见的数列类型之一,它的每一项与前一项的比值都相等。
在高三数学中,学生需要掌握等比数列的基本概念、性质和应用。
本文将分为以下几个部分介绍高三数学等比数列的相关知识。
一、等比数列的基本概念等比数列是指一个数列中的每一项与其前一项的比值相等。
具体而言,对于一个等比数列a₁, a₂, a₃, ...,相邻的两项之间满足如下关系:a₂ / a₁ = a₃ / a₂ = a₄ / a₃ = ...这个比值称为等比数列的公比,通常用字母q表示。
此外,等比数列的第一项a₁和公比q也是等比数列的两个重要要素。
二、等比数列的性质1. 等比数列的通项公式等比数列的通项公式可以通过观察数列的规律得到。
对于一个等比数列a₁, a₂, a₃, ...,其中a₁为首项,q为公比,数列的通项公式为:aₙ = a₁ * q^(n-1)其中,aₙ表示数列的第n项。
这个公式可以方便地计算数列中任意一项的值。
2. 等比数列的前n项和等比数列的前n项和是指数列中前n项的和值。
对于一个等比数列a₁, a₂, a₃, ...,其前n项和Sₙ的计算公式为:Sₙ = a₁ * (1 - q^n) / (1 - q)这个公式是通过数列的首项、公比和项数来计算前n项和的值。
3. 等比数列的性质等比数列具有一些重要的性质,包括:(1)等比数列中,任意两项的比值都是相等的。
(2)等比数列当公比q大于1时,数列会呈现出递增的规律;当公比q小于1且大于0时,数列会呈现出递减的规律。
(3)等比数列中,如果首项a₁大于0且公比q大于1,数列会趋向无穷大;如果首项a₁大于0且公比q小于1且大于0,数列会趋向0。
(4)等比数列中,相邻两项之间的比值等于公比的平方。
三、等比数列的应用1. 等比数列在实际生活中的应用等比数列在现实生活中有许多应用。
例如,财务领域中的利息计算、人口增长的模型、物理领域的衰减和增长模型等都可以用等比数列来进行建模和计算。