非线性电路综合的PSPICE仿真
- 格式:pdf
- 大小:136.00 KB
- 文档页数:3
P S P I C E仿真目录介绍: (3)新建PSpice仿真 (4)新建项目 (4)放置元器件并连接 (4)生成网表 (6)指定分析和仿真类型 (7)Simulation Profile设置: (8)开始仿真 (8)参量扫描 (11)Pspice模型相关 (13)PSpice模型选择 (13)查看PSpice模型 (13)PSpice模型的建立 (14)介绍:PSpice是一种强大的通用模拟混合模式电路仿真器,可以用于验证电路设计并且预知电路行为,这对于集成电路特别重要。
PSpice可以进行各种类型的电路分析。
最重要的有:●非线性直流分析:计算直流传递曲线。
●非线性瞬态和傅里叶分析:在打信号时计算作为时间函数的电压和电流;傅里叶分析给出频谱。
●线性交流分析:计算作为频率函数的输出,并产生波特图。
●噪声分析●参量分析●蒙特卡洛分析PSpice有标准元件的模拟和数字电路库(例如:NAND,NOR,触发器,多选器,FPGA,PLDs和许多数字元件)分析都可以在不同温度下进行。
默认温度为300K电路可以包含下面的元件:●Independent and dependent voltage and current sources 独立和非独立的电压、电流源●Resistors 电阻●Capacitors 电容●Inductors 电感●Mutual inductors 互感器●Transmission lines 传输线●Operational amplifiers 运算放大器●Switches 开关●Diodes 二极管●Bipolar transistors 双极型晶体管●MOS transistors 金属氧化物场效应晶体管●JFET 结型场效应晶体管●MESFET 金属半导体场效应晶体管●Digital gates 数字门●其他元件 (见用户手册)。
新建PSpice仿真新建项目如图 1所示,打开OrCAD Capture CIS Lite Edition,创建新项目:File > New > project。
PSpice基础仿真分析与电路控制描述简介本文档将介绍PSpice基础仿真分析和电路控制的相关概念和使用方法。
PSpice是一款电路仿真软件,可帮助电路设计师评估和优化电路性能。
PSpice的基本功能- 电路仿真:通过输入电路原理图和元件参数,PSpice可以对电路进行仿真分析,以评估电路的性能和行为。
- 波形分析:PSpice可以生成电路中各个节点电压和电流的波形图,以帮助理解电路运行情况。
- 参数扫描:PSpice可以对电路中的元件参数进行扫描,以评估元件参数对电路性能的影响。
- 优化分析:PSpice可以通过自动化搜索算法优化电路参数,以达到用户定义的目标。
仿真步骤1. 绘制电路原理图:使用PSpice提供的元件库绘制电路原理图,设置元件参数和连接关系。
2. 设置仿真选项:设置仿真类型和仿真参数,如直流分析、交流分析、变化频率分析等。
3. 运行仿真:通过点击仿真按钮或执行仿真命令,PSpice开始进行仿真计算。
4. 分析仿真结果:根据仿真结果生成的波形图和数据表格,分析电路的性能和行为。
电路控制描述- 电源控制:通过设置电源的电压或电流源来控制电路中的电压和电流。
- 开关控制:通过激活或关闭开关元件, 来控制电路中的电压或电流流动。
- 反馈控制:通过将电路输出信号与输入信号进行比较,并根据差异调整电路参数,实现对电路的控制。
示例下面是一个简单的PSpice仿真和电路控制的示例:* 这是一个简单的RC电路R1 N1 N2 1kC1 N2 N3 1uV1 N1 0 DC 10R2 N3 0 10k.tran 0.1ms 10ms.end通过上述示例,我们可以:1. 进行直流分析,评估电路的直流稳态行为。
2. 进行时间域分析,查看电路中各个节点的电压随时间的变化。
3. 通过改变元件参数、调整输入电压或通过反馈控制等方式,控制电路的行为和性能。
希望本文档能够帮助您了解PSpice的基础仿真分析和电路控制的相关内容。
PSPICE仿真流程展开全文采用HSPICE 软件可以在直流到高于100MHz 的微波频率范围内对电路作精确的仿真、分析和优化。
在实际应用中,HSPICE能提供关键性的电路模拟和设计方案,并且应用HSPICE进行电路模拟时,其电路规模仅取决于用户计算机的实际存储器容量。
二、新建设计工程在对应的界面下打开新建工程:2)在出现的页面中要注意对应的选择3)在进行对应的选择后进入仿真电路的设计:将生成的对应的库放置在CADENCE常用的目录中,在仿真电路的工程中放置对应的库文件。
这个地方要注意放置的.olb库应该是 PSPICE文件夹下面对应的文件,在该文件的上层中library中的.olb中的文件是不能进行仿真的,因为这些元件只有.olb,而无网表.lib。
4)放置对应的元件:对于项目设计中用到的有源器件,需要按照上面的操作方式放置对应的器件,对于电容,电阻电感等分离器件,可以在libraries中选中所有的库,然后在滤波器中键入对应的元件就可以选中对应的器件,点击后进行放置。
对分离元件的修改直接在对应的元件上面进行修改:电阻的单位分别为:k m;电容的单位分别为:P n u ;电感的单位分别为:n 及上面的单位只写量级不写单位。
5)放置对应的激励源:在LIBRARIES中选中所有的库,然后键入S就可以选中以S开头的库。
然后在对应的库中选中需要的激励源。
激励源有两种一种是自己进行编辑、手工绘制的这个对应在库中选择:另外一种是不需要自己进行编辑:该参数的修改可以直接的在需要修改的数值上面就行修改,也可以选定电源然后点击右键后进行对应的修改。
6)放置地符号:地符号就是在对应的source里面选择0的对应的标号。
7)直流电源的放置:电源的选择里面应该注意到选择source 然后再选定VDC或者是其它的对应的参考。
8)放置探头:点击对应的探头放置在感兴趣的位置处。
6 对仿真进行配置:1)对放置的项目的名称进行设置,也就是设置仿真的名称。
PSPICE仿真目录介绍: (3)新建PSpice仿真 (5)新建项目 (5)放置元器件并连接 (5)生成网表 (9)指定分析和仿真类型 (9)Simulation Profile设置: (11)开始仿真 (12)参量扫描 (14)Pspice模型相关 (18)PSpice模型选择 (18)查看PSpice模型 (18)PSpice模型的建立 (20)介绍:PSpice是一种强大的通用模拟混合模式电路仿真器,可以用于验证电路设计并且预知电路行为,这对于集成电路特别重要。
PSpice可以进行各种类型的电路分析。
最重要的有:●非线性直流分析:计算直流传递曲线。
●非线性瞬态和傅里叶分析:在打信号时计算作为时间函数的电压和电流;傅里叶分析给出频谱。
●线性交流分析:计算作为频率函数的输出,并产生波特图。
●噪声分析●参量分析●蒙特卡洛分析PSpice有标准元件的模拟和数字电路库(例如:NAND,NOR,触发器,多选器,FPGA,PLDs 和许多数字元件)分析都可以在不同温度下进行。
默认温度为300K电路可以包含下面的元件:●Independent and dependent voltage andcurrent sources 独立和非独立的电压、电流源●Resistors 电阻●Capacitors 电容●Inductors 电感●Mutual inductors 互感器●Transmission lines 传输线●Operational amplifiers 运算放大器●Switches 开关●Diodes 二极管●Bipolar transistors 双极型晶体管●MOS transistors 金属氧化物场效应晶体管●JFET 结型场效应晶体管●MESFET 金属半导体场效应晶体管●Digital gates 数字门●其他元件 (见用户手册)。
新建PSpice仿真新建项目如图1所示,打开OrCAD Capture CIS Lite Edition,创建新项目:File > New > project。
刚开始用PSPICE仿真的时候容易遇到的问题刚开始用PSPICE仿真的时候容易遇到的问题刚开始用PSPICE仿真的时候容易遇到的问题真正的压力是自己给的,而不是别人;同样,你得到的成果也完全是你的,谁也拿不去。
——winston1:元件到哪里去找?元件当然是库里,但不是Capturer 的库,而是PSpice的库。
最好的办法是重新建一个PROJEC,T 建的时候选择那个模拟和混合仿真的,然后建一个新的SCH,这时加载元件库的时候加载的是PSPICE的库而不是Capture 的库了。
路径:Capture\Library\pspice。
重新加载库,重新Place元件。
直接从Capture 中直接Copy 过来,是不行的,那些元件都是没有模型的,RUN的时候会在该元件的一个角上出现一个绿色的小圆圈,点击它,会出现这样的错误提示:No PSpiceTemplate for U3, ignoring。
就是没模型。
下面是官方的说法,不动手做一正步还真不好理解:调用的器件必须有PSpice 模型。
首先,调用OrCAD 软件本身提供的模型库,这些库文件存储的路径为Capture\Library\pspice,此路径中的所有器件都有提供PSpice模型,可以直接调用。
其次,若使用自己的器件,必须保证*.olb 、*.lib 两个文件同时存在,而且器件属性中必须包含PSpice Template属性。
2:激励源怎么加?一般是这样,建一个GND,从这里引出一个电流源或者电压源,然后引出一个NET,和原理图上NET响应。
这样做的好处是不破坏原理图,而且看起来方便。
注意:PSPICE和CAPTURE的电源是不一样的,它长得和MULTISIM的差不多,是一个实体,而不是CAPTURE中的逻辑概念。
3:怎么老提示FLOATING PI?NSCH NET中一定要有一个网络地,并且其名称一定要为“ 0”。
如果没有,那么你连的再好,也总提示有N 多引脚悬空。
非线性电路综合的PSPICE仿真
张宝平;邓玮
【期刊名称】《华北水利水电学院学报》
【年(卷),期】2007(028)002
【摘要】针对分段线性的非线性电路DP图,提出了用实际电路元件构造理想二极管、凹电阻、凸电阻等基本单元的方法,利用通用电路仿真软件PSPICE仿真验证了利用这些基本单元可以得到工程中需要的DP图所对应的电路,通过对典型DP图所对应的电路进行仿真,归纳了非线性电路DP图综合的一般规则,为建立一些非线性元件的模型提供了一种方法.
【总页数】3页(P55-57)
【作者】张宝平;邓玮
【作者单位】中国神马集团橡胶轮胎有限责任公司,河南,平顶山,467001;郑州轻工业学院,河南,郑州,450002
【正文语种】中文
【中图分类】TM133;TN702
【相关文献】
1.移相全桥ZVS倍流整流电路的PSpice仿真研究 [J], 王海涛;张一鸣;高俊侠;李佳鹏
2.基于频率响应分析法的变压器绕组变形PSpice仿真研究 [J], 白添凯; 赵荣普; 陈欣; 杨敏
3.大功率超声波发生器的Pspice仿真研究 [J], 王光旭;任娟慧
4.PSpice仿真技术在电子电路设计中的运用 [J], 孙水生;喻小平
5.面向中低速磁浮列车IGBT开关损耗的PSpice仿真研究 [J], 杨清;王连春;迟振祥
因版权原因,仅展示原文概要,查看原文内容请购买。
研究生仿真课之Pspice的使用研究生阶段,仿真技术作为电子工程领域的重要工具之一,对于学术研究和工程实践都具有重要意义。
其中,Pspice作为一种常用的电路仿真工具,被广泛应用于电路设计、分析和优化。
本文将介绍Pspice的基本使用方法及其在电子工程中的应用。
Pspice是由电子设计自动化公司(Electronic Design Automation Corporation)推出的一款电路仿真软件,它具有用户友好的操作界面和强大的仿真功能,可以对各种类型的电路进行精确的建模和仿真。
Pspice可以模拟分析直流、交流和混合信号电路,并提供电流、电压、功率以及频率等各种电路参数的波形图和数据。
使用Pspice进行电路仿真需要首先创建电路图。
在Pspice中,电路图是通过画图工具来完成的。
用户可以从元件库中选择各种电子元件,如电容、电感、二极管和晶体管等,然后将它们拖拽到电路图中。
通过将元件连接起来,并设置元件的参数,就可以构建出所需的电路。
在电路图完成后,需要设置仿真参数。
Pspice允许用户设置各种仿真参数,例如直流电压源电压值、交流信号频率以及仿真时间等。
这些参数的设置直接影响到仿真结果,需要根据具体的电路要求进行合理调整。
完成电路图和仿真参数的设置后,即可进行电路仿真。
Pspice提供了多种仿真类型,包括直流分析、交流分析、变动分析和蒙特卡洛分析等。
根据具体仿真的目的,选择相应的仿真类型,并点击仿真按钮即可开始仿真过程。
仿真完成后,Pspice会生成仿真结果。
用户可以通过查看波形图来分析电路的性能参数,如电流、电压和功率等。
此外,Pspice还可以生成仿真数据,用户可以对数据进行进一步处理和分析,以得到更多的信息。
除了基本的电路仿真功能,Pspice还提供了其他高级功能,如参数扫描、优化设计和传递函数分析等。
通过这些功能,用户可以更加深入地研究电路性能和特性,并进行相关的优化和改进。
在电子工程中,Pspice的应用非常广泛。
1 PSPICE软件的简介与使用1.1 PSPICE的发展与现状根据实际电路(或系统)建立模型,通过对模型的计算机分析、研究和试验以达到研制和开发实际电路(或系统)的目的,这一过程,称为计算机仿真(Simulation)的高效、高精度、高经济性和高可靠性,因此倍受业界喜爱。
在设计或分析各类开关电源时,计算机仿真起了重要的作用。
数字仿真手段可用以检验设计的系统是否满足性能要求。
应用数字仿真可以减少电路实验的工作,与电路实验相比,计算机仿真所需时间要少得多,并可以更全面、更完整地进行,以期改进设计质量。
目前流行的许多著名软件如PSpice、Icape等,它们各自都有其本身的特点。
而随着Windows的全面普及,PSpice推出了Windows版本,用户不用象DOS版那样输入数据网表文件,而是图形化,只需选择相应的元器件的图标代号,然后使用线连接就可以自动生成数据网表文件,整个过程变得直观简单。
因此它已广泛应用于电力电子电路(或系统)的分析中。
用于模拟电路仿真的SPICE(Simulation Program with Integrated Circuit Emphasis)软件于1972年由美国加州大学伯克利分校的计算机辅助设计小组利用FORTRAN语言开发而成,主要用于大规模集成电路的计算机辅助设计。
SPICE 的正式实用版SPICE 2G在1975年正式推出,但是该程序的运行环境至少为小型机。
1985年,加州大学伯克利分校用C语言对SPICE软件进行了改写,1988年SPICE被定为美国国家工业标准。
与此同时,各种以SPICE为核心的商用模拟电路仿真软件,在SPICE的基础上做了大量实用化工作,从而使SPICE成为最为流行的电子电路仿真软件。
PSPICE则是由美国Microsim公司在SPICE 2G版本的基础上升级并用于PC 机上的SPICE版本,其中采用自由格式语言的5.0版本自80年代以来在我国得到广泛应用,并且从6.0版本开始引入图形界面。
电路设计中常见的EDA工具介绍电路设计是电子工程的重要分支之一,而电路的设计离不开EDA工具的支持。
EDA(Electronic Design Automation,电子设计自动化)工具是一些软件程序,可以辅助电路设计师完成从电路原理图到PCB(Printed Circuit Board,印刷电路板)布局的全过程。
本文将介绍电路设计中几种常见的EDA工具及其特点。
一、原理图绘制工具:EagleEagle是一款多功能的电子设计软件,用户可以使用它绘制电路原理图、设计PCB、布线等。
Eagle具有简单、易学、易用的特点,可以轻松应对小型电路的设计,而且其元器件库也非常丰富,几乎能够满足绝大部分的需求。
Eagle支持标准的Gerber输出格式,可以与各类CAM(Computer Aided Manufacturing,计算机辅助制造)软件无缝对接。
二、仿真工具:PSPICEPSPICE是由美国公司Cadence设计的一款电路仿真软件。
PSPICE是目前业内广泛使用的一款仿真工具,因其良好的仿真支持及完整的仿真模型而受到大量用户的青睐。
PSPICE能够对于线性、非线性、数字、模拟和混合信号电路进行精确的仿真分析,并提供充分的仿真结果分析与可视化手段。
此外,PSPICE还支持各类外部模型与设备的导入,可大大提升模型的准确性。
三、布局设计工具:Altium DesignerAltium Designer是一款基于Windows平台的PCB设计软件,经过多年的发展,它已成为市场上的佼佼者。
Altium Designer具有强大的元器件绘制和模块化设计引擎,可以支持多方面的设计工具。
其直观的用户界面、超快的地图绘制工具和高度自动化的功能导向使得用户通常可以极快地获得确定的结果。
同时,Altium Designer还可以与其他ECAD软件轻松集成,能够满足中等或大型的电路板设计的要求。
四、封装设计工具:PADSPADS是一个完全集成化的电子设计系统,提供了一个全面的、可靠的PCB设计问题解决方案。
PSpice基础仿真分析与电路控制描述介绍本文档旨在介绍PSpice基础仿真分析以及如何描述电路控制。
PSpice是一种常用的电子电路仿真软件,可以帮助工程师在设计阶段对电路进行仿真分析。
PSpice基础仿真分析PSpice基础仿真分析包括以下几个步骤:1. 确定电路拓扑结构:在PSpice中绘制电路的拓扑结构,包括电源、电阻、电容、电感等元件。
2. 设定元件参数:为每个元件设定合适的参数,例如电阻值、电容值等。
3. 设置仿真参数:选择合适的仿真参数,如仿真时间、仿真步长等。
4. 进行仿真分析:运行仿真分析,并观察电路的响应。
5. 分析仿真结果:根据仿真结果,分析电路的性能,例如电流、电压、功率等。
电路控制描述在PSpice中,我们可以通过电路控制描述实现对电路的控制。
电路控制描述是一种基于具体控制条件的仿真分析方法,可以模拟电路中的控制变量。
以下是电路控制描述的基本步骤:1. 定义控制变量:在PSpice中选择一个电路元件作为控制变量,可以是电源电压、电阻值等。
2. 设置控制条件:为控制变量设置控制条件,如电压范围、电流大小等。
3. 运行仿真分析:根据设置的控制条件,运行仿真分析,并观察电路的响应。
4. 分析仿真结果:根据仿真结果,分析电路在不同控制条件下的性能变化。
电路控制描述可以帮助我们评估电路在不同控制条件下的表现,并优化电路设计。
结论本文档介绍了PSpice基础仿真分析和电路控制描述的基本概念和步骤。
通过使用PSpice进行仿真分析和电路控制描述,工程师可以更好地评估和优化电路设计,提高电路的性能。
PSpice提供了丰富的仿真功能和工具,在实际工程应用中具有广泛的应用价值。
希望本文档对您了解PSpice基础仿真分析和电路控制描述有所帮助。
SPICE 仿真和模型简介1、SPICE 仿真程序电路系统的设计人员有时需要对系统中的部分电路作电压与电流关系的详细分析,此时需要做晶体管级仿真(电路级),这种仿真算法中所使用的电路模型都是最基本的元件和单管。
仿真时按时间关系对每一个节点的I/V 关系进行计算。
这种仿真方法在所有仿真手段中是最精确的,但也是最耗费时间的。
SPICE(Simulation program with integrated circuit emphasis)是最为普遍的电路级模拟程序,各软件厂家提供提供了Vspice、Hspice、Pspice 等不同版本spice 软件,其仿真核心大同小异,都是采用了由美国加州Berkeley 大学开发的spice 模拟算法。
SPICE 可对电路进行非线性直流分析、非线性瞬态分析和线性交流分析。
被分析的电路中的元件可包括电阻、电容、电感、互感、独立电压源、独立电流源、各种线性受控源、传输线以及有源半导体器件。
SPICE 内建半导体器件模型,用户只需选定模型级别并给出合适的参数。
2、元器件模型为了进行电路模拟,必须先建立元器件的模型,也就是对于电路模拟程序所支持的各种元器件,在模拟程序中必须有相应的数学模型来描述他们,即能用计算机进行运算的计算公式来表达他们。
一个理想的元器件模型,应该既能正确反映元器件的电学特性又适于在计算机上进行数值求解。
一般来讲,器件模型的精度越高,模型本身也就越复杂,所要求的模型参数个数也越多。
这样计算时所占内存量增大,计算时间增加。
而集成电路往往包含数量巨大的元器件,器件模型复杂度的少许增加就会使计算时间成倍延长。
反之,如果模型过于粗糙,会导致分析结果不可靠。
因此所用元器件模型的复杂程度要根据实际需要而定。
如果需要进行元器件的物理模型研究或进行单管设计,一般采用精度和复杂程度较高的模型,甚至采用以求解半导体器件基本方程为手段的器件模拟方法。
二微准静态数值模拟是。