高考对弹簧模型的考查
- 格式:pdf
- 大小:203.16 KB
- 文档页数:3
专题十四 模型专题(6) 弹簧模型【重点模型解读】弹簧问题是高考命题的热点,历年全国以及各地的高考命题中以弹簧为情景的选择题、计算题等经常出现,很好的考查了学生对静力学问题、动力学问题、能量守恒问题、功能关系问题等知识点的理解,考查了对于一些重要方法和思想的运用。
1.弹簧的弹力是一种由形变而决定大小和方向的力.当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应。
在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x 与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化.2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变.3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解.同时要注意弹力做功的特点:W k =-(21kx 22-21kx 12),弹力的功等于弹性势能增量的负值.弹性势能的公式E p =21kx 2,高考不作定量要求,可作定性讨论.因此,在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解.4.典型实例:图示或释义 规律或方法与弹簧相关的平衡问题弹簧类平衡问题常常以单一问题出现,涉及的知识主要是胡克定律、物体的平衡条件,求解时要注意弹力的大小与方向总是与弹簧的形变相对应,因此审题时应从弹簧的形变分析入手,找出形变量x 与物体空间位置变化的对应关系,分析形变所对应的弹力大小、方向,结合物体受其他力的情况来列式求解与弹簧相关的动力学问题 (1)弹簧(或橡皮筋)恢复形变需要时间,在瞬时问题中,其弹力的大小往往可以看成不变,即弹力不能突变。
而细线(或接触面)是一种不发生明显形变就能产生弹力的物体,若剪断(或脱离)后,其中弹力立即消失,即弹力可突变,一般题目中所给细线和接触面在没有特殊说明时,均可按此模型处理(2)对于连接体的加速问题往往先使用整体法求得其加速度,再用隔离法求得受力少的物体的加速度,并利用加速度的关系求解相应量与弹簧相关的功能问题弹簧连接体是考查功能关系问题的经典模型,求解这类问题的关键是认真分析系统的物理过程和功能转化情况,再由动能定理、机械能守恒定律或功能关系列式,同时注意以下两点:①弹簧的弹性势能与弹簧的规格和形变程度有关,对同一根弹簧而言,无论是处于伸长状态还是压缩状态,只要形变量相同,则其储存的弹性势能就相同;②弹性势能公式E p =12kx 2在高考中不作要求(除非题中给出该公式),与弹簧相关的功能问题一般利用动能定理或能量守恒定律求解 【典例讲练突破】【例1】如图所示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1和k2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为( )A.m1g/k1B.m2g/k2C.m1g/k2D.m2g/k2【解析】此题是共点力的平衡条件与胡克定律的综合题.题中空间距离的变化,要通过弹簧形变量的计算求出.注意缓慢上提,说明整个系统处于一动态平衡过程,直至m1离开上面的弹簧.开始时,下面的弹簧被压缩,比原长短(m1 + m2)g/k2,而m l刚离开上面的弹簧,下面的弹簧仍被压缩,比原长短m2g/k2,因而m2移动△x=(m1 + m2)·g/k2 -m2g/k2=m l g/k2.参考答案:C【拓展】此题若求m l移动的距离又当如何求解?【练1】如图所示,A、B两物体静止在粗糙水平面上,其间用一根轻弹簧相连,弹簧的长度大于原长。
弹簧专题1、弹簧弹力的双向性弹簧可以伸长也可以被压缩,因此弹簧的弹力具有双向性,亦即弹力既可能是推力又可能是拉力,这类问题往往是一题多解.例1、如图3-7-15所示,质量为m的质点与三根相同的轻弹簧相连,静止时相邻两弹簧间的夹角均为0120,已知弹簧a b、对质点的作用力均为F,则弹簧c对质点作用力的大小可能为( )A、0B、F mg+C、F mg-D、mg F-2、轻弹簧高中物理中描述一类物体时常在其前面加上限定词“轻”,如“轻结点”、“轻绳”、“轻弹簧”、“轻杆”、“轻滑轮”等.“轻"主要可以理解为物体质量对所研究的物理问题影响很小,可以忽略不计,它是一种理想化的物理模型。
根据牛顿第二定律F = ma知,由于“轻物体”质量为零,无论其加速度多大,所受合外力必然为零,与物体的运动状态无关.这也是它与常规物体的最大区别.例2、如图4所示,4个完全相同的轻质弹簧都处于水平位置,他们的右端受到大小皆为F的拉力作用,而左端的情况各不相同:①中弹簧的左端固定在墙上,②中弹簧的左端受大小也为F的拉力作用,③中弹簧的左端拴一小物块,物块在光滑的桌面上滑动,④中弹簧的左端拴一小物块,物块在有摩擦的桌面上滑动.若认为弹簧的质量都为零,以L1、L2、L3、L4依次表示4个弹簧的伸长量.则有()3、质量不可忽略的弹簧例3、如图所示,一质量为M、长为L的均质弹簧平放在光滑的水平面上,在弹簧右端施加一水平力F使弹簧向右做加速运动.试分析弹簧上各部分的受力情况.答案解析Fx=FLx图3-7-154、三、弹簧的弹力不能突变(弹簧弹力瞬时)问题弹簧(尤其是轻质弹簧)弹力与弹簧的形变量有关,由于弹簧两端一般与物体连接,因弹簧形变过程需要一段时间,其长度变化不能在瞬间完成,因此弹簧的弹力不能在瞬间发生突变,即可以认为弹力大小和方向不变,与弹簧相比较,轻绳和轻杆的弹力可以突变。
例4、如图甲所示,一质量为m的物体系于长度分别为L1、L2的两根细线上,L1的一端悬挂在天花板上,与竖直方向夹角为θ,L2水平拉直,物体处于平衡状态.求解下列问题:(1)现将线L2剪断,求剪断L2的瞬间物体的加速度.(2)若将图甲中的细线L1换成长度相同,质量不计的轻弹簧,如图乙所示,其他条件不变,求剪断L2的瞬间物体的加速度.例5、如图所示,一光滑圆环竖直固定在地面上,三个完全相同的质量均为m的小球穿在圆环上,其中小球A位于圆环最高点,小球B、C位于同一高度,小球A与小球B之间、小球A与小球C间用等长的轻质细绳相连,小球B与小球C用轻弹簧相连。
2023年高三物理二轮常见模型与方法强化专训专练专题04 弹簧模型一、高考真题1.(2022年江苏卷)如图所示,轻质弹簧一端固定,另一端与物块A 连接在一起,处于压缩状态,A 由静止释放后沿斜面向上运动到最大位移时,立即将物块B 轻放在A 右侧,A 、B 由静止开始一起沿斜面向下运动,下滑过程中A 、B 始终不分离,当A 回到初始位置时速度为零,A 、B 与斜面间的动摩擦因数相同、弹簧未超过弹性限度,则( )A .当上滑到最大位移的一半时,A 的加速度方向沿斜面向下B .A 上滑时、弹簧的弹力方向不发生变化C .下滑时,B 对A 的压力先减小后增大D .整个过程中A 、B 克服摩擦力所做的总功大于B 的重力势能减小量【答案】B【详解】B .由于A 、B 在下滑过程中不分离,设在最高点的弹力为F ,方向沿斜面向下为正方向,斜面倾角为θ,AB 之间的弹力为F AB ,摩擦因素为μ,刚下滑时根据牛顿第二定律对AB 有()()()A B A B A B sin cos F m m g m m g m m a θμθ++−+=+对B 有B B AB B sin cos m g m g F m a θμθ−−=联立可得AB A B BF F m m m =−+由于A 对B 的弹力F AB 方向沿斜面向上,故可知在最高点F 的方向沿斜面向上;由于在最开始弹簧弹力也是沿斜面向上的,弹簧一直处于压缩状态,所以A 上滑时、弹簧的弹力方向一直沿斜面向上,不发生变化,故B 正确;A .设弹簧原长在O 点,A 刚开始运动时距离O 点为x 1,A 运动到最高点时距离O 点为x 2;下滑过程AB 不分离,则弹簧一直处于压缩状态,上滑过程根据能量守恒定律可得()()22121211sin 22kx kx mg f x x θ=++− 化简得()122sin mg f k x x θ+=+当位移为最大位移的一半时有()121in =s +2F f x x k x mg θ−⎛⎫−− ⎪⎝⎭合带入k 值可知F 合=0,即此时加速度为0,故A 错误;C .根据B 的分析可知AB A B BF F m m m =−+再结合B 选项的结论可知下滑过程中F 向上且逐渐变大,则下滑过程F AB 逐渐变大,根据牛顿第三定律可知B 对A 的压力逐渐变大,故C 错误;D .整个过程中弹力做的功为0,A 重力做的功为0,当A 回到初始位置时速度为零,根据功能关系可知整个过程中A 、B 克服摩擦力所做的总功等于B 的重力势能减小量,故D 错误。
素养专题强化练(二)弹簧模型1.如图所示,一轻弹簧一端固定于O点,另一端系一重物,将重物从与悬点O在同一水平面且使弹簧保持原长的A点无初速度释放,让它自由摆下,不计空气阻力,在重物由A点摆向最低点B 的过程中()A.重力做正功,弹力不做功B.重力做正功,弹力做负功,弹性势能增加C.若用与弹簧原长相等的不可伸长的细绳代替弹簧后,重力和弹力都做正功D.若用与弹簧原长相等的不可伸长的细绳代替弹簧后,重力做功不变,弹力不做功【解析】选B。
在重物由A点摆向最低点B的过程中,重物的高度下降,重物的重力势能减小,重力对重物做正功;弹簧伸长,弹簧的弹力对重物做负功,根据功能关系知,小球的机械能的减少量等于弹簧弹性势能的增加量,故A错误,B正确;若用与弹簧原长相等的不可伸长的细绳代替弹簧后,重物的高度下降,重物的重力势能减小,重力对重物做正功,由于细绳不可伸长,所以重物下落的高度减少,重力做的功减小;不可伸长的细绳拉力(弹力)方向始终与速度方向垂直,所以细绳的拉力(弹力)不做功,故C、D错误。
2.如图所示,一轻弹簧直立于水平面上,弹簧处于原长时上端在O点,将一质量为M的物块甲轻放在弹簧上端,物块下降到A点时速度最大,下降到最低点B时加速度大小为g,O、B间距为h。
换用另一质量m的物块乙,从距O点高为h的C点静止释放,也刚好将弹簧压缩到B点,不计空气阻力,弹簧始终在弹性限度内,重力加速度大小为g,则()A.乙运动到O点下方A处速度最大B.乙的最大速度为√gℎC.乙在B 点加速度大小为2gD.弹簧最大弹性势能为2mgh【解析】选D 。
物块甲下落的整个过程中,根据功能关系可得:Mgh =E p 弹,物块乙下落的整个过程中,根据功能关系可得:mg ·2h =E p 弹,解得:M =2m ;物块甲下降到A 点时速度最大,则有:kx 甲=Mg ;设弹簧压缩x 乙时乙的速度最大,则有:kx 乙=mg ,解得:x 乙=12x 甲,故A 错误;由自由落体运动的公式可得,设m 到达O 点时的速度为v ,根据动能定理可得mgh =12mv 2,解得v =√2g ℎ;m 到达O 点后,刚接触弹簧时,弹簧的弹力小于m 的重力,所以m 将继续向下做加速运动,所以m 的最大速度一定大于√2g ℎ,故B 错误;由M 运动的对称性可知,到达B 点时:h =2x A ,所以在B 点弹簧的弹力:F B =2kx 甲=2Mg =4mg ,乙在B 点的加速度:a =F B -mg m=3g ,故C 错误;弹簧的最大弹性势能等于乙的重力势能的减少量,即为E p 弹=2mgh ,故D 正确。
高考弹簧类问题复习弹簧类问题含有力的非突变模型---弹簧模型,这类问题能很好地考查同学们对物理过程的分析、物理知识的综合、以及数学知识的灵活应运,所以这类问题在近年的高考中频频出现。
为了帮助同学们复习好这部分内容,现浅谈如下几点,供同学们参考一、知识点聚焦1、弹簧的瞬时问题弹簧发生弹性形变时,弹力与其形变量成正比,因此,弹力不同,形变量不同,形变量不同,对应的弹力也不同。
解决这一类问题时一定要弄清“时刻”及“位置”的含义。
2、弹簧的平衡问题这类问题涉及的知识有胡克定律、力的平衡条件,一般可用f=kx或△f=k•△x和∑F=0等公式来求解。
3、弹簧的非平衡问题这类问题主要是指弹簧在相对位置发生变化时,所引起的力、加速度、速度、功、能和合外力等其他物理量发生变化的情况。
这类问题的解决,不但要涉及胡克定律、牛顿第二定律、还要涉及动能定理、能的转化和守恒定律等方面的内容。
4、弹簧弹力做功与动量、能量的综合问题在弹簧弹力做功的过程中弹力是个变力,所以这类问题一般与动量、能量联系,以综合题的形式出现。
这类问题有机地将动量守恒、机械能守恒、功能关系和能量转化等结合在一起,考查同学们的综合应用能力。
解决这类问题时,要细致分析弹簧的动态过程,综合利用动能定理和功能关系等知识解题。
二、典型例题分析(一)、“轻弹簧”类问题在中学阶段,凡涉及的弹簧都不考虑其质量,称之为"轻弹簧",是一种常见的理想化物理模型。
由于“轻弹簧”质量不计,选取任意小段弹簧分析,其两端所受张力一定平衡,否则,这小段弹簧的加速度会无限大。
故:轻质弹簧中各部分间的张力处处相等,均等于弹簧两端的受力。
弹簧一端受力为F,另一端受力一定也为F。
若是弹簧秤,则弹簧秤示数为F。
例1、如图所示,一个弹簧秤放在光滑的水平面上,外壳质量m不能忽略,弹簧及挂钩质量不计,施加水平方向的力F1、F2,且F1>F2则弹簧秤沿水平方向的加速度为 ,弹簧秤的读数为 .分析与解 以整个弹簧秤为研究对象:利用牛顿运动定律12F F ma -= ∴12F F a m -=仅以轻质弹簧为研究对象:则弹簧两端的受力都是F 1,所以弹簧秤的读数为F 1说明 F 2作用在弹簧秤外壳上,并没有作用在弹簧左端,弹簧左端的受力是由外壳内侧提供的。
弹簧问题总结高考高考弹簧问题及应对策略轻弹簧是一种理想化的物理模型,以轻弹簧为载体,设置一定的物理情景,可以考查弹力的概念,牛顿第二定律及变力做功等知识点。
在这些知识点中弹簧与其关联物之间总存在力、运动状态和能量的联系,对学生的要求较高,有较高的区分度,因此成为高考的热点难点。
本人在多年高手教学中摸索出一些经验,应对高考中的弹簧问题主要从以下几个方面:一.弹簧的形变量与物体的运动相联系这类题的考查主要是要求学生弹簧状态的改变中找到物体运动的距离,从弹力的变化中找出物体的加速度变化情况,确定速度的变化情况。
应对策略①弹簧的形变量与物体的运动距离密切相连,如果弹簧的初末状态均为压缩(伸长)压缩量为x1、x2,弹簧一端的物体运动距离x=x1-x2或x=x2-x1,如果弹簧的初末状态一个为压缩,一个为伸长,则弹簧一端的运动物体运动距离x=x1+x2。
②物体的运动引起弹簧弹力的改变,对物体应用牛顿第二定律或平衡条件分析物体的速度变化情况。
例1.(2005年全国理综III卷)如图所示,在倾角为θ的光滑斜面上有两个用轻质弹簧相连接的物块A、B,它们的质量分别为mA、mB,弹簧的劲度系数为k,C为一固定挡板。
系统处一静止状态,现开始用一恒力F沿斜面方向拉物块A使之向上运动,求物块B刚要离开C时物块A的加速度a和从开始到此时物块A的位移d,重力加速度为g。
解:令x1表示未加F时弹簧的压缩量,由胡克定律和牛顿定律可知令x2表示B刚要离开C时弹簧的伸长量,a表示此时A的加速度,由胡克定律和牛顿定律可知:mgsinθ=kx1①kx2=mBgsinθ②F-mAgsinθ-kx2=mAa③得由题意d=x1+x2⑤由①②⑤式可得二.弹簧的瞬时问题这类题的考查主要针对弹簧两端都有物体时弹簧的弹力不能发生突变,即弹簧形变瞬间不发生变化,弹力不变。
应对策略:一个力发生变化的瞬间,弹簧的弹力大小方向都不变,绳的弹力杆的弹力瞬间发生变化,正确的受力分析后根据牛顿第二定律求解。
弹簧模型中的力与能目录【模型一】静力学中的弹簧模型【模型二】动力学中的弹簧模型【模型三】与动量、能量有关的弹簧模型【模型一】静力学中的弹簧模型静力学中的弹簧模型一般指与弹簧相连的物体在弹簧弹力和其他力的共同作用下处于平衡状态的问题,涉及的知识主要有胡克定律、物体的平衡条件等,难度中等偏下。
1(2024·全国·高三专题练习)如图所示,倾角为θ的斜面固定在水平地面上,两个质量均为m 的物块a 、b 用劲度系数为k 的轻质弹簧连接,两物块均恰好能静止在斜面上。
已知物块a 与斜面间的动摩擦因数是物块b 与斜面间的动摩擦因数的两倍,可认为最大静摩擦力等于滑动摩擦力,重力加速度大小为g ,弹簧始终在弹性限度内。
则弹簧的长度与原长相比()A.可能伸长了mg sin θ3k B.可能伸长了2mg sin θ3k C.可能缩短了mg sin θ3k D.可能缩短了2mg sin θ3k 2(2023上·黑龙江哈尔滨·高三校联考期末)如图所示,倾角为θ且表面光滑的斜面固定在水平地面上,轻绳跨过光滑定滑轮,一端连接物体c ,另一端连接物体b ,b 与物体a 用轻弹簧连接,c 与地面接触且a 、b 、c 均静止。
已知a 、b 的质量均为m ,重力加速度大小为g 。
则()A.c 的质量一定等于2m sin θB.剪断竖直绳瞬间,b 的加速度大小为g sin θC.剪断竖直绳之后,a、b将保持相对静止并沿斜面下滑D.剪断弹簧瞬间,绳上的张力大小为mg sinθ3如图所示,一质量为m的木块与劲度系数为k的轻质弹簧相连,弹簧的另一端固定在斜面顶端。
木块放在斜面上能处于静止状态。
已知斜面倾角θ=37°,木块与斜面间的动摩擦因数μ=0.5。
弹簧在弹性限度内,最大静摩擦力等于滑动摩擦力,重力加速度为g,sin37°=0.6,cos37°=0.8。
则()A.弹簧可能处于压缩状态B.弹簧的最大形变量为3mg 5kC.木块受到的摩擦力可能为零D.木块受到的摩擦力方向一定沿斜面向上【规律方法】(1)弹簧的最大形变量对应弹簧弹力的最大值。
高考物理弹簧模型例题解析 在高考复习中,常常遇到有关“弹簧类”问题,由于弹簧总与其他物体直接或间接地联系在一起,弹簧与其“关联物”之间总存在着力、运动状态、动量、能量方面的联系,如果你感到困难,本文就此类问题逐一归类分析。
最大、最小拉力问题 例1. 一个劲度系数为k=600N/m的轻弹簧,两端分别连接着质量均为m=15kg的物体A、B,将它们竖直静止地放在水平地面上,如图1所示,现加一竖直向上的外力F在物体A上,使物体A开始向上做匀加速运动,经0.5s,B物体刚离开地面(设整个加速过程弹簧都处于弹性限度内,且g=10m/s2)。
求此过程中所加外力的最大和最小值。
最大高度问题2019-12-07高中物理最大速度、最小速度问题 例3. 如图3所示,一个劲度系数为k的轻弹簧竖直立于水平地面上,下端固定于地面,上端与一质量为m的平板B相连而处于静止状态。
今有另一质量为m的物块A从B的正上方h高处自由下落,与B发生碰撞而粘在一起,已知它们共同向下运动到速度最大时,系统增加的弹性势能与动能相等,求系统的这一最大速度v。
最大转速和最小转速问题 最大加速度问题 例6. 两木块A、B质量分别为m、M,用劲度系数为k的轻质弹簧连在一起,放在水平地面上,如图6所示,用外力将木块A压下一段距离静止,释放后A做简谐运动,在A振动过程中,木块B刚好始终未离开地面,求木块A的最大加速度。
最大振幅 例7. 如图7所示,小车质量为M,木块质量为m,它们之间静摩擦力最大值为Ff,轻质弹簧劲度系数为k,振动系统沿水平地面做简谐运动,设木块与小车间未发生相对滑动,小车振幅的最大值是多少?最大势能问题 例8. 如图8所示,质量为2m的木板,静止放在光滑的水平面上,木板左侧固定着一根劲度系数为k的轻质弹簧,弹簧的自由端到小车右端的距离为L0,一个质量为m的小木块从板的右端以初速度v0开始沿木块向左滑行,最终回到木板右端,刚好不从木板右端滑出,设木板与木块间的动摩擦因数为ц,求在木块压缩弹簧过程中(一直在弹性限度内)弹簧所具有的最大弹性势能。
专题复习:含弹簧类问题一、常见理想模型中弹力比较:类别轻绳轻杆轻弹簧特征轻、软、不可伸长,即绳中各处的张力大小相等轻,不可伸长,亦不可压缩轻,既可被拉伸,也可被压缩,弹簧中各处弹力均相等产生力的方向及特点只能产生拉力,不能产生压力,拉力的方向沿绳子收缩的方向既能产生压力,又能产生拉力,弹力方向不一定沿杆的方向既能产生压力,又能产生拉力,力的方向沿弹簧轴线大小计算运用平衡方程或牛顿第二定律求解运用平衡方程或牛顿第二定律求解除运用平衡方程或牛顿第二定律外,还可应用胡克定律F=kx求解变化情况弹力可以发生突变弹力只能渐变注意:含弹簧类的问题,主要是利用胡克定律求解弹力大小、弹簧伸长量或压缩量。
弹簧有三种状态:伸长、原长、压缩。
【复习巩固题】1、如图所示,四个完全相同的弹簧都处于水平位置,它们的右端受到大小皆为F的拉力作用,而左端的情况各不相同:①中弹簧的左端固定在左墙上,②中的弹簧左端受大小也为F 的拉力作用,③中的弹簧左端拴一小物块,物块在光滑的桌面上滑动,④中弹簧的左端拴一小物块,物块在有摩擦的桌面上滑动,若认为弹簧的质量都为零,以l1、l2、l3、l4依次表示四个弹簧的伸长量,则有()A.l2>l1B.l4>l3C.l1>l3D.l2=l42、(江西师大附中、鹰潭一中2012届高三下学期4月联考)如图所示,将一个质量为m的球固定在弹性杆AB的上端,今用测力计沿水平方向缓慢拉球,使杆发生弯曲,在测力角逐渐增大3、(广东省广州市2012届高三3月综合测试理科综合)如图所示,在竖直方向上,两根完全相同的轻质弹簧a 、b ,一端与质量为m 的物体相连接,另一端分别固定。
当物体平衡时,如果( )A.a 被拉长,则b 一定被拉长B.a 被压缩,则b —定被压缩C.b 被拉长,则a 定被拉长D.b 被压缩,则a —定被拉长 4、(甘肃省兰州一中2013届高三上学期9月月考物理试题)如图所示,质量为m 的小球置于倾角为30°的光滑斜面上,劲度系数为k 的轻弹簧一端系在小球上,另一端拴在墙上P 点,开始时弹簧与竖直方向的夹角为θ,现将P 点沿着墙向下移动,则弹簧的最短伸长量为( )A.kmg 2 B.mg k C.3mg3kD.3mgk5、(江苏省徐州市2013届高三模底考试物理试题)如图所示,一个质量为m 的滑块静止置于倾角为30°的粗糙斜面上,一根轻弹簧一端固定在竖直墙上的P 点,另一端系在滑块上,弹簧与竖直方向的夹角为30°。
一、模型界定本模型是由弹簧连接的物体系统中关于平衡的问题、动力学过程分析的问题、功能关系的问题,但不包括瞬时性的问题。
由弹性绳、橡皮条连接的物体系统也归属于本模型的范畴.二、模型破解1.由胡克定律结合平衡条件或牛顿运动定律定量解决涉及弹簧弹力、弹簧伸长量的问题。
(i )轻质弹簧中的各处张力相等,弹簧的弹力可认为是其任一端与所连接物体之间的相互作用力。
(ii )弹簧可被拉伸,也可被压缩,即弹簧的弹力可以是拉力也可以是推力(当然弹性绳、橡皮条只能产生拉力)。
(iii )弹簧称只能被拉伸,对弹簧秤的两端施加(沿轴线方向)大小不同的拉力时,其示数等于称钩一端与物体之间的拉力大小。
(iv )有时应用x k f ∆=∆比应用kx f =更便于解题。
(v )定性比较同一弹簧的形变量大小时也可从弹性势能大小作出分析。
例1.如图1所示,四个完全相同的弹簧都处于水平位置,它们的右端受到大小皆为F 的拉力作用,而左端的情况各不相同:①中弹簧的左端固定在墙上。
②中弹簧的左端受大小也为F 的拉力作用。
③中弹簧的左端拴一小物块,物块在光滑的桌面上滑动。
④中弹簧的左端拴一小物块,物块在有摩擦的桌面上滑动。
若认为弹簧的质量都为零,以l 1、l 2、l 3、l 4依次表示四个弹簧的伸长量,则有A. l l 21>B. l l 43>C. l l 13>D. l l 24=例2.如图所示,A 、B 两物体的重力分别是G A =3 N,G B =4 N,A 用细绳悬挂在天花板上,B 放在水平地面上,连接A 、B 间的轻弹簧的弹力F =2 N,则绳中张力T 及B 对地面的压力N 的可能值分别是A.7 N 和2 NB.5 N和2 N C.1 N 和6 N D.2 N 和5 N 例3.实验室常用的弹簧秤如图甲所示,连接有挂钩的拉杆与弹簧相连,并固定在外壳一端O 上,外壳上固定一个圆环,可以认为弹簧秤的总质量主要集中在外壳(重力为G )上,弹簧和拉杆的质量忽略不计,现将该弹簧秤以两种方式固定于地面上,如图乙、丙所示,分别用恒力F 0竖直向上拉弹簧秤,静止时弹簧秤的读数为A .乙图读数F 0-G ,丙图读数F 0+GB .乙图读数F 0-G ,丙图读数F 0C .乙图读数F 0,丙图读数F 0-GD .乙图读数F 0+G ,丙图读数F 0-G例4.质量不计的弹簧下端固定一小球.现手持弹簧上端使小球随手在竖直方向上以同样大小的加速度a(a<g)分别向上、向下做匀加速直线运动.若忽略空气阻力,弹簧的伸长分别为x 1、x 2;若空气阻力不能忽略且大小恒定,弹簧的伸长分别为x 1′、x 2′,1′+x 1=x 2B.x 1′+x 1<x 2+ x 2′ 1′+x 2′=x 1+x 2 D.x 1′+x 2′<x 1 + x 2例5.一根轻质弹簧一端固定,用大小为1F 的力压弹簧的另一端,平衡时长度为1l ;改用大小为2F 的力拉弹簧,平衡时长度为2l 。
弹簧类模型的最值问题在高考复习中,常常遇到有关“弹簧类”问题,由于弹簧总是与其他物体直接或间接地联系在一起,弹簧与其“关联物”之间总存在着力、运动状态、动量、能量方面的联系,因此学生普遍感到困难,本文就此类问题作一归类分析。
一、最大、最小拉力例1. 一个劲度系数为k=600N/m的轻弹簧,两端分别连接着质量均为m=15kg 的物体A、B,将它们竖直静止地放在水平地面上,如图1所示,现加一竖直向上的外力F在物体A上,使物体A开始向上做匀加速运动,经0.5s,B物体刚离开地面(设整个加速过程弹簧都处于弹性限度内,且g=10m/s2)。
求此过程中所加外力的最大和最小值。
图1解析:开始时弹簧弹力恰等于A的重力,弹簧压缩量,0.5s末B物体刚要离开地面,此时弹簧弹力恰等于B的重力,,故对A 物体有,代入数据得。
刚开始时F为最小且,B物体刚要离开地面时,F为最大且有,解得。
二、最大高度例2. 如图2所示,质量为m的钢板与直立弹簧的上端连接,弹簧下端固定在地面上,平衡时弹簧的压缩量为。
一物体从钢板正上方距离为的A处自由下落打在钢板上,并立即与钢板一起向下运动,但不粘连,它们到达最低点后又向上运动,已知物块质量也为m时,它们恰能回到O点,若物体质量为2m仍从A 处自由下落,则物块与钢板回到O点时还有向上的速度,求物块向上运动到达的最高点与O点的距离。
图2解析:物块碰撞钢板前作自由落体运动,设表示物块与钢板碰撞时的速度,则:①速度向下运动,因碰撞时间极短,碰撞时遵循动量物块与钢板碰撞后一起以v1守恒,即:②刚碰完时弹簧的弹性势能为,当它们一起回到O点时,弹簧无形变,弹性势能为0,根据机械能守恒有:③设表示质量为2m的物块与钢板碰撞后开始向下运动的速度,由动量守恒有:④碰撞后,当它们回到O点时具有一定速度v,由机械能守恒定律得:⑤当质量为2m的物块与钢板一起回到O点时两者分离,分离后,物块以v竖直上升,其上升的最大高度:⑥解①~⑥式可得。
2019高考物理模型弹簧模型弹簧模型是以轻质弹簧为载体,与具体实际问题相结合,考查运动学、动力学、能量守恒、动量守恒、振动问题、功能关系、物体的平衡等相关问题。
有关弹簧的知识,是高考考查的重点,同时也是高考的难点,几乎每年的高考都会考查该内容,所以备考时要引起足够的重视.轻弹簧是一种理想化的物理模型,分析问题时不需要考虑弹簧本身的质量和重力.处理弹簧模型时,需要掌握以下知识点:1.弹簧弹力的计算弹簧弹力的大小可以由胡克定律来计算,即弹簧发生形变时,在弹性限度内,弹力的大小与弹簧伸长(或缩短)的长度成正比,数学表达式为,其中是一个比例系数,叫弹簧的劲度系数.弹簧的弹力不是一个恒定的力,而是一个变力,其大小随着弹簧形变量的变化而变化,同时还与弹簧的劲度系数有关。
2.弹簧弹力的特点(1)弹簧弹力的大小与弹簧的形变量有关,当弹簧的劲度系数保持不变时,弹簧的形变量,弹簧的形变量发生变化,弹簧的弹力相应地发生变化;形变量不变,弹力也力也就保持不变,由于弹簧的形变不能发生突变,故弹簧的弹力也不能瞬间发生变化,这与绳子的受力情况不同.(2)当轻弹簧受到外力的作用时,无论弹簧是处于平衡状态还是处于加速运动状态,弹簧各个部分所受的力的大小是相同的.(3)弹簧弹力的方向与弹簧的形变有关,在拉伸和压缩两种情况下,弹力的方向相反.在分析弹簧弹力的方向时,一定要全面考虑,如果题目没有说明是哪种形变,那么就需要考虑两种情况.(4)根据胡克定律可知,弹力的大小与形变量成正比,方向与形变的方向相反,可以将胡克定律的表达式写成F=kx,即弹簧弹力是一个线性回复力,故在弹力的作用下,物体会做简谐运动.3.弹性势能与弹力的功弹簧能够存储弹性势能,其大小为Ep=kx2/2,在高中阶段不需要掌握该公式,但要知道形变量越大,弹性势能就越大,在形变量相同的情况下,弹性势能是相等的;一般情况下,通常利用能量守恒定律来求弹簧的弹性势能,由于弹簧弹力是一个变力,弹力的功就是变力的功,可以用平均力来求功,也可以通过功能关系和能量守恒定律来求解.4.常见的弹簧类问题(l)弹簧的平衡与非平衡问题;(2)弹簧的瞬时性问题;(3)弹簧的碰撞问题;(4)弹簧的简谐运动问题;(5)弹簧的功能关系问题;(6)弹簧的临界问题;(7)弹簧的极值问题;(8)弹簧的动量守恒和能量守恒问题;(9)弹簧的综合性问题.5.处理弹簧模型的策略(l)判断弹簧与连接体的位置,分析物体的受力情况; (2)判断弹簧原长的位置,现长的位置,以确定弹簧是哪种形变以及形变量的大小;(3)分析弹簧弹力的变化情况,弹箦弹力不能发生突变,以此来分析计算物体的运动状态;(4)根据相应的物理规律列方程求解,例如,物体处于平衡时,运用平衡条件和胡克定律求解.模型1 考查弹簧的瞬时性问题弹簧弹力的大小与弹簧形变有关,而弹簧的形变在瞬间是不能突变的,即弹簧形变的改变需要一定的时间,所以弹簧弹力在瞬间不能够突变,这与绳模型是有区别的,不要混淆两者的区别,否则就会出错.模型2 考查弹簧中的碰撞问题弹簧中的碰撞问题是一类综合性很强的题目,一般综合了动量守恒、机械能守恒、功能关系和能量转化等.如果弹簧作为系统内的一个物体时,弹簧的弹力对系统内物体做不做功都不影响系统的机械能,能量相互转化.在运动过程中,动能与势能相互转化。
高考物理建模之弹簧模型弹簧模型是高中物理里非常重要的建模,是高考物理必考的模型。
相比轻绳模型、轻杆模型,弹簧模型考查题型更加多样化,涉及的内容更加广全。
可以说,弹簧模型是历年高考物理的一个热点难点。
弹簧模型特点轻质弹簧质量可忽略,弹簧可以可压可伸,弹簧可产生拉力也可产生支持力。
在弹性限度内,弹力的大小与弹簧的压缩量或伸长量成正比。
弹簧模型规律1、同一根弹簧的弹力处处相等;2、弹力方向一定沿着弹簧轴线,并且与弹簧形变方向相反;3、弹力有指定公式:F=kx,其中x表示弹簧的压缩量或伸长量,非弹簧长度;4、弹簧弹力"瞬时"不会突变;5、弹簧处于原长时没有弹性势能,弹簧发生形变后具有弹性势能。
弹性势能有指定公式:F=kx2/2,该公式高中物理里没有涉及到,但仍然可以作为选择题判断的依据;6、弹性势能与弹力做功关系:弹力做正功,弹性势能减少;弹力做负功,弹性势能增加;7、弹力做功特点:与物体运动的路径无关,只与物体的始末位置有关(这和重力做功、电场力做功有共性);处理方法根据物体所处状态选择相对应的定则、定理或定律,具体表现:涉及平衡问题用平衡条件F合=0分析,涉及加速减速用牛顿运动定律,涉及圆周运动用向心力知识,涉及能量转化往往用动能定律、机械能守恒定律或能量转化定律等知识。
弹簧模型常见题型一、弹簧涉及的平衡问题梳理清楚研究对象,然后受力分析。
有时受力物体可能是一个结点,有时是弹簧的某一点,这就要根据题目来做判断。
然后利用F合=0列式求解。
经典例题1、如图所示,四个完全相同的弹簧都处于水平位置,它们的右端受到大小皆为F的拉力作用,而左端的情况各不相同:①中弹簧的左端固定在墙上,②中弹簧的左端受大小也为F的拉力作用,③中弹簧的左端拴一小物块,物块在光滑的桌面上滑动,④中弹簧的左端拴一小物块,物块在有摩擦的桌面上滑动.若认为弹簧的质量都为零,以l1、l2、l3、l4依次表示四个弹簧的伸长量,则有()A. l4>l3>l2>l1 B. l4=l3=l2=l1 C. l1>l3>l4>l2 D. l1>l3=l4>l2解析:B本题设计巧妙之处在于研究对象的选择,这个研究对象并不是木块,也不是整个弹簧,而是以弹簧最右端的"一点"进行受力研究。
2024年高三物理二轮常见模型弹簧模型特训目标特训内容目标1高考真题(1T-4T)目标2三大力场中有关弹模型的平衡问题(5T-10T)目标3三大力场中有关弹簧模型的动力学问题(11T-16T)目标4三大力场中有关弹簧模型的能量动量问题(17T-22T)【特训典例】一、高考真题1(2023·山东·统考高考真题)餐厅暖盘车的储盘装置示意图如图所示,三根完全相同的弹簧等间距竖直悬挂在水平固定圆环上,下端连接托盘。
托盘上叠放若干相同的盘子,取走一个盘子,稳定后余下的正好升高补平。
已知单个盘子的质量为300g,相邻两盘间距1.0cm,重力加速度大小取10m/s2。
弹簧始终在弹性限度内,每根弹簧的劲度系数为()A.10N/mB.100N/mC.200N/mD.300N/m【答案】B【详解】由题知,取走一个盘子,稳定后余下的正好升高补平,则说明一个盘子的重力可以使弹簧形变相邻两盘间距,则有mg=3∙kx解得k=100N/m故选B。
2(2022·湖北·统考高考真题)如图所示,质量分别为m和2m的小物块Р和Q,用轻质弹簧连接后放在水平地面上,Р通过一根水平轻绳连接到墙上。
P的下表面光滑,Q与地面间的动摩擦因数为μ,最大静摩擦力等于滑动摩擦力。
用水平拉力将Q向右缓慢拉开一段距离,撤去拉力后,Q恰好能保持静止。
弹簧形变始终在弹性限度内,弹簧的劲度系数为k,重力加速度大小为g。
若剪断轻绳,Р在随后的运动过程中相对于其初始位置的最大位移大小为()A.μmgkB.2μmgkC.4μmgkD.6μmgk【答案】C【详解】Q恰好能保持静止时,设弹簧的伸长量为x,满足kx=2μmg若剪断轻绳后,物块P与弹簧组成的系统机械能守恒,弹簧的最大压缩量也为x,因此Р相对于其初始位置的最大位移大小为s=2x=4μmg k故选C。
3(2023·辽宁·统考高考真题)如图,两根光滑平行金属导轨固定在绝缘水平面上,左、右两侧导轨间距分别为d 和2d ,处于竖直向上的磁场中,磁感应强度大小分别为2B 和B 。
高三物理弹簧模型考点解读
弹簧问题是高考命题的热点,历年全国以及各地的高考命题中以弹簧为情景的选择题、计算题等经常出现,很好的考查了学生对静力学问题、动力学问题、能量守恒问题、功能关系问题等知识点的理解,考查了对于一些重要方法和思想的运用。
1.弹簧的弹力是一种由形变而决定大小和方向的力.当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应。
在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x 与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化.
2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变.
3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解.同时要注意弹力做功的特点:W k =-(21kx 22-21kx 12),弹力的功等于弹性势能增量的负值.弹性势能的公式E p =21kx 2,高考不
作定量要求,可作定性讨论.因此,在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解.。
动量守恒的十种模型模型一弹簧模型模型解读【典例分析】1(2024高考辽吉黑卷)如图,高度h=0.8m的水平桌面上放置两个相同物块A、B,质量m A=m B=0.1kg。
A、B间夹一压缩量Δx=0.1m的轻弹簧,弹簧与A、B不栓接。
同时由静止释放A、B,弹簧恢复原长时A恰好从桌面左端沿水平方向飞出,水平射程x A=0.4m;B脱离弹簧后沿桌面滑行一段距离x B=0.25m后停止。
A、B均视为质点,取重力加速度g=10m/s2。
求:(1)脱离弹簧时A、B的速度大小v A和v B;(2)物块与桌面间动摩擦因数μ;(3)整个过程中,弹簧释放的弹性势能ΔE p。
【答案】(1)1m/s,1m/s;(2)0.2;(3)0.12J(1)对物块A,由平抛运动规律,h=12gt2,x A=v A t,联立解得:v A=1m/s弹簧将两物块弹开,由动量守恒定律,m A v A=m B v B,解得v B=v A=1m/s(2)对物块B,由动能定理,-μm B g x B=0-12m B v B2解得:μ=0.2(3)由能量守恒定律,整个过程中,弹簧释放的弹性势能△E p=μm B g×12△x+μm A g×12△x+12m A v A2+12m B v B2=0.12J【针对性训练】1(2024年3月江西赣州质检)如图甲所示,光滑水平地面上有A、B两物块,质量分别为2kg、6kg,B的左端拴接着一劲度系数为2003N/m的水平轻质弹簧,它们的中心在同一水平线上。
A以速度v0向静止的B方向运动,从A接触弹簧开始计时至A与弹簧脱离的过程中,弹簧长度l与时间t的关系如图乙所示,弹簧始终处在弹性限度范围内,已知弹簧的弹性势能E p=12kx2(x为弹簧的形变量),则()A.在0~2t0内B物块先加速后减速B.整个过程中,A、B物块构成的系统机械能守恒C.v0=2m/sD.物块A在t0时刻时速度最小【答案】C【解析】在0~2t0内,弹簧始终处于压缩状态,即B受到的弹力始终向右,所以B物块始终做加速运动,故A错误;整个过程中,A、B物块和弹簧三者构成的系统机械能守恒,故B错误;由图可知,在t0时刻,弹簧被压缩到最短,则此时A、B共速,此时弹簧的形变量为x=0.4m-0.1m=0.3m则根据A、B物块系统动量守恒有m1v0=(m1+m2)v根据A、B物块和弹簧三者构成的系统机械能守恒有1 2m1v20=12(m1+m2)v2+E pv0=2m/s故C正确;在0~2t0内,弹簧始终处于压缩状态,即A受到弹力始终向左,所以A物块始终做减速运动,则物块A在2t0时刻时速度最小,故D错误。