2015年高中数学会考复习必背知识点
- 格式:doc
- 大小:543.00 KB
- 文档页数:7
会考数学必修知识点总结一、函数与方程1.函数的概念与运算: 函数是一个或者多个输入所对应的唯一的输出的映射关系,一般用f(x)表示。
函数的运算是指函数之间的加减乘除等运算。
2.方程与不等式: 方程是含有未知数的等式,要求求得未知数的值;不等式是含有未知数的不等式关系,要求求解出未知数的取值范围。
3.一元二次方程: 一元二次方程是形如ax²+bx+c=0的方程,通过求根公式或者配方法进行求解。
二、数学关系1.集合及其运算: 集合是具有某种共同特征的对象组成的整体。
集合的运算有交集、并集、补集、差集等。
2.函数的图像与性质: 函数的图像是函数在平面直角坐标系上的展示,通过图像我们可以了解函数的性质。
3.数列和数列的性质: 数列是按照一定规律排列的数的有限或者无限序列,常见的有等差数列和等比数列。
三、解析几何1.直线和圆的方程: 直线和圆都是几何图形中重要的部分,它们有各自的方程来描述。
2.多边形的性质: 多边形是由线段组成的闭合图形,通过多边形的性质可以求解其面积和周长等问题。
3.向量及其运算: 向量是有大小和方向的量,向量的运算包括加减乘除等。
四、概率与统计1.概率的基本概念: 概率是指某一事件发生的可能性,通过数学的方法进行计算。
2.频率分布与统计图表: 统计图表是通过图表的方式展示数据的分布情况,有直方图、饼图、折线图等。
3.概率分布与数理统计: 概率分布是描述随机变量取值的规律,数理统计是根据样本数据对总体进行推断。
以上是数学必修知识点的概要总结,通过学习这些基础知识点,我们可以为进一步学习更高级的数学知识打下坚实的基础。
希望每一位学生都能够认真学习数学,提高自己的数学素养。
高中数学会考知识要点总结
高中数学会考主要包括以下知识要点总结:
1. 几何学:直线和平面的性质和关系、三角形、四边形的性质和关系、圆的性质和关系、空间几何体的性质和关系等。
2. 代数学:多项式的运算和因式分解、一元二次方程、不等式和绝对值、函数的概念
和性质、函数的图像、函数的运算、复合函数、反函数等。
3. 数列与数学归纳法:数列的概念和性质、等差数列和等比数列、数列的推导、数学
归纳法的应用。
4. 解析几何:点、直线、平面的坐标表示、直线和平面的性质和关系、向量的概念和
运算、向量的坐标表示、向量的数量积和向量积。
5. 概率与统计:随机事件的概率、事件的独立性、全概率公式和贝叶斯定理、统计图
表的表示和分析、样本调查和数据分析等。
6. 三角函数:弧度制和角度制、正弦、余弦、正切函数的概念和性质、三角函数的图像、三角函数的运算、解三角方程等。
7. 微积分初步:函数的极限和连续性、导数和导数的应用、函数的积分和积分的应用、微分方程的基本概念、解微分方程的基本方法等。
以上是高中数学会考的主要知识要点总结,需要学生对这些知识点进行系统的学习和
掌握,才能在数学会考中取得好成绩。
高中数学会考知识点总结
1. 数学基础知识
- 数字与运算:包括整数、有理数、无理数和实数等概念,以及四则运算和混合运算。
- 代数与函数:包括代数运算规律、函数的概念、函数的图像和性质等内容。
- 几何与形状:包括几何图形的分类、性质和计算等内容。
2. 数学推理与证明
- 数学推理:包括命题逻辑、谓词逻辑和命题的推理法则等内容。
- 数学证明:包括直接证明法、间接证明法和反证法等内容。
3. 高中数学应用
- 函数与方程:包括一次函数、二次函数、指数函数、对数函数和三角函数等内容。
- 数列与数学归纳法:包括等差数列、等比数列、递推数列和数学归纳法等内容。
- 空间与向量:包括坐标系、平面向量和空间几何等内容。
4. 统计与概率
- 统计学:包括数据的收集、整理、分析与解释等内容。
- 概率学:包括事件概率、条件概率和概率分布等内容。
5. 解决实际问题
- 实际问题的建模与解决:包括将实际问题转化为数学问题、运用数学方法解决问题等内容。
- 实际问题的解释与应用:包括解释数学解的含义和应用数学解于实际问题的场景等内容。
以上是高中数学会考的主要知识点总结,希望对你的学习有所帮助。
高三会考数学必考知识点在高三数学会考中,有一些知识点被认为是必考的,掌握好这些知识点对于考试成绩的提升至关重要。
下面将介绍这些必考知识点,并给出相应的解题方法和注意事项。
一、函数与方程1. 一元一次方程一元一次方程是高中数学中最基础的方程之一。
解题思路是通过整理方程,将未知数移项并进行系数运算,最终求得解。
例如:求解方程2x - 5 = 7,则可以将方程化简为2x = 12,再除以2得到x = 6。
2. 二次函数与一元二次方程二次函数是高考中考查频率较高的一个知识点,而一元二次方程则是与二次函数紧密相关的一个概念。
解题时,需要掌握如何求解一元二次方程的根、判别式的使用以及解的性质。
例如:求解方程x^2 - 5x + 6 = 0,可以使用因式分解得到(x - 2)(x - 3) = 0,于是x的解为x = 2或x = 3。
二、几何与三角学1. 一元二次方程与直线的交点一元二次方程与直线的交点是一个重要的几何概念,要掌握如何通过求解方程组来确定交点的坐标。
例如:已知直线y = 2x + 3与抛物线y = x^2 - 1相交,求其交点。
解题思路为将两个方程联立,即x^2 - 3x - 4 = 0,通过求解一元二次方程可得到x的解,再将x带入其中一个方程得出y的值。
2. 三角函数与角度在三角函数中,要着重掌握正弦函数、余弦函数和正切函数的基本定义与性质,以及如何运用它们求解问题。
例如:已知直角三角形中一条边长为3,另一条边长为4,求斜边长。
可以利用勾股定理,其中斜边长对应的是直角三角形的斜边,通过计算可得斜边长为5。
三、概率与统计1. 概率的计算概率是高考数学考察频率较高的一个知识点,要了解如何计算事件发生的可能性。
例如:在一副扑克牌中,从中随机抽出一张牌,求抽到红心的概率。
首先需要确定红心牌的数量和总牌数,然后将红心牌的数量除以总牌数。
2. 统计的数据分析在统计学中,要学会如何分析给定的数据,包括计算平均值、方差、标准差等,以及如何绘制统计图表。
高中数学会考重点整理--非常详细总结1. 代数部分- 多项式多项式- 一元多项式的定义和性质- 多项式的加减乘除运算- 一元多项式的整除性质和余式定理- 多项式的因式定理和因式分解- 方程与不等式方程与不等式- 一元二次方程的解法及其性质- 二次函数与二次方程的关系- 一次不等式、二次不等式的解法及其性质- 绝对值方程与绝对值不等式的解法及其性质- 函数函数- 线性函数、反比例函数和一次函数的性质和图像- 二次函数、指数函数和幂函数的性质和图像- 对数函数和指数函数的互反性质- 数列数列- 等差数列和等比数列的性质及其应用- 通项公式、求和公式和首项公式的推导和使用2. 几何部分- 平面几何平面几何- 长度、角度、面积、体积的计算方法及其应用- 相似三角形的性质和判定条件- 三角形内角和、外角和、中线、高线的性质和计算方法- 圆内接四边形和圆内接三角形的性质和判定条件- 立体几何立体几何- 空间几何图形的投影、旋转和平移等变换- 空间几何体的面积和体积计算方法及其应用- 空间几何体的表面积和体积计算方法及其应用- 球的性质、公式和计算方法3. 统计与概率部分- 统计统计- 数据的收集、整理和描述方法- 数据的频数、频率、平均数和离散程度计算- 图表和统计图的制作和解读- 抽样调查和统计推断的基本方法- 概率概率- 基本概率定理和计算方法- 事件的相互排斥和独立性判定条件- 概率问题的计算步骤和策略- 条件概率和事件的互斥性计算方法以上是高中数学会考的重点整理,希望能够帮助你复习和准备考试。
祝你取得好成绩!。
高中数学会考知识点总结(超级经典)数学学业水平复习知识点第一章集合与简易逻辑1、集合(1)、定义:某些指定的对象集在一起叫集合;集合中的每个对象叫集合的元素。
集合中的元素具有确定性、互异性和无序性;表示一个集合要用{}。
(2)、集合的表示法:列举法()、描述法()、图示法();(3)、集合的分类:有限集、无限集和空集(记作,是任何集合的子集,是任何非空集合的真子集);(4)、元素a和集合A之间的关系:a∈A,或aA;(5)、常用数集:自然数集:N;正整数集:N;整数集:Z;整数:Z;有理数集:Q;实数集:R。
2、子集(1)、定义:A中的任何元素都属于B,则A叫B的子集;记作:AB,注意:AB时,A有两种情况:A=φ与A≠φ(2)、性质:①、;②、若,则;③、若则A=B;3、真子集(1)、定义:A 是B的子集,且B中至少有一个元素不属于A;记作:;A(2)、性质:①、;②、若,则;4、补集①、定义:记作:;BA②、性质:;5、交集与并集(1)、交集:AB性质:①、②、若,则(2)、并集:性质:①、②、若,则6、一元二次不等式的解法:(二次函数、二次方程、二次不等式三者之间的关系)判别式:△=b2-4acx1x2xyOx1=x2xyOxyO二次函数的图象一元二次方程的根有两相异实数根有两相等实数根没有实数根一元二次不等式的解集“>”取两边R一元二次不等式的解集“<”取中间不等式解集的边界值是相应方程的解含参数的不等式ax+bx+c>0恒成立问题含参不等式ax+bx+c>0的解集是R;其解答分a=0(验证bx+c>0是否恒成立)、a≠0(a1010”取两边,“”取两边,“,或|F1F2|)的点的轨迹。
平面内到两个定点F1,F2的距离之差的绝对值等于定值2a(01)的点的轨迹。
标准方程图象F1F2F1F2F由双曲线求渐进线:由渐进线求双曲线:2、求离心率:方法一:用的定义;法二:得到与有关的方程,解方程,求;(离心率与的关系可以互相表示:椭圆,双曲线)3、直线和圆锥曲线的位置关系:(1)、判断直线与圆锥曲线的位置关系的方法(基本思路)→消元→一元二次方程→判别式Δ(方程的思想)(2)、求弦长的方法:①求交点,利用两点间距离公式求弦长;②弦长公式(3)、与弦的中点有关的问题常用“点差法”:把弦的两端点坐标代入圆锥曲线方程,作差→弦的斜率与中点的关系;(弦的中点与弦的斜率可以相互表示)(4)、与双曲线只有一个交点的直线:一相切,二与渐近线平行与抛物线只有一个交点的直线:一相切,二与对称轴平行4、圆锥曲线的最值问题:(1)、利用第二定义,把到焦点的距离转化为到准线的距离求最值;(2)、结合曲线上的点的坐标,利用点到直线的距离公式转化为二次函数求最值;在上的点常设,在上的点常设(3)、利用数形结合求最值;基本思路:与直线平行,与曲线相切.(椭圆中,长轴是最长的弦;双曲线中,实轴是最短的弦。
高中会考数学知识点总结完整
版
一、代数:
1、复数:虚数单位i,负数的平方根,实部、虚部,复数模及其计算,共轭复数,复数乘法法则及其计算;
2、一元二次方程:二次函数的定义,一元二次方程的解法,两个实
数根(根的种类、解的类型),有理数解,实数解,无理数解;
3、一元n次方程:一元n次方程的定义、解法,有理数解,实数解、无理数解;
4、二元一次方程组:定义、解法,化简,消元,解的类型,无解,
有唯一解,有多解;
5、分式:分式定义及其特点,分式的加减法,乘除法,乘方,混合
运算法则及计算,提取公因数;
6、根式:定义、特点,同底数的幂的加法、减法,乘法、乘方及计算,开根号,根式与分式的比较及混合运算;
7、二元二次方程组:定义,利用配方求解,利用消元求解,利用把
变量替换成另一个求解;
二、几何:
1、直线与圆:直线与圆的定义,直线的斜率及其计算,圆的标准方
程及其计算,圆的圆心角的大小及其计算;
2、直角三角形:定义、特点,两个直角三角形的重要性质,利用重要性质求三角形的面积,角的大小及其计算,弦长的计算;
3、三角形:定义,重要性质(勾股定理、余弦定理),三角。
高中数学会考知识点高中数学会考是对学生高中阶段数学学习的一次重要检验。
为了帮助同学们更好地应对会考,下面将对高中数学会考的重要知识点进行梳理。
一、集合与函数集合是数学中一个基础的概念,包括集合的表示方法(列举法、描述法等)、集合的运算(交集、并集、补集)。
函数则是高中数学的重点内容。
要理解函数的概念,包括定义域、值域和对应关系。
常见的函数类型有一次函数、二次函数、反比例函数等。
对于二次函数,要掌握其图像和性质,如对称轴、顶点坐标、开口方向等。
函数的单调性和奇偶性也是重要的考点,能够通过函数的解析式或者图像判断其单调性和奇偶性。
二、数列数列包括等差数列和等比数列。
等差数列要掌握其通项公式、前n 项和公式,以及等差中项的性质。
通过这些公式和性质可以解决数列中的求值、求和等问题。
等比数列同样要掌握通项公式、前 n 项和公式,以及等比中项的性质。
在解题过程中,要注意公比是否为 1 的情况。
三、三角函数三角函数包括正弦函数、余弦函数、正切函数等。
要牢记它们的定义、周期性、值域、单调性等性质。
三角函数的诱导公式是解题的重要工具,能够将不同角度的三角函数值进行转化。
解三角形部分,要掌握正弦定理和余弦定理,能够运用它们解决三角形中的边长、角度等问题。
四、平面向量平面向量的概念包括向量的定义、表示方法(有向线段、坐标表示)。
向量的运算包括加法、减法、数乘和数量积。
要掌握这些运算的法则和性质,能够进行向量的运算和求解相关问题。
五、不等式不等式的性质是解不等式的基础,要熟练掌握。
一元二次不等式的解法是重点,通过求解二次函数的零点,结合函数图像得出不等式的解集。
线性规划问题则是考查如何在约束条件下,求目标函数的最值。
六、立体几何立体几何主要包括空间几何体的结构特征、表面积和体积的计算。
直线与平面、平面与平面的位置关系是重要考点,要能够进行判定和证明。
空间向量在立体几何中的应用,可以通过建立空间直角坐标系,利用向量的方法解决线线角、线面角、面面角等问题。
数学高中会考知识点总结数学高中会考的主要知识点总结如下:
1. 代数与函数:
- 一元一次方程与不等式
- 二元一次方程组与不等式组
- 多项式与因式分解
- 分式与分式方程
- 幂次函数与指数函数
- 对数函数与指数方程
- 二次函数及其图像性质
2. 几何与立体几何:
- 直线与角的性质
- 三角形与其性质
- 平面与立体图形的性质
- 相似与全等三角形
- 三角函数与应用
- 平面向量与坐标平面几何
3. 概率与统计:
- 事件与概率
- 排列组合与二项式定理
- 随机变量及其数学期望
- 样本调查与统计分析
4. 解析几何与导数:
- 直线与圆面的方程
- 参数方程与直线的位置关系- 函数的极限与连续性
- 导数与函数的变化率
- 函数的求导法则与应用
5. 数列与级数:
- 等差数列与等比数列
- 数列的概念与运算
- 数列极限与数列极限的性质- 无穷级数与收敛性。
2015年高中数学会考复习必背知识点第一章 集合与简易逻辑 1、含n 个元素的集合的所有子集有n 2个第二章 函数 1、求)(x f y =的反函数:解出)(1y f x -=,y x ,互换,写出)(1x f y -=的定义域;2、对数:①:负数和零没有对数,②、1的对数等于0:01log =a ,③、底的对数等于1:1log =a a ,④、积的对数:N M MN a a a log log )(log +=,商的对数:N M NMa a a log log log -=, 幂的对数:M n M a n a log log =;b mnb a na m log log =, 第三章 数列1、数列的前n 项和:n n a a a a S ++++= 321; 数列前n 项和与通项的关系:⎩⎨⎧≥-===-)2()1(111n S S n S a a n nn2、等差数列 :(1)、定义:等差数列从第2项起,每一项与它的前一项的差等于同一个常数; (2)、通项公式:d n a a n )1(1-+= (其中首项是1a ,公差是d ;) (3)、前n 项和:1.2)(1n n a a n S +=d n n na 2)1(1-+=(整理后是关于n 的没有常数项的二次函数)(4)、等差中项: A 是a 与b 的等差中项:2ba A +=或b a A +=2,三个数成等差常设:a-d ,a ,a+d3、等比数列:(1)、定义:等比数列从第2项起,每一项与它的前一项的比等于同一个常数,(0≠q )。
(2)、通项公式:11-=n n q a a (其中:首项是1a ,公比是q )(3)、前n 项和:⎪⎩⎪⎨⎧≠--=--==)1(,1)1(1)1(,111q q q a qq a a q na S nn n(4)、等比中项: G 是a 与b 的等比中项:Gb a G =,即ab G =2(或ab G ±=,等比中项有两个)第四章 三角函数1、弧度制:(1)、π=180弧度,1弧度'1857)180(≈=π;弧长公式:r l ||α= (α是角的弧度数)2、三角函数 (1)、定义:y rx r y x x y r x r y ======ααααααcsc sec cot tan cos sin 3、 特殊角的三角函数值4、同角三角函数基本关系式:1cos sin 22=+αα ααc o st a n =1c o t t a n =αα 5、诱导公式:(奇变偶不变,符号看象限) 正弦上为正;余弦右为正;正切一三为正 公式二: 公式三: 公式四: 公式五:ααααααtan )180tan(cos )180cos(sin )180sin(-=-︒-=-︒=-︒ααααααt a n )180t a n (c o s )180c o s (s i n )180s i n (=+︒-=+︒-=+︒ααααααt a n )t a n (c o s )c o s (s i n )s i n (-=-=--=- ααααααtan )360tan(cos )360cos(sin )360sin(-=-︒=-︒-=-︒ 6、两角和与差的正弦、余弦、正切)(βα+S :βαβαβαsin cos cos sin )sin(+=+)(βα-S :βαβαβαsin cos cos sin )sin(-=-)(βα+C :βαβαβsin sin cos cos )cos(-=+a )(βα-C :βαβαβsin sin cos cos )cos(+=-a)(βα+T : βαβαβαtan tan 1tan tan )tan(-+=+ )(βα-T : βαβαβαtan tan 1tan tan )tan(+-=- 7、辅助角公式:⎪⎪⎭⎫⎝⎛++++=+x b a b x b a a b a x b x a cos sin cos sin 222222 )sin()sin cos cos (sin 2222ϕϕϕ+⋅+=⋅+⋅+=x b a x x b a8、二倍角公式:(1)、α2S : αααcos sin 22sin = (2)、降次公式:(多用于研究性质)α2C : ααα22sin cos 2cos -= ααα2sin 21cos sin =1cos 2sin 2122-=-=αα212cos 2122cos 1sin 2+-=-=ααα α2T : ααα2t a n 1t a n 22t a n-= 212cos 2122cos 1cos 2+=+=ααα9、三角函数:10、解三角形:(1)、三角形的面积公式:A bc B ac C ab S sin 2sin 2sin 2===∆ (2)、正弦定理:s i n2s i n 2,s i n 2,2s i ns i ns i n R c B R b A R a R C cB b Aa ======, 边用角表示: (3)、余弦定理:)1(2)(cos 2cos 2cos 22222222222cocC ab b a C ab b a c Bac c a b Abc c b a +-+=-+=⋅-+=⋅-+=求角:abc b a C ac b c a B bc a c b A 2cos 2cos 2cos 222222222-+=-+=-+= 第五章、平面向量 1、坐标运算:设()()2211,,,y x b y x a ==→→,则()2121,y y x x b a ±±=±→→数与向量的积:λ()()1111,,y x y x a λλλ==→,数量积:2121y y x x b a +=⋅→→(2)、设A 、B 两点的坐标分别为(x 1,y 1),(x 2,y 2),则()1212,y y x x AB --=→.(终点减起点)221221)()(||y y x x -+-=;向量的模||:a a a ⋅=2||22y x +=;(3)、平面向量的数量积: θcos →→→→⋅=⋅b a b a , 注意:00=⋅→→a ,→→=⋅00a ,)(=-+ (4)、向量()()2211,,,y x b y x a ==→→的夹角θ,则222221212121cos y x y x y y x x +++=θ,2、重要结论:(1)、两个向量平行: →→→→=⇔b a b a λ// )(R ∈λ,⇔→→b a // 01221=-y x y x (2)、两个非零向量垂直0=⋅⇔⊥→→→→b a b a ,02121=+⇔⊥→→y y x x b a(3)、P 分有向线段21P P 的:设P (x ,y ) ,P 1(x 1,y 1) ,P 2(x则定比分点坐标公式⎪⎪⎩⎪⎪⎨⎧++=++=λλλλ112121y y y x x x , 中点坐标公式⎪⎪⎩⎪⎪⎨⎧==y x 第六章:不等式1、 均值不等式:(1)、 ab b a 222≥+ (222b a ab +≤) (2)、a >0,b >0;ab b a 2≥+或2)2(b a ab +≤ 2、解指数、对数不等式的方法:同底法,同时对数的真数大于第七章:直线和圆的方程1、斜 率:αtan =k ,),(+∞-∞∈k ;直线上两点),(),,(222111y x P y x P ,则斜率为1212x x y y k --=2、直线方程:(1)、点斜式:)(11x x k y y -=-;(2)、斜截式:b kx y +=; (3)、一般式:0=++C By Ax (A 、B 不同时为0) 斜率B A k -=,y 轴截距为BC- 3、两直线的位置关系(1)、平行:212121//b b k k l l ≠=⇔且 212121C C B B A A ≠= 时 ,21//l l ;垂直:21211l l k k ⊥⇔-=⋅2121210l l B B A A ⊥⇒=+;(2)、到角范围:()π,0 到角公式 : 12121tan k k k k +-=θ 21k k 、都存在,0121≠+k k夹角范围:]2,0(π夹角公式:12121tan k k k k +-=α 21k k 、都存在,0121≠+k k(3)、点到直线的距离公式2200B A C By Ax d +++=(直线方程必须化为一般式)6、圆的方程:(1)、圆的标准方程 222)()(r b y a x =-+-,圆心为),(b a C ,半径为r(2)圆的一般方程22=++++F Ey Dx y x (配方:44)2()2(2222F E D E y D x -+=+++) 0422>-+F E D 时,表示一个以)2,2(E D --为圆心,半径为F E D 42122-+的圆;第八章:圆锥曲线 1、椭圆标准方程:)0(12222>>=+b a by a x ,半焦距:222b ac -= , 离心率的范围:10<<e ,准线方程:ca x 2±=,参数方程:⎩⎨⎧==ϕϕsin cos b y a x 2、双曲线标准方程:)0,0(,12222>>=-b a by a x ,半焦距:222b a c +=,离心率的范围:1>e准线方程:c a x 2±=,渐近线方程用02222=-by a x 求得:x a b y ±=,等轴双曲线离心率2=e3、抛物线:p 是焦点到准线的距离0>p ,离心率:1=e px y 22=:准线方程2p x -=焦点坐标)0,2(p ;px y 22-=:准线方程2px =焦点坐标)0,2(p-py x 22=:准线方程2p y -=焦点坐标)2,0(p ;py x 22-=:准线方程2p y =焦点坐标)2,0(p -第九章 直线 平面 简单的几何体1、长方体的对角线长2222c b a l ++=;正方体的对角线长a l 3= 2、两点的球面距离求法:球心角的弧度数乘以球半径,即R l ⋅=α; 3、球的体积公式:334 R V π=,球的表面积公式:24 R S π= 4、柱体h s V ⋅=,锥体h s V ⋅=31,锥体截面积比:222121h h S S =第十章 排列 组合 二项式定理1、排列:(1)、排列数公式: mn A =)1()1(+--m n n n =!!)(m n n -.(n ,m ∈N *,且m n ≤).0!=1(3)、全排列:n个不同元素全部取出的一个排列;A A‘O BαβAA‘OBαβ!n A nn =)!1(123)2)(1(-⋅=⋅⋅⋅⋅--=n n n n n ;2、组合:(1)、组合数公式: mn C=m n mmA A =m m n n n ⨯⨯⨯+-- 21)1()1(=!!!)(m n m n -⋅(n ,m ∈N *,且m n ≤);10=n C ;(3)组合数的两个性质:m n C =m n n C - ;m n C +1-m n C =mn C 1+;3、二项式定理 :(1)、定理:n n n r r n r n n n n n n n n b C b a C b a C b a C a C b a ++++++=+--- 222110)( ; (2)、二项展开式的通项公式(第r +1项):r r n r n r b a C T -+=1)210(n r ,,,= 各二项式系数和:C n 0+C n 1+C n 2+ C n 3+ C n 4+…+C n r +…+C n n =2n (表示含n 个元素的集合的所有子集的个数)。
会考数学高考知识点总结一、函数1.函数的定义与性质函数是数学中一个基本的概念,它是一个输入和输出之间的对应关系。
在高中数学中,学生要学习函数的定义、函数的性质、函数的图像等内容。
函数的定义是指出了一种输入和输出之间的关系。
对于函数的性质,在高中数学中有很多的知识点需要掌握,比如函数的奇偶性、周期性、单调性等内容。
函数的图像是指函数的曲线在平面直角坐标系中的图形,学生要学习如何画出函数的图像。
2.常用函数在高中数学中,学生要学习一些常用的函数,比如幂函数、指数函数、对数函数、三角函数等。
这些函数在数学中具有重要的作用,学生要掌握它们的性质和应用。
3.函数的运算函数的运算是指两个或多个函数之间的加减乘除和复合等运算。
学生要学习函数的基本运算规则和运算性质。
二、数列和数学归纳法1.数列的概念数列是一个按照一定顺序排列的一组数,学生要学习数列的概念和数列的基本性质。
2.等差数列和等比数列等差数列和等比数列是高中数学中常见的两种数列,学生要学习这两种数列的定义、性质和常用的应用。
3.数学归纳法数学归纳法是数学中的一种推理方法,它用来证明一个关于自然数的性质。
在高中数学中,学生要学习数学归纳法的原理和应用,掌握使用数学归纳法解题的方法。
三、三角函数1.三角函数的概念三角函数是描述角和角度的函数,它包括正弦函数、余弦函数、正切函数、余切函数等。
在高中数学中,学生要学习三角函数的概念,函数图像和性质等内容。
2.三角函数的应用三角函数的应用十分广泛,它在几何学、物理学、工程技术等领域中都有重要的作用。
学生要学习三角函数在实际问题中的应用,掌握解答相关问题的方法。
四、导数1.导数的概念导数是微积分的一个基本概念,它描述了函数的变化率。
在高中数学中,学生要学习导数的概念和导数的定义,掌握导数的计算方法和导数的性质。
2.导数的应用导数在实际问题中有广泛的应用,比如在物理学中描述物体的运动,建模和分析经济学中的函数等。
学生要学习导数在实际问题中的应用,掌握解答相关问题的方法。
高中会考数学知识点高中会考是对高中生学业水平的一次重要检测,数学作为其中的重要科目,涵盖了众多知识点。
以下为大家梳理一下高中会考数学的主要知识点。
一、集合与简易逻辑集合是数学中一个基本的概念。
集合中的元素具有确定性、互异性和无序性。
常见的集合表示方法有列举法、描述法和图示法。
集合之间的关系包括子集、真子集、相等。
集合的运算有交集、并集和补集。
简易逻辑方面,要理解命题的概念,能够判断命题的真假。
充分条件、必要条件和充要条件的判断也是重要考点。
二、函数函数是高中数学的核心内容之一。
首先要掌握函数的定义,包括定义域、值域和对应法则。
常见的函数类型有一次函数、二次函数、反比例函数、指数函数、对数函数和幂函数。
一次函数的图像是一条直线,其表达式为 y = kx + b (k、b 为常数,k ≠ 0)。
二次函数的表达式为 y = ax²+ bx + c (a ≠ 0),其图像是一条抛物线,对称轴为 x = b / 2a ,顶点坐标为(b / 2a ,(4ac b²) /4a )。
指数函数的表达式为 y = a^x (a > 0 且a ≠ 1),当 a > 1 时,函数单调递增;当 0 < a < 1 时,函数单调递减。
对数函数是指数函数的反函数,表达式为 y =logₐ x (a > 0 且a ≠ 1)。
函数的性质包括单调性、奇偶性、周期性。
函数的单调性可以通过导数来判断,奇偶性则根据函数的对称性来确定。
三、数列数列是按照一定顺序排列的一列数。
等差数列和等比数列是常见的两种数列类型。
等差数列的通项公式为 aₙ = a₁+(n 1)d ,前 n 项和公式为 Sₙ = n(a₁+ aₙ) / 2 = na₁+ n(n 1)d / 2 。
等比数列的通项公式为 aₙ = a₁q^(n 1) ,前 n 项和公式为 Sₙ =a₁(1 qⁿ) /(1 q) (q ≠ 1)。
四、三角函数三角函数包括正弦函数、余弦函数、正切函数等。
高中数学会考必备的39个公式1、勾股定理:三条直线上两个点之间的距离关系,即a2 + b2 = c2。
2、余弦定理:两条相交直线所成的两个直角三角形,c2=a2+b2-2ab×cosC 。
3、正弦定理:两条相交的直线所组成的两个直角三角形, sinA / a = sinB / b = sinC / c 。
4、梯形公式:面积之和,即(a+b)h / 2。
5、圆面积公式:πr2 。
6、三角形面积公式:S=1/2×a×b×sinC 。
7、抛物线面积公式:S=1/3×a×h2 。
8、割线法则:1/y=1/a+1/b 。
9、勾股变形定理:ac=a2+b2−2ab cosC 。
10、余切定理:tanA/a=tanB/b=tanC/c 。
11、海伦公式:三角形内角a+b+c=180°,a2=b2+c2−2bc cosA。
12、同余三角形定理:三角形内角A/a=B/b=C/c 。
13、梯形公式:周长之和,即a+b+(c+d) 。
14、圆周长公式:2πr15、平行线定理:平行线成立的条件为同时垂直于两个垂线。
16、外接圆定理:四边形的外接圆的半径等于对角的中点的距离的一半。
17、锐角定理:三角形内角a+b>c18、直角定理:三角形内角a+b=c19、正方形面积公式:a220、平行四边形面积公式:ab21、直角三角形面积公式:1/2ah22、圆心角公式:mθ=2πr23、梯形周长公式:a+b+c+d24、圆周弧长公式:λ=θr25、余子式:对于系数矩阵A=[aij]n×n,各阶行列式的余子式定义为Ai,…,Ak 。
26、拉格朗日和弦定理:如果一个四边形的角都是锐角,那么它的两个对角线的乘积等于它的四条边的乘积。
27、反余弦定理:ac=a2+b2−2ab×cosC 。
28、反正弦定理: sinA / a = sinB / b = sinC / c 。
高中数学会考重点知识点详细总结
高中数学会考的重点知识点主要包括以下内容:
1. 函数与方程:
- 函数概念及性质,包括函数的定义域、值域、单调性、奇偶性、周期性等。
- 一次函数、二次函数、指数函数、对数函数、幂函数、三角函数的性质和图像。
- 求解一元一次方程和一元二次方程。
2. 三角学:
- 三角函数的定义、性质和图像,包括正弦函数、余弦函数、正切函数等。
- 三角函数的基本关系、复合角和倍角公式。
- 解三角方程,如 sin(x) = k, tan(x) = k 等。
3. 平面几何:
- 平面几何基本概念,如点、线、面、角的概念和性质。
- 相似三角形和等腰三角形的性质。
- 圆的性质,如弧度、弧长和扇形面积。
- 平行线与平行四边形的性质,如平行线分线段成比例、对顶角、内错角等。
4. 空间几何:
- 空间几何基本概念,如点、直线、平面的定义和相互位置关系。
- 空间几何图形的投影和截面。
- 空间几何图形的相交和平行关系。
5. 统计与概率:
- 统计的基本概念,包括数据收集、处理和分析的方法。
- 概率的基本概念,包括事件、样本空间、概率的计算和性质。
以上是高中数学会考的一些重点知识点,具体的考点和内容可能会因地区和学校的不同而有所差异,建议根据教材和考纲进行详细的复习。
高中数学会考复习必背知识点第一章 集合与简易逻辑 1、含n 个元素的集合的所有子集有n 2个第二章 函数 1、对数:①:负数和零没有对数,②、1的对数等于0:01log =a ,③、底的对数等于1:1log =a a ,④、积的对数:N M MN a a a log log )(log +=, 商的对数:N M N Ma a alog log log -=,幂的对数:M n M a n a log log =;b mn b a n a m log log =, 第三章 数列1、数列的前n 项和:n n a a a a S ++++= 321; 数列前n 项和与通项的关系:⎩⎨⎧≥-===-)2()1(111n S S n S a a n n n2、等差数列 :(1)、定义:等差数列从第2项起,每一项与它的前一项的差等于同一个常数; (2)、通项公式:d n a a n )1(1-+= (其中首项是1a ,公差是d ;)(3)、前n 项和:1.2)(1n n a a n S +=d n n na 2)1(1-+=(整理后是关于n 的没有常数项的二次函数) (4)、等差中项: A 是a 与b 的等差中项:2ba A +=或b a A +=2,三个数成等差常设:a-d ,a ,a+d3、等比数列:(1)、定义:等比数列从第2项起,每一项与它的前一项的比等于同一个常数,(0≠q )。
(2)、通项公式:11-=n n q a a (其中:首项是1a ,公比是q )(3)、前n 项和:⎪⎩⎪⎨⎧≠--=--==)1(,1)1(1)1(,111q q q a qq a a q na S nn n(4)、等比中项: G 是a 与b 的等比中项:Gb a G =,即ab G =2(或ab G ±=,等比中项有两个)第四章 三角函数1、弧度制:(1)、π=180弧度,1弧度'1857)180(≈=π;弧长公式:r l ||α= (α是角的弧度数)2、三角函数 (1)、定义: sin cos tan y x yr r xααα=== 3、 特殊角的三角函数值4、同角三角函数基本关系式:1cos sin 22=+αα , ααcos tan =5、诱导公式:(奇变偶不变,符号看象限) “一全正,二正弦,三正切,四余弦” 公式二: 公式三: 公式四: 公式五:ααααααtan )180tan(cos )180cos(sin )180sin(-=-︒-=-︒=-︒ ααααααtan )180tan(cos )180cos(sin )180sin(=+︒-=+︒-=+︒ ααααααtan )tan(cos )cos(sin )sin(-=-=--=- ααααααtan )360tan(cos )360cos(sin )360sin(-=-︒=-︒-=-︒ 6、两角和与差的正弦、余弦、正切)(βα+S :βαβαβαsin cos cos sin )sin(+=+ )(βα-S :βαβαβαsin cos cos sin )sin(-=-)(βα+C :βαβαβsin sin cos cos )cos(-=+a )(βα-C :βαβαβsin sin cos cos )cos(+=-a)(βα+T : βαβαβαtan tan 1tan tan )tan(-+=+ )(βα-T : βαβαβαtan tan 1tan tan )tan(+-=- 7、辅助角公式:⎪⎪⎭⎫⎝⎛++++=+x b a b x b a a b a x b x a cos sin cos sin 222222 )sin()sin cos cos (sin 2222ϕϕϕ+⋅+=⋅+⋅+=x b a x x b a8、二倍角公式:(1)、α2S : αααcos sin 22sin = (2)、降次公式:(多用于研究性质)α2C : ααα22sin cos 2cos -= ααα2sin 21cos sin =1cos 2sin 2122-=-=αα 212cos 2122cos 1sin 2+-=-=ααα α2T : ααα2t a n1t a n 22t a n -= 212cos 2122cos 1cos 2+=+=ααα 9、三角函数: 10、解三角形:(1)、三角形的面积公式:A bc B ac C ab S sin 2sin 2sin 2===∆ (2)正弦定理:2,2sin ,2sin 2sin sin sin sin a b cR a R A b R B c R C A B C======边用角表示: , (3)、余弦定理:22222222222cos 2cos 2cos ()2(1)a b c bc A b a c ac B c a b ab C a b ab cocC ⎧=+-⋅⎪=+-⋅⎨⎪=+-=+-+⎩求角: abc b a C ac b c a B bc a c b A 2cos 2cos 2cos 222222222-+=-+=-+=第五章、平面向量 1、坐标运算:设()()2211,,,y x b y x a ==→→,则()2121,y y x x b a ±±=±→→数与向量的积:λ()()1111,,y x y x a λλλ==→,数量积:2121y y x x b a +=⋅→→(2)、设A 、B 两点的坐标分别为(x 1,y 1),(x 2,y 2),则()1212,y y x x AB --=→.(终点减起点)221221)()(||y y x x -+-=;向量的模||:⋅=2||22y x +=;(3)、平面向量的数量积: θcos →→→→⋅=⋅b a b a , 注意:00=⋅→→a ,→→=⋅00a ,)(=-+(4)、向量()()2211,,,y x b y x a ==→→的夹角θ,则222221212121cos y x y x y y x x +++=θ,2、重要结论:(1)、两个向量平行: →→→→=⇔b a b a λ// )(R ∈λ,⇔→→b a // 01221=-y x y x (2)、两个非零向量垂直0=⋅⇔⊥→→→→b a b a ,02121=+⇔⊥→→y y x x b a(3)、P 分有向线段21P P 的:设P (x ,y ) ,P 1(x 1,y 1) ,P 2则定比分点坐标公式⎪⎪⎩⎪⎪⎨⎧++=++=λλλλ112121y y y x x x , 中点坐标公式⎪⎪⎩⎪⎪⎨⎧==y x 第六章:不等式1、 均值不等式:(1)、 ab b a 222≥+ (222b a ab +≤) (2)、a >0,b >0;ab b a 2≥+或2)2(b a ab +≤ 2、解指数、对数不等式的方法:同底法,同时对数的真数大于第七章:直线和圆的方程1、斜 率:αtan =k ,),(+∞-∞∈k ;直线上两点),(),,(222111y x P y x P ,则斜率为1212x x k -=2、直线方程:(1)、点斜式:)(11x x k y y -=-;(2)、斜截式:b kx y +=; (3)、一般式:0=++C By Ax (A 、B 不同时为0) 斜率B A k -=,y 轴截距为BC- 3、两直线的位置关系(1)、平行:212121//b b k k l l ≠=⇔且 212121C C B B A A ≠= 时 ,21//l l ; 垂直: 21211l l k k ⊥⇔-=⋅ 2121210l l B B A A ⊥⇒=+;(2)、点到直线的距离公式2200B A C By Ax d +++=(直线方程必须化为一般式)4、圆的方程:(1)、圆的标准方程 222)()(r b y a x =-+-,圆心为),(b a C ,半径为r(2)圆的一般方程022=++++F Ey Dx y x (配方:44)2()2(2222F E D E y D x -+=+++) 0422>-+F E D 时,表示一个以)2,2(E D --为圆心,半径为F E D 42122-+的圆;第八章:圆锥曲线 1、椭圆标准方程:)0(12222>>=+b a by a x ,焦点在x 轴上。
2015年高中数学会考复习必背知识点第一章 集合与简易逻辑 1、含n 个元素的集合的所有子集有n 2个第二章 函数 1、求)(x f y =的反函数:解出)(1y f x -=,y x ,互换,写出)(1x f y -=的定义域;2、对数:①:负数和零没有对数,②、1的对数等于0:01log =a ,③、底的对数等于1:1log =a a ,④、积的对数:N M MN a a a log log )(log +=,商的对数:N M NMa a a log log log -=, 幂的对数:M n M a n a log log =;b mnb a na m log log =, 第三章 数列1、数列的前n 项和:n n a a a a S ++++= 321; 数列前n 项和与通项的关系:⎩⎨⎧≥-===-)2()1(111n S S n S a a n nn2、等差数列 :(1)、定义:等差数列从第2项起,每一项与它的前一项的差等于同一个常数;(2)、通项公式:d n a a n )1(1-+= (其中首项是1a ,公差是d ;) (3)、前n 项和:1.2)(1n n a a n S +=d n n na 2)1(1-+=(整理后是关于n 的没有常数项的二次函数)(4)、等差中项: A 是a 与b 的等差中项:2ba A +=或b a A +=2,三个数成等差常设:a-d ,a ,a+d3、等比数列:(1)、定义:等比数列从第2项起,每一项与它的前一项的比等于同一个常数,(0≠q )。
(2)、通项公式:11-=n n q a a (其中:首项是1a ,公比是q )(3)、前n 项和:⎪⎩⎪⎨⎧≠--=--==)1(,1)1(1)1(,111q q q a qq a a q na S nn n(4)、等比中项: G 是a 与b 的等比中项:Gb a G =,即ab G =2(或ab G ±=,等比中项有两个)第四章 三角函数1、弧度制:(1)、π=180弧度,1弧度'1857)180(≈=π;弧长公式:r l ||α= (α是角的弧度数)2、三角函数 (1)、定义:yrx r y x x y r x r y ======ααααααcsc sec cot tan cos sin 3、 特殊角的三角函数值4、同角三角函数基本关系式:1cos sin 22=+αα ααc o st a n =1c o t t a n=αα 5、诱导公式:(奇变偶不变,符号看象限) 正弦上为正;余弦右为正;正切一三为正 公式二: 公式三: 公式四: 公式五:ααααααcos )180cos(sin )180sin(-=-︒=-︒ααααααc o s )180c o s (s i n )180s i n (-=+︒-=+︒ααααααc o s )c o s (s i n )s i n (=--=- ααααααtan )360tan(cos )360cos(sin )360sin(-=-︒=-︒-=-︒ 6、两角和与差的正弦、余弦、正切)(βα+S :βαβαβαsin cos cos sin )sin(+=+)(βα-S :βαβαβαsin cos cos sin )sin(-=-)(βα+C :βαβαβsin sin cos cos )cos(-=+a )(βα-C :βαβαβsin sin cos cos )cos(+=-a)(βα+T : βαβαβαtan tan 1tan tan )tan(-+=+ )(βα-T :βαβαβαtan tan 1tan tan )tan(+-=- 7、辅助角公式:⎪⎪⎭⎫⎝⎛++++=+x b a b x b a a b a x b x a cos sin cos sin 222222 )sin()sin cos cos (sin 2222ϕϕϕ+⋅+=⋅+⋅+=x b a x x b a8、二倍角公式:(1)、α2S : αααcos sin 22sin = (2)、降次公式:(多用于研究性质)α2C : ααα22sin cos 2cos -= ααα2sin 21cos sin =1cos 2sin 2122-=-=αα212cos 2122cos 1sin 2+-=-=ααα α2T : ααα2t a n1t a n 22t a n -= 212cos 2122cos 1cos 2+=+=ααα9、三角函数:10、解三角形:(1)、三角形的面积公式:A bc B ac C ab S sin 2sin 2sin 2===∆ (2)、正弦定理:sin 2sin 2,sin 2,2sin sin sin R c B R b A R a R CcB b A a ======, 边用角表示: (3)、余弦定理:)1(2)(cos 2cos 2cos 22222222222cocC ab b a C ab b a c Bac c a b Abc c b a +-+=-+=⋅-+=⋅-+=求角:abc b a C ac b c a B bc a c b A 2cos 2cos 2cos 222222222-+=-+=-+= 第五章、平面向量 1、坐标运算:设()()2211,,,y x b y x a ==→→,则()2121,y y x x b a ±±=±→→数与向量的积:λ()()1111,,y x y x a λλλ==→,数量积:2121y y x x b a +=⋅→→(2)、设A 、B 两点的坐标分别为(x 1,y 1),(x 2,y 2),则()1212,y y x x AB --=→.(终点减起点)221221)()(||y y x x -+-=;向量a 的模|a |:a a a ⋅=2||22y x +=;(3)、平面向量的数量积: θcos →→→→⋅=⋅b a b a , 注意:00=⋅→→a ,→→=⋅00a ,)(=-+ (4)、向量()()2211,,,y x b y x a ==→→的夹角θ,则222221212121cos y x y x y y x x +++=θ,2、重要结论:(1)、两个向量平行: →→→→=⇔b a b a λ// )(R ∈λ,⇔→→b a // 01221=-y x y x (2)、两个非零向量垂直0=⋅⇔⊥→→→→b a b a ,02121=+⇔⊥→→y y x x b a(3)、P 分有向线段21P P 的:设P (x ,y ) ,P 1(x 1,y 1) ,P 2(x则定比分点坐标公式⎪⎪⎩⎪⎪⎨⎧++=++=λλλλ112121y y y x x x , 中点坐标公式⎪⎪⎩⎪⎪⎨⎧==y x 第六章:不等式1、 均值不等式:(1)、 ab b a 222≥+ (222b a ab +≤) (2)、a >0,b >0;ab b a 2≥+或2)2(b a ab +≤ 2、解指数、对数不等式的方法:同底法,同时对数的真数大于第七章:直线和圆的方程1、斜 率:αtan =k ,),(+∞-∞∈k ;直线上两点),(),,(222111y x P y x P ,则斜率为1212x x y y k --=2、直线方程:(1)、点斜式:)(11x x k y y -=-;(2)、斜截式:b kx y +=; (3)、一般式:0=++C By Ax (A 、B 不同时为0) 斜率BAk -=,y 轴截距为B C -3、两直线的位置关系(1)、平行:212121//b b k k l l ≠=⇔且 212121C C B B A A ≠= 时 ,21//l l ;垂直:21211l l k k ⊥⇔-=⋅2121210l l B B A A ⊥⇒=+;(2)、到角范围:()π,0 到角公式 : 12121tan k k k k +-=θ 21k k 、都存在,0121≠+k k夹角范围:]2,0(π夹角公式:12121tan k k k k +-=α 21k k 、都存在,0121≠+k k(3)、点到直线的距离公式2200B A C By Ax d +++=(直线方程必须化为一般式)6、圆的方程:(1)、圆的标准方程 222)()(r b y a x =-+-,圆心为),(b a C ,半径为r (2)圆的一般方程22=++++F Ey Dx y x (配方:44)2()2(2222F E D E y D x -+=+++) 0422>-+F E D 时,表示一个以)2,2(E D --为圆心,半径为F E D 42122-+的圆;第八章:圆锥曲线 1、椭圆标准方程:)0(12222>>=+b a by a x ,半焦距:222b ac -= , 离心率的范围:10<<e ,准线方程:ca x 2±=,参数方程:⎩⎨⎧==ϕϕsin cos b y a x 2、双曲线标准方程:)0,0(,12222>>=-b a by a x ,半焦距:222b a c +=,离心率的范围:1>e准线方程:c a x 2±=,渐近线方程用02222=-by a x 求得:x a b y ±=,等轴双曲线离心率2=e3、抛物线:p 是焦点到准线的距离0>p ,离心率:1=epx y 22=:准线方程2p x -=焦点坐标)0,2(p ;px y 22-=:准线方程2px =焦点坐标)0,2(p-py x 22=:准线方程2p y -=焦点坐标)2,0(p ;py x 22-=:准线方程2py =焦点坐标)2,0(p -第九章 直线 平面 简单的几何体1、长方体的对角线长2222c b a l ++=;正方体的对角线长a l 3= 2、两点的球面距离求法:球心角的弧度数乘以球半径,即R l ⋅=α; 3、球的体积公式:334 R V π=,球的表面积公式:24 R S π= 4、柱体h s V ⋅=,锥体h s V ⋅=31,锥体截面积比:222121h h S S =第十章 排列 组合 二项式定理1、排列:(1)、排列数公式: mn A =)1()1(+--m n n n =!!)(m n n -.(n ,m ∈N *,且m n ≤).0!=1(3)、全排列:n个不同元素全部取出的一个排列;!n A nn =)!1(123)2)(1(-⋅=⋅⋅⋅⋅--=n n n n n ;2、组合:(1)、组合数公式: mn C=m n mmA A =m m n n n ⨯⨯⨯+-- 21)1()1(=!!!)(m n m n -⋅(n ,m ∈N *,且m n ≤);10=n C ;(3)组合数的两个性质:m n C =m n n C - ;m n C +1-m n C =mn C 1+;3、二项式定理 :(1)、定理:n n n r r n r n n n n n n n n b C b a C b a C b a C a C b a ++++++=+--- 222110)( ;(2)、二项展开式的通项公式(第r +1项):r rn r n r b aC T -+=1)210(n r ,,,= 各二项式系数和:C n 0+C n 1+C n 2+ C n 3+ C n 4+…+C n r +…+C n n =2n (表示含n 个元素的集合的所有子集的个数)。