2014-2015学年度八年级上册数学期中复习55题
- 格式:doc
- 大小:584.00 KB
- 文档页数:5
2014-2015学年第一学期八年级数学期中考试题一、选择题(每题4分,共40分)1、以下列各组线段为边,能组成三角形的是A .1 cm, 2 cm, 4 cm B. 4 cm, 6 cm, 8 cmC. 5 cm, 6 cm, 12 cmD. 2 cm, 3 cm, 5 cm2、一个多边形的内角和等于1 080°,这个多边形的边数是()A. 9B.8C.7D.63、点P(-2,1)关于x轴对称的点的坐标为A. (2,1)B.(-2,-1)C. (2,-1)D. (1,-2)4、下列交通标志中,不是轴对称图形的是5、如图所示,已知点A,D,C,F在同一条直线上,AB= DE, BC=EF,要使△AB C ≌△DEF,还需要添加一个条件是()A. ∠BCA= ∠FB. ∠B= ∠EC. BC//EFD. ∠A=∠EDF6、在△ABC中,∠A:∠B:∠C=1:2:3,最小边BC=5cm,则最长边AB 的长为A. 5cmB. 6cmC. 8cmD. 10cm7、如图所示,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN//BC交AB于M,交AC于N,若BM+CN=9,则线段MN的长为A.6B. 7C. 8D. 98、如图,直线L是一条河,P ,Q是两个村庄.欲在L上的某处修建一个水泵站,向P ,Q两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是9、如图所示,在平面直角坐标系中,点A在第一象限,点P在x轴上,若以P,O,A为顶点的三角形是等腰三角形,则满足条件的点P共有A. 2个B. 3个C. 4个D. 5个10、如图点C为线段AE上一动点(不与点A, E重合),在AE同侧分别作等边△ABC和等边△CDE, AD与第5题图第7题图第8题图第9题图BE交于点O , AD与BC交于点P, BE,CD交于点Q,连接PQ,以下五个结论:①AD=BE;②AP=BQ;③DE=PD; ④PQ//AE; ⑤∠AOB=60°,其中正确结论的个数是A. 2个B. 3个C. 4个D. 5个二、填空题(每题3分,共21分)11、.如图所示,在△ABC中,∠A=80°,点D是BC延长线上一点,∠ACD= 150°,则∠B= 。
2014—2015学年度第一学期八年级数学(上)期中测试卷班级 姓名 学号 得分一、选择题(每题3分,共30分)1、-8的立方根是( )A .-2B .±2C . 2D .± 22、平方根等于它本身的数是( )A .0 B. 1,0 C. 0, 1 ,-1 D. 0, -13、下列四个实数中,是无理数的为( )A .0 BC .-2D . 274、点(-2,1)在平面直角坐标系中所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限5)A .1B .2C .3D .46、如图所示,是小刚画的一张脸,他对妹妹说:“如果我用(1,3)表示左眼,用(3,3)表示右眼,那么嘴的位置可以表示成……”( )A .(1,2)B .(2,3)C .(3,2)D .(2,1)7、点P 坐标是(4,-8),则P 点关于y 轴的对称点P 1的坐标是 ( )A.(-4,-8)B.(4,8)C.(-4,8)D.(4,-8) C 以OP 的长为半径画弧,交x 轴的负半轴于点A ,则点A 的横坐标介于()A .﹣4和﹣3之间B .3和4之间C .﹣5和﹣4之间D .4和5之间10、如图所示,有一张直角三角形纸片ABC,已知∠C=90·,AC=5cm ,BC=10cm ,将纸片折叠,使点B 与点A 重合,折痕为DE ,则CD 的长度为( )A.cm 225B.cm 215C.cm 425D.cm 415二、填空题(每题4分,共20分)11、无理数3 的相反数是 .12、点A (﹣3,0)关于x 轴的对称点的坐标是 .13、写出一个大于1且小于4的无理教: .14、若直角三角形的两直角边长为a 、b ,且满足043=-+-b a ,则该直角三角形的斜边长为 . 15、若点P (x,y )的坐标满足x+y=xy ,则称点P 为“和谐点”。
请写出一个“和谐点”的坐标: .三、解答题(共50分)16、计算:(每题4分,共8分)(1)0123⎛⎫- ⎪⎝⎭(2)2+()()()121212010-++-17、(8分)如图,在平面直角坐标系中,△ABC 的三个顶点的坐标分别为A (0,1),B (-1,1),C (-1,3)。
2014-2015学年上学期八年级数学期中测试题满分:120分; 时间100分钟;一、选择题(本大题共12题,每小题3分,共36分)1、小明从镜子里看到镜子对面电子钟的像如图所示,实际时间是( ).A 、21:10B 、10:21C 、10:51D 、12:01 2、点M (1,2)关于x 轴对称点的坐标为( ).A 、(-1,-2)B 、(-1,2)C 、(1,-2)D 、(2,-1) 3、如图△ABC 中,AB=AC ,∠B =30°,AB⊥AD,AD=4cm ,则BC 的长为( ). A 、8m B 、4m C 、12m D 、6m4、若等腰三角形的周长为26cm ,一边为6cm ,则腰长为( ). A 、6cm B 、10cm C 、6cm 或10cm D 、以上都不对5、等腰三角形一腰上的高与另一要的夹角为300,则顶角度数为( ) A 、300B 、600C 、900D 、1200或6006、如图,∠BAC=110°若MP 和NQ 分别垂直平分AB 和AC,则∠PAQ 的度数是( ) A 、70° B 、 40° C 、50° D 、 60°7、下面是某同学在一次测验中的计算摘录①325a b ab +=; ②33345m n mn m n -=-; ③5236)2(3x x x -=-⋅;④324(2)2a b a b a ÷-=-; ⑤()235a a =;⑥()()32a a a -÷-=-.其中正确的个数有( )A 、1个B 、2个C 、3个D 、4个 8、下列各式是完全平方式的是( ).A 、x 2-x +14B 、1+x 2C 、x +xy +1D 、x 2+2x -19、如(x +m )与(x +3)的乘积中不含x 的一次项,则m 的值为( ).A 、-3B 、3C 、0D 、110、44221625)(______)45(b a b a -=+-括号内应填( )A 、2245b a + B 、2245b a + C 、2245b a +- D 、2245b a --第1题图11、下列分解因式正确的是( )A 、32(1)x x x x -=-.B 、2(3)(3)9a a a +-=-C 、29(3)(3)a a a -=+-.D 、22()()x y x y x y +=+-. 12、下列各式从左到右的变形,正确的是( ).A 、()x y x y --=--B 、22)()(y x x y -=-C 、22)()(y x y x +-=+D 、33)()(a b b a -=-二、填空题(每小题4分,共24分)13、等腰三角形的一内角等于50°,则其它两个内角各为 .14、计算2221(3)()3x y xy -=__________ ;2007200831()(1)43⨯-=15、若310x=,35y =,则23x y-= .16、已知249x mx ++是完全平方式,则m =_________;17、如图:点P 为∠AOB 内一点,分别作出P 点关于OA 、OB 的对称点1P ,2P ,连接12PP 交OA 于M ,交OB 于N ,PMN ∆的周长为15cm , 12PP = .18、220141(1)(1)......(1)a a a a a a a ++++++++= .三、解答题:(60分)19、(6分)如图:某地有两所大学和两条相交叉的公路,(点M ,N 表示大学,AO ,BO 表示公路).现计划修建一座物资仓库,希望仓库到两所大学的距离相等,到两条公路的距离也相等。
2014-2015学年度第一学期八年级数学期中试卷(本试卷满分100分,时间100分钟)题号 一 1--10 二11-15三总分 16 17 18 19 20 21 得分一、选择题(每题3分,共30分)题号 12345678910 答案1.点)4,5(-P 到y 轴的距离是【 ▲ 】A.5B.4C.5-D.4-2.当0,0><y x 时,点(,)A x y 在平面直角坐标系中的位置是在【 ▲ 】 A .第一象限 B .第二象限 C .第三象限 D .第四象限3.若正比例函数y kx =的图象经过点(1,2),则k 的值为【 ▲ 】 A.1- B.2- C.1 D.24.用固定的速度向如图所示形状的杯子里注水,则能表示杯子里水面的高度和注水时间的关系的大致图象是【 ▲ 】5.已知三角形的两边长分别为cm 3和cm 8,则第三边长可以是【 ▲ 】 A.cm 13 B.cm 6 C.cm 5D.cm 46.函数3x y +=中自变量x 的取值范围是【 ▲ 】 A .x ≥-3 B .x ≥-3且1x ≠ C .1x ≠ D .3x ≠-且1x ≠7.在同一平面直角坐标系中,若一次函数3y x =-+与35y x =-的图象交于点P ,则点P 的坐得分学校 班级 姓名 考号密封 线 内 不 要 答 题标为【 ▲ 】A.(1,4)-B.(1,2)-C.(2,1)-D.(2,1) 8.一次函数b kx y +=的图象如图所示,则不等式2>+b kx 的 解集为【 ▲ 】A.0>xB.0<xC.1-<xD.1->x9.一个三角形的两个内角分别是ο55和ο72,这个三角形的外角不可能是【 ▲ 】 A. 125° B.108° C.127° D.137°10.甲、乙两个同学从m 400环形跑道上的同一点出发,同时同向而行,甲的速度为s m /6,乙的速度为s m /4.设经过x (s )后,跑道上此两人间的较短部分的长度为y (m ),则y 与x (0≤x ≤300)之间函数关系可用图象表示为【 ▲ 】A. B. C. D.二、填空题(每题4分,共20分)11.如图,是某风景区几个主要景点示意图,根据图中信息可确定 九疑山的中心位置C 点的坐标为 .12.已知直线3-=x y 与22+=x y 的交点为)8,5(--,则方程组 的⎩⎨⎧=+-=--02203y x y x 解是 .13.直线a x y +-=2经过点),3(1y 和点),2(2y -,则1y 2y (填“>”、 “<”或“=”). 14.如果将函数x y 2=的图象向左平移m (0>m )个单位,正好等于将它向上平移n (0>n )个单位,则m 和n 之间的关系为 .15.某人用80元充值卡坐某种刷卡出租车,按行驶里程收费.km 3内收费8元,以后每超过km1得分第8题图第11题图加收5.1元.若此人第一次坐出租车(331)xkm x ≤≤,则充值卡中所余的费用y (元)与x ()km 之间的关系式是 . 三、解答题(共55分)16.(本小题7分)如图,A B C 、、三点的坐标分别为3,4()、1,2()、5,0(),将ABC ∆先向下平移四个单位得到'''A B C ∆,再将'''A B C ∆向左平移五个单位得到111A B C ∆.(1)请你在图上画出'''A B C ∆和111A B C ∆; (2)观察所画的图形写出'A 和1A 的坐标;(3)计算ABC ∆的面积.17.(本小题8分)综合与实践世界上大部分国家都使用摄氏温度()C o,但美国、英国等国家的天气预报仍然使用华氏温度()F o.两种计量之间有如下对应:(1(2)求出华氏0度时摄氏是多少度?(3)华氏温度的值与对应摄氏温度的值有相等的可能吗?如果有,请求出该值.xy –1–2–3–4–512345–1–2–3–4–512345O18.(本小题8分)如图,在ABC ∆中,AC AB =,AC 上的中线把三角形的周长分为cm 24和cm 30的两个部分,求三角形各边的长.19.(本小题10分) 已知2+y 与x 成正比例,且2-=x 时,0=y . (1)求y 与x 之间的函数关系式; (2)画出函数的图象;(3)设点P 在y 轴负半轴上,(2)中的图象与x 轴、y 轴分别交于B A 、两点,且4=∆ABP S ,求P 点的坐标.20.(本小题10分) 已知,如图,在ABC ∆中,角平分线BD 、CD 相交于点D , (1)若ο80=∠A ,求BDC ∠的度数; (2)若ο120=∠BDC ,求A ∠的度数;(3)若βα=∠=∠BDC A ,,试求α、β之间的数量关系.第20题图21. (本小题12分) 我市某企业利用机器生产一种科技产品,机器从早上八点开始工作,中午十二点停止.产品生产出来后,需要包装入库.通常的办法是,机器先工作一段时间,包装工人再开始包装.某次包装工人工作了一段时间后,因临近下班,又抽掉了一部分工人来帮忙,使包装入库的速度提高了一倍.如图是生产出来后待包装入库的产品数量y(件)与时间t(h)的函数关系的图象.根据图象解决以下问题:(1)机器每小时生产件产品;工人包装入库的速度是件/h;(2)求线段BC的解析式;(3)如果要保证生产的产品恰好在半天(4h)时全部包装入库,原有包装工人应该在机器开始工作后多长时间时开始包装?2014-2015学年度第一学期八年级数学期中测试参考答案一、选择题1---5:ABDCB 6----10:BDADC 二、填空题 11.(3,1) 12.⎩⎨⎧-=-=85y x 13.< 14.2m=n 15.5.765.1+-=x y三、解答题16.(1)图略………………2分(2)'A (3,0);1A (-2,0)………………4分 (3)42214221222144⨯⨯-⨯⨯-⨯⨯-⨯=∆ABC S ………………6分 6=………………7分 17.解:(1)是一次函数.………………1分设摄氏温度值为x ,华氏温度值为y ,令y=kx+b321050b k b =⎧⎨+=⎩解得9,325k b == 9325y x =+………………4分 (2)当y=0时,93205x +=,解得1609x =-,即华氏0度时,摄氏是1609-.…………6分 (3)依题意得9325y x y x⎧=+⎪⎨⎪=⎩ 解得40y x ==-即华氏温度的值与摄氏温度的值在-40时相等.………………8分 18.解:设AB=AC=2x ,则AD=CD=x ,(1)当AB +AD=30,BC +CD=24时,有2x +x=30, ∴x=10,………………2分 2x=20,BC=24-10=14,三边分别为:20cm ,20cm ,14cm .………………4分(2)当AB +AD=24,BC +CD=30,有2x +x=24∴x=8,………………6分BC=30-8=22,三边分别为:16cm ,16cm ,22cm .………………8分19.解:(1)∵y+2与x 成正比例,∴设y+2=kx (k 是常数,且k ≠0)∵当x=-2时,y=0. ∴0+2=k ·(-2),∴k =-1. ∴函数关系式为x+2=-x , 即y=-x-2.………………3分 (2)列表;x 0 -2 y-2描点、连线,图象如图所示.………………6分 (3)函数y=-x-2分别交x 轴、y 轴于A ,B 两点, ∴A (-2,0),B (0,-2). ∵S △ABP =21·|BP|·|OA|=4, ∴|BP|=428||8==OA . ∴点P 与点B 的距离为4. 又∵B 点坐标为(0,-2),且P 在y 轴负半轴上, ∴P 点坐标为(0,-6).………………10分 20.(1)∵∠A=80°,∴∠ABC+∠ACD=180°-80°=100° ∵BD 、CD 是角平分线 ∴∠DBC+∠DCB=οο5010021)(21=⨯=∠+∠ACB ABC ∴∠BDC=180°-∠DBC-∠DCB=180°-50°=130°;………………3分 (2)当∠BDC=120°,∴∠DBC+∠DCB=180°-120°=60° ∵BD 、CD 是角平分线∴οο120602)(2=⨯=∠+∠=∠+∠DCB DBC ACB ABC∴∠A=180°-(∠ABC+∠ACB)=180°-120°=60°;………………6分 (3)∵∠A=α,∴∠ABC+∠ACB=180°-α ∵BD 、CD 是角平分线 ∴∠DBC+∠DCB=)180(21)(21α-⨯=∠+∠οACB ABC ∴∠BDC=180°-(∠DBC+∠DCB)=180°-αα2190)180(21+=-οο ∴︒+=9021αβ………………10分 21.(1)150,250………………4分(2)由包装速度提高一倍可知,最后阶段包装速度为500件/时,100÷500=0.2,所以点C 的坐标为(4.2,0),………………6分设y=kt+b ,则41004.20k b k b +=⎧⎨+=⎩,解得500,2100k b =-= 5002100y t =-+………………8分(3)设机器开始工作后t 小时,包装工人开始包装,则 150×4=250(4-t ) 解得t=1.6即原有工人应该在机器开始工作1.6小时后开始包装.………………12分。
1 / 22014-2015学年上学期期中(全卷满分100分,考试时间120分钟)一、选择题(本大题共8个小题,每小题只有一个正确选项,每小题3分,共24分)1若等腰三角形的一边长等于5,另一边长等于3,则它的周长等于( ).A .10B .11C .13D .11或132一个三角形的三边长都是整数,并且最长边是5,满足这些条件的三角形有A 5 B7 C9. D113AD 是△ABC 的角平分线,过点D 作DE ⊥AB 于E ,DF ⊥AC 于F•,则下列结论不一定正确的是( )A .DE=DFB .BD=CDC .AE=AFD .∠ADE=∠ADF4在三角形ABC 中,角ABC 等于90度,AB=6,BC=8,AC=10,BD 平分角 ABC,求CD 长A20/7 B30/7 C40/7 D 无法确定5如图,在CD 上求一点P ,使它到OA ,OB 的距离相等,则P 点是( ) A .线段CD 的中点 B .OA 与OB 的中垂线的交点 C .OA 与CD 的中垂线的交点 D .CD 与∠AOB 的平分线的交点第5题图 第6题图 第7题图 6如图所示,△ABD ≌△CDB ,下面四个结论中,不正确的是( ) A .△ABD 和△CDB 的面积相等 B .△ABD 和△CDB 的周长相等 C .∠A +∠ABD =∠C +∠CBD D .AD ∥BC ,且AD =BC7一个正方形和两个等边三角形∠3=50度 求∠1+∠2多少度( )A90 B100 C130 D1809如图,已知AB =DC ,AD =BC ,E ,F 在DB 上两点且BF =DE ,若∠AEB =120°,∠ADB =30°,则∠BCF = ( ) A .150° B .40° C .80° D .90°10.小芳有两根长度为4cm 和9cm 的木条,她想钉一个三角形木框,桌上有下列长度的几根木条,她应该选择长度为( )的木条. A .5cm B .3 cm C .17cm D .12 cm二、填空题(每题3分,共30分)11.若将十五边形变成十六边形,则他的内角和的度数的变化情况--------12.在△ABC 中,∠C=90°,BC=16cm ,∠BAC 的平分线交BC 于D ,且BD ︰DC=5︰3,则D 到AB 的距离为_____________.13.若正n 边形的每个内角都等于150°,则n= ,其内角和为 。
2014—2015 第一学期初二数学期中学业水平测试、选一选,牛刀初试露锋芒!(每小题3分,共42分)1.下列图形中,轴对称图形的个数是()A. 4个2 .下列说法正确的是()A .三角形的角平分线是射线。
B.三角形三条高都在三角形内。
C. 三角形的三条角平分线有可能在三角形内,也可能在三角形外。
D. 三角形三条中线相交于一点。
3 .两根木棒长分别为5cm和7cm,要选择第三根,将它们钉成一个三角形,?如果第三根木棒长为偶数, 则组成方法有b5E2RGbCAPA. 3种B. 4种C. 5种D. 6种4. 下列各组条件中,不能判定△AB4A A/B/C/的一组是()/ / / / / //—”//A、/ A=Z A,/B=Z B ,AB= A BB、/ A=Z A , AB= A B , AC=A C/ / / J / / / / / / /C、/ A=/ A , AB= A B , BC= B CD、AB= A B , AC=A C ,BC= B C5. 如图,已知△ ABC的六个元素,则下面甲、乙、丙三个三角形中和△ ABC全等的图形是(D.只有丙6.如图1,将长方形ABCD纸片沿对角线BD折叠,使点C落在C •处,BC交AD于丘,若• DBC =22.5 °,贝恠不添加任何辅助线的情况下, 则图中45的角(虚线也视为角的边)的个数是()A. 5个E 22.12.如图5,△ ABC 的三边 AB 、BC CA 长分别是 20、30、40,其三条 角平分线将△ ABC 分为三个三角形,则 S A ABO : S A BCO:CAO 等于( )A . 1 : 1 : 1B . 1 : 2 : 3C . 2 : 3 : 4D . 3 : 4 : 513.如图6, 一圆柱高8cm,底面半径2cm,—只蚂蚁从点A 爬到点B 处吃食,要爬行的最短路程 (二 取 3)是() DXDiTa9E3dA.20cm;B.10cm;C.14cm;D. 无法确定.7•如图2,有一张直角三角形纸片,两直角边 △ ABC 折叠,使点B 与点A 重合,折痕为DE 为( )A. 10 cm B . 12cmC8、若等腰三角形的腰长为10,底边长为12,A 、6B 、7C 、8AC=5cm BC=10cm则厶ACD 的周长盒命 图2 E.15cmD . 20cm则底边上的高为()D 、99.如图3,小明把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事 的办法是()p1EanqFDPwA.带①去B.带②去C.带③去D.带①和②去10、下列条件中,不能确定三角形是直角三角形的是(A.三角形中有两个角是互为余角; B.三角形三个内角之比为3 : 2 : 1; C.三角形的三边之比为3 : 2 : 1 ; D.三角形中有两个内角的差等于第三个内角 11.把两个都有一个锐角为30°的一样大小的直角三角形拼成如图 4所示的图形,两条直角边在同一直线上.则图中等腰三角形有( )个. A. 1个B . 2个C.3 个D.4 个F C D图4图5A图614.如图7所示,已知△ ABC和厶BDE都是等边三角形。
2014——2015学年度第一学期 八年级数学期中考试卷(含答案)(考试时间:100分钟 满分:120分)一、选择题:(每小题3分,共42分)下列各题都有A 、B 、C 、D 四个答案供选择,其中只有一个答案是正确的,请把认为正确1、4的算术平方根是A . 2B . 2-C . 2±D . 2±2、与数轴上的点成一一对应关系的数是A . 有理数B . 无理数C . 实数D . 整数 3、下列从左边到右边的变形,属于因式分解的是A . 1)1)(1(2-=-+x x x B . 1)2(122+-=+-x x x xC . )4)(4(422y x y x y x -+=-D . 22)3(96-=+-x x x4、下列命题中是真命题的是A .三角形的内角和为180°B .同位角相等C .三角形的外角和为180°D .内错角相等 5、使式子32+x 有意义的实数x 的取值范围是A .32>x B . 23>x C . 23-≥x D . 32-≥x6、在实数73,1+π,4,3.14,38,8,0, 11.21211211中,无理数有A . 2个B . 3个C . 4个D . 5个7、一个正方形的边长增加了cm 2,面积相应增加了232cm ,则这个正方形的边长为 A . 6cm B . 5cm C . 8cm D . 7cm8、计算:()20132013125.08-⨯等于A . 1-B . 1C . 2013D . 2013- 9、下列条件中,不能证明△ABC ≌△'''C B A 的是 A .''''C A AC B B A A =∠=∠∠=∠,,学校:班别: 姓名: 座号:………………………………………………………………装………………订………………线………………………………………………得分 B'C BB .''''B A AB B B A A =∠=∠∠=∠,,C .'''''C A AC A A B A AB =∠=∠=,,D .'''''C B BC B A AB A A ==∠=∠,, 10、下列算式计算正确的是A .523a a a =+B .623a a a =⋅C .923)(a a =D . a a a =÷2311、估计15的大小在A . 2和3之间B . 3和4之间C . 4和5之间D . 5和6之间12、若(x+a)(x-5)展开式中不含有x 的一次项,则a 的值为A . 5-B . 5C . 0D . 5± 13、如右图,△ABC ≌△EDF ,DF =BC ,AB=ED ,AF =20,EC =10,则AE 等于 A . 5 B . 8 C .10 D . 15 14、如果则的值分别是A . 2 和 3B . 2和-3C . 2和D .二、填空题:(每小题4分,共16分) 15、计算:=⨯-2016201020132________。
2014——2015学年度第一学期八年级数学期中试卷一、填空题(每题3 分,共30分)1、如图ABC 中,AD 是BC 上的中线,BE 是ABD 中AD 边上的中线,若ABC 的面积是24,则ABE 的面积是________。
2、在等腰△ABC 中,如果两边长分别为6cm 、10cm ,则这个等腰三角形的周长为________.3、如图,CD 、CE 分别是△ABC 的高和角平分线,∠A =30°,∠B =60°,则∠DCE = .4、如图,∠1=_____.5、一个多边形的内角和为540°,则这个多边形的边数是_____________。
6、若一个多边形的每一个外角都等于45°,则这个多边形是___________边形.7、如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3= .8、如图,正方形的边长为4 cm ,则图中阴影部分的面积为 cm 2。
9、如图,在△ABC 中,∠ACB=90°,BE 平分∠ABC ,ED ⊥AB 于D .如果∠A=30°,AE=6cm ,那么CE 等于10、如图,一块四边形绿化园地,四角都做有半径为R 的圆形喷水池,则这四个喷水池占去二、选择题(每题3 分,共30 分)11、以下各组线段为边,能组成三角形的是( )A .1cm ,2cm ,4cmB .8cm ,6cm ,4cmC .12cm ,5cm ,6cmD .2cm ,3cm ,6cm 12、下面四个图形中,线段BE 是⊿ABC 的高的图是( )A B C D13、如图,将一副三角板叠放在一起,使直角的顶点重合于O ,则∠AOC+∠DOB=( ) A 、900B 、1200C 、1600D 、18014、三角形一个外角小于与它相邻的内角,这个三角形是( )A .直角三角形B .锐角三角形C .钝角三角形D .属于哪一类不能确定15、如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3等于 ( ) A .30° B .50° C .20° D .40°16、已知△ABC ≌△A ′B ′C ′,且△ABC 的周长为20,AB =8,BC =5,那么A ′C ′等于( ) A .5 B .6 C .7 D .817、如图,在△ABC 与△DEF 中,已有条件AB =DE ,还需添加两个条件才能使△ABC ≌△DEF ,不能添加的一组条件是( )1题图 3题图 4题图 7题图8题图 9题图 10题图13题图15题图 17题图A.∠B=∠E,BC=EF B. BC=EF,AC=DF C. ∠A=∠D,∠B=∠E D. ∠A=∠D,BC=EF 18、将一张矩形的纸对折,然后用笔尖在上面扎出“B”,再把它铺平,你可见到A B C D19、下列图形中,轴对称图形的个数是()A.4个 B.3个 C.2个 D.1个20、已知点P(1,)与Q (,2)关于x 轴成轴对称,则的值为()A.-1 B.1 C.-3 D. 3三、作图题(本题8分)21.按要求作图(不写作法,但要保留作图痕迹)如图,已知直线l和其外两点A,B, (1)试在图甲的直线l上找点C,使AC+BC得值最小;(2)试在图乙的直线l上找点D ,使得值最小。
2015–2016学年上学期初二数学期中试卷92015.11一、选择题 (本大题共10小题,每小题3分,共30分.) 1.下列四个图案中,是轴对称图形的是( )2. 下列结论错误的是……( ) A .全等三角形对应边上的中线相等B .两个直角三角形中,两个锐角相等,则这两个三角形全等C .全等三角形对应边上的高相等D .两个直角三角形中,斜边和一个锐角对应相等,则这两个三角形全等 3.下列能判定△ABC 为等腰三角形的是( ) A .∠A =30º、∠B =60º B .∠A =50º、∠B =80º C .AB =AC =2,BC =4D .AB =3、BC =7,周长为134.如果等腰三角形的两边长为3cm ,6cm ,那么它的周长为( ▲ )A.9cmB.12cmC.15cmD.12cm 或15cm 5.下列各组数作为三角形的边长,其中不能构成直角三角形的是( )A .6,8,10B .5,12,13C .9,40,41D .7,9,126. 如图,ΔABC ≌ΔADE ,AB =AD ,AC =AE ,∠B =28º,∠E =95º,∠EAB =20º,则∠BAD 为( )A.75ºB. 57ºC. 55ºD. 77º7.如图,在△ABC 中,∠ACB =90°,∠ABC =60°,BD 平分∠ABC ,P 点是BD 的中点,若AD =6,则CP 的长为( )A .3B .3.5C .4D .4.58.如图,△ABC 的面积为1cm 2,AP 垂直∠B 的平分线BP 于P ,则△PBC 的面积为 ( ) A .0.4 cm 2 B .0.5 cm 2 C .0.6 cm 2 D .0.7 cm 2第6题 第7题 第8题 第9题 9. 如图,在等边△ABC 中,AC =9,点O 在AC 上,且AO =3,点P 是AB 上 一动点,连结OP ,将线段OP 绕点O 逆时针旋转60得到线段OD .要 使点D 恰好落在BC 上,则AP 的长是( )A .4B .5C .6D .810. 如图,南北向的公路上有一点A ,东西向的公路上有一点B , 若要在南北向的公路上.......确定点P ,使得△P AB 是等腰三角形, 则这样的点P 最多能确定( )个.A .2B .3C .4D .5第10题 二、填空题(本大题共10小题,每小题3分,共30分.)11.一个直角三角形的两直角边长分别是3和4,则斜边长为__________.12. 如图,在△ABC 中,点D 是BC 的中点,作射线AD ,在线段AD 及其延长线上分别取点E ,F ,连结CE ,BF .添加一个条件,使得△BDF ≌△CDE ,你添加的条件是 (不添加辅助线).13.在长方形纸片ABCD 中,AD =3cm ,AB =9cm ,按如图方式折叠,使点B 与点D 重合,折痕为EF ,则DE = .14.如图,AD 是△ABC 的边BC 上的高,由下列条件中的某一个就能推出△ABC 是等腰三 角形的是 (把所有正确答案的序号都填写在横线上)。
2015-2016学年度上学期期中试题(1)八年级数学一、选择题(每小题3分,共36分)1.如图所示,图中不是轴对称图形的是( )A B C D 2.下列图形具有稳定性的是( )A. 正方形B. 长方形C. 直角三角形D. 平行四边形 3.以下列各组线段为边,能组成三角形的是( )A. 2 cm ,3 cm ,5 cmB. 3 cm ,3 cm ,6 cmC. 5 cm ,8 cm ,2 cmD. 4 cm ,5 cm ,6 cm4. 如图所示,已知∠A=72°,∠ACD=136°,那么∠B 的大小为( )A 44°B 54°C 64°D 74°第4题图BD5.已知等腰三角形的两边长分别为3和6,则它的周长等于( )A. 12B. 12或15C. 15D. 15或186.如图,为估计池塘岸边A 、B 两点的距离,小方在池塘的一侧选取一点O ,测得15=OA 米,10=OB 米,A 、B 间的距离不可能是 ( )米A . 20B .10C . 15D .56题图7题图 8题图7.如图,将三角尺的直角顶点放在直尺的一边上,130250∠=∠=°,°,则3∠的度数等于( ) 1 2311题图1P OMACBD 图3A CFEBA .50°B .30°C .20°D .15°8.如图,△ABC 中,AB=AC ,∠A=36°,AB 的垂直平分线DE 交AC 于D ,交AB 于E ,则∠BDC 的度数为( )A.72°B.36°C.60°D.82° 9.下列叙述正确的语句是( ) A.等腰三角形两腰上的高相等B.等腰三角形的高、中线、角平分线互相重合C.顶角相等的两个等腰三角形全等D.两腰相等的两个等腰三角形全等10.点M (—1,2)关于y 轴对称的点的坐标为( )A.(-1,-2)B.(1,2)C.(1,-2)D.(2,-1)11.如图9所示,在△ABC 中,已知点D ,E ,F 分别是BC ,AD ,CE 的中点,且ABC S △=4平方厘米,则BEF S △的值为 ( )A 、2平方厘米B 、1平方厘米C 、12平方厘米D 、14平方厘米N12. 如图,MP=MQ ,PN=QN ,MN 交PQ 于点O 。
2014-2015学年八年级上学期期中考试 数学试题一、填空题(每题2分,计30分) 16的算术平方根是 。
338的立方根是 。
若236x =,则x = 。
3.142-≈ 。
(结果保留三个有效数字) 已知a 的算术平方根是7,则a 的平方根是 。
x 的取值范围是: 。
2±,那么a = 。
计算()()44a a +-= 。
计算()21x += 。
计算()2422a b ab ab -÷= 。
分解因式:24a -= 。
已知210x y -=,则24y x -= 。
把198202⨯写成两个整数的平方差等于 。
若多项式29x kx ++恰好是另一个多项式的平方,则k = 。
已知12,2x y -= 2,xy = 则43342x y x y -= 。
二、选择题(每题2分,计30分)1、下列各数中,没有平方根的是( )(A )-64; (B )0; (C )()23-; (D )10。
2、)。
(A )相反数; (B )倒数; (C )绝对值; ( D )算术平方根。
3、4的平方根是( )(A; ( B )2; (C )2±; (D)。
4、和数轴上的点一一对应的数是( )(A )整数; (B )有理数; (C )无理数; (D )实数。
5、一个数的平方根是它本身,则这个数是( )。
(A )+1; (B )-1; (C )0; (D )100。
6、若某数的平方根为23a +和15a -,则这个数是( )。
(A )-18; (B )23-; (C )121; (D )以上结论都不是。
7、下列各数0,9,70.1235中无理数的个数是( )。
(A )0个; (B )1个; ( C )2个; (D )3个。
8、()2a b -等于( )。
(A )22a b +; (B )222a ab b -+; (C )22a b -; (D )222a ab b ++。
9、下列运算正确的是( )(A )235a a a ∙=; (B )()325a a =;(C )623a a a ÷=; (D )624a a a -=。
2014-2015学年度上学期八年级数学期中考试数学试题一、认真选一选(每小题3分,共30分)1.等腰三角形的一边为4,另一边为9,则这个三角形的周长为( ▲ )A. 17B. 22C. 17或22D. 132.下列四组线段中,可以构成直角三角形的是( )A.2,4,5B.4,5,6C.5,6,7D.6,8,103.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含︒30角的直角三角板的斜边与纸条一边重合,含︒45角的三角板的一个顶点在纸条的另一边上,则1∠的度数是( )A .︒30B .︒20C .︒15D .︒144.分析下列说法中错误的是( )A.有一个角为60º的等腰三角形是等边三角形;B.三边长为3、4、5的三角形为直角三角形;C.一条直角边对应相等的两个等腰直角三角形全等;D.斜边对应相等的两个直角三角形全等.5.如图,∠AOP =∠BOP =15º,PC ∥OA ,PD ⊥OA ,若PC =4,则PD 等于( )A 、4B 、3C 、2D 、16.如图,在△ABC 中,∠C =90°,AB 的垂直平分线,交AB 于点D ,交AC 于点E ,若AE :AC =2:1, 则∠A 的度数是( )A.10°B.15°C.18°D.21°7.已知,在△ABC 中,∠A ,∠B ,∠C 的对边分别是a ,b ,c ,下列说法中错误的是( )A.如果∠C —∠B =∠A ,那么△ABC 是直角三角形B.如果角∠C =90°,那么222b a c =-C.如果2))((c b a b a =-+,那么∠A =90°D.如果∠A :∠B :∠C =2:3:4,那么△ABC 是直角三角形8.如图所示,在△ABC 中,分别以△ABC 各边在△ABC 外作等边三角形,1S ,2S ,3S 分别表示这三个等边三角形的面积,已知3251=S ,31442=S ,31693=S ,则△ABC 是( )A.锐角三角形B.钝角三角形C.直角三角形 D 无法确定9.如图,边长为1的立方体中,一只蚂蚁从A 顶点出发沿着立方体的外表面爬到B 顶点的最短路程是( ).A 、3B 、5C 、2D 、110. 如图,C 为线段AE 上一动点(不与点A ,E 重合),在AE 同侧分别作等边△ABC 和等边△CDE , AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连结PQ .以下五个结论:① AD =BE ;② PQ ∥AE ;③ AP =BQ ;④ DE =DP ;⑤ ∠AOB =60°.其中正确的有( )A. ①②③④B. ①②③⑤C. ①②④⑤D. ①③④⑤二、精心填一填(每小题4分,共24分)11.等腰三角形一腰上的高与底边的夹角为38°,则顶角的度数为 .12. 如图,点E 在正方形ABCD 内,满足∠AED =90°,AE =4,DE =3,则阴影部分的面积是 .13.如图,在△ABC 中,AB =AC ,D 是AC 上一点,且AD =BD =BC ,则∠BAC 的度数是 .14.在Rt △ABC 中,∠C =Rt ∠,CD 、CE 分别是AB 边上的高和中线,若AC =6,BC =8,则DE = .15.如图,在R t △ABC 中,∠C=90°,BC=6cm ,AC=8 cm ,按图中所示方法将BCD 沿BD 折叠,使点C 落AB 边的C '点,那么C AD '∆的面积是 .16.如图所示的4×4正方形网格中,∠1+∠2+∠3+∠4+∠5+∠6+∠7= °.三、细心解一解(共9题,共66分)17.(6分)如图,在△ABC 中,∠B =45°,∠C =30°,AB =23,求AC 和BC 的长.18.(6分)已知△ABC 的三条边长分别为a 、b 、c ,且满足关系:ba a b c a c a b a b 4)(3)2)(2()2(22-+=-+++ 试判断△ABC 的形状,并说明理由.第13题 第14题 第12题19.(7分)如图,已知:如图,在△ABC 中,AD 是BC 边上的高线,CE 是边上的中线,DG ⊥CE 于G ,CD =AE .求证:CG =EG .20.(6分)如图,已知AB =12,AC =13,BD ⊥CD 垂足为点D ,BD =3,DC =4,求四边形ABCD 的面积.21.(7分) 如图,AD ∥BC ,∠A =90º,AD =BE ,∠EDC =∠ECD ,请你说明下列结论成立的理由:(1)△AED ≌△BCE ;(2)AB =AD +BC22.(6分)如图,线段OD 的一个端点O 在直线a 上,以OD 为一边画等腰三角形,并且使另一个顶点在直线a 上,这样的等腰三角形能画多少个?(并用直尺与圆规找出相应的等腰三角形)23.(6分)如图,牧童在A处放牛,其家在B处,A、B到河岸l的距离分别为AC=1km,BD=3km,且CD=3km.(1)牧童从A处将牛牵到河边饮水后再回家,试问在何处饮水,所走路程最短请在图中画出饮水的位置(保留作图痕迹),并说明理由.(2)求出(1)中的最短路程.24.(7分)如图,BD是△ABC的角平分线,E,F分别在AB,BC上,且ED=CD.求证:(1)∠C与∠BED互补(2)若∠C+2∠DFB=180 º,请探究线段BF与线段BE,ED之间满足的等量关系,并加以证明.25.(6分)在等腰直角△ABC中,∠ABC=90º,D为AC边上的中点,过点D作DE⊥DF,交AB于点E,交BC于点F,若AE=6,FE=8,求EF的长.26.(9分)已知等边△ABC和点P,设点P到△ABC三边的AB、AC、BC•的距离分别是PD=h1,PE=h2,PF=h3,△ABC的高为AH=h,请你探索以下问题:(1) 若点P在一边BC上(图1),此时h1、h2、h3与h•之间有怎样的关系;(2) 若点P在△ABC内(图2),此时h1、h2、h3与h•之间有怎样的关系;(3) 若点P在△ABC外(图3),此时h1、h2、h3与h•之间有怎样的关系;(4)请写出你的猜想,并选一种情况说明理由.(2)(1)(3)。
2014-2015学年度上八年级期中考试数学试卷一、选择题(每题都有唯一正确的答案。
将正确答案的代号填入答题卡,不填入答题卡不记分,每题3分,共36分)1.在-1.414,2,π,2+3,3.212212221…,3.14,17这些数中,无理数的个数为( )A.2B.3C.4D.5 2.下列函数中,y 是x 的正比例函数的是( )A .21y x =-B .3xy =C .22y x =D .21y x =-+3.点P (-1,2-)在( )A .第一象限 B. 第二象限 C. 第三象限 D. 第四象限 4.下列数据中,哪一组不是勾股数( )A 、7 ,24 ,25B 、9 ,40 ,41C 、3 ,4, 5D 、8 , 15, 19 5.下列等式成立的是( )A 、=B 3=C 、532=+ D 2=±6.点P (-3,5)关于x 轴的对称点P 的坐标是( )A .(3,5) B.(5,-3) C.(3,-5) D.(-3,-5)7.正比例函数y=kx (k ≠0)函数值y 随x 的增大而增大,则y=kx+k 的图象大致是( )A B C D8.下列各组二次根式中,是同类二次根式的是( )A.12与21 B.189. 若一个直角三角形的三边分别为a 、b 、c, 22144,25a b ==, 则2c =( )A 、169B 、119C 、169或119D 、13或25 10.下面哪个点在函数y=12x+1的图象上( ) A .(2,1) B .(-2,1) C.(2,0) D.(-2,0) 11.如图,一只蚂蚁从点A 沿圆柱表面爬到点B ,如果圆柱的高为8cm ,圆柱的底面半径为π6cm ,那么最短的路线长是( ) A. 6cm B. 8 cm C. 10 cm D. 10πcm12.如图,点A 的坐标为(1,0),点B 在二、四象限的角平分线上运动,当线段AB 最短时,点B 的坐标为( ) A .(0,0) B .(12,-12) C .(2,-2) D .(-12,12)二、填空题:(每小题3分,共12分) 13.函数y =x 的取值范围是14.将直线y=2x 向上平移1个单位,得到的一次函数的解析式是15.点A 在第三象限,且点A 到x 轴的距离为3,到y 轴的距离为2,则A 点坐标为_______ 16. 如图,设四边形ABCD 是边长为1的正方形,以正方形ABCD 的对角线AC 为边作第二个正方形ACEF ,再以第二个正方形的对角线AE 为边作第三个正方形AEGH ,如此下去……,记正方形ABCD 的边长a 1=1,依上述方法所作的正方形的边长依次为a 2,a 3,a 4,……,则a n =EG三、解答题:(共52分)17.计算:(每小题4分,共16分)(1(2)493721-⨯(3)2)132(- (4)0111.414)()14--+-18.(6分)如图,格点△ABC (1)写出各顶点的坐标 (2)求出此三角形的周长19.(5分)如图,已知l 1∥l 2∥l 3,相邻两条平行直线间的距离均为1,若等腰直角△ABC 的三个项点分别在这三条平行直线上,∠C =90º,求△ABC 的面积.20.( 6分)已知一次函数y=kx+b 的图像经过M (0,2),N (1,3)两点。
2014-2015学年八年级(上)期中数学试卷一、选择题. 1.下列图形中,不是轴对称图形的是( )A .B .C . D.2.下列每组数分别表示三根木棒的长度,将它们首尾连接后,能摆成三角形的一组是() A . 1,2,6 B . 2,2,4 C . 1,2,3 D .2,3, 43.七边形外角和为( )A . 180°B . 360°C . 900°D .1260°4.已知等腰△ABC 的边长为3、5,则腰AC的长可能为( )A . 5B . 5或3C . 3D .25.如图,四边形ABCD 中,AC 垂直平分BD ,垂足为E ,下列结论不一定成立的是()A . AB=ADB . AC 平分∠BCD C . AB=BD D . △BEC ≌△DEC 6.如图,△ABC 中,AB=AC ,∠B=70°,则∠A 的度数是( )A . 70°B . 55°C . 50°D .40°7.如图,已知AE=CF ,∠AFD=∠CEB ,那么添加下列一个条件后,仍无法判定△ADF ≌△CBE 的是( )A .∠A=∠C B.AD=CB C.BE=DF D.AD∥BC8.如图,AB与CD交于点O,OA=OC,OD=OB,∠A=50°,∠B=30°,则∠D的度数为()A .50°B.30°C.80°D.100°9.四边形的内角和为()A .180°B.360°C.540°D.720°10.如图,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一点.将Rt△ABC沿CD 折叠,使B点落在AC边上的B′处,则∠ADB′等于()A .25°B.30°C.35°D.40°二、填空题(本大题共6小题,每小题3分,满分18分)11.已知点P在线段AB的垂直平分线上,PA=6,则PB=.12.点P(3,2)关于x轴对称的点的坐标为.13.如图,在△ABC中,∠C=20°,CA=CB,则△ABC的外角∠ABD=°.14.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,AD=3,BC=10,则△BDC的面积是.15.在△ABC中,三个内角∠A、∠B、∠C满足∠B﹣∠A=∠C﹣∠B,则∠B=度.16.一艘海轮位于灯塔P的南偏东70°方向的M处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P的北偏东40°的N处,则N处与灯塔P的距离为.三、解答题18.)如图,∠B=∠D,∠BAC=∠DAC.求证:AB=AD.19.如图,点C,F在线段BE上,BF=EC,∠1=∠2,请你添加一个条件,使△ABC≌△DEF,并加以证明.(不再添加辅助线和字母)20.如图,E、F分别是等边三角形ABC的边AB,AC上的点,且BE=AF,CE、BF交于点P.(1)求证:CE=BF;(2)求∠BPC的度数.21.如图,BA⊥AD,∠ADB=∠ABD=∠DAO,∠DBC=60°,∠DCO=∠BCO.(1)求证:BD⊥AC;(2)求∠DCO的度数;(3)求证:BC=DC.22.如图,△ABC中,AB=AC,∠A=36°,称满足此条件的三角形为黄金等腰三角形.请完成以下操作:(画图不要求使用圆规,以下问题所指的等腰三角形个数均不包括△ABC)(1)在图1中画1条线段,使图中有2个等腰三角形,并直接写出这2个等腰三角形的顶角度数分别是度和度;(2)在图2中画2条线段,使图中有4个等腰三角形;(3)继续按以上操作发现:在△ABC中画n条线段,则图中有个等腰三角形,其中有个黄金等腰三角形.23.如图,在△ABC中,AB=AC,D是BA延长线上的一点,点E是AC的中点.(1)实践与操作:利用尺规按下列要求作图,并在图中标明相应字母(保留作图痕迹,不写作法);①作∠DAC的平分线AM;②连接BE并延长交AM于点F;(2)猜想与证明:试猜想AF与BC有怎样的位置关系和数量关系,并说明理由.24.(14分)(2014秋•天河区期中)如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上.(1)作点B关于y轴的对称点B′,并写出点B′的坐标.(2)当△ABC的周长最小时,求点C的坐标.25.在图1、图2、图3、图4中,点P在线段BC上移动(不与B、C重合),M在BC的延长线上.(1)如图1,△ABC和△APE均为正三角形,连接CE.①求证:△ABP≌△ACE.②∠ECM的度数为°.(2)①如图2,若四边形ABCD和四边形APEF均为正方形,连接CE.则∠ECM的度数为°.②如图3,若五边形ABCDF和五边形APEGH均为正五边形,连接CE.则∠ECM的度数为°.(3)如图4,n边形ABC…和n边形APE…均为正n边形,连接CE,请你探索并猜想∠ECM 的度数与正多边形边数n的数量关系(用含n的式子表示∠ECM的度数),并利用图4(放大后的局部图形)证明你的结论.2014-2015学年广东省广州市天河区八年级(上)期中数学试卷参考答案一、选择题.1.A 2.D 3.B 4.B 5.C 6.D 7.B 8.B 9.B 10.D二、填空题(本大题共6小题,每小题3分,满分18分)11.6 12.(3,-2) 13.100 14.15 15.60 16.80海里三、解答题(本大题共9小题,满分102分,解答应写出文字说明,证明过程货演算步骤)17.18.19.20.21.22.108362nn 23.24.25.604536。
ACB D E 人教版2014-2015学年度第一学期八年级数学期中考试试卷(含参考答案)一、选择题:(本题满分24分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的,请把你认为正确的答案的字母代号填在题后的括号内。
......... 1.下列各组线段能组成一个三角形的是( ).(A)5cm ,8cm ,12cm (B)2cm ,3cm ,6cm (C)3cm ,3cm ,6cm (D)4cm ,7cm ,11cm 2.下列图案是轴对称图形的有( )。
A.(1)(2)B.(1)(3)C.(1)(4)D.(2)(3)(1) (2) (3) (4)3.下列几种说法:①全等三角形的对应边相等;②面积相等的两个三角形全等;③周长相等的两个三角形全等;④全等的两个三角形一定重合。
其中正确的是( )。
A. ①② B. ②③ C. ③④ D. ①④ 4.已知直角三角形中30°角所对的直角边为2㎝,则斜边的长为( )。
A. 2 ㎝B. 4 ㎝C. 6 ㎝D. 8㎝ 5.点M (1,2)关于y 轴对称的点的坐标为 ( )。
A.(—1,2)B.(-1,-2)C. (1,-2)D. (2,-1) 6.如图,∠B=∠D=90°,CB=CD ,∠1=40°,则∠2=( )。
A .40° B. 45° C. 60° D. 50°7. 如图所示,在△ABC 中,已知点D,E,F 分别为边BC,AD,CE 的中点,且S △ABC=4cm 2,则阴影部分的面积等于( )A.2cm 2B.1cm 2C.12cm 2D.1 4 cm 28.已知等腰三角形一个内角是70°,则另外两个内角的度数是( )A.55°, 55°B.70°, 40°C.55°, 55°或70°, 40°D.以上都不对 二 、填空题:(本题满分24分,每小题3分)9.一扇窗户打开后,用窗钩可将其固定,这里运用的几何原理为 。
2014-2015学年八年级(上)期中数学试卷一、选择题(本大题共12个小题,每小题3分,共36分.)1.下列交通标志是轴对称图形的是( )A.B.C. D.2.三角形的一个外角小于和它相邻的内角,这个三角形为( )A.锐角三角形B.直角三角形C.钝角三角形D.以上三种都有可能3.已知图中的两个三角形全等,则∠1等于( )A.72°B.60°C.50°D.58°4.已知三角形的两边长分别为4cm和9cm,则下列长度的四条线段中能作为第三边的是( )A.13cm B.6cm C.5cm D.4cm5.下列等式成立的是( )A.(﹣3)﹣2=﹣9 B.m•m﹣2•m3=m5C.(﹣a﹣1b﹣3)﹣2=﹣a2b6D.(﹣2m)2÷2m3=6.若b为常数,要使16x2+bx+1成为完全平方式,那么b的值是( )A.4 B.8 C.±4 D.±87.若分式的值为零,则x的值为( )A.0 B.﹣3 C.3 D.3或﹣38.已知,△ABC和△ADC关于直线AC轴对称,如果∠BAD+∠BCD=160°,那么△ABC 是( )A.直角三角形B.等腰三角形C.钝角三角形D.锐角三角形9.如图,在等腰△ABC中,∠BAC=120°,DE是AC的垂直平分线,线段DE=1cm,则BD 的长为( )A.6cm B.8cm C.3cm D.4cm10.随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x千米,根据题意可列方程为( )A.B.C.D.11.如图,设k=(a>b>0),则有( )A.k>2 B.1<k<2 C.D.12.如图,正方形ABCD的面积为16,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为( )A.B.3 C.4 D.二、填空题(本大题共5小题,每小题3分,共18分)13.一生物教师在显微镜下发现某种植物的细胞直径约为0.000000102mm,用科学记数法表示这个数为__________.14.分解因式:ab2﹣4ab+4a=__________.15.若3x=4,9y=7,则3x﹣2y的值为__________.16.在△ABC中,AB=AC,AB的中垂线与AC所在直线相交所得的锐角为50°,则底角∠B=__________.17.如图,在长方形ABCD中,AB>BC,BE⊥AC,垂足为E,延长BE交CD于F,S表示面积,则给出的下列命题:①Rt△ABC≌Rt△CDA;②S△AEF<S△BCE;③∠DAE+∠DFE=180°;④∠AFB>∠ACB 其中正确命题的代号是__________.三、解答题:(本大题共6小题,共46分)18.(1)解不等式:(2x﹣5)2+(3x+1)2>13(x2﹣10)(2)解分式方程:.19.先化简:÷(a+),当b=﹣1时,请你为a任选一个适当的数代入求值.20.如图,∠1=∠2,∠3=∠4,求证:AC=AD.21.如图,已知△ABC,P为内角平分线AD,BE,CF的交点,过点P作PG⊥BC于G,试说明∠BPD与∠CPG的大小关系,并说明理由.22.用电脑程序控制小型赛车进行50m比赛,“畅想号”和“和谐号”两辆赛车进入了决赛.比赛前的练习中,两辆车从起点同时出发,“畅想号”到达终点时,“和谐号”离终点还差3m.已知“畅想号”的平均速度为2.5m/s.(1)求“和谐号”的平均速度;(2)如果两车重新开始比赛,“畅想号”从起点向后退3m,两车同时出发,两车能否同时到达终点?若能,求出两车到达终点的时间;若不能,请重新调整一辆车的平均速度,使两车能同时到达终点.23.如图③,点E,D分别是正三角形ABC,正四边形ABCM,正五边形ABCMN中以点C为顶点的一边延长线和另一边反向延长线上的点,且△ABE与△BCD能相互重合,DB的延长线交AE于点F.(1)在图①中,求∠AFB的度数;(2)在图②中,∠AFB的度数为__________,图③中,∠AFB的度数为__________;(3)继续探索,可将本题推广到一般的正n边形情况,用含n的式子表示∠AFB的度数.2014-2015学年四川省绵阳中学八年级(上)期中数学试卷一、选择题(本大题共12个小题,每小题3分,共36分.)1.下列交通标志是轴对称图形的是( )A.B.C. D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故错误;B、不是轴对称图形,故错误;C、是轴对称图形,故正确;D、不是轴对称图形,故错误.故选C.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.三角形的一个外角小于和它相邻的内角,这个三角形为( )A.锐角三角形B.直角三角形C.钝角三角形D.以上三种都有可能【考点】三角形的外角性质.【分析】此题依据三角形的外角性质,即三角形的外角与它相邻的内角互为邻补角,可判断出此三角形有一内角为钝角,从而得出这个三角形是钝角三角形的结论.【解答】解:∵三角形的一个外角与它相邻的内角和为180°,而题中说这个外角小于它相邻的内角,∴与它相邻的这个内角是一个大于90°的角即钝角,∴这个三角形就是一个钝角三角形.故选C.【点评】本题考查的是三角形的外角性质,解题的关键是熟练掌握三角形的外角与它相邻的内角互为邻补角.3.已知图中的两个三角形全等,则∠1等于( )A.72°B.60°C.50°D.58°【考点】全等三角形的性质.【分析】根据三角形内角和定理求得∠2=58°;然后由全等三角形是性质得到∠1=∠2=58°.【解答】解:如图,由三角形内角和定理得到:∠2=180°﹣50°﹣72°=58°.∵图中的两个三角形全等,∴∠1=∠2=58°.故选:D.【点评】本题考查了全等三角形的性质,解题的关键是找准对应角.4.已知三角形的两边长分别为4cm和9cm,则下列长度的四条线段中能作为第三边的是( )A.13cm B.6cm C.5cm D.4cm【考点】三角形三边关系.【分析】此题首先根据三角形的三边关系,求得第三边的取值范围,再进一步找到符合条件的数值.【解答】解:根据三角形的三边关系,得:第三边应大于两边之差,且小于两边之和,即9﹣4=5,9+4=13.∴第三边取值范围应该为:5<第三边长度<13,故只有B选项符合条件.故选:B.【点评】本题考查了三角形三边关系,一定要注意构成三角形的条件:两边之和>第三边,两边之差<第三边.5.下列等式成立的是( )A.(﹣3)﹣2=﹣9 B.m•m﹣2•m3=m5C.(﹣a﹣1b﹣3)﹣2=﹣a2b6D.(﹣2m)2÷2m3=【考点】负整数指数幂;整式的除法.【分析】根据负整数指数幂、同底数幂的乘法以及整式的除法运算法则进行计算.【解答】解:A、原式=9,故本选项错误;B、原式=m(1﹣2+3)=m2,故本选项错误;C、原式=(﹣1)﹣2•a﹣1×(﹣2)•b(﹣3)×(﹣2)=a2b6,故本选项错误;D、原式==,故本选项正确.‘故选:D.【点评】本题考查了负整数指数幂、整式的除法.掌握运算法则的解题的关键.6.若b为常数,要使16x2+bx+1成为完全平方式,那么b的值是( )A.4 B.8 C.±4 D.±8【考点】完全平方式.【专题】常规题型.【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定b的值.【解答】解:16x2+bx+1=(4x)2+bx+1,∴bx=±2×4x×1,解得b=±8.故选D.【点评】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.7.若分式的值为零,则x的值为( )A.0 B.﹣3 C.3 D.3或﹣3【考点】分式的值为零的条件.【专题】计算题.【分析】根据分式的值为零的条件得到当x2﹣9=0且x+3≠0时,分式的值为零,然后解方程和不等式即可得到x的值.【解答】解:∵分式的值为零,∴x2﹣9=0且x+3≠0,∴x=3.故选C.【点评】本题考查了分式的值为零的条件:分式的分子为零且分母不为零时,分式的值为零.也考查了解方程与不等式.8.已知,△ABC和△ADC关于直线AC轴对称,如果∠BAD+∠BCD=160°,那么△ABC 是( )A.直角三角形B.等腰三角形C.钝角三角形D.锐角三角形【考点】轴对称的性质.【分析】作出图形,根据轴对称的性质可得∠BAC=∠DAC,∠ACB=∠ACD,然后求出∠BAC+∠ACB,再根据三角形的内角和定理求出∠B,然后判断三角形的形状即可.【解答】解:如图,∵△ABC和△ADC关于直线AC轴对称,∴∠BAC=∠DAC,∠ACB=∠ACD,∴∠BAC+∠ACB=(∠BAD+∠BCD)=×160°=80°,在△ABC中,∠B=180°﹣(∠BAC+∠ACB)=180°﹣80°=100°,∴△ABC是钝角三角形.故选C.【点评】本题考查了轴对称的性质,根据成轴对称的两个图形能够完全重合得到相等的角是解题的关键,作出图形更形象直观.9.如图,在等腰△ABC中,∠BAC=120°,DE是AC的垂直平分线,线段DE=1cm,则BD 的长为( )A.6cm B.8cm C.3cm D.4cm【考点】线段垂直平分线的性质;含30度角的直角三角形;三角形中位线定理.【专题】计算题.【分析】过A作AF∥DE交BD于F,则DE是△CAF的中位线,根据线段垂直平分线的性质,即可解答.【解答】解:过A作AF∥DE交BD于F,则DE是△CAF的中位线,∴AF=2DE=2,又∵DE⊥AC,∠C=30°,∴FD=CD=2DE=2,在△AFB中,∠1=∠B=30°,∴BF=AF=2,∴BD=4.故选D.【点评】此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段两个端点的距离相等.10.随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x千米,根据题意可列方程为( )A.B.C.D.【考点】由实际问题抽象出分式方程.【分析】根据乘私家车平均速度是乘公交车平均速度的2.5倍,乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,利用时间得出等式方程即可.【解答】解:设乘公交车平均每小时走x千米,根据题意可列方程为:=+,故选:D.【点评】此题主要考查了由实际问题抽象出分式方程,解题关键是正确找出题目中的相等关系,用代数式表示出相等关系中的各个部分,把列方程的问题转化为列代数式的问题.11.如图,设k=(a>b>0),则有( )A.k>2 B.1<k<2 C.D.【考点】分式的乘除法.【专题】计算题.【分析】分别计算出甲图中阴影部分面积及乙图中阴影部分面积,然后计算比值即可.【解答】解:甲图中阴影部分面积为a2﹣b2,乙图中阴影部分面积为a(a﹣b),则k====1+,∵a>b>0,∴0<<1,∴1<+1<2,∴1<k<2故选B.【点评】本题考查了分式的乘除法,会计算矩形的面积及熟悉分式的运算是解题的关键.12.如图,正方形ABCD的面积为16,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为( )A.B.3 C.4 D.【考点】轴对称-最短路线问题;正方形的性质.【分析】由于点B与D关于AC对称,所以连接BE,与AC的交点即为P点.此时PD+PE=BE 最小,而BE是等边△ABE的边,BE=AB,由正方形ABCD的面积为16,可求出AB的长,从而得出结果.【解答】解:设BE与AC交于点P',连接BD.∵点B与D关于AC对称,∴P'D=P'B,∴P'D+P'E=P'B+P'E=BE最小.∵正方形ABCD的面积为16,∴AB=4,又∵△ABE是等边三角形,∴BE=AB=4.故选C.【点评】本题考查的是正方形的性质和轴对称﹣最短路线问题,熟知“两点之间,线段最短”是解答此题的关键.二、填空题(本大题共5小题,每小题3分,共18分)13.一生物教师在显微镜下发现某种植物的细胞直径约为0.000000102mm,用科学记数法表示这个数为1.02×10﹣7.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000102=1.02×10﹣7.故答案为:1.02×10﹣7.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.14.分解因式:ab2﹣4ab+4a=a(b﹣2)2.【考点】提公因式法与公式法的综合运用.【专题】因式分解.【分析】先提取公因式a,再根据完全平方公式进行二次分解.完全平方公式:a2﹣2ab+b2=(a﹣b)2.【解答】解:ab2﹣4ab+4a=a(b2﹣4b+4)﹣﹣(提取公因式)=a(b﹣2)2.﹣﹣(完全平方公式)故答案为:a(b﹣2)2.【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.15.若3x=4,9y=7,则3x﹣2y的值为.【考点】同底数幂的除法;幂的乘方与积的乘方.【分析】根据3x﹣2y=3x÷32y=3x÷9 y即可代入求解.【解答】解:3x﹣2y=3x÷32y=3x÷9 y=.故答案是:.【点评】本题考查了同底数的幂的除法运算,正确理解3x﹣2y=3x÷32y=3x÷9 y是关键.16.在△ABC中,AB=AC,AB的中垂线与AC所在直线相交所得的锐角为50°,则底角∠B=70°或20°.【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】由于△ABC的形状不能确定,故应分△ABC是锐角三角形与钝角三角形两种情况进行讨论.【解答】解:如图①,当AB的中垂线与线段AC相交时,则可得∠ADE=50°,∵∠AED=90°,∴∠A=90°﹣50°=40°,∵AB=AC,∴∠B=∠C==70°;如图②,当AB的中垂线与线段CA的延长线相交时,则可得∠ADE=50°,∵∠AED=90°,∴∠DAE=90°﹣50°=40°,∴∠BAC=140°,∵AB=AC,∴∠B=∠C==20°.∴底角B为70°或20°.故答案为:70°或20°.【点评】本题考查的是线段垂直平分线的性质,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.17.如图,在长方形ABCD中,AB>BC,BE⊥AC,垂足为E,延长BE交CD于F,S表示面积,则给出的下列命题:①Rt△ABC≌Rt△CDA;②S△AEF<S△BCE;③∠DAE+∠DFE=180°;④∠AFB>∠ACB 其中正确命题的代号是①③④.【考点】矩形的性质;全等三角形的判定与性质.【分析】由矩形的性质得出∠ABC=∠D=∠BCD=∠BAD=90°,BC=DA,AB=CD,由SAS 证明△ABC≌△CDA,①正确;由△ABF的面积=△ABC的面积,得出△AEF的面积=△BCE的面积,②不正确;证明A、E、F、D四点共圆,得出∠DAE+∠DFE=180°,③正确;延长AF交矩形ABCD的外接圆于G,连接BG,由圆周角定理得出∠AGB=∠ACB,由三角形的外角性质得出∠AFB>∠AGB,得出∠AFB>∠ACB,④正确;即可得出结论.【解答】解:∵四边形ABCD是矩形,∴∠ABC=∠D=∠BCD=∠BAD=90°,BC=DA,AB=CD,在△ABC和△CDA中,,∴△ABC≌△CDA(SAS),∴①正确;∵△ABF的面积=△ABC的面积=AB•BC,∴△AEF的面积=△BCE的面积,∴②不正确;∵BE⊥AC,∴∠AEF=90°,∴∠AEF+∠D=180°,∴A、E、F、D四点共圆,∴∠DAE+∠DFE=180°,∴③正确;∵A、B、C、D四点共圆,如图所示:延长AF交矩形ABCD的外接圆于G,连接BG,则∠AGB=∠ACB,∵∠AFB>∠AGB,∴∠AFB>∠ACB,∴④正确;正确的代号是①③④;故答案为:①③④.【点评】本题考查了矩形的性质、全等三角形的判定与性质、四点共圆、圆周角定理、圆内接四边形的性质;熟练掌握矩形的性质,并能进行推理论证是解决问题的关键.三、解答题:(本大题共6小题,共46分)18.(1)解不等式:(2x﹣5)2+(3x+1)2>13(x2﹣10)(2)解分式方程:.【考点】整式的混合运算;解分式方程;解一元一次不等式.【分析】(1)直接利用完全平方公式化简求出即可;(2)首先去分母进而合并同类项求出即可.【解答】解:(1)(2x﹣5)2+(3x+1)2>13(x2﹣10)去括号得:4x2+25﹣20x+9x2+1+6x>13x2﹣130整理得:﹣14x>﹣156解得:x<11;(2)去分母得:x(x+2)﹣(x﹣1)(x+2)=3(x﹣1),x2+2x﹣(x2+2x﹣x﹣2)=3x﹣3,则﹣2x=﹣5,解得:x=,检验:当x=时,(x﹣1)(x+2)≠0,则x=是原方程的根.【点评】此题主要考查了整式的混合运算以及分式方程的解法,正确利用乘法公式是解题关键.19.先化简:÷(a+),当b=﹣1时,请你为a任选一个适当的数代入求值.【考点】分式的化简求值.【专题】开放型.【分析】主要考查了分式的化简求值,其关键步骤是分式的化简.要熟悉混合运算的顺序,正确解题.注意化简后,代入的数不能使分母的值为0.【解答】解:原式=÷==,∵a≠0、a≠±1,∴答案不唯一.当a=2时,原式=1.【点评】本题主要考查分式的化简求值,式子化到最简是解题的关键.20.如图,∠1=∠2,∠3=∠4,求证:AC=AD.【考点】全等三角形的判定与性质.【专题】证明题.【分析】先证出∠ABC=∠ABD,再由ASA证明△ABC≌△ABD,得出对应边相等即可.【解答】证明:∵∠3=∠4,∴∠ABC=∠ABD,在△ABC和△ABD中,,∴△ABC≌△ABD(ASA),∴AC=AD.【点评】本题考查了全等三角形的判定与性质;熟练掌握全等三角形的判定方法,证明三角形全等是解决问题的关键.21.如图,已知△ABC,P为内角平分线AD,BE,CF的交点,过点P作PG⊥BC于G,试说明∠BPD与∠CPG的大小关系,并说明理由.【考点】三角形内角和定理.【分析】利用AD平分∠BAC,BE平分∠ABC,CF平分∠ACB,得出∠BAD=∠BAC,∠ABE=∠ABC,∠BCF=∠ACB,再利用三角形的外角意义得出∠BPD=∠BAD+∠ABE 等量代换得出∠BPD=90°﹣∠ACB;再利用PG⊥BC,得出三角形CPG是直角三角形,利用三角形的内角和表示出∠CPG=90°﹣∠ACB,证明结论成立.【解答】∠BPD=∠CPG证明:∵AD平分∠BAC,BE平分∠ABC,CF平分∠ACB,∴∠BAD=∠BAC,∠ABE=∠ABC,∠BCF=∠ACB,∴∠BPD=∠BAD+∠ABE=(∠BAC+∠ABC),∵∠BAC+∠ABC=180﹣∠ACB,∴∠BPD=(180﹣∠ACB)=90°﹣∠ACB;∵PG⊥BC,∴∠PGC=90°,∴∠BCP+∠CPG=180°﹣∠PGC=90°,∴∠CPG=90°﹣∠BCP=90°﹣∠ACB,∴∠BPD=∠CPG.【点评】此题考查角平分线的性质,三角形内角和定理,三角形外角的意义,垂直的性质等知识点.22.用电脑程序控制小型赛车进行50m比赛,“畅想号”和“和谐号”两辆赛车进入了决赛.比赛前的练习中,两辆车从起点同时出发,“畅想号”到达终点时,“和谐号”离终点还差3m.已知“畅想号”的平均速度为2.5m/s.(1)求“和谐号”的平均速度;(2)如果两车重新开始比赛,“畅想号”从起点向后退3m,两车同时出发,两车能否同时到达终点?若能,求出两车到达终点的时间;若不能,请重新调整一辆车的平均速度,使两车能同时到达终点.【考点】分式方程的应用.【分析】(1)设“和谐号”的平均速度为x,根据,“畅想号”运动50m与“和谐号”运动47m所用时间相等,可得方程,解出即可.(2)不能同时到达,设调整后“和谐号”的平均速度为y,根据时间相等,得出方程求解即可.【解答】解:(1)设“和谐号”的平均速度为x,由题意得,=,解得:x=2.35,经检验x=2.35是原方程的解.答:“和谐号”的平均速度2.35m/s.(2)不能同时到达.设调整后“和谐号”的平均速度为y,=,解得:y=.答:调整“畅想号”的车速为m/s可使两车能同时到达终点.【点评】本题考查了分式方程的应用,解答本题的关键是仔细审题,找到等量关系,建立方程,难度一般.23.如图③,点E,D分别是正三角形ABC,正四边形ABCM,正五边形ABCMN中以点C为顶点的一边延长线和另一边反向延长线上的点,且△ABE与△BCD能相互重合,DB 的延长线交AE于点F.(1)在图①中,求∠AFB的度数;(2)在图②中,∠AFB的度数为90°,图③中,∠AFB的度数为108°;(3)继续探索,可将本题推广到一般的正n边形情况,用含n的式子表示∠AFB的度数.【考点】正多边形和圆;全等三角形的判定与性质;相似三角形的判定与性质.【分析】(1)先根据等边三角形的性质得出∠AC=60°,再由补角的定义可得出∠ABE与∠BCD的度数,根据△ABE与△BCD能相互重合可得出∠E=∠D,∠DBC=∠BAE,由三角形外角的性质可得出结论;(2)根据(1)中的方法可得出△BEF∽△BDC,进而可得出结论;(3)根据(1)(2)的结论找出规律即可.【解答】解:(1)∵△ABC是等边三角形,∴AB=BC,∠ABC=∠ACB=60°,∴∠ABE=∠BCD=120°.∵△ABE与△BCD能相互重合,∴∠E=∠D,∠DBC=∠BAE.∵∠FBE=∠CBD,∴∠AFB=∠E+∠FBE=∠D+∠CBD=∠ACB=60°;(2)图②中,∵△ABE与△BCD能相互重合,∴∠E=∠D.∵∠FBE=∠CBD,∠D+∠CBD=90°,∴∠AFB=∠E+∠FBE=∠D+∠CBD=90°;同理可得,图③中∠AFB=108°.故答案为:90°,108°;(3)由(1)(2)可知,在正n边形中,∠AFB=.【点评】本题考查的是正多边形和圆,在解答此题时要注意正三角形、正四边形及正五边形的性质的应用,根据题意找出规律是解答此题的关键.。
一.选择题(共71A.钝角三角形B2.王师傅用4再钉上几根木条?(A.0根B.1根C3数为()A.80 B.50 C第2题4.如图所示,在△AC=6,则EFA.4 B.5 C5.如图,∠1=∠2,A.PD=PE B.6A. B. C. D.7.如图,D是()A.锐角三角形BC)度,则这个多边形的边数是.△ACD和△BCD°,∠C=36°,13题OM上一个动点,若P=.°,∠ACB=80°,这个多边形是边形.P到两城镇第 2 页 共2 页 18.如图,已知△ABC 的AC 边的延长线AD ∥EF ,若∠A=60°,∠B=43°,试用推理的格式求出∠E 的大小.19.如图,在△ABC 中,∠ACB=90°,AC=BC ,BE ⊥CE 于点E .AD ⊥CE 于点D . 求证:△BEC ≌△CDA .20.如图,在10×10的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC (即三角形的顶点都在格点上).(1)在图中作出△ABC 关于直线l 对称的△A 1B 1C 1;(要求:A 与A 1,B 与B 1,C 与C 1相对应)(2)在(1)问的结果下,连接BB 1,CC 1,求四边形BB 1C 1C 的面积.21.如图,在等腰△ABC 中,AB=AC ,点O 是底边BC 的中点,OD ⊥AB ,OE ⊥AC ,垂足分别为D 、E .试说明:AD=AE .22.如图,△ABC 中,∠C=90°,∠ABC=60°,BD 平分∠ABC ,若AD=6,求AC 的长.23.已知:如图,OA 平分∠BAC ,∠1=∠2.求证:△ABC 是等腰三角形.。
2014-2015年度八年级数学上册期中考试卷班级 姓名 座位号 总分一.选择题(每小题3分,共30分)1、下列计算正确的是( )A 、20=102B 、632=⋅C 、224=-D 3=-2、在.220.83,73π--2+3中,无理数有( )A .1个 B. 2个 C.3个 D.4个3、以下列各组数据为三角形三边,能构成直角三角形的是( ) A .4cm ,8cm ,7cm B. 2cm ,2cm ,2cm C . 2cm ,2cm ,4cm D.13cm ,12 cm ,5 cm4、在平面直角坐标系中,点P (1,-2)的位置在( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限5、若点(,1)P m 在第二象限内,则点Q (,0m -)在( )A .x 轴正半轴上B .x 轴负半轴上C .y 轴正半轴上D .y 轴负半轴上6、将△ABC 的三个顶点坐标的横坐标都乘以-1,纵坐标不变,•则所得图形与原图的关系是( )A .关于x 轴对称B .关于y 轴对称C .关于原点对称D .将原图向x 轴的负方向平移了1个单位 7、下列说法中,不正确的是( )A .3是2)3(-的算术平方根 B.±3是2)3(-的平方根C .-3是2)3(-的算术平方根 D.-3是3)3(-的立方根 8、估计56 的大小应在( )A .5~6之间 B.6~7之间 C.8~9之间 D.7~8之间9、若一个三角形三边满足ab c b a 2)(22=-+,则这个三角形是( ) A .直角三角形 B.等腰直角三角形 C.等腰三角形 D.以上结论都不对10、已知点A (3,2),AC ⊥x 轴,垂足为C ,则C 点的坐标为( ) A 、(0,0) B 、(0,2) C 、(3,0) D 、(0,3)二.填空(每题3分,共30分)11、25的平方根是 ,的算术平方根是 ,-27的立方根是13、的相反数是 ,倒数是 ,绝对值是14、比较大小:- 76______67215- 2115、已知点P 在第二象限,且到x 轴的距离是2,到y 轴的距离是3,则P 点坐标为___________16、已知点A (2,y )与点B (x ,-3)关于y 轴对称,则xy =__________ 17、在直角坐标系中,点P (-2,4)到原点的距离是 ,到x 轴的距离是 ,到y 轴的距离是18、一长方形的一边长为cm 3,面积为212cm ,那么它的一条对角线长是 19、若2,3==b a ,且0<ab ,则:b a -=20、若一个正数x 的两个平方根是1a -和3a +,则a = ,x = ,2013a =21、如图,一只蚂蚁沿棱长为2cm 的正方体表面 从顶点A 爬到顶点B ,则它走过的最短路程三.解答题(共20分)22、 计算下列各题(每题5分,共20分)(1(2))2332)(2332(-+(3)3214505118-+(4)23、(6分)在某山区需要修建一条高速公路,在施工过程中要沿直线AB 打通一条隧道,动工前,应先测隧道BC 的长,现测得∠ABD =150°,∠D =60°,BD =10 k m ,CD=4 km ,请根据上述数据,求出隧道BC 的长。
2014—2015学年度第一学期 八年级数学上册期中测试卷(北师版)一.选择题(每小题2分,共20分)1、 直角△ABC 的三条边长分别是a 、b 、c ,则下列各式成立的是( )A .c b a =+ B. 222b c a <+ C. 222b c a >+ D. 222c b a =+ 2、在-1.414,2,π,2+3,3.212212221…,3.14这些数中,无理数的个数为( ).A.5B.2C.3D.4 3、已知a>0,b<0,那么点P(a ,b)在( )A.第一象限B.第二象限C.第三象限D.第四象限 4、下列说法正确的是( )A.若 a 、b 、c 是△ABC 的三边,则a 2+b 2=c 2;B.若 a 、b 、c 是Rt △ABC 的三边,。
90=∠B ,则a 2+b 2=c 2; C.若 a 、b 、c 是Rt △ABC 的三边, 90=∠A ,则a 2+b 2=c 2;D.若 a 、b 、c 是Rt △ABC 的三边, 90=∠C ,则a 2+b 2=c 2.5、已知下列结论:①在数轴上只能表示无理数2;②任何一个无理数都能用数轴上的点表示;③实数与数轴上的点一一对应;④有理数有无限个,无理数有有限个.其中正确的结论是( ). A.①② B.②③ C.③④ D.②③④6、点P (-3,5)关于x 轴的对称点P’的坐标是( )A 、(3,5)B 、(5,-3)C 、(3,-5)D 、(-3,-5) 7、下列各组数中,不能构成直角三角形的一组是( )A .1,2,5B .1,2,3C .3,4,5D .6,8,128、下列计算正确的是( ) A 、20=102 B 、632=⋅ C 、224=- D 、2(3)3-=-9、下列说法中,不正确的是( ).A 3是2)3(-的算术平方根 B ±3是2)3(-的平方根 C -3是2)3(-的算术平方根 D.-3是3)3(-的立方根10、已知点A (3,2),A C ⊥x 轴,垂足为C ,则C 点的坐标为( ) A 、(0,0) B 、(0,2) C 、(3,0) D 、(0,3)二.填空(每题2分,共20分) 11、2180a -=,那么a 的算术平方根是 。
永丰中学2013-2014学年度第一学期期中考试数学复习55题一.选择题1.如图所示,图中不是轴对称图形的是( )2、下列图形:①三角形,②线段,③正方形,④直角.其中是轴对称图形的个数是( ) A . B . C . D .A .4个B .3个C .2个D .1个3、下列图形是轴对称图形的有( )A :1个B :2个C :3个D :4个4.如图,△ABC 中,AB=AC ,∠A=36°,AB 的垂直平分线DE 交AC 于D ,交AB 于E ,则∠BDC 的度数为( )A.72°B.36°C.60°D.82°5.已知A ,B 两点的坐标分别是(﹣2,3)和(2,3),则下面四个结论:①A ,B 关于x轴对称;②A ,B 关于y 轴对称;③A ,B 关于原点对称;④A ,B 之间的距离为4,其中正确的有( )A.1个B.2个C.3个D.4个6.如图,在△ABC 中,AB=AC ,∠A=40°,CD ⊥AB 于D ,则∠DCB 等于( )A.70°B.50°C.40°D.20°7.AD 是△ABC 的角平分线且交BC 于D ,过点D 作DE ⊥AB 于E ,DF ⊥AC 于F•,则下列结论不一定正确的是( ) A .DE=DF B .BD=CD C .AE=AF D .∠ADE=∠ADF8.三角形中,到三边距离相等的点是( )A.三条高线的交点B.三条中线的交点 C .三条角平分线的交点 D .三边垂直平分线的交点。
9.如图,∠E=∠F=90°,∠B=∠C ,AE=AF ,则下列结论:①∠1=∠2;②BE=CF ;③CD=DN ;④△ACN ≌△ABM ,其中正确的有( )A.1个B.2个C.3个D.4个10.等腰三角形ABC 在直角坐标系中,底边的两端点坐标是(-2,0),(6,0),则其顶点的坐标能确定的是( )A .横坐标B .纵坐标C .横坐标和纵坐标D .横坐标或纵坐标11.如图,已知MB=ND,∠MBA=∠NDC ,下列条件中不能判定△ABM ≌△CDN 的是( )A.∠M=∠N B. AM ∥CN C.AB=CD D. AM=CN12.若△ABC ≌△DEF ,∠A=80°,∠B=40°,那么∠F 的度数是( )A.80°B.40°C.60°D.120°13.如图:OC 平分∠AOB ,CD ⊥OA 于D ,CE ⊥OB 于E ,CD=3㎝,则CE 的长度为( )A.2㎝ B.3㎝ C.4㎝ D.5㎝14.点M (—1,2)关于y 轴对称的点的坐标为( )A.(-1,-2)B.(1,2)C.(1,-2)D.(2,-1) 15.等腰三角形的一边长是6,另一边长是12,则周长为( )A.24B.30C.24或30D.18 16.如图:DE 是∆ABC 中AC 边的垂直平分线,若BC=8厘米,AB=10厘米,则∆EBC 的周长为( )厘米 A.16 B.18 C.26 D.2817.下列关于等边三角形的说法正确的有( )①等边三角形的三个角相等,并且每一个角都是60°;②三边相等的三角形是等边三角形;③三角相等的三角形是等边三角形;④有一个角是60°的等腰三角形是等边三角形。
A.①②③ B.①②④ C.②③④ D.①②③④18.如图, △ABC 中, D 是BC 中点, DE ⊥DF, E 、F 分别在AB 、AC 上, 则BE+CF.( )A. 大于EFB. 等于EFC. 小于EFD. 与EF 的大小无法确定EC OD BA AB DC MN C E B D A19.如图, 已知△ABC 中, AB =AC, ∠BAC =90°, 直角∠EPF 的顶点P 是BC 中点, 两边PE 、PF 分别交AB 、AC 于点E 、F, 给出以下四个结论: ①AE=CF; ②△EPF 是等腰直角三角形; ③2S 四边形AEPF =S △ABC ; ④BE+CF =EF. 当∠EPF 在△ABC 内绕顶点P 旋转时(点E 不与A 、B 重合). 上述结论中始终正确的有( ) A. 1个 B. 2个 C. 3个 D. 4个 20.如右图:∠DAE=∠ADE=15°,DE ∥AB ,DF ⊥AB ,若AE=8,则DF 等于( )A .5B .4C . 3D .2二.填空题 (第19题图) (第20题图)21.已知点P (-3,4),关于x 轴对称的点的坐标为 。
22.如右图,点P 在∠AOB 的平分线上,若使△AOP ≌△BOP ,则需添加的一个条件是 (只写一个即可,不添加辅助线)。
23.已知△ABC ≌△A B C ''',A 与A ',B 与B '是对应点,△A B C '''周长为9cm ,AB=3cm ,BC=4cm ,则A C ''= _________cm 。
24.如图,在△ABC 中,AB=8,BC=6,AC 的垂直平分线MN 交AB 、AC 于点M 、N 。
则△BCM 的周长为_________。
25.如图,在△ABC 中,∠ACB=90°,∠BAC=30°,在直线BC 或AC 上取一点P ,使得△PAB 为等腰三角形,则符合条件的点P 共有___个.26.小明上午在理发店理发时,从镜子内看到背后墙上普通时钟的时针与分针的位置如图所示,此时时间是_____.27.如图:在△ABC 中,∠C=90°,∠B=60°,BC=4㎝,则AB= ㎝; (此图多余,不用)28.等腰三角形的一个内角是80°,则另外两个内角的度数分别为 ;29.如图:∠ABC=∠DEF ,AB=DE ,要证明△ABC ≌△DEF ,需要添加一个条件为 (只添加一个条件即可);30.将长方形ABCD 沿AE 折叠,得到如图所示的图形,已知∠CEF=60°,则∠AED= 度;31.如图,∠BAC=∠ABD ,请你添加一个条件: _________ ,使BC=AD(只添一个条件即可).32.如图,每个小正方形的边长为1,把阴影部分剪下来,用剪下来的阴影拼成一个正方形,那么新正方形的边长是 _________ .33.如图,Rt △ABC 中,∠ACB=90°,∠A=50°,将其折叠,使点A 落在边CB 上A ′处,折痕为CD ,则∠A 'DB 为 _________ .34.如图,已知AD=AE ,BE=CD ,∠1=∠2=110°,∠BAC=80°,则∠CAE 的度数是 _________ .35.已知,如图,O 是△ABC 的∠ABC 、∠ACB 的角平分线的交点,OD ∥AB 交BC 于D ,OE ∥AC 交BC 于E ,若BC=10 cm ,则△ODE 的周长 _________ cm .P E F C B A D C B A E CB AO D E FCB AD E FC B AD A OB C A B36.某轮船由西向东航行,在A 处测得小岛P 的方位是北偏东75°,又继续航行7海里后,在B 处测得小岛P 的方位是北偏东60°,则此时轮船与小岛P 的距离BP= _________ 海里.三、静心画一画 37.如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(用直尺画图)(1)画出格点△ABC (顶点均在格点上)关于直线DE 对称的111A B C ∆;(2)在DE 上画出点P ,使PC PB +1最小;(3)在DE 上画出点Q ,使QC QA +最小。
38某市政府计划修建一处公共服务设施,使它到三所公寓A 、B 、C 的距离相等。
(1)若三所公寓A 、B 、C 的位置如图所示,请你在图中确定这处公共服务设施(用点P 表示)的位置(尺规作图,保留作图痕迹,不写作法);(2)若∠BAC =56º,则∠BPC = º.39.如图:直线m 表示一条公路,A 、B 表示两所大学。
要在公路旁修建一个车站P 使到两所大学的距离相等,请在图上找出这点P 。
40.如图:画出△ABC 关于Y 轴对称的△A 1B 1C 1,并写出△A 1B 1C 1各点的坐标。
四、解答题43.如图:△ABC 和△CDE 是等边三角形。
求证:BE=AD 。
mB AEDC BA EDA BC41.如图:已知AB 平分∠CAD ,AC=AD 。
求证:BC=BD 。
C D BAE CD B A 42.如图:∠A=∠B ,CE ∥DA ,CE 交AB 于E ,求证:△CEB 是等腰三角形。
44.如图:点E 是∠AOB 的平分线上一点,EC ⊥OA ,ED ⊥OB ,垂足分别为C 、D 。
求证:(1)∠ECD=∠EDC. (2)OC=OD.(3)OE 是线段CD 的垂直平分线.45、如图, 下面4个条件: ①AE=AD; ②AB=AC; ③OB=OC; ④∠B=∠C., 请你以其中两个为已知条件, 剩下的两个中的一个为为结论, 组成一个正确的命题.(1) (写成⊗⊗⇒⊗的形式).(2)证明:46.如图,点E 、F 在BC 上,BE=FC ,AB=DC ,∠B=∠C .求证:∠A=∠D .47.如图,已知△ABC 的三个顶点分别为A (2,3)、B (3,1)、C (﹣2,﹣2).(1)请在图中作出△ABC 关于直线x=﹣1的轴对称图形△DEF (A 、B 、C 的对应点分别是D 、E 、F ),并直接写出D 、E 、F 的坐标;(2)求四边形ABED 的面积.48.如图在△ABC 中,AD 平分∠BAC ,点D 是BC 的中点,DE ⊥AB 于点E ,DF ⊥AC 于点F .求证:∠B=∠C .49.已知:如图,AB=AC ,点D 是BC 的中点,AB 平分∠DAE ,AE ⊥BE ,垂足为E .(1)求证:AD=AE .(2)若BE ∥AC ,试判断△ABC 的形状,并说明理由.50.已知:如图,点B 、E 、C 、F 在同一直线上,AB =DE ,∠A =∠D ,AC ∥DF .求证:⑴ △ABC ≌△DEF ;⑵ BE =CF .O EC BAD51.如图,在△ABC 中,过顶点B 的一条直线把△ABC 分割成两个等腰三角形,且∠C 是其中一个等腰三角形的顶角.(1)当∠C=40°时,∠ABC 是多少度?说明理由;(2)当∠C 为△ABC 中最小角时,那么∠A 也能为另外一个等腰三角形的顶角吗?为什么?并探究∠ABC 与∠C 之间的数量关系.52.如图:在△ABC 中,BE 、CF 分别是AC 、AB 两边上的高,在BE 上截取BD=AC ,在CF 的延长线上截取CG=AB ,连接AD 、AG .(1)求证:△ABD ≌△GCA ;(2)请你确定△ADG 的形状,并证明你的结论.53、如图,在四边形ABCD 中BC=CD ,点E 是BC 的中点,点F 是CD 的中点,且AE ⊥BC ,AF ⊥CD 。