Combined Application of Organic and Inorganic Fertilizers on Black Soil Fertility and Maize Yiel
- 格式:pdf
- 大小:311.59 KB
- 文档页数:6
不同施肥量和方式对小麦产量及土壤硝态氮的影响摘要:通过大田试验研究了不同氮素水平下有机无机肥料配施对小麦产量和土壤硝态氮累积量的影响。结果表明,小麦产量随着氮素水平的提高而增加,同一施氮水平下,有机无机肥料配施方式下小麦的产量均显著高于单施有机肥或者单施无机肥。土壤中的硝态氮累积量随施氮量增加而升高,同一施氮水平下不同配施方式之间土体中的硝态氮累积量随着配施方式中无机氮肥所占比例的增加而升高。综合考虑冬小麦产量和土壤硝态氮累积量两个因素,纯氮施入量200 kg/hm2,75%的氮由有机肥提供、25%的氮由尿素提供的处理为较理想的氮素施用水平和配比组合。关键词:冬小麦;施氮量;有机无机配施;产量;土壤硝态氮Effects of Nitrogen Fertilizer Rate and Combined Application of Organic Manure and Chemical Fertilizer on the Yield of Winter-wheat and Accumulation of NO3-N in SoilAbstract: The influence of combined application of organic and chemical fertilizer at different nitrogen levels on the yield of winter-wheat and the accumulation of NO3-N in soil were studied in this paper. The yield of winter-wheat increased with the increasing of nitrogen levels. At the same nitrogen level, the yield under the combined application condition of organic and chemical fertilizer were higher than that under single application conditon. The content of soil NO3-N increased with increasing of nitrogen application rate in different stages of winter wheat. Compared with the single application of chemical fertilizer, application of organic fertilizer and combined application of organic manure and chemical fertilizer could effectively decrease the content of soil NO3-N. Taking a comprehensive consideration on the yield of winter wheat and the accumulation of NO3-N in soil, the best nitrogen level was 200 kg/hm2 provided by organic fertilizer and chemical fertilizer with the proportion of 75% and 25% respectively.Key words: winter-wheat; nitrogen fertilizer rate; combined application of organic manure and chemical fertilizer;yield;soil NO3-N华北平原是典型的高产农区,也是我国的主要产粮区,冬小麦为该区主要的作物。为了获得高产,该地区氮肥年用量在400 kg/hm2以上,有些区域甚至超过500 kg/hm2,硝态氮淋溶损失严重[1]。氮肥过量施用会导致氮肥利用率显著下降,造成资源浪费,同时对生态环境构成潜在威胁,这不仅是农业生产经济效益的问题,更是关乎生态环境以及人类健康的问题[2,3]。因而,在保证作物高产、优质的前提下,寻找控制氮素淋失途径显得尤为重要。一些研究发现,过量施用氮素所导致的硝态氮吸收与还原转化不平衡是产生硝酸盐大量累积的根本原因[4-7]。配方施肥对土壤肥力和作物产量的影响已多有报道[8-10]。试验采用田间定位监测方法,分析冬小麦田不同氮肥施用量及有机无机肥配施条件下,小麦产量和土壤硝态氮含量的变化规律,为有机无机肥料配施提供科学依据。1材料与方法1.1试验材料试验地点位于天津市西青区辛口镇,地处华北平原东北部,属暖温带半湿润气候。耕作制度为冬小麦、夏玉米一年两熟。冬小麦的生育期一般为10月上旬至翌年6月上旬。土壤属中壤质潮土,土壤肥力水平基本一致。供试土壤耕层容重 1.32 g/cm3,pH值8.4,有机质18.7 g/kg,全氮2.1 g/kg,有效磷7.5 mg/kg,速效钾107.9 mg/kg。供试冬小麦为当地主栽品种京冬8号。无机肥选用尿素(N≥46%),有机肥选用天津市宝坻区洲潮生物有机肥研究所生产的洲潮牌纯鸡粪有机肥,含氮量为2.50%。1.2试验设计根据土壤的供肥能力、小麦需肥量以及吸收效率,设计施肥水平和配施比例。纯氮施入量设100、200、300、400 kg/hm2 4个水平,每个施氮水平下设置了100%有机肥、75%有机肥+25%尿素、50%有机肥+50%尿素和100%尿素4个处理,共形成16个处理组合,分别为N11、N12、N13、N14、N21、N22、N23、N24、N31、N32、N33、N34、N41、N42、N43、N44(其中,N11指第一个氮素水平下的第一个有机无机肥料配比组合,其他同理)。每个处理3次重复,随机区组排列,共48个小区。设对照小区2个,每个小区面积20 m2。氮肥基肥、追肥比为4∶6,追肥在冬小麦返青期施入。生产期间灌水3次,即播种前浇足底墒水,返青期灌水1次,孕穗期浇水1次。其他田间管理措施按常规进行。1.3测定方法在播种期、拔节期、孕穗期、扬花期和收获期采集土壤样品。取土深为2 m,1 m以内每20 cm为1层,1 m以下分2层(100~150 cm、150~200 cm)。每个小区随机取5个点,混合制样。将样品放入-20℃冰箱中冷冻保存,解冻后测定土壤硝态氮含量。土壤硝态氮的含量采用2mol/L的KCl溶液浸提-紫外分光光度法测定。不同施肥处理下0~200 cm土体硝态氮的累积量通过公式(1)计算:Naccumulate(kg/hm2)=∑ZρdC/10(1)式中,Z为土层厚度(cm),ρd为每层土壤容重(g/cm3),C为各层土壤硝态氮的含量(mg/kg)小麦产量测定:每小区收获3 m2,风干后进行室内考种并脱粒测产。1.4数据处理方法数据处理使用Excel统计程序、DPS 2003和SigmaPlot软件进行统计分析。2结果与分析2.1不同氮素水平下有机无机肥配施对小麦产量的影响施肥能够显著提高小麦产量。由表1可以看出,小麦产量随着施氮水平的提高而增加,各施肥方式下,小麦产量均以400 kg/hm2 N水平下产量最高,不施肥的对照小麦产量最低。各施肥处理与对照相比增产显著,增幅在27.2%~68.2%。100、200 kg/hm2N水平下施肥增产效果明显,随着施氮水平的提高,小麦增产幅度较大,300、400 kg/hm2 N水平下虽然随着施氮水平的提高,小麦产量在逐步升高,但是产量增加幅度变化不大。同一施氮水平下,有机无机肥料配施方式下小麦的产量均显著高于单施有机肥或者单施无机肥。100、200、300 kg/hm2 N水平下,小麦产量以N12、N22、N32处理最高,分别为5 014.5、5 761.5、5 823.6 kg/hm2,以N11、N21、N31处理产量最低,分别为4 438.6、5 373.3和5 601.2 kg/hm2,400 kg/hm2 N水平下,小麦产量以N43处理最高,为5 870.6 kg/hm2,以N41处理的5 678.2 kg/hm2为最低。各施肥处理与对照相比产量差异显著,高施氮水平下各施肥处理与低施氮水平下各施肥处理差异显著,施肥能够显著提高小麦产量。在施氮量不大于300 kg/hm2 N时,以75%的N由有机肥提供、25%的N由尿素提供的配施比例增产效果最好,此时有机无机肥配施能显著提高小麦产量。2.2不同氮肥施用量对土壤硝态氮累积量的影响影响农田土壤硝态氮淋失的因素有肥料的品种与用量、地面接水量、土壤质地、作物种类、土壤-植物系统的组合特征等。其中,肥料的品种与用量是影响硝态氮淋失的主要因素[11]。冬小麦收获后,不同施氮水平下各处理0~200 cm土体硝态氮累积量如图1所示。由图1可见,同一施肥方式下冬小麦收获后0~200 cm土体中硝态氮累积量随着施氮量的增加而增加,均以400 kg/hm2 N水平为最高。对各配施方式下0~200 cm土体中的硝态氮累积量与施入的氮肥量进行相关分析,得出100%有机肥施肥方式下氮肥施用量与该施肥方式下0~200 cm硝态氮累积量的相关系数为0.997 2, 75%有机肥+25%无机肥、50%有机肥+50%无机肥、100%无机肥施肥方式下相关系数分别为0.975 3、0.920 1、0.997 4,土壤中的硝态氮累积量均与施氮量显著相关。对于冬小麦来说,90%以上的根系集中在0~90 cm土层,仅有少量根系可下扎到200 cm,深层的少量根系以吸收水分为主,对养分的利用很少,因此深层土壤硝态氮很难被作物吸收利用,通常将0~90 cm土壤称为根区土壤,90 cm以下为根区外土壤。从试验结果可以看出,不施氮肥时,土壤硝态氮累积量较低,而90 cm以下土壤硝态氮累积量较高,淋失风险较大。随着施氮水平的提高,同一施肥方式下90~200 cm土层土壤中的硝态氮累积量升高,硝态氮的淋失风险增大。从图1可以看出,虽然随着施氮量的增加,根区以下土层中的硝态氮累积量也在增大,但是该层土壤中硝态氮累积量的增加量没有0~200 cm土体中的增加量大,因而,根区以外土壤中硝态氮占0~200 cm土体硝态氮累积量的比率却随着施氮量的增加而下降。在高施氮水平下,根区以外土层中的硝态氮累积量比例基本低于50%,这说明高施氮水平下,冬小麦收获后根区土壤中的硝态氮含量较高,如不能合理利用,这部分硝态氮就有可能淋出根区,造成氮肥的损失。2.3有机无机肥配施对土壤硝态氮累积量的影响无机肥与有机肥配合施用对作物高产、降低成本具有重要作用,并且可以改良土壤和提高肥力,有机质还可以调节土壤缓冲性,活化土壤微生物、促进植物的生理活性[12]。试验结果表明(图1),冬小麦收获后,同一施氮水平下不同配施方式之间土体中的硝态氮累积量随着配施方式中无机氮肥所占比例的增加而升高,各施氮水平下冬小麦收获后土壤中的硝态氮累积量均以100%无机肥施肥方式为最高,以100%有机肥施肥方式为最低。单施氮肥(100%无机肥)在施氮量为100、200、300、400 kg/hm2 N时,0~200 cm土壤剖面硝态氮累积量分别为836.32、1 011.61、1 215.15、1 457.59 kg/hm2,其中90~200cm根区以下土层中的硝态氮累积量分别为455.13、530.71、562.67、674.75 kg/hm2。与单施无机氮肥相比,单施有机肥和有机无机肥料配施可以有效降低土壤剖面硝态氮的累积量,特别是深层土壤累积量。100%有机肥施肥方式在施氮量分别为100、200、300、400 kg/hm2 N水平时根区外土壤中硝态氮含量分别为309.30、358.99、384.72和462.20 kg/hm2,比同施氮水平下单施无机肥分别下降32.04%、32.35%、31.62%和31.50%;75%有机肥+25%有机肥施肥方式下根区外土壤硝态氮含量比单施无机肥分别下降30.94%、32.36%、27.83%和40.55%;50%有机肥+50%无机肥施肥方式下根区外土壤硝态氮含量比单施无机肥分别下降 2.50%、21.09%、13.31%和16.78%。下层土壤剖面硝态氮累积量少,表明来源于上层土壤中硝态氮淋失量少,淋失风险减弱。下层土壤硝态氮累积量越高,农田硝态氮淋失风险越强,所造成的氮肥损失和对环境的污染也越强。适量施用有机肥(75%有机肥+25%有机肥)可减少土壤中硝态氮的累积量,尤其是减少根区外土壤硝态氮累积量,降低硝态氮淋失风险。3结论小麦产量随着施氮量的增加而增高,高施氮水平下各施肥处理与低施氮水平下各施肥处理差异显著,可显著提高小麦产量。同等施氮水平下,有机无机肥料配施的增产效果明显,在施氮量不大于300 kg/hm2 N时,75%的氮由有机肥提供、25%的氮由尿素提供的配施比例能够显著提高小麦产量。与单施无机氮肥相比,单施有机肥和有机无机肥料配施可以有效降低土壤剖面硝态氮的累积量,特别是深层土壤累积量。施用有机肥可以保持土壤硝态氮含量持续供应,施用尿素在短时间内提高土壤硝态氮含量,有机肥与无机肥配合施用,既可保证土壤长期的氮素供应,又可保证作物短期内的营养需求,使养分需求与土壤的养分供应得到协调。综合考虑冬小麦产量和硝态氮累积量两个因素,纯氮施入量200 kg/hm2,75%的N由有机肥提供、25%的N由尿素提供的处理在保证冬小麦优质高产的前提下,能有效降低土壤硝态氮淋失,减小了氮素损失和环境污染,可以作为较理想的氮素施用水平和有机无机肥料配比组合。参考文献:[1] 胡春胜,高鹭,程一松.太行山山前平原冬小麦深层土体硝态氮累积特征研究[J].中国生态农业学报,2001,9(1):19-20.[2] 邓美华,谢迎新,熊正琴,等.长江三角洲氮收支的估算及其环境影响[J].环境科学学报,2007,27(10):1709-1716.[3] 宇万太,姜子绍,周桦,等.不同施肥制度对作物产量及肥料贡献率的影响[J].中国生态农业学报,2007,15(6):54-58.[4] 王月福,于振文,李尚霞,等.土壤肥力和施氮量对小麦氮素吸收运转及籽粒产量和蛋白质含量的影响[J].应用生态学报,2003,14(11):1868-1872.[5] 吴金水,郭胜利,党廷辉.半干旱区农田土壤无机氮积累与迁移机理[J].生态学报,2003,23(10):2040-2049.[6] 吕殿青,同延安.氮肥施用对环境污染影响的研究[J].植物营养与肥料学报,1998,4(1):8-15.[7] 李晓欣.华北平原小麦-玉米两熟制下土壤硝态氮运移及淋失研究[D].北京:中国科学院,2003.[8] 杨晶秋,姚腾云,王作尊.稳定型有机无机复合肥氮的释放[J].华北农学报,2001,16(4): 97-99.[9] 王慎强,李欣,徐福安.长期施用化肥与有机肥对潮土土壤物理性质的影响[J].中国生态农业学报,2001,9(2):77-78.[10] 马兴华,于振文,梁晓芳,等.施氮量和底追比例对小麦氮素吸收利用及子粒产量和蛋白质含量的影响[J].植物营养与肥料学报,2006,12(2):150-155.[11] 孙志梅,马志辉,彭正萍,等.影响土壤NO3-N淋失的因素及预防措施[J]. 河北农业大学学报,2001,24(3):95-99.[12] 林成谷.土壤学(北方本)[M].北京:中国农业出版社,1983.34-44.。
有机肥施肥方式和配施减氮肥对烟草生长·产量和质量的影响作者:罗优韩天华张雪奇廖德智周寸伟童君和汝惠李佛琳贺彪来源:《安徽农业科学》2023年第21期摘要为研究精制烟用商品有机肥施用方式和配施减氮肥对丽江烟区烟草生长发育和品质特征的影响。
采用田间小区试验,随机设置有机肥施用方式和配施减氮肥小区试验,测定了烟草生长期的农艺性状、产量和化学性状。
结果表明,塘施拌匀施用有机肥后烟草株高、叶片数、茎围、中部叶长、中部叶宽、上部叶长和上部叶宽等农艺性状较CK对照分别提高了5.12%、15.54%、8.30%、6.71%、9.05%、6.59%和5.90%,25%有机肥+施纯氮量75%烟草专用复合肥处理烟草农艺性状较CK对照分别提高了6.57%、1.76%、2.91%、6.98%、6.06%、4.93%、2.87%和13.30%。
塘施拌匀有机肥后烟草产量、产值、上等烟比例、中等烟比例和单叶重较CK分别提高了3.27%、3.20%、5.65%、5.73%和3.41%。
塘施(拌匀、环状)有机肥和增施有机肥减氮肥可提高烤后中部烟叶石油醚提取物含量。
塘施(拌匀、环状)有机肥和增施有机肥减氮肥促进烟草株高、茎围、叶长和叶宽等农艺性状,提高烟叶品质、产量、产值,改善烟叶质量,对指导丽江产区烟叶生产可持续发展具有重要意义。
关键词烤烟;施肥方式;农艺性状;化学性状;产质量中图分类号 S147.35;S572文献标识码 A文章编号 0517-6611(2023)21-0157-04doi:10.3969/j.issn.0517-6611.2023.21.036Effects of Organic Fertilizer Application Methods and Combined Application of Reducing Nitrogen Fertilizer on Growth, Yield and Quality of TobaccoLUO You, HAN Tianhua, ZHANG Xueqi et al(Yunnan Tobacco Company Lijiang City Company, Lijiang, Yunnan 674100)Abstract Effects of refined tobacco commercial organic fertilizer application methods and combined application of reduced nitrogen fertilizer on the growth, development, and quality characteristics of tobacco in Lijiang tobacco region were studied. A field plot experiment was conducted to determine the agronomic, yield, and chemical characteristics of tobacco during its growth period, with randomly set organic fertilizer application methods and combined application of reduced nitrogen fertilizer. The results showed that the agronomic traits of tobacco, such as plant height, leaf number, stem circumference, middle leaf length, middle leaf width, upper leaf length, and upper leaf width, were increased by 5.12%, 15.54%, 8.30%, 6.71%, 9.05%,6.59% and 5.90% compared to the CK after evenly applying organic fertilizer in the pond. The agronomic traits of tobacco were increased by 6.57%, 1.76%, 2.91%, 6.98%, 6.06%,4.93%, 2.87% and 13.30% respectively, after applying 25% organic fertilizer and 75% pure nitrogen tobacco specific compound fertilizer. After applying mixed organic fertilizer in the pond,the tobacco yield, output value, proportion of top grade tobacco, proportion of medium tobacco, and single leaf weight increased by 3.27%, 3.20%,5.65%, 5.73% and 3.41%,respectively, compared to CK. Pond application (mixed, circular) of organic fertilizer and increased application of organic fertilizer to reduce nitrogen fertilizer could increase the content of petroleum ether extract in middle tobacco leaves after curing. The application of organic fertilizer in a pond (mixed and circular) and the application of organic fertilizer to reduce nitrogen fertilizer promoted the agronomic traits of tobacco such as plant height, stem circumference, leaf length,and leaf width, improved the quality, yield, and output value of tobacco, and improve the quality of tobacco. This was of great significance for guiding the sustainable development of tobacco production in the Lijiang production area.Key words Fluecured tobacco;Fertilizer application method;Agronomic traits;Chemical character;Yield and quality烟草作为云南省重要的经济作物,生态环境、耕作方式、品种和病虫害等诸多因素影响其质量、产量,进而影响其经济效益[1]。
水泥窑协同处置、异位化学氧化及抽出-处理技术联合应用——修复某重金属及有机物复合污染场地工程案例曹斌(岩土科技股份有限公司,浙江杭州310000)[摘要]杭州某生产历史近30年的大型油漆油墨厂搬迁后,遗留的退役场地土壤和地下水受到多种类型复合污染,包括重金属、苯系物及石油烃污染。
本案例采用水泥窑协同处置、异位化学氧化和抽出-处理多种修复技术联合应用,处置该场地污染土壤和地下水。
该案例证明,通过多种修复技术的联合应用可有效处置重金属及有机物复合污染场地,水泥窑协同处置、异位化学氧化结合抽出-处理是一种效率较高的修复技术选择。
[关键词]水泥窑协同处置;异位化学氧化;抽出处理[中图分类号]TQ [文献标识码]A [文章编号]1007-1865(2021)07-0124-06Co-processing in Cement Kiln &Ex-Situ Chemical Oxidization &Groundwater Pump and Treat Combined Application —Remediating Heavy Metal and OrganicPollution SitesCao Bin(Geotechnical Technology Co.,Ltd.,Hangzhou 310000,China)Abstract:An large paint and ink factory in Hangzhou have been relocated,which have nearly 30years history of production.The soil and groundwater of the retired site were polluted by various types of compound pollution,including heavy metals,BTEX and TPH.In this case,co-processing in Cement Kiln,ex-Situ Chemical Oxidization and Groundwater Pump and Treat are combined to treat the soil and groundwater.The case proves that the combined application of various remediation technologies can effectively dispose of the site polluted by heavy metals and organic compounds,and co-processing in Cement Kiln,ex-Situ Chemical Oxidization and Groundwater Pump and Treat isa efficient remediation technology choice.Keywords:co-processing in Cement Kiln ;ex-Situ Chemical Oxidization ;Groundwater Pump and Treat杭州某大型油漆油墨厂始建于1987年,2016年全面停产搬迁,主要从事醇酸树脂、各类成品油漆及辅助材料漆类的生产。
引用格式:吴景,唐灿辉,严潜,等. 酵素菌剂与有机肥配施对丝瓜营养成分的影响[J]. 湖南农业科学,2024(3):19-22. DOI:10.16498/ki.hnnykx.2024.003.005丝瓜(Luffa aegyptiaca Mill.)为葫芦科(Cucur-bitaceae)丝瓜属(Luffa Mill.)的一年生攀绿性草本植物,起源于亚洲的热带地区,以嫩瓜食用为主,老熟果实纤维发达,可入药或做海棉的替代品[1]。
丝瓜有8个种,在中国主要分布有普通丝瓜(L. cylindrica Roem.)和有棱丝瓜(L.acutangula Roxb.)2种[2]。
白关丝瓜属于普通丝瓜,是湖南省著名的地方品种,原产于湖南省株洲市芦淞区白关镇,2021年6月获批国家地理标志农产品。
该品种在湖南省其他地方的年种植面积约2 000 hm2,占全省丝瓜种植面积的12%,除株洲地区外,湖南长沙、湘潭、益阳、常德等地均广泛种植,并成为这些地方主要的丝瓜消费品种;江西、广西、广东等省也有部分种植[3-4]。
白关丝瓜以烹饪后汤汁乳白、果肉不变色、口感丝滑沁甜、香气浓郁作为其风味特色。
但在推广过程中白关丝瓜的风味变化明显,主要原因是由肥水管理引起的果实营养成分变化[5]。
影响风味的营 酵素菌剂与有机肥配施对丝瓜营养成分的影响 吴景1,唐灿辉2,严潜1,张艳1,王安乐1,严小兵1,罗扬3,王冲勇4 (1.长沙市农业科学研究院,湖南长沙 410003;2.长沙市望城区植保植检站,湖南长沙 410299;3.长沙市农产品质量监测中心,湖南长沙 410003;4.长沙市农业技术推广中心,湖南长沙 410205)摘要:为分析酵素菌剂对丝瓜果实营养成分的影响,以国家农产品地理标志登记产品白关丝瓜为试验对象,通过液体酵素菌剂与有机肥的配合施用,分析比较果实中影响风味的主要营养成分的变化。
结果表明:液体酵素菌剂与有机肥配合施用后,样品中谷氨酰胺含量高达169.02 mg/100g,比单纯施用有机肥的对照样品提高了62.3%,呈甜、鲜、香味的游离氨基酸提高了38.3%~118.4%,尤其是对风味贡献显著的鲜味氨基酸天冬氨酸含量提高了87.2%、苦味氨基酸精氨酸含量降低了33.2%,蛋白质、可溶性固形物、钙元素、铁元素含量分别较对照提高了10.6%、5.7%、21.6%、62.5%。
基于低共熔溶剂的液液微萃取技术测定食用油中的新烟碱类杀虫剂王素利,郭振福,庚丽丽(河北北方学院河北省农产品食品质量安全分析重点实验室,河北张家口075000)摘 要:利用合成的低共熔溶剂(deep eutectic solvent,DES)作为液液微萃取技术中的萃取剂,利用超声波辅助分散,建立高效液相色谱测定食用油中4 种新烟碱类杀虫剂(噻虫嗪、吡虫啉、啶虫脒、噻虫啉)的方法。
首先将合成的DES加入到含有目标分析物的食用油(正己烷稀释)中,进行超声辅助分散加速提取,然后离心,吸出上层液体,再用微量注射器吸取DES富集相(下层)进行液相色谱分析。
根据单一变量法,对影响萃取效率的一些因素进行优化,如DES的种类和体积、超声萃取时间、离心时间等。
在最佳条件下,回收率在81.9%~98.0%之间,相对标准偏差为5.5%~8.3%(n=5),检出限范围为3.2~5.3 μg/L,定量限范围为10.8~17.7μg/L。
并且应用所建立的基于DES超声辅助分散液液微萃取方法检测食用油实际样品大豆油、葵花籽油、亚麻籽油中的新烟碱类农药。
此方法提取和浓缩一步完成,避免了毒性较大的有机溶剂的使用,具有快速、简单、有效等显著优点。
关键词:低共熔溶剂;液液微萃取;新烟碱类杀虫剂;食用油Liquid Phase Microextraction with Deep Eutectic Solvent Combined with High Performance Liquid Chromatography for Determination of New Neonicotinoid Insecticide Residues in Edible OilWANG Suli, GUO Zhenfu, GENG Lili(Hebei Key Laboratory of Quality and Safety Analysis-testing for Agro-products and Food,Hebei North University, Zhangjiakou 075000, China)Abstract: In this study, a method for the determination of residues of four new neonicotinoid insecticides (thiamethoxam, imidacloprid, acetamiprid, and thiacloprid) in edible oil was developed using ultrasound-assisted liquid-liquid microextraction with deep eutectic solvent (UA-DES-LLME) followed by high performance liquid chromatography (HPLC).Samples were diluted with n-hexane and added with deep eutectic solvent (DES) before being subjected to ultrasonic-assisted dispersive liquid-liquid microextraction (UALLME). Then, the extract was centrifuged. The lower DES-rich phase was collected and injected into the HPLC system for analysis. Several important parameters influencing the extraction efficiency, such as the type and volume of DES, ultrasonication time, and centrifugation time, were investigated. Under the optimized conditions, the recoveries of the analytes were between 81.9% and 98.0%, with relative standard deviations (RSD, n = 5) of 5.5%–8.3%. The limits of detection (LODs) and limits of quantitation (LOQs) were3.2‒5.3 μg/L and10.8‒17.7 μg/L respectively. The method was successfully applied to real samples of soybean oil, sunflower seed oil and linseed oil.This method combined extraction and concentration in one step without the use of poisonous organic solvents.This method proved to be simple, rapid and efficient.Keywords: deep eutectic solvent; liquid-liquid microextraction; new neonicotinoid insecticides; edible oilDOI:10.7506/spkx1002-6630-20200423-294中图分类号:TS207.3 文献标志码:A 文章编号:1002-6630(2021)08-0277-06引文格式:王素利, 郭振福, 庚丽丽. 基于低共熔溶剂的液液微萃取技术测定食用油中的新烟碱类杀虫剂[J]. 食品科学, 2021, 42(8): 277-282. DOI:10.7506/spkx1002-6630-20200423-294. 收稿日期:2020-04-23基金项目:河北省自然科学基金项目(B2017405049);河北省高等学校科学重点研究项目(ZD2016139)第一作者简介:王素利(1968—)(ORCID: 0000-0002-8800-393X),女,教授,博士,研究方向为农产品安全。
第37卷第4期2023年8月水土保持学报J o u r n a l o f S o i l a n d W a t e rC o n s e r v a t i o nV o l .37N o .4A u g.,2023收稿日期:2023-02-01资助项目:河南省旱地绿色智慧农业特色骨干学科群建设项目(17100001);河南省科技攻关项目(202102110087);国家自然科学基金项目(31801297) 第一作者:吴金芝(1978 ),女,博士,副教授,硕士生导师,主要从事旱地农田水肥高效及生理生态研究㊂E -m a i l :y y w u jz @126.c o m 通信作者:赵振欣(1966 ),男,大专,高级农艺师,主要从事作物水肥高效研究及推广工作㊂E -m a i l :m j x n jz w@163.c o m 李友军(1962 ),男,博士,教授,博士生导师,主要从事旱作节水高产栽培理论与技术研究㊂E -m a i l :l y j@h a u s t .e d u .c n 秸秆还田和有机肥配合替代1/3化肥对旱地玉-麦产量㊁蛋白质含量和化肥利用效率影响吴金芝1,肖慧淑1,郭锦花1,黄明1,赵凯男1,侯园泉1,李俊红2,3,田文仲2,3,张洁2,3,李芳2,3,赵振欣4,李友军1(1.河南科技大学农学院,河南洛阳471023;2.洛阳农林科学院,河南洛阳471023;3.中国农业科学院洛阳旱农试验基地,河南洛阳471023;4.洛阳市孟津区农业技术推广服务中心,河南孟津471100)摘要:为研究长期秸秆还田和有机肥配合替代部分化肥对玉-麦一年两熟种植下产量㊁品质和化肥效率的影响,2015-2020年,依托中国农业科学院洛阳旱农试验基地始于2007年的长期定位试验,设置不施肥对照(C K )㊁玉米小麦季均常规施用氮磷钾化肥(N P K )㊁秸秆还田和有机肥配合替代小麦季1/3氮磷钾化肥(S O R F )3个处理,研究2015 2020年玉-麦一年两熟种植下作物产量㊁化肥利用效率,2019 2020年玉米和小麦籽粒氮磷钾养分含量㊁蛋白质含量和蛋白质产量,以及2020年小麦籽粒蛋白质及其组分含量㊂结果表明:(1)S O R F 处理玉米增产增效作用优于N P K 处理,5年平均产量提高10.0%,但二者间小麦和周年产量差异未达显著水平(p >0.05)㊂(2)施肥显著提高玉米和小麦籽粒氮磷钾含量,其中S O R F 较N P K 处理又显著增加籽粒氮含量,从而使玉米籽粒蛋白质含量和蛋白质产量较N P K 分别显著提高6.7%和17.8%,小麦籽粒蛋白质含量和蛋白质产量分别显著提高8.0%和6.3%,周年蛋白质产量显著增加10.8%㊂(3)S O R F 和N P K 处理较C K 均可显著提高小麦籽粒中各蛋白质组分含量及谷醇比,协同提高小麦籽粒蛋白质含量和籽粒品质㊂S O R F 较N P K 处理还可提高除球蛋白外的其他蛋白组分含量,但谷醇比的增幅不显著㊂(4)与N P K 相比,S O R F 处理下玉米㊁小麦和周年的氮肥农学效率分别显著提高54.8%,31.2%和37.3%,氮肥偏生产力分别显著提高10.0%,45.6%和20.7%,小麦㊁周年的磷(钾)肥农学效率和偏生产力分别提高31.2%,77.3%和45.6%,55.7%㊂综合来看,秸秆还田和有机肥配合替代1/3化肥(S O R F )不仅有利于提高玉米产量,玉米㊁小麦的籽粒蛋白质含量和蛋白质产量,以及化肥农学效率和偏生产力,而且可提高小麦籽粒蛋白组分含量,是旱地玉-麦一年两熟区兼顾产量品质效率的施肥模式㊂关键词:秸秆覆盖;有机肥替代;玉-麦一年两熟;产量;蛋白质含量;肥料利用效率中图分类号:S 147.34 文献标识码:A 文章编号:1009-2242(2023)04-0319-08D O I :10.13870/j.c n k i .s t b c x b .2023.04.039E f f e c t s o f S t r a wR e t u r n i n g C o m b i n e dw i t hO r g a n i cF e r t i l i z e rR e p l a c i n g 1/3C h e m i c a l F e r t i l i z e r o nG r a i nY i e l d ,G r a i nP r o t e i na n dC h e m i c a lF e r t i l i z e rU s eE f f i c i e n c y i nD r y l a n dM a i z e -w h e a tD o u b l eC r o p p i n g S ys t e m WUJ i n z h i 1,X I A O H u i s h u 1,G U OJ i n h u a 1,HU A N G M i n g 1,Z H A O K a i n a n 1,HO U Y u a n q u a n 1,L I J u n h o n g 2,3,T I A N W e n z h o n g 2,3,Z H A N GJ i e 2,3,L IF a n g 2,3,Z H A OZ h e n x i n 4,L IY o u ju n 1(1.A g r i c u l t u r a lC o l l e g e ,H e n a nU n i v e r s i t y o f S c i e n c e a n dT e c h n o l o g y ,L u o y a n g ,H e n a n 471023;2.L u o y a n g A c a d e m y o f A g r i c u l t u r e a n dF o r e s t r y S c i e n c e s ,L u o y a n g ,He n a n 471023;3.L u o y a n g D r y l a n dA g r i c u l t u r eT e s t S i t e ,C h i n e s eA c a d e m y of Ag r i c u l t u r a lS c i e n c e s ,L u o y a n g ,H e n a n 471023;4.A g r i c u l t u r a lT e c h n o l o g y E x t e n s i o nC e n t e r o f M e n g j i nD i s t r i c t i nL u o y a n g ,M e n g ji n ,H e n a n 471100)A b s t r a c t :T o s t u d y t h ee f f e c t so f c o m b i n e ds t r a wr e t u r n i n g w i t ho r g a n i c f e r t i l i z e r r e p l a c i n gp a r t l y ch e m i c a l f e r t i l i z e r o n g r a i n y i e l d ,g r a i n q u a l i t y a n dc h e m i c a l f e r t i l i z e ru s ee f f i c i e n c y i nd r y l a n d m a i z e -w h e a td o u b l e c r o p p i n g s y s t e m ,F r o m 2015t o2020,b a s e do nal o n g -t e r m f i e l de x p e r i m e n tc o n d u c t e da tL u o y a n g D r yCopyright ©博看网. All Rights Reserved.F a r m i n g E x p e r i m e n t a lS t a t i o no fC h i n e s e A c a d e m y o fA g r i c u l t u r a lS c i e n c e s,s i n c e2007.T h e r ea r et h r e e t r e a t m e n t s,i.e.,n o f e r t i l i z e r c o n t r o l(C K),c o n v e n t i o n a l a p p l i c a t i o no f n i t r o g e n,p h o s p h o r u s a n d p o t a s s i u m f e r t i l i z e r i nb o t h m a i z ea n d w h e a ts e a s o n(N P K),s t r a w m u l c h i n g a n do r g a n i cf e r t i l i z e rc o m b i n e d w i t h r e p l a c i n g1/3o fN P K i n p u t i nw h e a t s e a s o n(S O R F).T h e g r a i n y i e l d s a n d f e r t i l i z e r u s e e f f i c i e n c i e s i nm a i z e, w h e a t a n d a l l y e a r f r o m2015t o2020,a n dt h e g r a i nn i t r o g e n,p h o s p h o r u sa n d p o t a s s i u mc o n t e n t s,g r a i n p r o t e i nc o n t e n t s,g r a i n p r o t e i n y i e l d s o fm a i z e a n dw h e a t f r o m2019t o2020,a n d t h e c o n t e n t s o f p r o t e i n a n d i t s c o m p o n e n t s i n g r a i n o fw h e a t i n2020w e r e i n v e s t i g a t e d.T h e r e s u l t s s h o w e d t h a t:(1)C o m p a r e dw i t h t h e N P Kt r e a t m e n t,t h e5-y e a r a v e r a g e y i e l do fm a i z e u n d e rS O R Ft r e a t m e n tw e r e i n c r e a s e db y10.0%.H o w e v e r, t h e r ew a s n o s i g n i f i c a n t g r a i n y i e l dd i f f e r e n c e o fw h e a t a n d a l l y e a r b e t w e e nN P Ka n dS O R F t r e a t m e n t s(p> 0.05).(2)T h e g r a i n N,P,Kc o n t e n t i n m a i z ea n dw h e a tw a s i n c r e a s e ds i g n i f i c a n t l y w i t ht h ea p p l i c a t i o n o f f e r t i l i z e r.C o m p a r e d w i t h N P Kt r e a t m e n t,S O R Fs i g n i f i c a n t l y i n c r e a s e d g r a i nn i t r o g e nc o n t e n t,w h i c h s i g n i f i c a n t l y i n c r e a s e di n p r o t e i nc o n t e n ta n d p r o t e i n y i e l do f m a i z e g r a i na n d w h e a t g r a i nb y6.7%a n d 17.8%,8.0%a n d6.3%,r e s p e c t i v e l y,a n d a n n u a l p r o t e i n y i e l d i n c r e a s e db y10.8%.(3)S O R Fa n dN P Kn o t o n l y i n c r e a s e dt h ec o n t e n t so fe a c h p r o t e i nc o m p o n e n t,b u ta l s oi n c r e a s e dt h er a t i oo f g l u t e n i n/g l i a d i ni n w h e a t g r a i n,a n d s y n e r g i s t i c a l l y i m p r o v i n g t h e p r o t e i n q u a n t i t y a n d q u a l i t y i n g r a i n.C o m p a r e dw i t h t h eN P K t r e a t m e n t,S O R Fs i g n i f i c a n t l y i n c r e a s e dt h ec o n t e n to fd i f f e r e n t g r a i n p r o t e i nc o m p o n e n t e x c e p t g l o b u l i n, b u t t h e i n c r e a s eo f g l u t e n i n/g l i a d i nr a t i ow a sn o t s i g n i f i c a n t.(4)C o m p a r e dw i t hN P Kt r e a t m e n t,t h en i t r o g e n a g r o n o m i c u s e e f f i c i e n c y u n d e r S O R F t r e a t m e n tw e r e s i g n i f i c a n t l y i n c r e a s e db y54.8%,31.2%a n d77.3%i n m a i z e,w h e a t a n d a l l y e a r,a sw e l l a s n i t r o g e n p a r t i a l p r o d u c t i v i t y b y10.0%,45.6%a n d20.7%,r e s p e c t i v e l y,a n d t h e p h o s p h a t e(p o t a s s i u m)a g r o n o m i c e f f i c i e n c y a n d p a r t i a l p r o d u c t i v i t yb y31.2%,77.3%a n d45.6%,55.7%i nw h e a t a n d a l l y e a r.A b o v e a l l,S O R F c o u l d n o t o n l y i m p r o v e t h e g r a i n y i e l d i nm a i z e,a n d t h e g r a i n p r o t e i n c o n t e n t,p r o t e i n y i e l d,a sw e l l a s a g r o n o m i c e f f i c i e n c y a n d p a r t i a l p r o d u c t i v i t y i n m a i z ea n dw h e a t,b u t a l s o i m p r o v e d t h ec o n t e n t so fd i f fe r e n t g r a i n p r o t e i nc o m p o n e n t s i nw h e a t.T h e r ef o r e,s t r a w m u l c h i n gc o m b i n e dw i t ho r g a n i c f e r t i l i z e r s r e p l a c i n g1/3o fN P Ko fw h e a t s e a s o nw a s t h e s u i t a b l e f e r t i l i z a t i o n m ode lf o r h igh yi e l d,h i g h q u a l i t y a n dh i g h e f f i c i e n c y i n t h em a i z e-w h e a t d o u b l e c r o p p i n g s y s t e mo f d r y l a n d r e g i o n. K e y w o r d s:s t r a w m u l c h i n g;o r g a n i c f e r t i l i z e r s u b s t i t u t i o n;m a i z e-w h e a t d o u b l e c r o p p i n g s y s t e m;g r a i n y i e l d;p r o t e i n c o n t e n t;f e r t i l i z e r u s e e f f i c i e n c y玉米和小麦是人类主要的粮食作物,提高其产量㊁品质对保障粮食安全和优化人们膳食结构具有重要作用,特别是在人口的快速增长㊁人们生活水平越来越高的当今更为突出[1]㊂众所周知,施用化肥是提高作物产量和品质的重要途径㊂然而,人们为了追求高产优质,长期过量和不合理使用化肥,使我国化肥利用效率低下,如玉米和小麦的氮㊁磷㊁钾肥农学效率分别为10.1,7.9,5.6k g/k g和11.1,9.8,8.1k g/k g,与世界平均水平相比低20%~30%[2],尤其是在降水与作物需水关键期错位㊁土壤肥力低且追肥困难的北方旱区更为突出[3]㊂夏玉米-冬小麦(简称玉-麦)一年两熟是我国北方重要的种植制度之一,在保障国家粮食安全中具有重要地位,但该种植体系下过量施肥现象也非常普遍㊂因此,探索协同实现旱地玉-麦高产优质高效的施肥措施一直是广大旱地农业科技者关注的重要课题㊂有机肥替代化肥是保障旱地作物可持续生产的重要措施,具有改善土壤理化性质,促进土壤蓄水保墒和维持土壤养分持续供给等多种功能,且增产增效作用突出[4]㊂裴雪霞等[5]研究表明,化肥减量配施猪粪或羊粪可提高旱地小麦产量和水分利用率,改善小麦品质;丁维婷等[6]研究表明,25%替代处理在改善土壤生物学活性㊁增加小麦产量和改善品质方面的效果良好,同时可以提高氮肥农学效率和氮肥偏生产力,增加经济效益;熊波等[7]研究表明,有机肥替代化肥能够提高玉米植株粗蛋白含量,且以30%有机肥替代化肥的效果最佳;聂胜委等[8]研究却表明,小麦季牛粪秸秆堆肥替代20%化肥第1季增产,第2季略有减产,籽粒蛋白质㊁湿面筋含量当季略有提高,第2季显著下降㊂秸秆还田特别是覆盖还田作为旱地作物生产中重要的节水培肥措施,具有提高作物产量和品质的作用㊂黄明等[9]研究表明,秸秆覆盖较不覆盖使翻耕下小麦产量㊁蛋白质含量和蛋白质产量分别提高11.5%,7.4%,21.3%,旋耕下分别提高23.0%,023水土保持学报第37卷Copyright©博看网. All Rights Reserved.12.8%,38.5%;张礼军等[10]研究表明,与无覆盖相比,秸秆覆盖可使小麦产量略有增加,籽粒蛋白质和湿面筋质量分数分别降低2.5%和6.1%㊂在有机肥替代和秸秆覆盖组合方面,王飞等[11]研究表明,与单施化肥相比,等氮施肥下通过秸秆还田与有机肥替代配合可使水稻产量提高8.4%~13.9%;赵凯男等[3]研究表明,无论降雨多寡,秸秆还田和有机肥配合替代1/3氮磷钾肥均未降低冬小麦产量,但显著提高干旱年夏玉米及周年的产量和水分利用效率,并优化0 60c m 土层土壤有机质㊁全氮含量,0 20c m 土层速效磷㊁钾含量,同时较常规氮磷钾处理显著降低200 380c m 土层硝态氮积累量㊂然而,以往的研究主要集中在秸秆还田或有机肥替代化肥对玉米或小麦单个生产体系的影响,有关二者配合对旱地玉-麦一年两熟系统的长期定位研究较少,特别是有关旱地玉-麦一年两熟种植下作物籽粒养分含量和品质的研究尚鲜有报道㊂因此,本研究依托中国农业科学院洛阳旱农试验基地始于2007年的田间定位试验,研究不施肥㊁施用氮磷钾肥和秸秆还田配合有机肥替代化肥对旱地玉-麦产量㊁籽粒蛋白质含量和肥料利用效率的影响,旨为实现旱地玉-麦两熟体系高产优质高效生产提供理论和技术参考㊂1 材料与方法1.1 试验地概况试验地位于中国农业科学院洛阳旱农试验基地(112ᵡ29'72ᵡE ,34ʎ38'73ᵡN ),海拔130m ,属典型的温带半湿润偏旱季风气候,年均气温14.6ʎC ,平均干旱频率>40%,干燥度>1.3,无霜期200~219天㊂年平均降水量为561.6mm ,年平均蒸发量1870mm ㊂玉-麦两熟是当地主要种植制度㊂供试土壤为黄棕色褐土,耕层土壤田间持水量㊁饱和水含量㊁容重和pH 分别为27%,33%,1.53g /c m 3和7.3;0 20c m 土层中>0.2mm 的沙粒为302g /k g ,0.2~0.002mm 的粉粒为416g /k g,<0.002mm 的黏粒为282g /k g ㊂2007年6月试验开始前0 20c m 土层中土壤有机质15.8g /k g ,全氮0.9g /k g ,有效磷10.4m g /k g,速效钾166.0m g /k g ,阳离子交换量为19.9c m o l /k g ㊂本研究中逐月降雨量见图1㊂注:折线为2000-2020年度连续20年降水量的平均值㊂图1 试验期间逐月降雨量1.2 试验设计与田间管理试验在池栽条件下进行,设不施肥(C K )㊁玉米㊁小麦季均施常规氮磷钾化肥(N P K )㊁秸秆覆盖和有机肥配合替代1/3氮磷钾化肥(S O R F )㊂(1)C K 处理,全年不施入任何肥料,秸秆不还田;(2)N P K 处理,根据当地农户习惯,分别于玉米拔节期施纯N207k g /h m 2,小麦播前施纯N150k g /h m 2㊁P 2O 5120k g /h m 2和K 2O90k g /h m 2,秸秆不还田;(3)S O R F 处理,玉米季将前茬小麦(留茬高度40c m )秸秆全部覆盖还田,并于拔节期施纯N207k g/h m 2;小麦季将前茬50%的玉米秸秆粉碎(5.0c m )后均匀还田于原小区,并施有机肥1250k g/h m 2以及N P K 处理的2/3化肥用量㊂N P K 和S O R F 处理的年肥料用量和秸秆还田量见表1,秸秆㊁有机肥和化肥管理均在当季作物播前整地时进行㊂表1 化肥和有机肥替代处理年肥料用量和秸秆还田量单位:k g/h m 2处理夏玉米N P 2O 5K 2O 有机肥秸秆冬小麦NP 2O 5K 2O 有机肥秸秆N P K2070000150120900S O R F207100%小麦秸秆1008060125050%玉米秸秆采用随机区组设计,小区面积16m 2,3次重复㊂供试有机肥(河南豫宝肥业有限公司)中养分含量分别为Nȡ2.03%㊁P 2O 5ȡ2.8%㊁K 2Oȡ2.3%,有机质ȡ30%,有机肥供试量相当于小麦季N P K 处理的17%N ㊁34%P 2O 5和28%K 2O ㊂供试化肥分别为尿素(含N46%)㊁过磷酸钙(含P 2O 512%)和氯化123第4期 吴金芝等:秸秆还田和有机肥配合替代1/3化肥对旱地玉-麦产量㊁蛋白质含量和化肥利用效率影响Copyright ©博看网. All Rights Reserved.钾(含K2O60%)㊂玉米品种为 洛玉114 ,于6月上旬免耕播种,9月下旬收获,种植密度45000株/h m2;小麦品种为 洛旱7号 ,于10月上中旬秸秆还田㊁施肥并人工翻耕整地后播种,行距20c m,播量为120~135k g/h m2,5月下旬或6月初收获㊂整个试验期间无灌溉,病虫草害防治等田间管理措施按照当地农民生产习惯进行㊂1.3测定项目与方法1.3.1籽粒产量的测定在玉米㊁小麦成熟期,各小区均全部收获,脱粒㊁风干后测定产量㊂1.3.2籽粒养分含量的测定2019 2020年,分别从玉米和小麦的测产样品中取籽粒50g,测定水分含量后烘干并粉碎待测㊂采用H2S O4-H2O2法消解,连续流动分析仪(A A3,S E A L,德国)测定消解液中的氮磷浓度,火焰光度计(M410,S H E RWO O D,英国)测定钾浓度[12]㊂氮磷钾含量均以干重表示㊂蛋白质含量(%)=籽粒全氮含量ˑ5.7[9]蛋白质产量(k g/h m2)=籽粒干物质量ˑ蛋白质含量[9]1.3.3籽粒蛋白组分的测定2019 2020年,小麦收获季进行,参照何照范[13]的方法测定蛋白质组分含量㊂称取0.5g样品按照清蛋白㊁球蛋白㊁醇溶蛋白和麦谷蛋白的顺序提取,其中清蛋白的提取为:加2m L蒸馏水,在研钵中充分研磨后移入离心管,振荡30m i n,离心15 m i n取上清液,连续提取3次后并入50m L容量瓶待测;球蛋白㊁醇溶蛋白和麦谷蛋白分别用10%N a C l㊁70%乙醇和0.2%的N a O H进行提取,提取过程同清蛋白,提取液中的氮含量用凯氏定氮法测定㊂1.3.4肥料农学效率及偏生产力肥料农学效率及偏生产力参考黄明等[12]描述的方法进行计算㊂氮(磷㊁钾)肥农学效率(k g/k g)=[施氮(磷㊁钾)区的籽粒产量-不施氮(磷㊁钾)区的籽粒产量]/施氮(磷㊁钾)量(k g/h m2)氮(磷㊁钾)肥偏生产力(k g/k g)=施氮(磷㊁钾)区的籽粒产量(k g/h m2)/施氮(磷㊁钾)量(k g/h m2) 1.4数据处理采用M i c r o s o f t E x c e l2019和S P S S23软件数据整理,用L S D法进行显著性检验,用M i c r o s o f tE x c e l 2019软件制图㊂2结果与分析2.1秸秆还田和有机肥配合替代化肥对旱地玉-麦一年两熟种植下作物产量的影响由图2可知,与C K相比,N P K和S O R F处理均能增产,玉米和冬小麦分别提高22.4%~34.7%和26.8%~30.7%,但N P K和S O R F处理的增产效应因作物而异㊂玉米生长季,与N P K处理相比,S O R F在2015 2016年和2019 2020年度显著提高67.0%和10.4%,5年平均产量显著提高10.0%;小麦生长季,N P K 和S O R F处理间连续5年的产量差异均不显著㊂对玉-麦周年产量分析可知,N P K和S O R F处理5年均值分别达到8376,8693k g/h m2,二者差异不显著,但较C K分别显著提高26.2%和31.0%㊂可见,S O R F 处理对玉米增产能力高于N P K,而两者间小麦和周年产量的差异并未达显著水平㊂2.2秸秆还田和有机肥配合替代化肥对玉-麦一年两熟种植下作物籽粒氮磷钾养分含量的影响由表2可知,与C K相比,N P K和S O R F均可显著提高作物籽粒氮磷钾含量,其中玉米籽粒氮磷钾含量分别显著提高5.7%,27.3%,11.6%和12.8%, 34.7%,16.7%,小麦籽粒氮磷钾含量分别显著提高31.9%,9.1%,29.0%和42.3%,13.8%,31.8%,表现为玉米籽粒磷含量提高幅度大,小麦籽粒氮钾含量提高幅度大㊂与N P K相比,S O R F使夏玉米和冬小麦籽粒氮含量分别显著提高6.7%和7.9%,但对籽粒磷钾含量的提高效应均未达到显著水平㊂2.3秸秆还田和有机肥配合替代化肥对玉-麦一年两熟种植下作物籽粒蛋白质含量和蛋白质产量的影响从表3可以看出,不同处理间玉米㊁小麦的籽粒蛋白质含量和蛋白质产量的差异均达到显著水平,且均表现为S O R F>N P K>C K㊂与N P K相比,S O R F 下玉米籽粒蛋白质含量和蛋白质产量分别显著提高6.7%和17.8%,小麦分别显著提高8.0%和6.3%,周年的蛋白质产量显著提高10.8%㊂说明秸秆还田配合有机肥替代部分化肥具有提高旱地玉-麦一年两熟种植下作物籽粒蛋白质含量和蛋白质产量的作用,且蛋白质含量表现为小麦增幅大于玉米,蛋白质产量表现为玉米大于小麦㊂2.4秸秆还田和有机肥配合替代化肥对玉-麦一年两熟种植下小麦籽粒蛋白质组分特征的影响进一步分析小麦籽粒蛋白组分特征(表4)发现,除S O R F较N P K籽粒球蛋白和谷醇比增幅不显著外(p>0.05),不同处理下籽粒各蛋白质组分含量㊁谷醇比㊁储藏蛋白含量均达到显著水平(p<0.05)㊂其中,与C K相比,S O R F和N P K的上述蛋白含量的增幅达14.1%~50.5%,且均以谷蛋白的增幅较大㊂与N P K相比,S O R F的清蛋白㊁醇溶蛋白㊁谷蛋白和贮藏蛋白含量分别显著提高9.9%,3.8%,7.5%,3.2%㊂可见,施用氮磷钾肥㊁秸秆还田和有机肥配合替代1/3氮磷钾肥都有利于提高旱地玉-麦两熟体系中冬小麦籽粒蛋白质各组分含量,并显著增加谷醇比和贮藏蛋白含量,优化蛋白组成,改善籽粒品质,且秸秆还田和有机肥配合替代1/3氮磷钾肥处理效果更佳㊂223水土保持学报第37卷Copyright©博看网. All Rights Reserved.注:柱上方不同小写字母表示同一年度不同处理间差异达到5%显著水平;柱内的连续折线表示各处理相较于对照的增产率㊂图2 秸秆还田配合有机肥替代化肥对玉米、小麦和周年产量的影响表2 秸秆还田配合有机肥替代化肥对玉-麦一年两熟种植下作物籽粒氮磷钾养分含量的影响单位:m g /g 处理夏玉米氮含量磷含量钾含量冬小麦氮含量磷含量钾含量C K12.36ʃ0.34c 2.16ʃ0.13b 3.29ʃ0.15b 18.18ʃ0.09c 2.97ʃ0.10b 2.14ʃ0.11b N P K13.06ʃ0.54b 2.75ʃ0.20a 3.67ʃ0.19a 24.02ʃ0.19b 3.24ʃ0.02a 2.76ʃ0.10a S O R F13.94ʃ0.09a2.91ʃ0.16a3.84ʃ0.60a25.93ʃ0.81a3.38ʃ0.07a2.82ʃ0.15a注:同列数据为平均值ʃ标准差;同列不同小写字母表示不同处理间差异达到5%显著水平㊂下同㊂2.5 秸秆还田和有机肥配合替代化肥对玉-麦一年两熟种植下作物氮磷钾肥农学效率和偏生产力的影响秸秆还田配合有机肥替代化肥对玉米㊁小麦以及周年氮㊁磷㊁钾肥农学效率和偏生产力具有显著的调节作用(图3)㊂分析肥料农学效率可知,S O R F 处理玉米㊁小麦和周年的平均氮肥农学效率分别为5.9,8.3,6.7k g /k g,较N P K 处理分别提高2.1,2.0,1.8k g /k g ,增幅分别为54.8%,31.2%,37.3%;小麦和周年平均磷㊁钾肥农学效率分别为10.4,25.7k g /k g 和13.8,34.3k g /k g ,较N P K 处理的增幅均为31.2%(小麦)和77.3%(周年)㊂S O R F 处理玉米㊁小麦和周323第4期 吴金芝等:秸秆还田和有机肥配合替代1/3化肥对旱地玉-麦产量㊁蛋白质含量和化肥利用效率影响Copyright ©博看网. All Rights Reserved.年的平均氮肥偏生产力分别为23.1,39.2,28.3k g /k g ,较N P K 处理显著提高2.1,12.3,4.9k g /k g ,小麦和周年平均磷㊁钾肥偏生产力分别为49.0,65.3k g /k g 和108.7,144.9k g /k g,较N P K 处理分别显著提高15.3,20.5k g /k g 和38.9,51.8k g /k g,增幅均为45.6%(小麦)和55.7%(周年)㊂表3 秸秆还田配合有机肥替代化肥对玉-麦一年两熟种植下作物籽粒蛋白质含量和蛋白质产量的影响处理夏玉米蛋白质含量/%蛋白质产量/(k g㊃h m -2)冬小麦蛋白质含量/%蛋白质产量/(k g㊃h m -2)周年蛋白质产量/(k g㊃h m -2)C K7.04ʃ0.19c 377.1ʃ22.6c 10.36ʃ0.05c 331.3ʃ6.7c 708.4ʃ16.1cN P K 7.45ʃ0.31b 540.5ʃ31.6b 13.69ʃ0.11b 819.3ʃ41.8b 1359.9ʃ56.4b S O R F 7.95ʃ0.05a636.5ʃ5.2a 14.78ʃ0.46a870.7ʃ3.5a1507.2ʃ10.7a 表4 秸秆还田配合有机肥替代化肥对玉-麦一年两熟种植下小麦籽粒蛋白质组分特征的影响处理清蛋白/%球蛋白/%醇溶蛋白/%谷蛋白/%谷/醇比贮藏蛋白/%C K2.13ʃ0.10c 1.35ʃ0.04b3.16ʃ0.03c3.23ʃ0.15c 1.02ʃ0.04b 6.39ʃ0.10cN P K 2.43ʃ0.01b 1.82ʃ0.02a 3.65ʃ0.02b 4.52ʃ0.10b 1.24ʃ0.02a 8.17ʃ0.12b S O R F2.67ʃ0.06a1.87ʃ0a 3.79ʃ0.01a4.86ʃ0.24a1.28ʃ0.04a8.65ʃ0.19a注:箱型框中实线和方框分别表示数据集中的中值和平均值;上下边界分别表示数据集的25%和75%位分数;上下水平短线表示数据集的5%和95%区间,箱外上下圆点分别表示数据集的最大值和最小值㊂图3 秸秆还田配合有机肥替代化肥对玉-麦一年两熟种植下作物氮磷钾肥农学效率和偏生产力的影响3 讨论3.1 秸秆还田配合有机肥替代化肥对玉-麦一年两熟种植下作物产量的影响前人研究表明,有机肥替代30%化肥[14]㊁替代25%化肥[15]㊁替代量低于43%[16]都可保障作物稳产㊂也有研究[17]表明,与单施化肥相比,有机肥替代25%和50%化肥时小麦和玉米产量都无显著变化,但继续增加替代比例会导致减产㊂本研究中,S O R F423水土保持学报 第37卷Copyright ©博看网. All Rights Reserved.与N P K处理相比显著提高夏玉米产量,5年平均增产10.0%,但小麦和周年产量无显著变化,说明秸秆还田配合有机肥替代麦季1/3化肥可稳定旱区玉-麦一年两熟种植下小麦产量,并且还可以显著提高玉米产量,这与前人[14-17]研究结果相一致㊂究其原因,玉米生育期内(6-9月)降雨量为211.3~437.7mm,占全年总量的47.8%~81.4%(图1),无秸秆覆盖条件下水分容易蒸发损失,从而造成干旱缺水,不利于产量形成和水分利用效率的提高,而秸秆还田配合有机肥替代化肥的处理,既具备秸秆覆盖减少水分无效蒸发的功能,又能发挥有机肥提高土壤中微生物数量和质量㊁活化土壤养分的作用,从而促进玉米对水肥的利用,进而提高产量,这与王道中等[18]的研究结果一致㊂然而,小麦季秸秆还田,其减少蒸发增加土温的作用较秸秆覆盖差,且全生育期降雨量93.7~322.7mm (图1),远低于450mm的需水要求[19],在需水关键期拔节至开花期(3 5月)降水量29.0~75.0mm(图1),水分胁迫使秸秆还田和有机肥的培肥保水作用无法得到充分发挥,最终导致小麦产量和水分利用效率较单施化肥并无显著优势㊂3.2秸秆还田配合有机肥替代化肥对玉-麦一年两熟种植下作物籽粒品质的影响谷物籽粒中养分含量高低,直接决定人们膳食中营养摄入,而营养品质特别是蛋白营养一直以来备受关注,且近年来愈发突出㊂前人[5]研究表明,谷物籽粒中营养品质同时受自身的遗传因素和外在环境条件影响,通过农艺措施调控外界环境条件,可以实现改善谷物营养品质的目的㊂已有学者[5-9,20]围绕施用化肥㊁有机肥替代㊁秸秆还田对谷物籽粒养分或蛋白质含量的影响已经进行较为系统的研究㊂本研究进一步证实,N P K和S O R F较C K显著提高玉米㊁小麦籽粒氮磷钾含量,从而显著提高籽粒蛋白质含量㊁蛋白质产量㊂S O R F较N P K也可显著提高籽粒蛋白质含量和蛋白质产量㊂说明长期不施肥会导致作物品质降低,而施肥可改善籽粒品质,尤其是S O R F处理效果突出,这与本试验中不同处理土壤中养分含量不同有关[3],也与土壤秸秆和有机肥中富含作物生长所需的营养元素和有机物质,秸秆+有机肥替代部分化肥利于有机无机肥平衡,可改善耕层土壤质量,从而实现小麦产量品质协同提升有关[21]㊂小麦籽粒蛋白质组分与其加工品质关系密切㊂籽粒中具有较高的贮藏蛋白含量有利于提高强筋小麦的加工品质[21]㊂其中,谷蛋白含量与沉降值和湿面筋含量正相关,谷蛋白和醇溶蛋白共同决定面团的黏弹性,且籽粒蛋白质含量受环境条件特别是水分的影响很大[22]㊂本研究表明,长期不施肥(C K)条件下,小麦籽粒中的蛋白组分含量显著降低,对馒头和面包加工品质不利㊂施肥可改善作物籽粒品质,且S O R F较N P K除球蛋白增幅不显著外可显著提高小麦籽粒中各蛋白质组分含量㊂说明秸秆+有机肥替代部分化肥有利于改善小麦蛋白组分,进而改善加工品质㊂谷/醇比是影响面包烘焙品质和馒头品质的一项重要指标,与沉降值㊁和面时间㊁面团稳定时间㊁拉伸面积和最大抗延阻力及面包品质均呈显著正相关,较高的谷/醇比可获得较高的面包比容和面包评分[21]㊂本试验条件下,S O R F和N P K较C K的谷/醇比显著提高,但S O R F较N P K增幅不显著㊂说明施肥可调节小麦籽粒谷/醇比,但秸秆+有机肥替代1/3化肥改善小麦籽粒谷/醇比的效应并不显著㊂3.3秸秆还田配合有机肥替代化肥对玉-麦一年两熟种植下作物氮磷钾肥利用效率的影响秸秆还田配合有机肥替代化肥是实现我国化肥零增长目标的重要措施,也是农业秸秆资源化以及协同提高化肥利用效率的有效途径㊂本研究中,与N P K处理相比,S O R F处理有利于提高玉-麦两熟种植体系氮㊁磷㊁钾肥农学效率和偏生产力,特别是小麦氮磷钾肥偏生产力分别显著提高12.3,15.3,20.5 k g/k g,达到39.2,49.0,65.3k g/k g,已经接近国际平均水平[2]㊂其主要原因可能是,秸秆还田和有机肥协同优化土壤水㊁肥等微环境,降低肥料径流及挥发损失,激发土壤中微生物活性,促进作物对养分的吸收利用,充分发挥其培肥保水㊁增产增效的功能[23];既能在作物关键需肥期(小麦和玉米均为拔节-开花期)迅速提供速效养分以供其营养生长需要,又能在灌浆期持续释放缓效养分以避免花后脱肥造成的籽粒灌浆不足和籽粒养分积累量下降等风险,发挥其化肥减量增效的作用[9]㊂前人的研究也得到类似的结果,如吕凤莲等[24]研究表明,有机肥替代25%化肥使玉-麦二熟体系的氮肥农学效率和偏生产力分别提高2.5,2.1k g/k g;张奇茹等[25]研究表明,有机肥替代35%化肥可使旱地小麦氮㊁钾肥农学效率和偏生产力分别显著提高6.30,10.9k g/k g和8.8,13.9k g/k g㊂4结论施肥可显著提高旱地玉-麦两熟种植体系的作物产量,籽粒蛋白质及其组分含量㊂与N P K相比, S O R F处理使旱地玉-麦一年两熟体系周年氮㊁磷㊁钾肥农学效率和偏生产力分别提高1.8,11.2,15.0 k g/k g和4.9,38.9,51.8k g/k g,从而在保证冬小麦和523第4期吴金芝等:秸秆还田和有机肥配合替代1/3化肥对旱地玉-麦产量㊁蛋白质含量和化肥利用效率影响Copyright©博看网. All Rights Reserved.周年产量稳定的同时,使夏玉米产量提高10.0%,并且可显著提高籽粒蛋白质含量和蛋白质产量,以及小麦籽粒中除球蛋白外的各蛋白质组分含量㊂因此,秸秆还田和有机肥配合替代1/3N P K肥是适宜于旱地玉-麦一年两熟区增产提质增效的施肥模式㊂参考文献:[1] C h e nXP,C u i ZL,Z h a n g FS,e t a l.P r o d u c i n g m o r eg r a i nw i t hl o w e re n v i r o n m e n t a l c o s t s[J].N a t u r e,2014,514:486-489.[2]闫湘,金继运,梁鸣早.我国主要粮食作物化肥增产效应与肥料利用效率[J].土壤,2017,49(6):1067-1077. [3]赵凯男,吴金芝,李俊红,等.秸秆和有机肥配合替代部分化肥提高作物水分利用率减少土壤硝态氮残留[J].植物营养与肥料学报,2022,28(10):1770-1781. [4]季佳鹏,赵欣宇,吴景贵,等.有机肥替代20%化肥提高黑钙土养分有效性及玉米产量[J].植物营养与肥料学报,2021,27(3):491-499.[5]裴雪霞,党建友,张定一,等.化肥减量配施有机肥对旱地小麦产量㊁品质和水分利用率的影响[J].水土保持学报,2021,35(4):250-258.[6]丁维婷,房静静,武雪萍,等.有机肥替代化肥不同比例对黑土土壤微生物学性质及春麦产量品质的影响[J].中国土壤与肥料,2021(2):44-52.[7]熊波,王琛,张莉,等.有机肥替代化肥对京郊夏播青贮玉米生长与饲料品质的影响[J].中国土壤与肥料,2021(3):141-147.[8]聂胜委,张巧萍,潘秀燕,等.牛粪秸秆堆肥替代20%全量化肥对小麦产量及品质的影响[J].山西农业科学, 2022,50(10):1408-1413.[9]黄明,吴金芝,李友军,等.耕作方式和秸秆覆盖对旱地麦豆轮作下小麦籽粒产量㊁蛋白质含量和土壤硝态氮残留的影响[J].草业学报,2018,27(9):34-44. [10]张礼军,鲁清林,汪恒兴,等.覆盖模式对不同类型旱地冬小麦土壤水温特征㊁籽粒品质和产量的影响[J].西北农业学报,2019,28(6):888-897.[11]王飞,李清华,何春梅,等.稻秸-有机肥联合还田对黄泥田水稻产能与化肥替代的影响[J].中国生态农业学报(中英文),2021,29(12):2024-2033. [12]黄明,王朝辉,罗来超,等.垄覆沟波及施肥位置优化对旱地小麦氮磷钾吸收利用的影响[J].植物营养与肥料学报,2018,24(5):1158-1168.[13]何照范.粮油籽粒品质及其分析技术[M].北京:中国农业出版社,1985:87-92.[14]邢鹏飞,高圣超,马鸣超,等.有机肥替代部分无机肥对华北农田土壤理化特性,酶活性及作物产量的影响[J].中国土壤与肥料,2016(3):98-104.[15] S u b e h i aSK,S e p e h y aS,R a n aSS,e t a l.L o n g-t e r me f f e c t o f o r g a n i c a n d i n o r g a n i c f e r t i l i z e r s o nr i c e(O r y-z a s a t i v a L.)y i e l d,a n d c h e m i c a l p r o p e r t i e s o f a n a c i d-i c s o i l i n t h ew e s t e r n H i m a l a y a s[J].E x p e r i m e n t a lA g-r i c u l t u r e,2013,49(3):382-394.[16]李永华,武雪萍,何刚,等.我国麦田有机肥替代化学氮肥的产量及经济环境效应[J].中国农业科学,2020,53(23):4879-4890.[17]李占,丁娜,郭立月,等.有机肥和化肥不同比例配施对冬小麦/夏玉米生长㊁产量和品质的影响[J].山东农业科学,2013,45(7):71-77.[18]王道中,花可可,郭志彬.长期施肥对砂姜黑土作物产量及土壤物理性质的影响[J].中国农业科学,2015,48(23):4781-4789.[19]徐建文,居辉,刘勤,等.黄淮海平原冬小麦不同生育期干旱变化及气候趋势影响[J].生态学报,2014,34(10):2765-2774.[20]李燕青,林治安,温延臣,等.不同类型有机肥与化肥配施对小麦品质的影响[J].植物营养与肥料学报,2016,22(6):1513-1522.[21] P e n g YC,Z h a oY,Y uZT,e t a l.W h e a t q u a l i t y f o r-m a t i o na n di t sr e g u l a t o r y m e c h a n i s m[J].F r o n t i e ri nP l a n t S c i e n c e,2022,13:e834654.[22]孙敏,葛晓敏,高志强,等.不同降水年型休闲期耕作蓄水与旱地小麦籽粒蛋白质形成的关系[J].中国农业科学,2014,47(9):1692-1704.[23]谢勇,赵易艺,张玉平,等.南方丘陵地区生物黑炭和有机肥配施化肥的应用研究[J].水土保持学报,2018,32(4):197-203,215.[24]吕凤莲,侯苗苗,张弘弢,等.塿土冬小麦-夏玉米轮作体系有机肥替代化肥比例研究[J].植物营养与肥料学报,2018,24(1):22-32.[25]张奇茹,谢英荷,李廷亮,等.有机肥替代化肥对旱地小麦产量和养分利用效率的影响及其经济环境效应[J].中国农业科学,2020,53(23):4866-4878.623水土保持学报第37卷Copyright©博看网. All Rights Reserved.。
菠菜(.)是藜科菠菜属植物。
根据联合国粮食及农业组织(FAO )的数据,我国菠菜每年的产量大约在2500万t 左右,占到了世界菠菜总产量的89.2%,是世界上最大的菠菜种植国和消费国[1]。
合理施肥是保证作物高产稳产的重要措施,有机无机结合是作物稳产的保证[2]。
研究表明化肥对我国粮食产量的贡献率约为40.8%[3]。
然而,由于长期大量使用,且施肥比例不合理,造成了土壤理化性状的劣化、肥效降低、产量降低等问题,制约了农业生产的整体效益,近几年,国家提出了“肥料零增加”的政策,目的是为了在保证粮食产量的前提下,尽可能地降低肥料的使用量,从而缓解农业生产对环境的不利影响。
研究表明,有机肥中含有丰富的氮、磷、钾、有机质等多种植物必需的营养物质,是非常优质的土壤改良剂和肥料[4];有机肥与化肥合理配施能改善土壤微生物群落、提高土壤养分供应强度,有利于土壤培肥和作物增产[5]。
不同土壤肥力一定施肥水平下具有最佳的有机肥替代率[6]。
本研究主要是探究生物有机肥和化肥配施对菠菜生长的影响机理,筛选出适宜菠菜生长的有机肥比例,为当地菠菜的高效优质和可持续发展提供科学合理的施肥方案和理论依据。
1材料与方法1.1试验材料试验于2022年3月在湖南省常德市湖南应用技术学院实习农场进行。
供试品种为“日本大叶菠菜”。
生物有机肥料是思威博,购于江苏思威博生物科技有限公司,N 、P 、K 的总营养成分为8%,有机物质含量为60%,有效活细菌数量为2亿/g ;供试化肥为洋丰复合肥(N-P 2O 5-K 2O )由湖北洋丰集团生产。
1.2试验设计试验共设8个处理,以N9(0kg 有机肥+0g 化肥)处理为对照,每个处理3次重复,共27个小区。
具体处理见表1,各小区面积为7m 2,防护行宽度为1.0m ,小区间排水沟及走道宽度为0.5m 。
1.3指标测定于播种后60天每个处理随机选取5株进行指标测量。
用直尺测定其叶长、叶宽、株高及株幅;并用SPAD-502Plus 叶绿素仪测定其叶绿素含量(SPAD 值)。
河流污水处理的相关论述1前言随着工业化和城市化的发展,水环境污染、水资源紧缺日益严重,水污染控制、水环境保护已刻不容缓。
我国现在新建城市或城区采用雨污分流制,但老城市或老城区大多仍然是雨污合流的排水体制。
许多合流污水是直接排放到水体。
而将旧合流制改为分流制,受现状条件限制大许多。
老城区建成年代较长,地下管线基本成型,地面建筑拥挤,路面狭窄,旧合流制改分流制难度较大。
合流污水的一大特点是旱季和雨季的水质、水量变化大,雨季污水B O D浓度低,不利于生化处理。
国家提出2010的我国城市污水处理率要求达到40%,因此研究有效的合流污水处理方法对加快城市污水处理步伐具有重要的意义。
本文针对合流污水处理的有关情况,谈一些个人看法。
2污水处理工艺要求我国目前不少城市,新城区与老城区并存,合流制与分流制并存。
因此,新建或扩建的污水处理厂,在满足城市总体规划和排水规划需要的同时,还应能达到如下要求:1.具备接纳旧城区合流污水的能力,具有较强的适应冲击负荷的能力。
污水处理厂污水来源包括两部分,一是新城区分流污水,二是老城区合流污水。
与合流污水相比,分流污水水质、水量变化幅度小得多,对污水处理厂调节缓冲的要求小得多。
对于合流污3工艺流程选择和特点说明泥得以增长;2、在亚硝化菌和硝化菌作用下,4结语击负荷的要求,设置缓冲池均衡水质、储存水量比较适宜。
2.通过多个氧化沟构成若干个串、并联运行方式,在适应进水水质、水量、季节性变化方面能够发挥重要作用。
3.通过安排适当的进出水口位置、回流污泥入口位置,氧化沟可形式一个倒置A2/0工艺,在去除B O D 的同时,能取得较好的氮磷去除效果4.熟化塘的应用,为处理水安全排放水体,能够提供可靠的技术保证。
熟化塘投资省、运行费用低、管理维护方面、污水处理与利用相结合,在防治水污染、保护水环境及生态环境综合治理方面具有明显优势。
如果美化熟化塘表观,设置喷泉等设施,形成供人们休闲、游乐的人工景点,协调城市建设中土地资源的合理配置,那么熟化塘占地面积较大这一不足就不会成为突出的问题。
紫杉醇的全合成路线2008 九月 12by infinteDanishefsky Taxol total synthesis From Wikipedia, the free encyclopediaThe Danishefsky Taxol total synthesis in organic chemistry is an important third Taxol synthesis published by the group of Samuel Danishefsky in 1996[1]two years after the first two efforts described in the Holton Taxol total synthesis and the Nicolaou Taxol total synthesis. Combined they provide a good insight in the application of organic chemistry in total synthesis.Danishefsky's route to Taxol has many similarities with that of Nicolaou. Both are examples of convergent synthesis with a coupling of the A and the C ring from two precursors. The main characteristic of the Danishefsky variant is the completion of the oxetane D ring onto the cyclohexanol C ring prior to the construction of the 8-membered B ring. The most prominent starting material is the Wieland-Miescher ketone. This compound is commercially available as a single enantiomer and the single chiral group present in this molecule is able to drive the entire sequence of organic reactions to a single optically active Taxol endproduct. The final step, the tail addition is identical to that of Nicolaou and is based on Ojima chemistry.[2]In terms of raw material shopping, this taxol molecule consists of the aforementioned Wieland-Miescher ketone, 2-methyl-3-pentanone, lithium aluminium hydride, osmium tetroxide, phenyllithium, pyridiniumchlorochromate, the Corey-Chaykovsky reagent and acryloyl chloride. Key chemical transformations are the Johnson-Corey-Chaykovsky reaction and the Heck reaction.Contents∙ 1 Synthesis D ring∙ 2 Synthesis C ring∙ 3 Synthesis A ring∙ 4 Synthesis B ring∙ 5 Tail addition∙ 6 See also∙7 References[edit] Synthesis D ring第一张图显示D环的合成由Wieland-Miescher 酮开始。
有机化学和无机化学英文Organic chemistry, huh? That's the study of carbon-based compounds and their reactions. It's like a puzzle where you're trying to figure out how molecules dance together. And let me tell you, it's super fascinating! You get to learn about all sorts of crazy molecules that have all these unique properties.On the other hand, inorganic chemistry is all about the non-carbon compounds. It's kind of like the "other side" of chemistry. You study metals, salts, acids, and bases. It's got its own set of rules and reactions that are just as fascinating as organic chemistry, but in a different way.One thing I love about organic chemistry is that it's so visual. You can draw out these molecules and see how they fit together like puzzle pieces. It's like art and science combined. Plus, it's really hands-on too. You get to do all sorts of experiments in the lab and see these reactions happen for real.But inorganic chemistry is cool in its own way. It's more about the properties and behaviors of these compounds. You learn how they react with each other and how they're used in everyday life. It's got its own beauty, too, justin a different way.So which one's better? Well, that's a tough question.It really depends on what you're interested in. If you like puzzles and visual stuff, then organic chemistry might be for you. But if you're more into properties and applications, then inorganic chemistry could be your thing. Either way, they'。
收稿日期:2018-09-27;修回日期:2018-10-17基金项目:福建省科技计划项目(2017N0058)作者简介:李锋,男,副研究员,研究方向为蔬菜育种与栽培技术。
E-mail :379824055@‘寿宁山冬乌’是十字花科芸薹属不结球白菜的变种,为福建省寿宁县特色蔬菜,现已有100多年的栽培历史,年种植面积超过70hm 2。
其外形美观,耐寒性强,经霜打后风味更佳,是高海拔地区调剂“冬缺”和“春淡”的理想蔬菜。
近40年来,由于化学肥料养分含量高,使用方便,使农户形成了偏施化肥的习惯,造成土壤板结、酸化,结构变差,肥力下降,理化性状变劣[1-2],特别是土壤中硝态氮大量累积,易导致蔬菜产品硝酸盐含量增多,品质下降,危及人体安全。
研究表明,施肥量与蔬菜硝酸盐含量呈正相关,但过量施肥不仅不会促进产量的增加,反而会降低产量,影响蔬菜的营养品质[3-4]。
当前,通过推广秸秆综合利用、绿肥种植、畜禽粪污还田利用等,推进农业供给侧结构性改革,已经成为农业生产的主要方向。
关于有机肥替代部分化肥对结球白菜、甘蓝、花椰菜、小白菜等蔬菜的产量和品质的研究已有较多报道[5-9],但在化肥减量配施不同有机肥种类对小不同施肥模式对小白菜生长及品质的影响李锋,池福铃,阮惠明,何毓光,吴寿华(福建省宁德市农业科学研究所福建福安355003)摘要:以‘寿宁山冬乌’为试验材料,进行化肥减量配施有机肥的试验,研究5种不同施肥模式对小白菜植株农艺性状、产量和品质的影响,旨在为菜田的合理施肥与小白菜的绿色生产提供理论依据。
试验结果表明,在等氮量施用情况下,施用纯化肥的小白菜单株质量、株高、叶片长和产量均极显著高于施用有机肥和化肥各半的,但在开展度、叶片数和叶片宽等3个指标差异不显著;施用有机肥和化肥各半的还原糖和维生素C 含量均高于施用纯化肥的,粗纤维和硝酸盐含量均低于施用纯化肥的,差异均达极显著水平;在3种有机肥替代化肥处理中,还原糖和维生素C 含量随着有机质含量的增加而增加,而粗纤维和硝酸盐含量随着有机质含量的增加而降低。
农药名词英汉对照一、农药名称与分类农药(Pesticides)天然农药(Naturalpesticides)无机农药(Inorganicpesticides)有机合成农药(Orgenosyntheticpesticides) 化学农药(Chemicalpesticides)生物农药(Biologicalpesticides)微生物农药(Microbialpesticides)植物性农药Botanicalpesticides)广谱性农药(Broadspectrumpesticides)高毒农药(Highlytoxicitypesticides)中毒农药(Middletoxicitypesticides)低毒农药(Lowtoxicitypesticides)残留性农药(Residualpesticides)持久性农药(Persistencypesticides)无公害农药(Non-publichazardspesticides)仿生农药(Biomimeticpesticides)第一代农药(First-generationpesticides)第二代农药(Second-generationpesticides)第三代农药(Third-generationpesticides)第四代农药(Fourth-generationpesticides)限制性杀虫剂杀虫剂使用的农药(Restrictedapplicationpesticides)水溶性农药(Water-Solublepesticides)油溶性农药(Oil-Solublepesticides)超高效农(Ultrahighefficiencypesticides)农药名称(PesticideName)通用名称(CommonName)商品名称(TradeName)化学名称(ChemicalName)缩写名称(AbbreviationName)试验代号(codenumber)中文名称(ChineseName)农药分类(PesticideClassification)杀虫剂(Insecticides)杀虫谱(Insecticidalspectrum)广谱性杀虫剂(Broadspectruminsecticide) 选择性杀虫剂(Selectiveinsecticide)内吸性杀虫剂(Systemicinsecticide)植物性杀虫剂(Plantinsecticide)微生物杀虫剂(Microbialinsecticide)矿物油杀虫剂(Mineraloilinsecticide)无机杀虫剂(Inorganicinsecticide)有机合成杀虫(Organosyntheticinsecticide) 有机氯杀虫剂(Organochlorineinsecticide)有机磷杀虫剂(Organophosphorusinsecticide) 有机氮杀虫剂(Organicnitrogenousinsecticide) 拟除虫菊酯类杀虫剂(Pyrethroidinsecticide)胃毒剂(StomachPoison)触杀性杀虫剂(Contactinsecticide)熏蒸性杀虫剂(Fumigantinsecticide)混合杀虫剂(Mixedinsecticide)神经毒剂(Neurotoxin,Nervepoison)拒食剂(Antifeedants,Feedingdeterrent)忌避剂(Repellent)引诱剂(Attractant)不育剂(Chemosterilant)昆虫生长调节剂(Insectgrwothregulators)昆虫内激素(Insecthormone)蜕皮激素(MoetingHormone)保幼激素(JuvenileHormone,J.H)脑激素(Brainhormone)昆虫信息素(Insectpheromone)聚集信息素(Aggregationpheromone)性信息素(Sexpheromone)几丁质抑制剂(chitinsynthesisinhibitor) 杀藻剂(Algaecide)杀灌木剂(Brushkiller)杀菌剂(Fungicide,Bacteriocide)杀菌谱(Fungicidalspectrum)杀菌活性(Fungicidalactivity)广谱性杀菌剂(Broadspectrumfungicide) 专效性杀菌剂(Narrowspectrumfungicide) 保护性杀菌剂(Protectivefungicide)治疗性杀菌剂(Curativefungicide)内吸性杀菌剂(Systemicfungicide)非内吸性杀菌剂(Unsystemicfungicide)铲除性杀菌剂(Eradicantfungicide)无机杀菌剂(Inorganicfungicide)有机合成杀菌剂(Organosyntheticfungicide)有机硫杀菌剂(Organicsulfurfungicide)有机磷杀菌剂(Organophosphorusfungicide)有机氯杀菌剂(Organochlorinefungicide)有机杂环杀菌剂(Organicheterocyclicfungicide)植物性杀菌剂(Botanicalfungicide)病菌细胞组分合成抑制剂(Cellcomponentofgermsynthesisinhibitor)病菌能量合成抑制剂(Germenergysynthesisinhibitor)种子处理剂(Seedtreatment)种子消毒剂(Seeddisinfectant)土壤消毒剂(Soildisinfectant)农用抗生素(antibioticfungicide)效价(Titer,Titre)杀线虫剂(Nematicide)杀鼠剂(Rodenticide)无机杀鼠剂(Inorganicrodenticide)有机杀鼠剂(Organicrodenticide)植物性杀鼠剂(Botanicalrodenticide)抗凝血性杀鼠剂(Anticoagulantrodenticide)急性杀鼠剂(Acuterodenticide)杀螨剂(Miticide,Acaricide)植物激素(Planthormone)植物生长调节剂(Plantgrowthregulator)烃类植物生长调节剂(Hydrocarbonplantgrowthregulator) 三唑类植物生长调节剂(Triazoleplantgrowthregulator)有机磷类植物生长调节剂(Organophosphorousplantgrowthregulator)细胞分裂素(Cytokinins)催熟剂(Ripener)保鲜剂(Antistalingagent)催芽剂(Forcedgerminationagent)脱叶剂(Defoliant,Defoliator)生长阻滞剂(Growthretardant,Dwarfingagent)干燥剂(Desiccant)疏花疏果剂(Flowerandfruitthinningagent)休眠复苏剂(Dormancybreaker)除草剂(Herbicide,Weedkiller,Grasskiller)杀草谱(Herbicidalspectrum)杀草活性(Herbicidalactivity)广谱性除草剂(Broadspectrumherbicide)选择性除草剂(Selectiveherbicide)触杀型除草剂(Contactherbicide)激素型除草剂(Hormonetypeherbicide)输导型除草剂(Translocatableherbicide)灭生性除草剂(Sterilantherbicide)混合型除草剂(Mixedherbicide)生物除草剂(Biologicalherbicide)芽前除草剂(Pre-emergenceherbicide)播前除草剂(Pre-sowingherbicide)茎叶处理剂(Stemandlefttreatment)除草剂解毒剂(Antidote)光合抑制剂(Photosynthesisinhibitor)有丝分裂抑制剂(Mitosisinhibitor)叶绿素抑制剂(Chlorophyllsynthesisinhibitor) 无机除草剂(Inorganicherbicide)有机合成除草剂(Organosynthesisherbicide)苯甲酸类除草剂(Benzoicherbicide)苯氧羧酸类除草剂(Phenoxyherbicide)酚类除草剂(Phenolicherbicide)醚类除草剂(Diphenyletherherbicide)酰胺类除草剂(Anilideherbicide)硝基苯胺类除草剂(Nitroanilineherbicide)脲类除草剂(Ureaherbicide)磺酰脲类除草剂(sulfonylureaherbicide)咪唑啉酮类除草剂(Imidazoloneherbicide)氨基及硫代氨基甲酸酯类除草剂(Carbamateandthiolcarbamateherbicide)三氮苯类除草剂(Triazineherbicide)有机磷类除草剂(Organophosphorusherbicide)脂肪族类除草剂(Aliphaticherbicide)杂环类除草剂(Heterocyclicherbicide)超高效除草剂(Ultra-highpotencyherbicide) 二、农药加工与剂型农药加工(Pesticideprocess)原药(Technicalmaterial,简称TC)原粉(Crudepowder)原油(Crudeoil)有效成分(Activeingredient)农药制剂(formulation)固体制剂(solidformulation)液体制剂(Liquidformulation)气体制剂(Gasformulation)母粉(Dustbases)母液(Mothersolution,Motherwater)剂型(Typeofformulation)粉剂(Dust)气流粉碎(Aircurrentshiver)机械粉碎(Mechanicalshiver)无飘移粉剂(Driftlessdustformulation)超微粉剂(Flo-dust)追踪粉剂(Trackingpowder)分散度(Dispersity,Dispersiondegree)分散体系(Dispersesystem)可湿性粉剂(Wettablepowder)可溶性粉剂(Watersolublepowder)颗粒剂(Granule)水分散性颗粒剂(Waterdispersiblegranule) 微粒剂(Micro-granule)大粒剂(Macro-granule)细粒剂(Finegranule)挤压造粒(Extrusiongranulation)吸附造粒(Absorbtiongranulation) 包衣造粒(Coatinggranulation)滚动造粒(Ballupgranulation)乳油(Emulsifiableconcentrate) 乳状液(Emulsion)浓乳剂(concentrateemulsion)水剂(Aqueoussolution)油剂(Oilsolution)胶体剂(colloidalagent)胶悬剂(Flowableformulation)乳膏(Emulsifiablepaste)片剂(Tablet)块剂(Block)胶囊剂(Capsuleagent)微胶囊剂(Microcapsule)超低容量喷雾剂(Ultralowvolumeagent)缓释剂(Controlreleaseformulation)物理型缓释剂(Physicaltypecontrolreleaseformulation) 化学型缓释剂(Chemicaltypecontrolreleaseformulation) 烟剂(Smokegenerator)气雾剂(Aerosoldispenser)种子包衣剂(Seedcoating)水面飘浮剂(Watersurfaceleafingagent)熏蒸剂(Fumigant)抗萎剂(Anti-wiltingagent)警戒色(Warningdye,Warningcolor)警戒气(Warninggas)农药辅助剂(Supplementaryagent)表面张力(Surfacetension)表面活性剂(Surfaceactiveagent)离子型表面活性剂(Ionicsurfaceactiveagent) 阴离子型表面活性剂(Anionicsurfactant)阳离子型表面活性剂(Cationicsurfactant)非离子型表面活性剂(Nonionicsurfactant)混合型表面活性剂(Mixturesurfactant)天然表面活性剂(Inartificialsurfactant)亲水亲油平衡值(Hydrophile-lipophilebalance) 无机性值(Inorganicvalue)乳化作用(Emulsification)乳化剂(Emulsifyingagent)乳化性(Emulsifiability)水包油型乳状液(Emulsion,oilinwater)油包水型乳状液(Emulsion,waterinoil)湿润剂(Wettingagent)接触角(Contactangle)展开剂(Spreader)扩散剂(Spreader)扩散系数(Diffusioncoefficient)分散剂(Dispersingagent)渗透剂(Penetratingagent,Penetrant) 固着剂(Adhesiveagent,Stickyspreade) 抑泡剂(Foamdepressant)发泡剂(Foamingadjuvant)溶剂(Solvent)助溶剂(Latentsolvent)增溶溶解(Solubilization)助悬剂(Helpsuspendagent)增效剂(Synergist)增效作用(Synergism)增效比(Synergisticspecificvalue)稳定剂(Stabilizingagent,Stabilizer) 减活化剂(Deactivatingagent)光敏剂(Photosensitizer)防氧化剂(Antioxidant)抗冻剂(Antifreezer)抗凝剂(Anticoagulant)防崩解剂(Anti-breakupagent)填充剂(Soliddiluent,Carrier)非活性成分(Inertingredient)稀释剂(Diluent)稀释率(Diluentratio)液体稀释剂(Liquiddiluent)陶土(Potteryclay)高岭土(Kaoline)硅藻土(Diatomearth)粘土(Clay)皂素(Saponin)皂角(Gledilschiasinensis)纸浆废液(Paperpulpliquidwaste) 茶籽饼(Tea-seedcake)拉开粉(NekalBX)助燃剂(Combustionimprover)发烟剂(Fumingagent)消燃剂(Flameinhibitingagent) 三、农药使用技术、药效及毒理喷雾法(Spray,spraying)高量喷雾法(Highvolumespray)常量喷雾法和常规喷雾法中容量喷雾法(Middlevolumespray) 低容量喷雾法(Lowvolumespray)超低容量喷雾法(Ultralowvolumespray)航空超低容量喷雾法(Aviationultralowvolumespray) 针对性喷雾(Placementspraying)飘移累积性喷雾(Incrementaldriftspraying)飘移性指数(Driftindex)喷幅(Applicationwidth,Swsthwidth)有效喷幅(Effectiveapplicationwidth)雾化(Atomization)雾化原理(Atomizingprinciple)雾滴的弹跳(bouncingofdroplet)喷洒速度(Applicationspeed)喷洒高度(Applicationheight)雾锥角(Coneangle)空心雾锥(Hollowcone)实心雾锥(Solidcone)压力雾化法(Pressureatomization)旋转离心雾化法(Rotatingatomization)转碟雾化法(Rotatingdiscatomization)静电雾化法(Electrostaticatomization)撞击雾化法(Impactatomization)液膜破裂(Liquidsheetperforation)液丝断裂(Ligamentdisintegration)雾滴(Spraydroplet)雾滴群(Spraycloud)雾滴密度衰减(Attenuationofdropletsdensity) 雾滴衷减系数(Attenuationcoefficient)喷粉法(Dusting)撒颗粒法(Granuleapplication)浸种浸苗法(Seedsoakingandimmersionshoot) 加药温汤浸种法(Modifiedhotwatertreatment)毒土法(Incorporation,toxinsoilmethod) 毒饵法(Poisonbaitmethod)泼浇法(Pouringmethod)甩施法(Free-swingingapplication)点涂法(Pointbrushmethod)熏蒸法(Fumigation)空间熏蒸(Spacefumigation)土壤熏蒸(Soilfumigation)拦种法(Seeddressing)环毒法(Poisonring)灌注法(Drenchandfillmethod)轮换使用(Rotationapplication)混合使用(Combinedapplication)混合相容性(Compatibility)点播穴施药(Pricking-inholetreatment)垄作施药(Ridgeapplication)垄间施药(Furrowapplication)带(条)状施药(Bandapplication,Stripeapplication)株间施药(Cropspaceapplication)植株根部施药(Plantfootapplication)局部施药(Topicalapplication)全面施药(Overallapplication)定向施药(Directedapplication)秋季施药(Autumnapplication)土壤处理(Soiltreatment)土壤消毒(Soildisinfection)水面施药(Paddywaterapplication,Submergedapplication) 混土施药法(Mixedsoilapplication)树干注射(Trunkinjection)树干涂抹(Barktreatment)叶面喷洒(Foliarapplication)种子消毒法(Seeddiskinfection)合理用药(properapplication)安全用药(Safeapplication)对症下药(Placementsymptomapplication) 适量用药(Properrateofapplication)适时用药(Punctualapplication)避毒措施(Evasiontoxicitymeasures)播前施药(Pre-sowingapplication)播后施药(Post-sowingapplication)芽前使用(Pre-emergenceapplication)芽后使用(Post-emergenceapplication)使用时期(Permissibleperiodofapplication) 衡释倍数(Dilution)药效(Efficiency)药效期(Periodofefficacy)流失(Runoff)渗漏(Permeability-weepage)飘移(Drift)蒸发(Evaporate)再分布作用(Redistribution)雾粒(Dropletandparticle)有效面积(Biocidalarea)半数致死距离(LDist50)药剂回收率(Recoveryofpesticide)叶面积指数(Leafareaindex,LAI)展开系数(Spreadingfactor)叶表面糙度(Roughnessofleafsurface)生物最佳粒径(Biologicaloptimumdropletsize,BODS) 靶标(Target)作用点(Siteofaction,Targetpoint)作用方式(Modeofaction)光活性化(Photoactivation)乙酰胆碱(Acetylcholine)乙酰胆碱酯酶(Acetylcholinesterase,AchE)乙酰胆碱受体(Acetylcholineaccepter)微粒体氧化酶(Microsomefunctionoxidase,MFO) 靶子酶(Targetenzyme)玉米酮(MBOA)酰胺水解酶(Amidehydrolyticenzyme)毒性基团(Toxicgroup)结合作用(Conjugation)希尔反应(Hillreaction)化学调节(Chemicalregulation)干涉作用(Crossprotection)表面化学治疗(Surfactchemotherapy)外部化学治疗(Crustchemotherapy)内部化学治疗(Internalchemotherapy)化学治疗指数(Chemotherapeuticindex)杀菌作用(Fungicidalaction)抑菌作用(Fungistaticaction)阻止作用(Inhibitaction)时差选择性(Differenceoftimeselectivity)位差先择性(Positiondifferenceselectivity)形态差异选择(Morphologicdifferenceselectivity) 生理选择性(Physiologicaldifferenceselectivity) 生化选择性(Biochemicaldifferenceselectivity) 属间选择性(Inter-generaselectivity)选择性指数(Selectivityindex)毒力(Toxicity)相对毒力指数((Relativetoxicityindex)有效浓度(Availabilityconcentration)半数抑制剂量(Medianinhibitiondose,)半数击倒时间(Mediankncokdowntime,KT50)半数致死时间(Medianlethaltime,LT50)致死中浓度(Medianlethalconentration,LC50)绝对致死浓度(Absolutelethalconcentration) 四、农药对人畜的毒性毒性(Toxicity)农药中毒(Pesticideintoxication)致死中量(Medianlethaldose,LD50)忍受极限中浓度(Mediantolerancelimit,TLm)最低中毒剂量(Minimaltoxiclevel)最大安全剂量(Maximalsafetydose)最高无作用剂量(Maximumnon-effectlevel,MNL)最大耐受浓度(Maximaltolerancelimitconcentration,MLC) 毒效比值(Toxiceffectratio)急性毒性(Acutetoxicity)急性中毒(Acuteintoxication)亚急性毒性(Subacutetoxicity)慢性毒性(Chronictoxicity)慢性中毒(Chronicintoxication)残留毒性(Residualtoxicity)累积毒性(Cumulativetoxicity)吸入毒性(Inhalationtoxicity)口服毒性(Oraltoxicity)经皮毒性(Dermaltoxicity)生殖毒性(Reproductivetoxicity)神经毒性(Neurotoxicity,Nervetoxicity)选择毒性(Selectivetoxicity)鱼毒(Fish-toxicity)二次毒性(Secondaryhazardtoxicity) 二次中毒(Secondaryintoxication)迟发性神经毒性(Delayedneurotoxicity) 三致性(Tri-pathogenicity)致癌性(Carcinogenicity)致畸性(Teratogenicity)致突变性(Mutagenicity)突变指数(Mutagenicityindex)致肿瘤性(Oncogenicity)一般毒性试验(Generaltoxicitytest)特殊毒性试验(Specifictoxicitytest)急性毒性试验(Acutetoxicitytest)慢性毒性试验(Chronictoxicitytest)致癌试验(Carcinogenicitytest)致畸试验(Teratogenicitytest)Ames试验(Amestest)一生毒性试验(Lifespantoxicitytest)三代生殖试验(Tri-generationtest)皮肤刺激性(Skinirritation)粘膜刺激性(Mycosisirritation)口腔给药(Oraladministration)皮触给药(Dermaladministration)腹腔投药(Intraperitonealadministration) 生产性中毒(Productoryintoxication)非生产性中毒(Non-productoryintoxication) 五、农药对生态环境的作用化学防治(Chemicalcontrol)物理防治(Physicalcontrol)生物防治(Biologicalcontrol)农业防治(Agriculturalcontrol)综合防治(Integratedcontrol)生态系统(Ecologicalsystem,Ecosystem)生态平衡(Ecologicalequilibrium)生态影响(Ecologicaleffect)生态可塑性(Ecologicalplasticity)生物群落(Biocoenosium)农药降解(Pesticidedegradation)农药归宿(Pesticidefate)生物降解(Biologicaldegradation)生物降解指数(Biologicaldegradationindex) 非生物分解(Nonbiologicaldegradation)微生物分解(Microbialdegradation)衍生(Derivation)异构化(Isomerization)光化(Photochemicalreaction) 裂解(Fragmentation)轭合(Conjugate)降解曲线(Degradationcurve) 降解产物(Degradationproduct) 母体化合物(Parentcompound) 风化(Weathering)土壤中行为(Behaviourinsoil)土壤中移动(Movementinsoil) 地表径流(Surfacerunoff)淋溶性(Eluviation)农药代谢(Pesticidemetabolism) 代谢途径(Metabolicpathway) 钝化(Deactivation)活性化(Activation)共同代谢(Co-metabolism)解毒代谢(Detoxicationmetabolism) 体内异物(Xenobiotics)田间小气候(Fieldmicroclimate)种群复起现象(Pestoverrun)有害生物(Injuriousbiota)防治对象(Targetorganisms)杂草(Weed)一年生杂草(Annualweed)多年生杂草(Perennialweed)水田杂草(Paddyfieldweed)旱田杂草(Uplandfieldweed)单子叶杂草(Monocotyledonousweed) 双子叶杂草(Dicotyledonweed)深根性杂草((Deep-rootedweed)恶性杂草(Viciousweed)寄生性杂草(Parasiticalweed)害虫(Pest,Insect,Injurious)咀嚼式口器害虫(Masticatorymouthpartsinsect)刺吸式口器害虫(Suckingmouthpartsinsect)虹吸式口器害虫(Siphonmouthpartsinsect)舐吸式口器害虫(Raspingsuckingmouthpartsinsect) 锉吸式口器害虫(File-suckingmouthpartsinsect)植食性害虫(Plant-feedinginsect)地下害虫(Subterraneousinsect)卫生害虫(Hygienicalinsect)线虫(Eelworm)螨虫(Mites)病原物(Pathogenousorganism)真菌病害(Mycosis)细菌性病害(Bacteriosis,Bacterialdisease) 植物病毒病(Plantvirusdisease)鼠类(Rodent)天敌(Naturalenemy)低等动物(Lowlyanimal)温血动物(Warmbloodedanimal)药害(Phytotoxicity)急性药害(Acutephytotoxicity)慢性药害(Chronicphytotoxicity)残留药害(Residualphytotoxicity)二次药害(Secondaryphytotoxicity)飘移药害(Drifthazard)混用药害(Mixedapplicationphytotoxicity) 误用药害(Mistakephytotoxicity)过量药害(Excessphytotoxicity)根部药害(Rootphytotoxicity)叶面药害(Foliagephytotoxicity)敏感性药害(Susceptiblecrop)急性药害(Acutephytotoxicity)慢性药害(Chronicphytotoxicity)残留药害(Residualphytotoxicity)二次药害(Secondaryphytotoxicity)飘移药害(Drifthazard)混用药害(Mixedapplicationphytotoxicity) 误用药害(Mistakephytotoxicity)过量药害(Excessphytotoxicity)根部药害(Rootphytotoxicity)叶面药害(Foliagephytotoxicity)敏感性作物(Susceptiblecrop)抗药性(Resistant)自然抗药性(Naturalresistant)获得抗药性(Acquiredresistant)多重抗性(Multipleresistance)单一抗性(Singleresistance)交互抗性(Crossresistance)负交互抗性(Negativelycrossresistance)抗性系数(Resistancefactor)拮抗作用(Antagonism,Antagonisticaction) 异株克生作用(Allelopathyaction)异株克生化合物(Allelopathyaction)农药公害(Pesticidepublichazards)农药污染(Pesticidecontamination)直接污染(Directcontamination)土壤污染(Soilcontamination,Landpollution) 大气污染(Airpollution)水质污染(Waterpollution)食品污染(Foodpollution)人体污染(Manpollution)二次污染(Secondarypollution)农药残留(Pesticideresidual)残留性(Persistence,persistency)残留量(Residualdose)农药残留物(Pesticideresidues)残效(Residualeffect,Residualactivity)残效期(Periodofresidualeffect)最终残留(Terminalresidue)母体残留(Parentresidual)结合残留(Boundresidue)可忽略残留(Negligibleresidue)生物浓缩(Biologicalconcentration,Bioconcentration)食物链(Foodchain,Foodweb)生物浓缩系数(Biologicalconcentrationfactor)生物分解指数(Biologicaldecompositionindex)残留标准(Toleranceforpesticideresidue)每日允许摄入量(Acceptabledailyintake,ADI)安全系数(Safetyfactor)最大允许残留量(Maximumresiduelimit,MRL)食物系数(Foodfactor)农药半衰期(Half-lifeforpesticideresidue)安全间隔期(Pre-harvestinterval,Pre-harvestperiod) 农药安全使用标准(Thecriterionforsafeuse)六、农药登记、商品质量及残留分析农药登记(Registrationofpesticides)临时登记(Temporaryregistration)品种登记(Varietalregistration)补充登记(Supplementaryregistration)延长登记(Prolongationregistration)暂缓登记(Hesitationregistration)登记有效期(Validperiodofregistration)农药质量标准(Qualitylevelofpesticide)国家标准(Statestandard)部颁标准(Ministerialstandard)企业标准(Enterprisestandard)暂行规定(Tentativespecify)技术指标(Technicalindex)农药纯品(Pesticidepureproduct)提纯(Clean-up)农药工作标准品(Standardsampleofpesticide) 农药分析(Pesticideanalysis)农药杂质(Pesticidedirt)粉粒细度(Particlesizeofpowderandgranule) 筛目(Sievemesh)平均粒径(Meanparticlesize)稳定度(Stability)pH值(pHvalue)凝固点(Freezingpoint)沸点(Boilingpoint)闪点(Flashpoint)熔点(Meltingpoint)酸度(Degreeofacidity)含水量(Watercontent)标准硬水(Standardhardwater)悬浮性(Suspensibility)悬浮率(Percentageofsuspension)硬度(Hardness)结块(Nodeclod)絮结作用(Flocculation)结晶析出(Crystallizeseparator-out) 沉淀(Settlings)分层(Demixion,creaming)比重(Specificweight)假比重(Apparentspecificgravity)松密度(Bulkdensity)比表面积(Specificarea)静止角(Angleofrepose)水中崩解性(Disintegrabilityinwater) 贮藏试验(Storagetest)热贮藏试验(Heatstoragetest)冷贮藏试验(Coldstoragetest)化学分析(Chemicalanalysis)定性分析(Qualitativeanalysis)定量分析(Qantitativeanalysis)酸碱滴定法(Acid-basetitrationmethod)重量分析法(Gravimetry)容量分析法(Volumetry)非水溶液滴定法(Nonaqueoustitrationmethod)氧化还原滴定法(Oxidation-reductiontitrationmethod)碘量法(Iodimetry)溴化法(Brominatonmethod)银量法(Argentometrictitration)重氮化法(Diazoniummethod)气相色谱法(Gaschromatography)高效液相色谱法(Highefficiencyliquidchromatography)薄层色谱法(Thin-layerchromatography)薄层色谱扫描法(Thin-layerchromatographicscan-method)分光光度法(Spectrophotometry)红外光谱法(Infra-redspectrometry)含水量测定(Watercontentdetermination)粉粒细度测定(Particlesizedetermination)酸度测定(Aciditytest)乳状液稳定性测定(Emulsionstabilitytest)湿润性测定(Wettablepropertiestest)粉剂流动性测定(Dustfluiditytest)粉粒细度测定(Particlesizedetermination)酸度测定(Aciditytest)乳状液稳定性测定(Emulsionstabilitytest)湿润性测定(Wettablepropertiestest)粉剂流动性测定(Dustfluiditytest)悬浮率测定(Suspensibilitytest)苯不溶物测定(Nonsolubilitymattertobenznetest)闪点测定(Flashpointtest)熔点测定(Meltingpointtest)溶解度测定(Solubilitytest)粘度测定(DegreeofVisositytest)农药残留分析(Pesticideresidualanalysis)多组分残留分析(Multi-residueanalysis)残留分析前处理(Pro-determinetreatmentofresidueanalysis) 提取(Extract,Extraction)提取剂(Extractingagent)组织捣碎(Histologicalmash)液-液分配(Liquid-Liquiddistribution)净化(Decontamination,clean-up)浓缩(Enrichment)回收率(Percentrecovery,Recovery)检出界限(Detectablelimit,Limitofdetection)灵敏度(Sensibilty)精密度(Preciosity)准确度(Accuracy)残留动态(Residualdynamicstate)残留动态曲线(Residualdynamicstatecurve) 七、农药生物测定与田间试验农药生物测定与田间试验(Pesticidebioassay) 胃毒毒力测定(Stomachtoxicitydetermine) 触杀毒力测定(Contacttoxicitydetermine)内吸毒力测定(Systemictoxicitydetermine) 熏蒸毒力测定(Fumigationtoxicitydetermine) 杀菌剂毒力测定(Fungitoxicitydetermine)琼脂扩散法(Agardiffusionmethod)琼脂衡释法(Agardilutionmethod)孢子萌发试验(Sporegerminationtest)除草剂生物测定(Herbicidebioassay)鱼毒测定(Fishtoxicitydetermine)农药筛选试验(Pesticidalscreeningtest)残留农药生物测定(Residualpesticidebioassay)农药代谢的生物测定(Pesticidemetabolicproductbioassay) 致死中量测定(Medianlethaldosagedetermine)农药蓄积性试验(Pesticideaccumulatitytest)蓄积系数(Accumulationcoefficient)田间药效试验(Fieldefficacytest)田间小区试验(fieldplottest)田间大面积试验(Fieldextensivetest)农药残留试验(Pesticideresiduetest)单因子试验(Onefactortest)多因子试验(Multiplefactortest)对比试验(Pairingtest)对照处理(Checktreatment)空白处理(Blanktreatment)药害试验(Phytotoxitytest)盆栽试验(Potexperiment,potincubationtest) 定位试验(Locationtest)采样(Harvestsample)主观样本(Subjectivesample)客观样本(Objectivesample)死亡率(Percentagedead,Mortalityrate)校正死亡率(Adjustedpercentagedead)发病率(Diseaseincidence,Incidenceofdisease) 病情指数(Statusofdiseaseindex)植株减退率(Plantdiminishrate)鲜重减退率(Freshweightdiminishrate)八、农药商品经营农药商品经营(Commercialpesticideoperate)统购统销(Unitedpurchasingandmarketing)贮存(Storage)露天贮存(Openstorage)简易棚贮存(simpleshedstorage)仓库贮存(Storehousestorage)地下室贮存(Subterraneousstorage)堆码方式(Modeofstacking)农药商品包装(Commoditycasingofpesticide)包装标志(Packingidentifyingmarks)商品合格证(Commoditycertification)商品说明书(Commoditydescriptive)农药商品运输(Commoditypesticideconveyance) 公路运输(Highwaytransportation)铁路运输(Railwaytransportation)水路运输(Waterwaytransportation)航空运输(Aerialtransportation)植物医院(Planthospital)出厂价格(Factoryprice)零售价格(Retailprice)最后有效期(Terminationdateofqualityguaranteeterm) 九、农药合成及其它农药合成(Pesticidesynthesis)农药筛选(Pesticidescreening)合成路线(Syntheticroute)仿生合成(Mimetismsynthesis)相转移催化合成(Phasetransfercatalyzesynthesis)定向合成(Orientingsynthesis)转位重排(Indexrearrangementreaction)一步法合成(One-stepsynthesis)。
有机无机肥配施对红花大金元烤烟产质量的影响摘要用不同配比的沃土有机肥和烤烟专用复合肥作底肥,硝酸钾作追肥,测量烤烟生长数据,统计产量、产值,评价烟叶品质,探讨不同有机无机肥配施对烤烟品种红花大金元产量及品质的影响。
试验结果表明,施用有机肥能使红花大金元烟叶化学成分更加协调,品质明显提高;从种植经济性考虑,在施用有机肥过程中应注意施氮量、施肥方式、追肥时间、有机肥提供的纯氮量占总氮量的比例。
关键词烤烟;红花大金元;有机无机肥;配施;产量;品质EffectsofCombinedApplicationofOrganicFertilizerandChemicalFertilizeronYield andQualityofFlue-curedTobaccoforHonghuadajinyuanZHANG Xiao-long 1,2PU Zheng-cai 3CHEN Fang-rui 4JIANG Mei-hong 2WANG Lan 2ZHENG Wu 2DENG Guo-bin 2 *(1 School of Life Sciences,Yunnan University,Kunming Yunnan 650091; 2 Yunnan Reascend Tobacco Technology(Group).CO.,LTD;3 Shilin Filiale of Kunming Tobacco Company of Yunnan Tobacco Company;4 Hongyunhonghe Group Technology Centre)AbstractEffect of combined application of organic fertilizer and chemical fertilizer on yield and quality of flue-cured tobaccoforHonghuadajinyuan was studied. Different scales of organic fertilizer,the flue-cured tobacco special—purpose fertilize and potassium nitrate were mixed to employ in flue-cured tobacco,then the datas of growth,yield and quality were measured and stated. The results confirmed that the applications of organic fertilizer were superior to improve quality than the comparison,and the chemical compositions were apt in the upper leaf. Considering the economic aspect,the nitrogen application rate,fertilizer management,time of after fertilizer and the ratio of organic N should be concerned.Key wordsflue-cured tobacco;Honghuadajinyuan;organic fertilizer and chemical fertilizer;combining application;yield;quality在我国烤烟生产中,由于长期大量施用化肥,忽视有机肥的使用,造成土壤有机质含量下降,烟田土壤酸化、板结,烟叶营养比例失调,油分少,香气量不足,从而使烟叶产量和品质的提高受到了较大限制[1-3]。
作者简介郭标(1976—),男,安徽阜南人,本科,高级农艺师。
研究方向:农业技术推广工作。
收稿日期2023-03-28有机肥和无机肥配施对冬小麦产量、品质及土壤养分的影响郭标(阜南县农业技术推广中心,安徽阜南236300)摘要为明确阜南县冬小麦生产上最佳有机无机替代比例,本研究通过设置不同有机肥替代化肥比例的田间小区试验,分析了单施化肥优化施肥(OPT )、有机肥替代15.00%化肥(M15)、有机肥替代30.00%化肥(M30)和有机肥替代50.00%化肥(M50)对冬小麦产量、品质和土壤养分的影响。
结果表明,①适宜的有机无机配施比例有利于提高冬小麦的产量,冬小麦产量随着有机肥替代比例增加呈先升后降的趋势,各处理以M30最高,通过方程拟合得出在等养分条件下,有机肥替代化肥比例17.26%的冬小麦产量最高,为8679.00kg/hm 2。
②有机无机配施较优化施肥均能提高冬小麦品质指标,蛋白质含量、湿面筋含量、淀粉含量、沉降值和硬度指数分别提高0.83%~4.05%、0.36%~2.72%、0.25%~1.50%、3.11%~3.41%和0.42%~3.82%,均以M30处理最高。
③有机无机配施对土壤全氮、全磷、全钾含量没有明显影响,土壤有机质则随着有机肥配施比例的增加呈增加趋势,较优化施肥增加3.07%~7.01%,各配施处理间无显著性差异;土壤碱解氮、有效磷和速效钾含量随着有机肥配施比例的增加呈一定程度的增加,各配施比例间无显著性差异。
综合冬小麦产量、品质和土壤养分的结果,本试验条件下,有机肥替代化肥的适宜比例为30.00%。
关键词有机无机配施;冬小麦;产量;品质;土壤养分中图分类号S143文献标识码A文章编号1007-7731(2023)11-0082-04Effects of organic manure application combined with chemical fertilizerson the yield ,quality and soil nutrient of winter wheatGUO Biao(Funan Agricultural Technology Promotion Center,Funan 236300,China )Abstract To determine a suitable proportion of combined application organic and inorganic fertilizers winterwheat in Funan,a field experiment was carried out to investigate the effects of combined of different rates of organic fertilizer (0%,15.00%,30.00%and 50.00%)on winter wheat yield,quality and soil nutrients.The results showed that:①the appropriate proportion of organic and inorganic application was beneficial to improve the yield of winter wheat.The yield of winter wheat increased first and then decreased with the increase of the proportion of organic fertilizer,and the treatment of M30was the highest.According to the equation fitting,the highest yield was 8679.00kg/hm 2by the 17.26%organic fertilizer for chemical fertilizer.②The combined application of organic and inorganic fertilizer could improve the quality index of winter wheat,protein content,wet gluten content,starch content,settlement value and hardness index were increased by 0.83%-4.05%,0.36%-2.72%,0.25%-1.50%,3.11%-3.41%and 0.42%-3.82%,respectively.M30was the highest.③Compared with optimizing fertilization,the contents of total nitrogen,total phosphorus and total potassium in soil were not significantly affected and the organic matter was increased by 3.07%-7.01%under the combined application of organic and inorganic fertilizers.The contents of soil alkali-hydrolyzed nitrogen,available phosphorus and available potassium was no significant difference.Based on the results of yield,quality of winter wheat and soil nutrient contents.The appropriate ratio of organic fertilizer to chemical fertilizer was 30.00%.Keywords combined application;winter wheat;yield;quality;soil nutrient安徽阜南县位于安徽省西北部,黄淮平原南端,淮河中上游结合部北岸,面积1801km2,辖28个乡镇和1个省级经济开发区。
关于有机蔬菜和无机蔬菜的英语作文The Difference between Organic and Non-Organic Vegetables.Vegetables are a crucial part of a balanced diet, providing essential nutrients and fiber. However, the way these vegetables are grown can significantly affect their nutritional value, taste, and environmental impact. In this discussion, we will explore the differences between organic and non-organic vegetables, considering factors such as growing methods, nutritional content, environmental impact, and consumer preferences.Growing Methods.Organic vegetables are grown without the use of synthetic fertilizers, pesticides, or genetically modified organisms (GMOs). Farmers rely on natural methods such as crop rotation, composting, and biological pest control to maintain soil fertility and protect plants from pests.Organic farming aims to preserve the ecological balance and promote sustainable agriculture.On the other hand, non-organic vegetables are grown using conventional methods, which often involve the application of synthetic fertilizers and pesticides. This approach aims to maximize yields and reduce the risks of crop loss due to pests or diseases. However, it may comewith environmental costs, such as soil and water pollution.Nutritional Content.Organic vegetables are often assumed to be morenutritious than non-organic ones. While some studies have found higher levels of certain nutrients in organic produce, such as vitamins and antioxidants, the results are not consistent across all types of vegetables. The nutritional content of vegetables can also be influenced by various factors, including soil type, climate, and farming methods.Environmental Impact.The environmental impact of organic and non-organic farming is a significant consideration. Organic farming promotes sustainable agriculture by preserving soilfertility, reducing water pollution, and conserving biodiversity. It also avoids the use of harmful chemicals that can harm ecosystems and human health.In contrast, conventional farming methods can have negative environmental impacts. The excessive use of synthetic fertilizers and pesticides can contaminate soil and water bodies, affecting aquatic life and human health. Additionally, conventional farming often leads to soil erosion and degradation, reducing soil fertility in thelong run.Consumer Preferences.Consumer preferences for organic vegetables vary widely. Some consumers prefer organic produce because they believeit to be healthier and more environmentally friendly.Others may choose organic products due to concerns aboutthe potential health risks associated with syntheticchemicals used in conventional farming.However, it is worth noting that organic vegetablesoften come with a higher price tag. This can be a barrierfor some consumers, especially in regions where organic produce is not widely available or affordable.Conclusion.In summary, organic and non-organic vegetables differin their growing methods, nutritional content,environmental impact, and consumer preferences. Organic farming promotes sustainable agriculture and avoids the use of harmful chemicals, while conventional farming aims to maximize yields using synthetic inputs. The nutritional content of vegetables can vary depending on various factors, and consumer preferences for organic produce vary widely.Ultimately, the choice between organic and non-organic vegetables depends on individual preferences, budget constraints, and access to a variety of options. Both organic and non-organic vegetables can contribute to abalanced diet if consumed in moderation and combined with a diverse range of other foods.。
烟秆生物有机肥与化肥配施对白肋烟的影响摘要:进行了烟秆生物有机肥与化肥配施对烟叶生长及产量和质量的影响示范。
结果表明,烟秆生物有机肥与化肥配合施用,与施用纯化肥相比,可以使上部叶提前成熟落黄,缩短白肋烟的大田生育期,而且更符合白肋烟的生长需肥规律,前期促进烟苗生长,后期促进烟叶的成熟。
施用烟秆生物有机肥对烟株的长势无显著影响,但可以有效促进烟叶的生长,增大烟叶的面积。
施用烟秆生物有机肥能有效增加白肋烟的抗病性,与对照相比,青枯病发病率降低了66.36%。
施用烟秆生物有机肥能显著增加烟叶的产量,提高烟叶的品质,与对照相比,产量、产值、中等烟比例分别提高了7.48%、14.07%、11.72%。
关键词:烟秆生物有机肥;白肋烟;生长;产量和质量effect of combined application of tobacco stem biological organic fertilizer and chemical fertilizer on burleyxiexiao-fei1,kongwei1,xiangbing-qing1,shuzhao-he1,wuchun-fa1,gaoyong2,zhaoshu-jun3,wangrui4(1.hefengbranchofenshitobaccocompanyinhubeiprovince,hefeng445800,hubei,china;2.tobaccoresearchinstituteofhubeiprovincewuhan430030,china;3.instituteofplantprotectionandsoilscience,hubeiagriculturalacademyofscience,wuhan430064,china;4.enshiprefecturebranchofhubeitobaccocompany,enshi445000,hubei,china.)abstract:theeffectofcombinedapplicationoftobaccostembiologicalorganicfertilizerandchemicalfertilizeronthegrowth,yieldandqualityoftobaccoleafwerestudied.theresultsshowedthatthecombinedfertilizerapplicationpatterncouldpromotetheupperleafmaturity,shortenburley’sfieldgrowthperiod,accordwiththedemandoftobaccoonfertilizerswell. thispatterncouldalsopromotetobaccogrowthinearlierstageandleavesmaturityinlaterstage.theuseoftobaccostembiologicalorganicfertilizerhadnosignificantinfluenceonfieldgrowth,butcouldpromotetobaccoleafgrowthandincreaseitsareaeffectively.comparedwithck,theapplicationoftobaccostembiologicalorganicfertilizercouldenhancethediseaseresistanceoftobacco, as the bacterialwiltmorbiditydecreased by 66.36%.besides,theproductionandqualityoftobaccoincreasedsignificantlywhenthisorganicfertilizerwereused; theproduction,outputandproportionofmediumtobaccoincreasedby7.48%,14.07%and11.72%respectively.keywords:tobaccostembiologicalorganicfertilizer;burley;growth;productionquality烟草是我国重要的经济作物,其品质好坏与生产效益密切相关[1]。