2014年4月全国自学考试线性代数(经管类)试题
- 格式:doc
- 大小:316.12 KB
- 文档页数:4
2015年4月高等教育自学考试全国统一命题考试线性代数(经管类)试题答案及评分参考(课程代码 04184)一、单项选择题(本大题共5小题,每小题2分类,共10分)1.C2.A3.D4.C5.B二、填空题(本大题共10小题,每小题2分,共20分)6. 97.⎪⎪⎭⎫ ⎝⎛--2315 8.⎪⎪⎭⎫⎝⎛--031111 9. 3 10. -2 11. 0 12. 2 13.()()T T 1,1,1311,1,131---或14. -1 15.a >1三、计算题(本大题共7小题,每小题9分,共63分)16.解 D=40200320115011315111141111121131------=- (5分) =74402032115=-- (9分) 17.解 由于21=A ,所以A 可逆,于是1*-=A A A (3分) 故11*12212)2(---+=+A A A A A (6分) =2923232112111=⎪⎭⎫ ⎝⎛==+----A A A A (9分) 18.解 由B AX X +=,化为()B X A E =-, (4分)而⎪⎪⎪⎭⎫ ⎝⎛--=-201101011A E 可逆,且()⎪⎪⎪⎭⎫ ⎝⎛--=--110123120311A E (7分) 故⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--=11021335021111012312031X (9分) 19.解 由于()⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛----→00007510171101751075103121,,,4321αααα (5分) 所以向量组的秩为2,21,αα是一个极大线性无关组,并且有214213717,511αααααα-=+-= (9分)注:极大线性无关组不唯一。
20. 解 方程组的系数行列式 D=()()()b c a c a b c c b b a a ---=222111因为a,b,c 两两互不相同,所以0≠D ,故方程有唯一解。
全国2010年7月高等教育自学考试试卷说明:在本卷中,A T 表示矩阵A 的转置矩阵;A *表示A 的伴随矩阵;R (A )表示矩阵A 的秩;|A |表示A 的行列式;E 表示单位矩阵。
1.设3阶方阵A=[α1,α2,α3],其中αi (i=1,2,3)为A 的列向量, 若|B |=|[α1+2α2,α2,α3]|=6,则|A |=( )A.-12 B.-6 C.6 D.122.计算行列式=----32320200051020203( )A.-180 B.-120C.120 D.1803.设A =⎥⎦⎤⎢⎣⎡4321,则|2A *|=( )A.-8 B.-4C.4 D.8 4.设α1,α2,α3,α4都是3维向量,则必有 A. α1,α2,α3,α4线性无关 B. α1,α2,α3,α4线性相关 C. α1可由α2,α3,α4线性表示D. α1不可由α2,α3,α4线性表示5.若A 为6阶方阵,齐次线性方程组Ax =0的基础解系中解向量的个数为2,则R (A )=( )A .2 B 3C .4 D .56.设A 、B 为同阶矩阵,且R (A )=R (B ),则( )A .A 与B 相似B .|A |=|B |C .A 与B 等价D .A 与B 合同7.设A 为3阶方阵,其特征值分别为2,l ,0则|A +2E |=( )A .0 B .2C .3D .248.若A 、B 相似,则下列说法错误..的是( )A .A 与B 等价 B .A 与 B 合同C .|A |=|B | D .A 与B 有相同特征 9.若向量α=(1,-2,1)与β= (2,3,t )正交,则t =( )A .-2 B .0C .2D .410.设3阶实对称矩阵A 的特征值分别为2,l ,0,则( )A .A 正定 B .A 半正定C .A 负定D .A 半负定二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
高等教育自学考试全国统一命题考试线性代数(经管类)优化试卷(一)说明:在本卷中,A T表示矩阵A的转置矩阵,A*表示矩阵A的伴随矩阵,E是单位矩阵,|A|表示方阵A的行列式.一、单项选择题(本大题共10小题。
每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内.错选、多选或未选均无分.1.设A为3阶方阵,且|A|=2,则| 2A-l | ( )A.-4B.-1C.1D.42.设矩阵A=(1,2),B=,C=,下列矩阵运算中有意义的是( ) A.ACBB.ABCC.BACD.CBA3.设A为任意n阶矩阵,下列矩阵中为反对称矩阵的是( ) A.A+A TB.A - A TC.A A TD.A T A4.设2阶矩阵A= ,则A*= ( )5.矩阵的逆矩阵是()6.设矩阵A=,则A中( )A.所有2阶子式都不为零B.所有2阶子式都为零C.所有3阶子式都不为零D.存在一个3阶子式不为零7.设A为m×n矩阵,齐次线性方程组Ax=0有非零解的充分必要条件是( ) A.A的列向量组线性相关B.A的列向量组线性无关C.A的行向量组线性相关D.A的行向量组线性无关8.设3元非齐次线性方程组Ax=b的两个解为,且系数矩阵A的秩r(A)=2,则对于任意常数k,k1,k2,方程组的通解可表为( )9.矩阵的非零特征值为( )A.4B.3C.2D.l10.4元二次型的秩为( )A.4B.3C.2D.l二、填空题(本大题共10小题.每小题2分.共20分)请在每小题的空格中填上正确答案.错填、不填均无分.11.若i=1,2,3,则行列式=_________________。
12.设矩阵A= ,则行列式|A T A|=_______________。
13.若齐次线性方程组有非零解,则其系数行列式的值为__________________。
14.设矩阵A= ,矩阵B=A – E,则矩阵B的秩r(B)=______________。
全国自考公共课线性代数(经管类)模拟试卷4(题后含答案及解析) 题型有:1. 单项选择题 2. 填空题 3. 计算题 4. 证明题单项选择题在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设A,B是两个同阶的上三角矩阵,那么AT.BT是矩阵.( )A.上三角B.下三角C.对角形D.即非上三角也非下三角正确答案:B解析:AT,BT均为下三角阵,因此AT.BT也是下三角阵.答案为B2.设A是n阶方阵,且|A|=5,则|(5AT)-1|= ( )A.5n+1B.5n-1C.5-n-1D.5-n正确答案:C解析:因为|A|=5,所以答案为C3.设A,B,A+B,A-1+B-1均为n阶可逆矩阵,则(A-1+B-1)-1 ( ) A.A-1+B-1B.A+B.C.A(A+B)-1.BD.(A+B)-1正确答案:C解析:由于(A-1+B-1)A(A+B)-1B=(A-1A+B-1A)(A+B)-1B=(B-1B+B-1A)(A+B)-1B=B-1(A+B) (A+B)-1.B=B-1.B=I,所以(A-1+B-1)的解的个数为( )A.有惟一的零解B.有无穷多个解C.无解D.不确定正确答案:B解析:齐次线性方程系数矩阵A的秩为:r(A)=3<4,故齐次线性方程组有无穷多个解.答案为B。
5.已知线性方程组则下列判断正确的是( )A.λ=2时,方程组有无穷多组解B.λ=一3时方程组无解C.λ=3时方程组有无穷多组解D.λ≠2时方程组有惟一解正确答案:B解析:对方程组的增广矩阵进行初等变换,依次将第一行、第二行和第三行加到第四行上:这时就可发现若λ=一3,则矩阵最后一行前面4个数等于0,而最后一个数等于4,用方程式表示将得到0=4,这表明方程组无解,故应该选B。
填空题请在每小题的空格中填上正确答案。
错填、不填均无分。
6.行列式=__________.正确答案:4解析:7.若则D1==_______。
全国自考公共课线性代数(经管类)模拟试卷14(题后含答案及解析) 题型有:1. 单项选择题 2. 填空题 3. 计算题 4. 证明题单项选择题在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.零为矩阵A的特征值是A不可逆的( )A.必要条件B.充分条件C.非充分、非必要条件D.充要条件正确答案:D解析:零为矩阵A的特征值,|0×E—A|=|-A|=(一1)n|A|=0,|A|=0推得A不可逆.故选D.2.设λ1,λ2是矩阵A的两个不同的特征值,α与β是A的分别属于特征值λ1,λ2的特征向量,则α与β( )A.对应分量成比例B.线性无关C.可能有零向量D.线性相关正确答案:B解析:因λ1≠λ2,α与β是A的特征向量,则α≠β,则由定理5.2.4得α,β线性无关。
3.设λ1与λ2是矩阵A的两个不同的特征值,ε,η是A的分别属于λ1,λ2的特征向量,则( )A.存在常数k1≠0,k2≠0,使k1ε+k2η是A的特征向量B.存在唯一的一组常数k1≠0,k2≠0,k1g+k2η是A的特征向量C.对任意k1≠0,k2≠0,k1ε+k2η,是A的特征向量D.当k1≠0,k2≠0时,k1ε+k2η不可能是A的特征向量正确答案:D解析:假设k1ε+k2η是A的属于λ的特征向量,即A(k1ε+k2η)=λ(k1ε+k2η),即(k1λ1ε+k2λ2η)=λk1ε+λk2η,即(k1λ1—k1λ)ε+(k2λ2—k2λ)η=0,而ε与η分属于A的两个不同特征值的特征向量,又k1,k2都不为0,得λ=λ1=λ2与λ1≠λ2矛盾.故当k1≠0,k2≠0时,k1ε+k2η,不可能是A的特征向量,选D.4.设三元实二次型f(x1,x2,x3)=一2x12+3x22一4x32,则其规范形为( )A.一z12一z22一z32B.一z12+z22+z32C.z12一z22一z32D.z12+z22+z32正确答案:C解析:三元二次型f=一2x12+3x22一4x32,经过可逆线性变换:,则其规范型为f’=z12一z22一z32.5.设λ0是n阶矩阵A的特征值,且齐次线性方程组(λ0E-A)x=0的基础解系为η1和η2,则A的属于λ0的全部特征向量是( ) A.η1和η2B.C1η1+C2η2+C2(C1,C2为任意常数)C.C1η1+C2η2(C1,C2为不全为零的任意常数)D.η1或η2正确答案:C解析:对任意常数C1,C2,都有(λ0E—A)(C1η1+C2η2)=C1(λ0E—A)η1+C2(λ0E—A)η2=0.即有A(C1η1+C2η2)=λ0(C1η1+C2η2).但又由于零向量不是特征向量.故属于λ0的全部特征向量即为C1η1+C2η2,(C12+C22≠0),故选C.填空题请在每小题的空格中填上正确答案。
1全国2018年4月自学考试线性代数(经管类)试题课程代码:04184一、单项选择题(本大题共20小题,每小题1分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.已知2阶行列式2211b a b a =m ,2211c b c b =n ,则222111c a b c a b ++=( )A.m-nB.n-mC.m+nD.-(m+n )2.设A , B , C 均为n 阶方阵,AB=BA ,AC=CA ,则ABC=( ) A.ACB B.CAB C.CBAD.BCA3.设A 为3阶方阵,B 为4阶方阵,且行列式|A |=1,|B |=-2,则行列式||B |A |之值为( ) A.-8 B.-2 C.2D.84.已知A=⎪⎪⎪⎭⎫ ⎝⎛333231232221131211a a a a a a a a a ,B =⎪⎪⎪⎭⎫ ⎝⎛333231232221131211333a a a a a a a a a ,P =⎪⎪⎪⎪⎭⎫ ⎝⎛100030001,Q =⎪⎪⎪⎪⎭⎫ ⎝⎛100013001,则B =( )A.P AB.APC.QAD.AQ5.已知A 是一个3×4矩阵,下列命题中正确的是( ) A.若矩阵A 中所有3阶子式都为0,则秩(A )=2 B.若A 中存在2阶子式不为0,则秩(A )=2 C.若秩(A )=2,则A 中所有3阶子式都为0 D.若秩(A )=2,则A 中所有2阶子式都不为06.下列命题中错误..的是( ) A.只含有一个零向量的向量组线性相关2B.由3个2维向量组成的向量组线性相关C.由一个非零向量组成的向量组线性相关D.两个成比例的向量组成的向量组线性相关7.已知向量组α1,α2,α3线性无关,α1,α2,α3,β线性相关,则( ) A.α1必能由α2,α3,β线性表出 B.α2必能由α1,α3,β线性表出 C.α3必能由α1,α2,β线性表出D.β必能由α1,α2,α3线性表出 8.设A 为m ×n 矩阵,m ≠n ,则齐次线性方程组Ax =0只有零解的充分必要条件是A 的秩( )A.小于mB.等于mC.小于nD.等于n9.设A 为可逆矩阵,则与A 必有相同特征值的矩阵为( ) A.A T B.A 2 C.A -1D.A *10.二次型f (x 1,x 2,x 3)=212322212x x x x x +++的正惯性指数为( ) A.0 B.1 C.2D.3二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
2014年4月高等教育自学考试全国统一命题考试管理经济学试题及答案-(1)DA.自然状态是否已知B.结果是否已知C.自然状态发生的概率是否已知D.人们对风险事都持中立态度14.投资方案甲比投资方案乙的期望值和标准差都高,对风险厌恶型型决策者来说,将A.选择方案甲B.选择方案乙C.认为两个方案优劣相同D.无法区分优劣15.如果政府债券的利息率为7%,某企业的权益资本成本为12%,该企业的风险补偿率应是A.5%B.7%C.12%D.19%第二部分非选择题(共85分)二、名词解释题(本大题共5小题,每小题3分,共15分)16.外显成本17.个人需求曲线18.短期生产函数19.寡头垄断20.确定条件下的决策三、简答题(本大题共4小题,每小题5分,共20分)21.市场机制在社会资源配置中发挥作用的条件有哪些?22.规模收益有哪些类型?23.简述垄断企业的优势与弊端。
24.企业为什么要进行兼并?四、计算题(本大题共5小题,每小题6分,共30分)写出每小题的计算过程,否则只给结果分。
25.某电话机的需求方程为Q=30000-200P,该电话机起初的价格为70元。
问:(1)计算P= 70元时的需求价格弹性;(保留二位小数)(2)企业目标如果是增加销售收人,应提价还是降价?为什么?26.东兴农场种植苹果,据估计每月增加灌溉用水10吨,能使产量每月增加1500千克;或者每月增加肥料2吨,能使产量每月增加900千克。
水的价格是每吨6元,肥料的价格为每吨25元。
问该农场使用水和肥料的比例是否最优?如果不是最优,是应增加水、减少肥料,还是减少水、增加肥料?27.某厂计划每年销售某种产品100000件,单价为30元,单位变动成本为20元,总固定成本为400000元。
问:(1)该厂可实现多少利润?(2)如企业采取各项措施,使总固定成本减少7%,单位变动成本下降2%,销售量增加5%,那么这些措施能否使利润增加20%?28.假定某企业属于完全竞争行业,其产品的市场均衡价格为70元。
西华大学自学考试省考课程习题集课程名称:《线性代数》课程代码:04184专业名称: 工商企业管理专业代码: Y020202第一部分习题一、选择题3二、填空题8三、计算题11四、证明题15第二部分标准答案一、选择题16二、填空题16三、计算题16四、证明题319、关于初等矩阵下列结论成立的是()A,都是可逆阵 B.所对应的行列式的值为1 C.相乘仍为初等矩阵D.相加仍为初等矩阵\ 2、10、设2阶矩阵A=「),则人=()第一部分习题 一、选择题1、若〃阶方阵A 的秩为r,则结论(A. IAWOB. IAI=OC. 2、下列结论正确的是()A.若 AB=0,则 A=0 或 B=0. C.两个同阶对角矩阵是可交换的. 3、下列结论错误的是()A. n+1个n 维向量一定线性相关. C. n 个n 维列向量/。
D. n n4,/>/?B. D. B. )成立。
D. r< n若 AB=AC,则 B 二C AB 二 BA n 个n+1维向量一定线性相关一,%线性相关,则同%…= 0 若同%…%| =。
则。
a x a 2 a ya\a2 %4、若 A b? b 3=m ,则2bl 2b 2 2b3=( )G 5 c 33cj 3c2 3c35、设 A, B, C 均为 n 阶方阵,AB=BA, AC=CA,则 ABC=( )6、二次型/(占,々/3)= *:+工;+4事工2-2々工的秩为( )A 、0 B. 1C 、2D 、37、若A 、B 为,邛介方阵,下列说法正确的是()A 、若A,B 都是可逆的,则A+B 是可逆的 B 、若A, B 都是可逆的,则A8是可逆的C 、若A+B 是可逆的,则A-B 是可逆的D 、若A+B 是可逆的,则A, B 都是可逆的A. 6mB. -6mC. 2333m D. -2333/n[3 4J4 一2、f-4 31 (-4 2 ] ( 4 一3、Ax B% C、I D、1-3 1 )U -1J 13 -1J 1-2 1 J11、设片,外是非齐次线性方程组AX = A的两个解,则下列向量中仍为方程组4X = 77解的是()A、月+旦B、4-色C,汽& D、吟也12、向量组囚,。
2014年10月高等教育自学考试全国统一命题考试04184线性代数(经管类)试卷本试卷共8页,满分100分,考试时间150分钟。
说明:本试卷中,T A 表示矩阵A 的转置矩阵,*A 表示矩阵A 的伴随矩阵,E 是单位矩阵,A 表示方阵A 的行列式,()A r 表示矩阵A 的秩。
一、单项选择题(本大题共5小题,每小题2分,共10分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设3阶行列式111232221131211a a a a a a =2,若元素ij a 的代数余子公式为ij A (i,j=1,2,3),则=++333231A A A 【 】A.1-B.0C.1D.2 2.设A 为3阶矩阵,将A 的第3行乘以21-得到单位矩阵E , 则A =【 】 A.2- B.21-C.21D.2 3.设向量组321,,ααα的秩为2,则321,,ααα中 【 】 A.必有一个零向量B. B.任意两个向量都线性无关C.存在一个向量可由其余向量线性表出D.每个向量均可由其余向量线性表出4.设3阶矩阵⎪⎪⎪⎭⎫ ⎝⎛---=466353331A ,则下列向量中是A 的属于特征值2-的特征向量为【 】A.⎪⎪⎪⎭⎫ ⎝⎛-011B.⎪⎪⎪⎭⎫ ⎝⎛-101C.⎪⎪⎪⎭⎫ ⎝⎛201D.⎪⎪⎪⎭⎫⎝⎛211 5.二次型212322213214),,(x x x x x x x x f +++=的正惯性指数为 【 】A.0B.1C.2D.3二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
错误、不填均无分、6.设1312)(--=x x f ,则方程0)(=x f 的根是7.设矩阵⎪⎪⎭⎫⎝⎛=0210A ,则*A = 8.设A 为3阶矩阵,21-=A ,则行列式1)2(-A = 9.设矩阵⎪⎪⎭⎫ ⎝⎛=4321B ,⎪⎪⎭⎫⎝⎛=2001P ,若矩阵A 满足B PA =,则A = 10.设向量T )4,1(1-=α,T)2,1(2=α,T )2,4(3=α,则3α由21,αα线性表出的表示式为11.设向量组TT T k ),0,1(,)0,1,4(,)1,1,3(321===ααα线性相关,则数=k12.3元齐次线性方程组⎩⎨⎧=-=+003221x x x x 的基础解系中所含解向量的个数为13.设3阶矩阵A 满足023=+A E ,则A 必有一个特征值为 14.设2阶实对称矩阵A 的特征值分别为1-和1,则=2A 15.设二次型212221212),(x tx x tx x x f ++=正定, 则实数t 的取值范围是三、计算题(本大题共7小题,每小题9分,共63分)16.计算4阶行列式3100131001310013=D 的值。
2015年4月高等教育自学考试全国统一命题考试线性代数(经管类)试卷课程代码:04184一、单项选择题(本大题共5小题,每小题2分,共10分)在每小题列出的四个备选项中只有一个选项是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1、设行列式D 1=2211b a b a ,D 2=2221113232a b a a b a --,则D 2= 【 】A.-D 1B.D 1C.2D 1D.3D 12、若A=⎪⎪⎭⎫ ⎝⎛1x 1021,B =⎪⎪⎭⎫ ⎝⎛y 24202,且2A =B ,则 【 】 A.x=1,y=2 B.x=2,y=1C.x=1,y=1D.x=2,y=23、已知A 是3阶可逆矩阵,则下列矩阵中与A 等价的是 【 】A.⎪⎪⎪⎭⎫ ⎝⎛000000001B.⎪⎪⎪⎭⎫ ⎝⎛000010001C.⎪⎪⎪⎭⎫ ⎝⎛100000001D.⎪⎪⎪⎭⎫ ⎝⎛1000100014、设2阶实对称矩阵A 的全部特征值味1,-1,-1,则齐次线性方程组(E +A )x =0的基础 解系所含解向量的个数为 【 】A.0B.1C.2D.35、矩阵⎪⎪⎭⎫ ⎝⎛--3113有一个特征值为 【 】 A.-3 B.-2 C.1 D.2二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
错填、不填均无分。
6、设A 为3阶矩阵,且A =3,则13-A= . 7、设A =⎪⎪⎭⎫ ⎝⎛5312,则A *= . 8、已知A =⎪⎪⎭⎫ ⎝⎛1201,B =⎪⎪⎭⎫ ⎝⎛-211111,若矩阵X 满足AX =B ,则X = . 9、若向量组=1α(1,2,1)T ,=2α(k-1,4,2)T 线性相关,则数k= .10、若齐次线性方程组⎪⎩⎪⎨⎧=-+=+-=++030202321321321x x x x x x ax x x 有非零解,则数a = .11、设向量=1α(1,-2,2)T ,=2α(2,0,-1)T ,则内积(21,αα)= .12、向量空间V ={x=(x 1,x 2,0)T |x 1,x 2R ∈}的维数为 .13、与向量(1,0,1)T 和(1,1,0)T 均正交的一个单位向量为 .14、矩阵⎪⎪⎭⎫ ⎝⎛3221的两个特征值之积为 . 15、若实二次型f(x1,x2,x3)=2123222212x x x a ax x +++正定,则数a 的取值范围是.三、计算题(本大题共7小题,每小题9分,共63分)16、计算行列式D =5111141111311112的值.17、设2阶矩阵A 的行列式21=A ,求行列式*12)2(A A +-的值.18、设矩阵A =⎪⎪⎪⎭⎫ ⎝⎛---101111010,B =⎪⎪⎪⎭⎫ ⎝⎛--301521,矩阵X 满足X =AX +B ,求X .19、求向量组T T T T )10,1,3(,)6,3,1(,)1,5,2(,)1,2,1(4321-=--===αααα的秩和一个极大线性无关组,并将向量组中的其余向量由该极大线性无关组线性表出.20、利用克拉默法则解线性方程组⎪⎩⎪⎨⎧=++=++=++232212322123221333c x c cx x b x b bx x a x a ax x ,其中c b a ,,两两互不相同.21、已知矩阵⎪⎪⎪⎭⎫ ⎝⎛=1111311a a A 与⎪⎪⎪⎭⎫ ⎝⎛=b B 00010000相似,求数b a ,的值.22、用正交变换化二次型212121455),(x x x x x x f ++=为标准型,并写出所作的正交变换.四、证明题(本题7分)23、设A ,B 均为n 阶矩阵,且A =B +E ,B 2=B ,证明A 可逆.。
2014年4月全国自考公共课线性代数(经管类)真题试卷(题后含答案及解析)题型有:1. 单项选择题 2. 填空题 3. 计算题 4. 证明题单项选择题在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设行列式( )A.一15B.一6C.6D.15正确答案:C解析:2.设A,B为4阶非零矩阵,且AB=0,若r(A)=3,则r(B)= ( ) A.1B.2C.3D.4正确答案:C解析:因AB=0,r(A)=3,则矩阵B应与A有相同的阶数,所以r(B)=3.3.设向量组α1=(1,0,0)T,α2=(0,1,0)T,则下列向量中可由α1,α2线性表出的是( )A.(0,一1,2)TB.(一1,2,0)TC.(一1,0,2)TD.(1,2,一1)T正确答案:B解析:B选项中(一1,2,0)T=一1α1+2α2,A、C、D选项均不可由α1,α2表示.4.设A为3阶矩阵,且r(A)=2,若α1,α2为齐次线性方程组Ax=0的两个不同的解.k为任意常数,则方程组Ax=0的通解为( ) A.kα1B.kα2C.D.正确答案:D解析:α1与α2为Ax=0的两个不同解,是r(A)=2,A的阶数为3,则有1个基础解,故其通解为5.二次型f(x1,x2,x3)=x12+2x22+x32一2x1x2+4x1x3-2x2x3的矩阵是( )A.B.C.D.正确答案:C解析:二次型f(x1,x2,x3)的矩阵为填空题请在每小题的空格中填上正确答案。
错填、不填均无分。
6.3阶行列式第2行元素的代数余子式之和A21+A22+A23=________.正确答案:0解析:A21+A22+A23==0.7.设A为3阶矩阵,且|A|=2,则|A*|=_______.正确答案:4解析:|A*|=|A|n-1=22=4.8.设矩阵,则ABT=_____.正确答案:解析:9.设A为2阶矩阵,且,则|(一3A)-1|=________.正确答案:解析:10.若向量组α1=(1,一2,2)T,α2=(2,0,1)T,α3=(3,k,3)T线性相关,则数k=______.正确答案:一10解析:行列式即k=一10时,线性方程组有非零解,则α1,α2,α3线性相关.11.与向量(3,一4)正交的一个单位向量为_______.正确答案:解析:设向量(x.y)与(3,一4)正交,则3x一4y=0,,则所求单位向量为12.齐次线性方程组的基础解系所含解向量个数为_______.正确答案:1解析:系数矩阵为,同解方程组为即所以基础解系有1个解向量.13.设3阶矩阵A的秩为2,α1,α2为非齐次线性方程组Ax=b的两个不同解,则方程组Ax=b的通解为_______.正确答案:(k+1)α1一kα2,k为任意常数解析:α1,α2为Ax=b的解,则α1一α2是Ax=0的解,所以Ax=b的通解为α1+k(α1一α2)=(k+1)α1一kα2.14.设A为n阶矩阵,且满足|E+2A|=0,则A必有一个特征值为_________.正确答案:解析:由|E+2A|=0可得所以必有一个特征值为15.二次型f(x1,x2,x3)=x12+2x1x2+x22+x32的正惯性指数为______.正确答案:2解析:f(x1,x2,x3)的矩阵为其中k=2,所以正惯性指数为2.计算题16.计算行列式的值.正确答案:17.设矩阵求可逆矩阵P,使得PA=B.正确答案:矩阵A,经过初等变换得矩阵B,由A和B的关系知初等矩阵,可使PA=B.18.设矩阵,矩阵X满足XA=B,求X.正确答案:19.求向量组α1=(1,一1,2,1)T,α2=(1,0,1,2)T,α3=(0,2,0,1)T,α4=(一1,0,一3,一1)T,α5=(4,一1,5,7)T的秩和一个极大线性无关组,并将向量组中的其余向量由该极大线性无关组线性表出.正确答案:A=(α1,α2,α3,α4,α5)=所以向量组的秩为3,其极大线件无关组为{α1,α2,α3},α4及α5用α1,α2,α3表示出来为:α4=一2α1+α2一α3,α5=α1+3α2.20.求线性方程组的通解.(要求用它的一个特解和导出组的基础解系表示)正确答案:可得原方程组的同解方程组取x3=0得一个特解原方程组导出同解方程组令x3=1可得基础解系于是原方程组通解为η=η*+kξ,k为任意常数.21.已知矩阵的一个特征值为1,求数a,并求正交矩阵Q 和对角矩阵∧,使得Q-1∧Q=A.正确答案:由=(a一2)[(λ一2)(λ—a)一1]=0,因为1是特征值,则代入得2一a=0,a=2,所以矩阵A的特征值为λ1=1,λ2=2,λ3=3,当λ1=1时,由方程组(E-A)x=0,得λ1=1的特征向量当λ2=2时,由方程组(2E-A)x=0,得λ2=2的特征向量当λ3=3时,由方程组(3E—A)x=0,得λ3=3的特征向量得22.用配方法化二次型f(x1,x2,x3)=x12+3x22一2x32+4x1x2+2x2x3为标准形,并写出所作的可逆线性变换.正确答案:f(x1,x2,x3)=x12+4x1x2+4x22一x22+2x2x3一x32-x32=(x1+2x2)2一(x2一x3)2-x32,则二次型f(x1,x2,x3)的标准型为f=y12一y22一y32.证明题23.设α1,α2,α3为齐次线性方程组Ax=0的一个基础解系,证明2α1+α2+α3,α1+2α2+α3,α1+α2+3α3也是该方程组的基础解系.正确答案:α1,α2,α3为齐次线性方程组Ax=0的一个基础解系.令β1=2α1+α2+α3,β2=2α1+2α2+α3,β3=2α1+2α2+2α3可表示为可知β1,β2,β3线性无关.Ax=0中任一个解α均可由β1,β2,β3线性表示.所以β1,β2,β3也是Ax=0的基础解系.。
全国2011年7月高等教育自学考试线性代数(经管类)试题(课程代码:04184)说明:本卷中,A T表示方阵A的转置钜阵,A*表示矩阵A的伴随矩阵,E表示单位矩阵,|A|表示方阵A的行列式.一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1. 设101350041A-⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则TAA=()A. -49B. -7C. 7D. 492. 设A为3阶方阵,且4A=,则2A-=()A. -32B. -8C. 8D. 323. 设A,B为n阶方阵,且A T=-A,B T=B,则下列命题正确的是()A. (A+B)T=A+BB. (AB)T=-ABC. A2是对称矩阵D. B2+A是对称阵4. 设A,B,X,Y都是n阶方阵,则下面等式正确的是()A. 若A2=0,则A=0B. (AB)2=A2B2C. 若AX=AY,则X=YD. 若A+X=B,则X=B-A5. 设矩阵A =11310214000500⎡⎤⎢⎥-⎢⎥⎢⎥⎢⎥⎣⎦,则秩(A )=( )A. 1B. 2C. 3D. 46. 若方程组02020kx z x ky z kx y z +=⎧⎪++=⎨⎪-+=⎩仅有零解,则k ≠( )A. -2B. -1C. 0D. 27. 实数向量空间V={(x 1,x 2,x 3)|x 1 +x 3=0}的维数是( ) A. 0 B. 1 C. 2D. 38. 若方程组12323232132(3)(4)(2)x x x x x x x λλλλλλ+-=-⎧⎪-=-⎨⎪-=--+-⎩有无穷多解,则λ=( ) A. 1 B. 2 C. 3 D. 49. 设A =100010002⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,则下列矩阵中与A 相似的是( )A. 100020001⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ B. 110010002⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦C. 10001102⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦D. 10102001⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦10. 设实二次型2212323(,,)f x xx x x =-,则f ( )A. 正定B. 不定C. 负定D. 半正定二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
《线性代数(经管类)》(课程代码04184)第一大题:单项选择题1、设行列式=1 , =2, 则= ( D )•错误!未找到引用源。
A.—3•错误!未找到引用源。
B.—1•错误!未找到引用源。
C.1•错误!未找到引用源。
D.32、设A为3阶方阵,且已知|-2A|=2,则|A|=( B )•错误!未找到引用源。
A.—1•错误!未找到引用源。
B.•错误!未找到引用源。
C.•错误!未找到引用源。
D.13、设矩阵A,B,C为同阶方阵,则=__B__•错误!未找到引用源。
A.•错误!未找到引用源。
B.•错误!未找到引用源。
C.•错误!未找到引用源。
D.4、设A为2阶可逆矩阵,且已知= ,则A=( D )•错误!未找到引用源。
A.•错误!未找到引用源。
B.•错误!未找到引用源。
C.•错误!未找到引用源。
D.5、设A为m×n矩阵,则齐次线性方程组=0仅有零解的充分必要条件是( A )•错误!未找到引用源。
A.A的列向量组线性无关•错误!未找到引用源。
B.A的列向量组线性相关•错误!未找到引用源。
C.A的行向量组线性无关•错误!未找到引用源。
D.A的行向量组线性相关6、已知,是非齐次线性方程组=b的两个不同的解,,是其导出组=0的一个基础解系,,为任意常数,则方程组=b的通解可以表为( A )•错误!未找到引用源。
A.•错误!未找到引用源。
B.•错误!未找到引用源。
C.•错误!未找到引用源。
D.7、设3阶矩阵A与B相似,且已知A的特征值为2,2,3 则 ||= ( A )•错误!未找到引用源。
A.•错误!未找到引用源。
B.•错误!未找到引用源。
C.7•错误!未找到引用源。
D.128、设A为3阶矩阵,且已知|3A+2E|=0,则A必有一个特征值为( A )•错误!未找到引用源。
A.•错误!未找到引用源。
B.•错误!未找到引用源。
C.•错误!未找到引用源。
D.9、二次型的矩阵为( C )•错误!未找到引用源。
西华大学自学考试省考课程习题集课程名称:《线性代数》课程代码:04184专业名称:工商企业管理专业代码:Y020202目录第一部分习题一、选择题 3二、填空题8三、计算题11四、证明题15第二部分标准答案一、选择题16二、填空题16三、计算题16四、证明题31第一部分 习题 一、选择题1、若n 阶方阵A 的秩为r ,则结论( )成立。
A. 0||≠A B. 0||=A C. r >n D. n r ≤2、下列结论正确的是( )A. 若AB=0,则A=0或B=0.B. 若AB=AC,则B=CC.两个同阶对角矩阵是可交换的.D. AB=BA 3、下列结论错误的是( )A. n+1个n 维向量一定线性相关.B. n 个n+1维向量一定线性相关C. n 个n 维列向量n ααα,,,21 线性相关,则021=n αααD. n 个n 维列向量n ααα,,,21 ,若021=n ααα 则n ααα,,,21 线性相关,4、若m c c c b b b a a a =321321321,则=321321321333222c c c b b b a a a ( ) A. 6m B.-6m C. m 3332 D. m 3332- 5、设A,B,C 均为n 阶方阵,AB=BA,AC=CA,则ABC=( ) A. ACB B. CAB C. CBA D. BCA6、二次型3221222132124),,(x x x x x x x x x f -++=的秩为( )A 、0B 、1C 、2D 、3 7、若A 、B 为n 阶方阵,下列说法正确的是( ) A 、若A ,B 都是可逆的,则A+B 是可逆的 B 、若A ,B 都是可逆的,则AB 是可逆的 C 、若A+B 是可逆的,则A-B 是可逆的 D 、若A+B 是可逆的,则A ,B 都是可逆的8、设2阶矩阵⎪⎪⎭⎫ ⎝⎛=d c b a A ,则=*A ( ) A 、⎪⎪⎭⎫ ⎝⎛--a c b d B 、⎪⎪⎭⎫ ⎝⎛--a b c dC 、⎪⎪⎭⎫ ⎝⎛--a c b dD 、⎪⎪⎭⎫⎝⎛--a b c d 9、关于初等矩阵下列结论成立的是( )A. 都是可逆阵B. 所对应的行列式的值为1C. 相乘仍为初等矩阵D. 相加仍为初等矩阵10、设2阶矩阵⎪⎪⎭⎫ ⎝⎛=4321A ,则=*A ( )A 、⎪⎪⎭⎫⎝⎛--1324 B 、⎪⎪⎭⎫ ⎝⎛--1234 C 、⎪⎪⎭⎫ ⎝⎛--1324 D 、⎪⎪⎭⎫⎝⎛--1234 11、设21,ββ是非齐次线性方程组β=AX 的两个解,则下列向量中仍为方程组β=AX 解的是( )A 、21ββ+B 、21ββ-C 、3221ββ+ D 、32321ββ- 12、向量组)2(,,,21≥m m ααα 线性相关的充要条件是( ) A 、m ααα,,,21 中至少有一个是零向量 B 、m ααα,,,21 中至少有一个向量可以由其余向量线性表示 C 、m ααα,,,21 中有两个向量成比例 D 、m ααα,,,21 中任何部分组都线性相关13、向量组)2(,,,21≥m m ααα 线性相关的充要条件是( ) A 、m ααα,,,21 中至少有一个是零向量 B 、m ααα,,,21 中至少有一个向量可以由其余向量线性表示 C 、m ααα,,,21 中有两个向量成比例 D 、m ααα,,,21 中任何部分组都线性相关14、0=AX 是非齐次方程组β=AX 的对应齐次线性方程组,则有( ) A 、0=AX 有零解,则β=AX 有唯一解 B 、0=AX 有非零解,则β=AX 有无穷多解 C 、β=AX 有唯一解,则0=AX 只有零解 D 、β=AX 有无穷多解,则0=AX 只有零解15、设A ,B ,C 均为二阶方阵,且AC AB =,则当( )时,可以推出B=CA 、⎪⎪⎭⎫ ⎝⎛=0101AB 、⎪⎪⎭⎫ ⎝⎛=0011AC 、⎪⎪⎭⎫ ⎝⎛=0110AD 、⎪⎪⎭⎫⎝⎛=1111A16、若m c c c b b b a a a =321321321,则=231231231333222c c c b b b a a a ( )A. 6mB.-6mC. m 3332D. m 3332- 17、如果矩阵A 的秩等于r ,则( )。
绝密★考试结束前
全国2014年4月高等教育自学考试
线性代数(经管类)试题
请考生按规定用笔将所有试题的答案涂、写在答题纸上。
说明:在本卷中,A T表示矩阵A的转置矩阵,A*表示矩阵A的伴随矩阵,E表示
单位矩阵,|A|表示方阵A的行列式,r(A)表示矩阵A的秩。
选择题部分
注意事项:
1.答题前,考生务必将自己的考试课程名称、姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸规定的位置上。
2.每小题选出答案后,用2B铅笔把答题纸上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
不能答在试题卷上。
一、单项选择题(本大题共5小题,每小题2分,共10分)
在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题纸”的相应代码涂黑。
错涂、多涂或未涂均无分。
04184 线件代数(经管类)试题第1 页(共4 页)。