正态分布概率的计算
- 格式:ppt
- 大小:1.87 MB
- 文档页数:35
正态分布的概率计算:测量值X落在(a,b)区间内的概率为:
2
2
()
2
21
( )()
()()
b
a
x
b
a
P a X b p x dx
e dx u u
μ
σφφ
--
≤≤=
==-
⎰
(3-43)
式中,u= (x-μ)/σ,令δ=x-μ;
du
e
z z
u
⎰∞--
=2
2
2
1
)
(
π
φ称标准正态分布函数
表2-1-6 标准正态分布函数表(摘录)
置信因子k=z
1、k=3时,X落在(μ-3σ,μ+3σ)区间内的概率为:
P(⎪x-μ⎪≤ 3σ) = 2φ(3)-1= 2×0.99865-1= 0.9973
2、k=2时,X落在(μ-2σ,μ+2σ)区间内的概率为:
P(⎪x-μ⎪≤ 2σ) = 2φ(2)-1= 2×0.97725-1=0.9545
3、k=1时,X落在(μ-σ,μ+σ)区间内的概率为:
P(⎪x-μ⎪≤σ) = 2φ(1)-1= 2×0.84131-1=0.6827
用同样的方法可以计算得到正态分布时测量值落在μ±kσ置信区间内的置信概率,如下表所列。
置信概率与k值有关,
在概率论中k被称为置信因子。
表2-1-7 正态分布时置信概率与置信因子k的关
系
THANKS !!!
致力为企业和个人提供合同协议,策划案计划书,学习课件等等
打造全网一站式需求
欢迎您的下载,资料仅供参考。
标准正态分布的概率计算
标准正态分布是指均值为0,标准差为1的正态分布。
概率计
算可以通过标准正态分布表或计算公式来进行。
1. 使用标准正态分布表:
标准正态分布表显示了标准正态分布的累积概率,即小于或等于某个给定值的概率。
首先需要将给定的数值转化为标准分数,即将原始数值减去均值并除以标准差。
然后查找标准正态分布表中对应的概率值。
2. 使用计算公式:
标准正态分布的概率密度函数(probability density function, PDF)可以用公式表示为:
f(x) = (1 / √(2π)) * e^(-x^2/2)
其中,x是随机变量的取值,e是自然对数的底,π是圆周率。
要计算某个值的概率,可以对概率密度函数进行积分。
例如,要计算在某个区间内的概率,可以计算该区间的积分值。
需要注意的是,对于非标准正态分布(均值和标准差不为0和1),可以通过标准化将其转化为标准正态分布,然后使用上
述方法进行计算。
标准正态分布概率公式标准正态分布是统计学中非常重要的概念,它在各个领域都有着广泛的应用。
在实际问题中,我们经常需要计算标准正态分布的概率,而概率密度函数和累积分布函数是我们计算概率的重要工具。
本文将介绍标准正态分布的概率密度函数和累积分布函数的计算方法,帮助读者更好地理解和运用标准正态分布。
概率密度函数。
标准正态分布的概率密度函数可以用公式表示为:\[f(x)=\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}\]其中,\(e\)是自然对数的底,\(x\)是随机变量的取值,\(f(x)\)是对应取值的概率密度。
在这个公式中,我们可以看到指数函数的作用,它使得随机变量的取值越偏离均值,概率密度越小。
这也符合我们对正态分布的直观认识,在均值附近的取值概率较大,而远离均值的取值概率较小。
累积分布函数。
标准正态分布的累积分布函数可以用公式表示为:\[Φ(x)=\int_{-∞}^{x}\frac{1}{\sqrt{2\pi}}e^{-\frac{t^2}{2}}dt\]其中,\(Φ(x)\)表示随机变量的取值小于等于\(x\)的概率。
通过累积分布函数,我们可以计算出随机变量在某个取值以下的概率,这对于统计推断和假设检验等问题非常有用。
概率计算举例。
现在,我们通过一个例子来说明如何使用标准正态分布的概率密度函数和累积分布函数进行计算。
假设随机变量\(X\)服从标准正态分布,我们需要计算\(P(X≤1.96)\)。
首先,我们可以使用累积分布函数来计算这个概率,即:\[Φ(1.96)=\int_{-∞}^{1.96}\frac{1}{\sqrt{2\pi}}e^{-\frac{t^2}{2}}dt\]这个积分可以通过数值积分或查表的方式进行计算,最终得到\(Φ(1.96)=0.975\)。
这就意味着随机变量\(X\)小于等于1.96的概率为0.975。
另外,我们也可以使用概率密度函数来计算这个概率,即:\[P(X≤1.96)=\int_{-∞}^{1.96}\frac{1}{\sqrt{2\pi}}e^{-\frac{t^2}{2}}dt\]同样地,这个积分也可以通过数值积分或查表的方式进行计算,最终得到\(P(X ≤1.96)=0.975\)。
正态分布的概率计算正态分布是统计学中最常用的分布之一,也被称为高斯分布。
在自然界和社会科学中,许多现象都服从于正态分布。
例如,身高、体重、智力、成绩等等。
正态分布具有许多优良的性质,使得其在实际应用中得到广泛的应用。
本文将介绍正态分布的概念、性质、参数估计、假设检验以及在实际问题中的应用。
正态分布的概念正态分布是一种连续型概率分布,其概率密度函数为:$$f(x)=frac{1}{sqrt{2pi}sigma}e^{-frac{(x-mu)^2}{2sigma^2}} $$其中,$mu$ 是分布的均值,$sigma$ 是分布的标准差,$pi$ 是圆周率。
正态分布的图像呈钟形曲线,以均值为对称轴,标准差越小,曲线越尖锐。
正态分布的性质1. 正态分布的均值和标准差唯一确定了整个分布。
2. 正态分布的概率密度函数在均值处取得最大值,即$f(mu)=frac{1}{sqrt{2pi}sigma}$。
3. 正态分布的标准差越大,分布的形状越平坦,标准差越小,分布的形状越尖锐。
4. 正态分布的面积为1,即 $int_{-infty}^{+infty}f(x)dx=1$。
5. 正态分布的累积分布函数可以用标准正态分布的累积分布函数来表示,即 $F(x)=Phi(frac{x-mu}{sigma})$,其中,$Phi(z)$ 表示标准正态分布的累积分布函数。
正态分布的参数估计在实际应用中,我们常常需要根据样本数据来估计正态分布的参数,即均值和标准差。
下面介绍两种参数估计方法。
1. 极大似然估计假设我们有 $n$ 个来自正态分布 $N(mu,sigma^2)$ 的独立观测值 $x_1,x_2,cdots,x_n$。
它们的联合概率密度函数为:$$L(mu,sigma^2)=prod_{i=1}^{n}frac{1}{sqrt{2pi}sigma}e^{-fr ac{(x_i-mu)^2}{2sigma^2}}$$对 $L(mu,sigma^2)$ 取对数,得到对数似然函数:$$lnL(mu,sigma^2)=-frac{n}{2}ln(2pi)-nlnsigma-sum_{i=1}^{n}frac {(x_i-mu)^2}{2sigma^2}$$极大似然估计就是找到可以最大化对数似然函数的参数值。
标准正态分布求概率标准正态分布是统计学中非常重要的一种分布,它在自然科学、社会科学、工程技术等领域都有着广泛的应用。
在实际问题中,我们经常需要计算标准正态分布的概率,以便进行统计推断和决策。
本文将介绍标准正态分布的概念和性质,并详细讨论如何求解标准正态分布的概率。
首先,让我们回顾一下标准正态分布的概念。
标准正态分布又称为正态分布,是一种均值为0,标准差为1的正态分布。
其概率密度函数为:\[f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}\]其中,\(x\)为随机变量,\(e\)为自然对数的底,\(\pi\)为圆周率。
标准正态分布的概率密度函数呈钟形曲线,左右对称,且在均值处达到最大值。
标准正态分布的性质包括,1)曲线下面积为1,即总体的概率为1;2)当\(x=0\)时,概率密度函数取得最大值;3)随着\(x\)的增大或减小,概率密度函数值逐渐减小。
接下来,我们将介绍如何求解标准正态分布的概率。
在实际问题中,我们通常需要计算标准正态分布在某个区间内的概率,或者计算某个数值处的概率。
求解标准正态分布的概率可以通过查找标准正态分布表或使用统计软件进行计算。
下面我们将分别介绍这两种方法。
首先是通过查找标准正态分布表进行计算。
标准正态分布表是一种预先计算好的表格,其中包含了标准正态分布在不同数值处的累积概率值。
通过查表,我们可以快速得到标准正态分布在某个区间内的概率,或者某个数值处的概率。
使用标准正态分布表的方法简单直观,但是需要注意对数值的精确度和查表的准确性。
其次是通过统计软件进行计算。
现今,各种统计软件都提供了标准正态分布的计算功能,比如Excel、SPSS、R等。
通过输入相应的参数,我们可以快速得到标准正态分布在某个区间内的概率,或者某个数值处的概率。
使用统计软件进行计算的方法更加灵活和精确,适用于复杂的问题和大规模的数据计算。
总之,求解标准正态分布的概率是统计学中的重要问题,我们可以通过查找标准正态分布表或使用统计软件进行计算。
正态分布公式正态分布也称为高斯分布或正常分布,它是一种概率分布,用于描述符合几种基本假设的连续随机变量的分布。
正态分布是一个重要的基本分布,被广泛应用于统计学、自然科学、社会科学等领域中。
正态分布有许多不同的形式,但最常见的是标准正态分布。
标准正态分布的分布函数和概率密度函数分别如下:标准正态分布的分布函数:$$\\Phi (x)=\\frac{1}{\\sqrt{2\\pi}}\\int_{-\\infty}^x e^{-\\frac{t^2}{2}} dt$$标准正态分布的概率密度函数:$$\\phi (x)=\\frac{1}{\\sqrt{2\\pi}}e^{-\\frac{x^2}{2}}$$其中,$\\phi(x)$表示在点$x$处获得概率密度的值,$\\Phi(x)$表示在$-\\infty$到$x$的积分所得到的累积概率。
对于非标准正态分布,可以使用变换将其转换为标准正态分布。
转换的方法是,对于一个均值为$\\mu$,标准差为$\\sigma$的正态分布$X$,使用以下公式进行变换:$$Z=\\frac{X-\\mu}{\\sigma}$$其中,$Z$表示标准正态分布的变量。
只要确定了$Z$,就可以使用标准正态分布的表格或统计软件来计算概率。
正态分布的形状是钟形曲线,均值$\\mu$位于曲线中心,标准差$\\sigma$决定曲线的宽度。
它具有很多特性:1. 正态分布的均值、中位数和众数相等。
2. 曲线在均值处对称,即左右两侧面积相等。
3. 由于标准差的不同,曲线的高度、峰度和尖度也不同。
4. 68%的数据落在均值$\\pm$1个标准差范围内,95%的数据落在均值$\\pm$2个标准差范围内。
正态分布在现实生活中具有重要意义,例如身高、体重、智力、化学反应速率、股票收益率等,往往都服从于正态分布。
因此,深入理解正态分布的公式和性质,对于数据分析、统计学、金融学等领域的人士来说是非常重要的。
正态分布的概率计算解读正态分布是一种重要的概率分布,在统计学和概率论中广泛应用。
它的数学表达式为:f(f;f,f)=1/(√(2f)f)e^(-(f−f)²/(2f²))其中,f(f;f,f)表示随机变量f的概率密度函数,f是分布的均值,f是标准差。
正态分布的特点是呈钟形曲线,以均值为对称中心。
标准差决定了曲线的宽度,标准差越大,曲线越宽。
在正态分布中,我们经常需要计算特定范围内的概率。
以下是对正态分布的概率计算进行解读:1.标准正态分布的概率计算:标准正态分布是均值为0,标准差为1的正态分布。
对于标准正态分布,我们可以将需要计算的区域转化为标准单位(即标准差的倍数),利用标准正态分布的概率表或计算函数得到。
2.计算特定区域的概率:正态分布曲线下的面积表示了该范围内的概率。
我们可以通过积分或查表的方式来计算特定范围内的概率。
例如,给定一个正态分布f(f,f²),我们希望计算f在一些范围[a,b]内的概率f(f≤f≤f)。
我们可以计算出标准化的区间,即(a−f)/f和(b−f)/f,然后利用标准正态分布的概率表或计算函数来计算区间的概率。
3.计算单点的概率:正态分布是连续分布,因此单个点的概率接近于0。
但我们可以通过计算在一些点附近的一个小范围内的概率来近似计算单个点的概率。
例如,要计算f在一些特定值f附近的概率,我们可以计算出一个范围[f−f,f+f]的概率,其中f是一个较小的数值(如0.01),然后通过累积正态分布的概率值来计算该范围内的概率。
4.利用正态分布进行推断:正态分布在统计推断中起到重要的作用。
例如,我们可以根据样本数据建立样本均值的置信区间,由于样本均值服从正态分布,我们可以利用正态分布的性质计算出样本均值落在一些特定范围内的概率。
此外,我们还可以利用正态分布来进行假设检验,比如判断一个总体均值是否为一些特定值。
总而言之,正态分布的概率计算对于理解和应用统计学和概率论都是至关重要的。
统计学计算公式正态分布正态分布是统计学中最常见的分布之一,也被称为高斯分布。
它是一个连续型的概率分布,其图形呈钟形,中间高,两边低,呈对称分布。
正态分布在自然界和社会现象中广泛存在,例如身高、体重、考试成绩等等都服从正态分布。
在统计学中,我们经常需要计算正态分布的概率密度、累积分布函数等等,因此掌握正态分布的计算公式是非常重要的。
正态分布的概率密度函数。
正态分布的概率密度函数可以用以下公式表示:\[f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}\]其中,\(f(x)\)表示随机变量\(X\)取值为\(x\)时的概率密度,\(\mu\)表示分布的均值,\(\sigma\)表示分布的标准差,\(e\)为自然对数的底。
这个公式描述了正态分布的钟形曲线,均值决定了曲线的中心位置,标准差决定了曲线的宽窄程度。
当标准差较大时,曲线较为扁平;当标准差较小时,曲线较为陡峭。
正态分布的累积分布函数。
正态分布的累积分布函数可以用以下公式表示:\[F(x) = \int_{-\infty}^{x} f(t) dt = \frac{1}{2} [1 + \text{erf}(\frac{x-\mu}{\sigma\sqrt{2}})]\]其中,\(F(x)\)表示随机变量\(X\)小于等于\(x\)的累积概率,\(\text{erf}\)表示误差函数。
这个公式描述了正态分布的累积概率,可以用来计算随机变量小于等于某个值的概率。
在实际应用中,我们经常需要计算某个数值落在某个区间内的概率,这时就可以利用累积分布函数进行计算。
正态分布的标准化。
在实际计算中,为了方便处理,我们通常将正态分布标准化为标准正态分布。
标准正态分布是均值为0,标准差为1的正态分布,其概率密度函数为:\[f(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}}\]其中,\(z\)表示标准正态分布的随机变量。
标准正态分布计算公式标准正态分布是统计学中常用的一种分布,也叫做正态分布或高斯分布。
它在自然界、社会科学和工程领域中广泛应用,因为许多随机变量可以近似地服从该分布。
标准正态分布的计算公式是一个关键的工具,可以帮助我们计算出各种随机变量的概率和统计指标。
标准正态分布的计算公式如下:f(x) = (1 / √(2πσ^2)) * e^(-(x-μ)^2 / (2σ^2))在这个公式中,f(x)代表了随机变量X取值为x的概率密度函数。
μ代表期望值,表示随机变量X的平均值。
σ代表标准差,表示X的离散程度。
e是一个常数,约等于2.718。
这个公式可以帮助我们计算出标准正态分布中特定取值x的概率密度。
概率密度是指随机变量落在某个特定区间的概率,也可以理解为该区间内的单位长度上的概率。
为了更好地理解标准正态分布的计算公式,我们可以通过一个具体的例子进行说明。
假设我们有一个随机变量X,它服从标准正态分布。
我们想要计算X取值在-1和1之间的概率。
首先,我们需要计算出期望值μ和标准差σ。
在标准正态分布中,期望值μ等于0,标准差σ等于1。
然后,将这些值代入标准正态分布的计算公式中:f(x) = (1 / √(2πσ^2)) * e^(-(x-μ)^2 / (2σ^2))= (1 / √(2π*1^2)) * e^(-(x-0)^2 / (2*1^2))= 1 / √(2π) * e^(-x^2 / 2)现在我们可以将x的取值带入计算公式。
在这个例子中,x的取值范围是-1到1。
当x = -1时,我们有:f(-1) = 1 / √(2π) * e^(-(-1)^2 / 2)= 1 / √(2π) * e^(-1/2)当x = 1时,我们有:f(1) = 1 / √(2π) * e^(-1/2)通过计算,我们可以得到x取值在-1和1之间的概率密度。
此外,我们还可以使用标准正态分布的计算公式计算其他统计指标,比如平均值、方差和标准差。
正态分布概率的计算正态分布是统计学中常用的一种连续概率分布,也被称为高斯分布。
正态分布在自然界和社会科学研究中广泛应用,因为许多观察现象都服从正态分布。
正态分布的定义正态分布的概率密度函数为:f(x)=(1/σ√(2π))*e^(-(x-μ)^2/(2σ^2))其中,μ是分布的均值,σ是分布的标准差,e是自然对数的底。
正态分布的均值μ决定了分布的中心位置,标准差σ决定了分布的扁平程度和分散程度。
在正态分布中,我们可以计算给定区间内的概率,或者给定概率下的区间范围。
1.计算给定区间内的概率对于给定的区间[a,b],我们可以通过积分正态分布函数f(x)来计算该区间内的概率。
P(a ≤ X ≤ b) = ∫[a,b] f(x)dx其中,X是正态分布随机变量。
在实际应用中,积分正态分布函数通常通过查表或使用计算机软件进行计算。
2.计算给定概率下的区间范围对于给定的概率值p,我们可以计算正态分布随机变量X落在区间[a,b]内的概率为p的区间范围。
P(a≤X≤b)=p我们可以转化为标准正态分布(均值为0,标准差为1)来计算,然后再进行反演。
即X=μ+σZ,其中Z是标准正态分布随机变量。
将X代入得:P((a-μ)/σ≤Z≤(b-μ)/σ)=p我们可以通过标准正态分布的分布函数Φ(z)来计算该区间的Z值。
P((a-μ)/σ≤Z≤(b-μ)/σ)=Φ((b-μ)/σ)-Φ((a-μ)/σ)=p在实际应用中,一般会提供标准正态分布的累积分布函数的查表或计算机软件来计算。
正态分布的性质正态分布具有许多重要的性质,使其成为统计学中不可或缺的分布:1.正态分布是关于均值对称的,即均值左右的部分概率相等。
2.68%的观测值位于均值加减一个标准差范围内,95%的观测值位于均值加减两个标准差范围内,99.7%的观测值位于均值加减三个标准差范围内。
3.正态分布的均值和标准差完全决定了分布的形状。
4.正态分布可以通过中心极限定理来近似很多其他分布。
标准正态分布的概率
标准正态分布的概率是指在标准正态分布曲线下的某个区间内的概率。
它可以通过积分的方式求出,也可以通过查表的方式得到。
1. 定义:标准正态分布是一种特殊的概率分布,其概率密度函数为:f(x)=1/√(2π) * e^(-x^2/2)
其中,μ=0,σ^2=1,e为自然对数的底数,π为圆周率。
2. 求解:对于标准正态分布的概率,可以通过计算其累积分布函数得到。
累积分布函数是指在曲线下的某个区间内的概率。
这个区间可以是无限的范围,也可以是有限的一段区间。
3. 查表:为方便计算,人们将标准正态分布的概率值制成表格。
通过查表可以快速得到某个区间内的概率值。
4. 应用:标准正态分布的概率在统计学中有广泛的应用,常常用于模拟实验数据或者评估风险。
在金融领域中,也经常用于计算投资回报率及风险。
总之,标准正态分布的概率是一种重要的数学概念,对于理解和应用统计学具有重要意义。
标准正态分布三个公式
标准正态分布是一种具有特定均值和标准差的正态分布。
以下是标准正态分布的三个公式:
1. 概率密度函数:
标准正态分布的概率密度函数如下:
f(x) = (1/ sqrt(2π)) * e^(-x^2/2)
其中f(x) 表示x 的概率密度,e 为自然对数的底数,π 为圆周率,sqrt表示开平方根。
2. 累积分布函数:
标准正态分布的累积分布函数如下:
Φ(x) = 1/2 + (1/ sqrt(2π)) * ∫(0,x) e^(-t^2/2) dt
其中Φ(x)表示小于或等于x 的概率,即累积分布函数。
∫(0,x)表示在0到x之间的积分。
3. 逆函数:
标准正态分布的逆函数可以用来计算一定概率水平对应的标准正态随机变量的值。
逆函数的计算方法因软件和工具而异,可以使用MATLAB、R、Excel等工具进行计算。
正态分布的概率分布正态分布,也被称为高斯分布或钟形曲线,是概率论和统计学中最为重要的连续型概率分布之一。
它具有许多重要的性质,在自然和社会科学中具有广泛的应用。
正态分布的概率分布可以通过其概率密度函数来描述。
概率密度函数(probability density function, PDF)是描述连续型随机参数概率分布的函数。
正态分布的概率密度函数如下:f(x) = (1/√(2πσ^2)) * e^(-(x-μ)^2/(2σ^2))其中,f(x)代表随机变量X的概率密度函数,μ是均值,σ是标准差,e是自然对数的底。
正态分布的概率密度函数具有如下性质:1. 对称性:正态分布是关于均值的对称分布,也就是说,概率密度函数关于均值μ有对称性,左右两侧的概率密度相等。
2. 单峰性:正态分布是单峰分布,即只有一个峰值,且峰值出现在均值μ处。
3. 高点陡峭,两端逐渐趋于0:正态分布的概率密度函数在均值μ处取得最大值,然后向两侧逐渐减小,在正态分布两端趋于0。
因此,正态分布在均值附近具有较高的概率,而在两端的概率较低。
4. 总面积等于1:正态分布的概率密度函数总面积等于1,即整个概率空间。
正态分布的概率计算可以通过计算概率密度函数下的面积来实现。
例如,计算X小于等于某个值x的概率可以通过对概率密度函数在负无穷到x的区间进行积分得到。
正态分布的累积分布函数(cumulative distribution function, CDF)可以用来计算具体的概率值。
CDF可以表示为标准正态分布的形式,通过查表或数值计算可以得到。
正态分布的均值和标准差对概率分布有重要影响。
均值决定了分布的中心位置,标准差决定了分布的离散程度。
当均值为0,标准差为1时,成为标准正态分布。
正态分布在许多领域中有重要应用,特别是在统计学、自然科学、社会科学、金融和工程学中。
例如,许多实验测量结果遵循正态分布,使得正态分布成为假设检验和置信区间估计的基础。
正态分布的概念与计算正态分布(Normal Distribution),也称高斯分布(Gaussian Distribution),是概率论与统计学中非常重要的一种连续型概率分布。
它在自然界和人类社会的各个方面都有广泛应用,是描述随机变量分布的重要工具。
本文将介绍正态分布的概念,并说明如何计算正态分布。
一、正态分布的概念正态分布由其概率密度函数来定义,符号表示为:N(N, N²),其中N为均值,N²为方差。
概率密度函数的形式为:N(N) = 1 / (N√2N) * N^(-((N−N)² / (2N²)))特点:1. 正态分布的图像呈钟形,中心对称,左右两边曲线对称,均值、中位数和众数相等,即N。
2. 在均值处有最高点,随着离均值的距离增加,曲线下降缓慢。
3. 标准差N的大小决定了曲线的陡峭程度,标准差越大,曲线越平缓。
二、正态分布的计算1. 概率密度计算:对于给定的正态分布N(N, N²),可以通过概率密度函数计算任意N处的概率密度值。
例如,计算某个值N的概率密度,可以使用如下公式:N(N) = 1 / (N√2N) * N^(-((N−N)² / (2N²)))其中,N(N)表示N处的概率密度值。
2. 累积概率计算:对于给定的正态分布N(N, N²),可以计算N≤ N的累积概率N(N≤ N)。
此时,可以使用标准正态分布表格或统计软件来查找概率值。
3. 标准化与反标准化:在实际计算过程中,常常需要将正态分布转化为标准正态分布,即N(0, 1)。
标准正态分布的均值N为0,方差N²为1。
标准化公式如下:N = (N−N) / N其中,N表示标准化后的值。
反标准化则是将标准正态分布转化为任意正态分布。
反标准化公式如下:N = N + NN4. 百分位数计算:对于给定的正态分布N(N, N²),可以计算N对应的百分位数。