MAX6324DUT44中文资料
- 格式:pdf
- 大小:287.79 KB
- 文档页数:12
For free samples & the latest literature: , or phone 1-800-998-8800.For small orders, phone 1-800-835-8769.General DescriptionThe MAX6326/MAX6327/MAX6328/MAX6346/MAX6347/MAX6348 microprocessor (µP) supervisory circuits moni-tor the power supplies in µP and digital systems. These devices provide excellent circuit reliability and low cost by eliminating external components and adjustments when used with 2.5V, 3V, 3.3V, and 5V powered circuits.These circuits perform a single function: they assert a reset signal whenever the V CC supply voltage declines below a preset threshold, keeping it asserted for at least 100ms after V CC has risen above the reset threshold.The only difference between the devices is their output.The MAX6326/MAX6346 (push-pull) and MAX6328/MAX6348 (open-drain) have an active-low reset output.The MAX6327/MAX6347 have an active-high push-pull reset output. All of these parts are guaranteed to be in the correct state for V CC down to 1V. The reset compara-tor is designed to ignore fast transients on V CC . Reset thresholds are factory-trimmable between 2.2V and 4.63V, in approximately 100mV increments. Twenty-one standard versions are available. Contact the factory for availability of nonstandard versions.Ultra-low supply currents (1µA max for the MAX6326/MAX6327/MAX6328) make these parts ideal for use in portable equipment. All six devices are available in space-saving SOT23 and SC70 packages.ApplicationsComputers Intelligent Instruments Controllers AutomotiveCritical µP and µC Portable/Battery-Powered Power MonitoringEquipmentFeatureso Ultra-Low 1µA (max) Supply Current (MAX6326/MAX6327/MAX6328)o Precision Monitoring of 2.5V, 3V, 3.3V, and 5V Power-Supply Voltageso Reset Thresholds Available from 2.2V to 4.63V o Fully Specified Over Temperatureo 100ms (min) Power-On Reset Pulse Width o Low Costo Available in Three Versions: Push-Pull RESET ,Push-Pull RESET, and Open-Drain RESET o Power-Supply Transient Immunity o No External Componentso 3-Pin SC70/SOT23 Packageso Pin Compatible with MAX803/MAX809/MAX810MAX6326/MAX6327/MAX6328/MAX6346/MAX6347/MAX63483-Pin, Ultra-Low-Power SC70/SOTµP Reset Circuits________________________________________________________________Maxim Integrated Products 1Pin Configuration19-1294; Rev 3; 1/00†The MAX6326/MAX6327/MAX6328/MAX6346/MAX6347/MAX6348 are available in factory-set V CC reset thresholds from 2.2V to 4.63V, in approximately 0.1V increments. Choose the desired reset-threshold suffix from Table 1 and insert it in the blank spaces following “R.”There are 21 standard versions witha required order increment of 2500 pieces. Sample stock is gen-erally held on the standard versions only (see the SelectorGuide). Required order increment is 10,000 pieces for nonstan-dard versions (Table 2). Contact factory for availability. All devices available in tape-and-reel only.Selector Guide appears at end of data sheet.M A X 6326/M A X 6327/M A X 6328/M A X 6346/M A X 6347/M A X 63483-Pin, Ultra-Low-Power SC70/SOT µP Reset Circuits 2_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGSELECTRICAL CHARACTERISTICS(V CC = full range, T A = -40°C to +85°C, unless otherwise noted. Typical values are at T A = +25°C and V CC = 3V.) (Note 1)Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.Terminal Voltage (with respect to GND)V CC ...........................................................................-0.3V to +6V RESET, RESET (push-pull).........................-0.3V to (V CC + 0.3V)RESET (open drain)..................................................-0.3V to +6V Input Current (V CC ).............................................................20mA Output Current (RESET, RESET ).........................................20mA Rate of Rise (V CC )...........................................................100V/µsContinuous Power Dissipation (T A = +70°C)3-Pin SC70 (derate 2.7mW/°C above +70°C)...............174mW 3-Pin SOT23 (derate 4mW/°C above +70°C)................320mW Operating Temperature Range ...........................-40°C to +85°C Storage Temperature Range.............................-65°C to +150°C Lead Temperature (soldering, 10s).................................+300°CNote 1:Overtemperature limits are guaranteed by design and not production tested.MAX6326/MAX6327/MAX6328/MAX6346/MAX6347/MAX63483-Pin, Ultra-Low-Power SC70/SOTµP Reset Circuits_______________________________________________________________________________________3__________________________________________Typical Operating Characteristics(T A = +25°C, unless otherwise noted.)00.30.20.10.40.50.60.70.80.91.0-400-2020406080SUPPLY CURRENT vs. TEMPERATURE TEMPERATURE (°C)S U P P L Y C U R R E N T(µA)050100150200-400-2020406080POWER-DOWN RESET DELAY vs. TEMPERATURE TEMPERATURE (°C)R E S E T D E L A Y(µs)130150140160170180190200210-400-2020406080POWER-UP RESET TIMEOUT vs. TEMPERATURE M A X6326-03TEMPERATURE (°C)P O W E R-U P R E S E T T I M E O U T(m s)500011001000MAXIMUM TRANSIENT DURATION vs. RESET THRESHOLD OVERDRIVE (SC70)100300400200M A X6326-04RESET THRESHOLD OVERDRIVE,V TH - V CC (mV)M A X I M U M T R A N S I E N T D U R A T I O N(µs)10______________________________________________________________Pin DescriptionM A X 6326/M A X 6327/M A X 6328/M A X 6346/M A X 6347/M A X 63483-Pin, Ultra-Low-Power SC70/SOT µP Reset Circuits 4___________________________________________________________________________________________________Applications InformationInterfacing to µPs with Bidirectional Reset PinsSince the RESET output on the MAX6328/MAX6348 is open drain, these devices interface easily with micro-processors (µPs) that have bidirectional reset pins,such as the Motorola 68HC11. Connecting the µP supervisor’s RESET output directly to the microcon-troller’s (µC’s) RESET pin with a single pull-up resistor allows either device to assert reset (Figure 1).Negative-Going V CC TransientsIn addition to issuing a reset to the µP during power-up,power-down, and brownout conditions, these devices are relatively immune to short-duration, negative-going V CC transients (glitches).The Typical Operating Characteristics show the Maxi-mum Transient Duration vs. Reset Threshold Overdrive graph, for which reset pulses are not generated. The graph shows the maximum pulse width that a negative-going V CC transient may typically have when issuing a reset signal. As the amplitude of the transient increas-es, the maximum allowable pulse width decreases.Figure 1. Interfacing to µPs with Bidirectional Reset PinsTable 1. Factory-Trimmed Reset Thresholds ‡‡Factory-trimmed reset thresholds are available in approximately 100mV increments with a 1.5% room-temperature variance.MAX6326/MAX6327/MAX6328/MAX6346/MAX6347/MAX63483-Pin, Ultra-Low-Power SC70/SOTµP Reset Circuits_______________________________________________________________________________________5Table 1. Factory-Trimmed Reset Thresholds‡(continued)‡Factory-trimmed reset thresholds are available in approximately 100mV increments with a 1.5% room-temperature variance.Table 2. Device Marking Codes and Minimum Order IncrementsM A X 6326/M A X 6327/M A X 6328/M A X 6346/M A X 6347/M A X 63483-Pin, Ultra-Low-Power SC70/SOT µP Reset Circuits 6__________________________________________________________________________________________________________Chip InformationTRANSISTOR COUNT: 419Table 2. Device Marking Codes and Minimum Order Increments (continued)Selector Guide(standard versions*)*Sample stock is generally held on all standard versions.________________________________________________________Package InformationMAX6326/MAX6327/MAX6328/MAX6346/MAX6347/MAX63483-Pin, Ultra-Low-Power SC70/SOTµP Reset Circuits_______________________________________________________________________________________7M A X 6326/M A X 6327/M A X 6328/M A X 6346/M A X 6347/M A X 63483-Pin, Ultra-Low-Power SC70/SOT µP Reset Circuits Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.8_____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600©2000 Maxim Integrated ProductsPrinted USAis a registered trademark of Maxim Integrated Products.Package Information (continued)。
16位元立體聲音頻數位類比轉換器(DAC)低功率消耗低功率消耗,,低工作電壓 優異的優異的漣波漣波漣波拒斥比拒斥比(PSRR)特性特性‧ 工作電壓: 2.5V ~ 5.5V 。
‧ 優異的電源漣波拒斥比(PSRR)。
‧ 低工作電流。
‧ 低功率消耗8毫瓦,V DD =3.3V(最大刻度輸出)。
‧ 低失真。
‧ 無交越失真(Crossover distortion)。
‧ 16位元解析度。
‧ 電壓輸出。
‧ 快速的轉換,允許2倍、4倍與8倍的超取樣轉換頻率。
‧ 輸入格式:I2S (MS6324)。
Right justified (MS6326)‧ 輸入(WS, DATA and BCK)高準位於工作電壓為5V時容許最低電位可至1.8V 。
‧ 電源啟動時,DAC 輸入暫存器設定為0000Hex ,DAC 輸出將是1/2Vdd 。
‧ 輸出電壓振幅與工作電壓成比例 (V O p-p = 0.5V DD )。
‧ 封裝種類有SOP8,MSOP8。
產品應用產品應用‧ 多媒體系統。
‧ MP3,PDA ,可攜式數位產品。
‧ Set top box 。
描述描述MS6324/26是一顆16位元電壓輸出數位類比轉換器。
具有良好的電源漣波拒斥比(PSRR ),極低的功率消耗。
封裝尺寸小,容易應用。
精確穩定的電流量,結合極好的對稱解碼方式,保證重現出高品質的音頻訊號。
電源啟動時,DAC 輸入暫存器設定為0000Hex ,DAC 輸出將是1/2Vdd 。
這些優異的性能,適合應用於可攜式音頻裝置。
MS6324/26之腳位與功能相容於MS6323。
腳位腳位配置配置配置標籤標籤 腳位腳位 描述描述BCK 1 數位音頻時脈輸入端 WS 2 數位音頻字元選擇輸入端 DATA 3 數位音頻資料輸入端 GND 4 接地V DD 5 正極供應電壓 V OL 6 左聲道輸出Cap 7 參考電壓(1/2 V DD ) V OR8右聲道輸出V OR CapV OL V DDBCK WS DATA GND方塊圖方塊圖V DD圖一圖一、、方塊圖方塊圖訂購資訊訂購資訊封裝形式封裝形式產品編號產品編號 封裝正印封裝正印 運送包裝運送包裝8-Pin SOP (lead free) MS6324GTR MS6324G 2.5k Units Tape and Reel 8-Pin SOP (lead free) MS6324GU MS6324G 100 Units Tube 8-Pin MSOP (lead free) MS6324MGTR 6324G 3.5k Units Tape and Reel 8-Pin MSOP (lead free) MS6324MGU 6324G 80 Units Tube8-Pin SOP (lead free) MS6326GTR MS6326G 2.5k Units Tape and Reel 8-Pin SOP (lead free) MS6326GU MS6326G 100 Units Tube 8-Pin MSOP (lead free) MS6326MGTR 6326G 3.5k Units Tape and Reel 8-Pin MSOP (lead free) MS6326MGU6326G80 Units Tube遵循RoHS 規範最大容許規格符號參數額定值單位V DD工作電壓 6 V V ESD抗靜電處理-2000 to 2000 V T STG儲存溫度-65 to 150 ℃T A工作環境溫度-40 to 85 ℃T J最大接合溫度150 ℃T S焊接溫度(10秒)260 ℃RTHJA 接面熱阻(介質:空氣)SOP8MSOP8210235℃/W5V 電氣特性(條件Ta=25℃, V DD=5V, f=1kHz, Cap=1uF)符號參數測試條件最小值額定值最大值單位直流特性V CAP參考電壓 2.45 2.5 2.55 V V DC直流輸出準位 2.45 2.5 2.55 V V FS滿刻度輸出電壓V FS=0.5V DD 2.3 2.5 2.7 Vpp I Q靜態電流At code 0000H - 2.7 - mA I FS最大動態電流V FS=0.5V DD- 3.9 - mACAP=1uF, f=100Hz 44 49 - dB PSRR 電源漣波拒斥比CAP=10uF, f=100Hz 60 65 - dB CS 聲道隔離度81 87 - dB 交流特性Res 解析度- - 16 bits- -68 -64 dB THD+N 總諧波失真- 0.04 0.063 % S/N 信號雜訊比89 95 - dB3.3V 電氣特性(條件 Ta=25℃, V DD =3.3V, f=1kHz, Cap=1uF)符號 參數 測試條件最小值 額定值最大最大值值單位直流特性 V CAP 參考電壓 1.6 1.65 1.7 V V DC 直流輸出準位1.6 1.65 1.7 V V FS 滿刻度輸出電壓 V FS =0.5V DD 1.5 1.65 1.8 Vpp I Q 靜態電流 At code 0000H -2.3 - mA I FS 最大動態電流 V FS =0.5V DD - 2.4 - mA CAP=1uF, f=100Hz 45 50 - dB PSRR 電源漣波拒斥比 CAP=10uF, f=100Hz 63 68 - dB CS 聲道隔離度7884-dB交流特性 - -66 -62 dBTHD+N 總諧波失真 - 0.05 0.08 %S/N 信號雜訊比8692-dB2.5V 電氣特性(Ta=25℃, V DD =2.5V, f=1kHz, Cap=1uF)符號 參數 測試條件最小值 額定值 最大值 單位 直流特性 V CAP 參考電壓 1.2 1.25 1.3 V V DC 直流輸出準位1.2 1.25 1.3 V V FS 滿刻度輸出電壓 V FS =0.5V DD 1.2 1.25 1.5 Vpp I Q 靜態電流 At code 0000H -2.0 - mA I FS 最大動態電流 V FS =0.5V DD - 2.1 - mA CAP=1uF, f=100Hz 44 49 - dB PSRR 電源漣波拒斥比 CAP=10uF, f=100Hz 59 64 - dB CS 聲道隔離度77 83 - dB 交流特性 - -66 -62 dBTHD+N 總諧波失真 - 0.05 0.08 %S/N 信號雜訊比8389-dB特性曲線圖特性曲線圖(Ta=25℃, f=1kHz, Cap=1uF, sampling rate=4fs)T H D +N (%)FREQUENCY (Hz)T H D +N (%)FREQUENCY (Hz)T H D +N (%)SUPPLY VOLTAGE (V)總諧波失真 vs. 頻率總諧波失真 vs. 頻率總諧波失真 vs. 供給電壓P S R R (d B )FREQUENCY (Hz)P S R R (d B )FREQUENCY (Hz)P S R R (d B )FREQUENCY (Hz)電源漣波拒斥比漣波拒斥比((3.3V )vs.頻率電源漣波拒斥比漣波拒斥比((2.7V )vs.頻率電源漣波拒斥比漣波拒斥比((2.5V )vs.頻率P S R R (d B )FREQUENCY (Hz)Q U I E S C E N T C U R R E N T (m A )SUPPLY VOLTAGE (V)C H A N N E L S E P A R A T I O N (d B )SUPPLY VOLTAGE (V)電源漣波拒斥比漣波拒斥比((5V )vs.頻率靜態電流 vs. 供給電壓通道隔離通道隔離度度 vs. 供給電壓V DD =3.3VV DD =2.7VV DD =5VCAP=1uF CAP=10uF V DD =3.3V V RR =-20dBV CAP=22uF CAP=1uFCAP=10uFV DD =2.7V V RR =-20dBV CAP=22uF CAP=1uFCAP=10uFV DD =2.5V V RR =-20dBVCAP=1uFCAP=10uFV DD =5VV RR =-20dBV時序與輸入格式時序與輸入格式MS6324/26為16位元的串列輸入格式。
– 1 –– 2 –– 3 –P/N: 1802063240012Industrial Rackmount SwitchIKS-6324 SeriesHardware Installation GuideThird Edition, September 2013Package ChecklistThe Moxa IKS-6324 Series industrial rackmount switches areshipped with the following items. If any of these items is missing or damaged, please contact your customer service representative for assistance. • 1 Moxa IKS-6324 Switch • Hardware Installation Guide• Moxa Product Warranty Statement • Protective caps for unused ports •2 rack-mount earsPanel Layouts1. LED Indicators (System status, Interface Module mode,Interface Module port)2. Push-button switch to select mode for Interface Module3. Model Name4. Fast Ethernet / Gigabit Ethernet Interface Modules5. 10/100BaseT(X) port6. 10-pin terminal block for power inputs7. Rack Mounting Kit8. Ground Screw Dimensions (unit = mm)Fast Ethernet Interface ModuleGigabit Ethernet Interface ModuleSlot 1 for 2-port PM-7200 GigabitEthernet combo module, or 2- or 1-port PM-7200 fast Ethernet modules.Rack MountingUse four screws to attach the switch to a standard rack.Wiring RequirementsGrounding Moxa’s Rackmount SwitchesGrounding and wire routing help limit the effects of noise due to electromagnetic interference (EMI). Run the ground connection from the ground screw to the grounding surface prior to connectingdevices.Wiring the Power InputsThe IKS series supports dual redundant power supplies, named “Power Supply 1 (PWR1)” and “Power Supply 2 (PWR2)”. Theconnections for PWR1 and PWR2 are located on the terminal block. Front view of the terminal block connectors are shown here.– 4 –– 5 –– 6 –/supportThe Americas: +1-714-528-6777 (toll-free: 1-888-669-2872)Europe: +49-89-3 70 03 99-0 Asia-Pacific: +886-2-8919-1230China: +86-21-5258-9955 (toll-free: 800-820-5036)2013 Moxa Inc. All rights reserved.Wiring the Redundant Power InputsThe IKS-6324 switch has two sets of power input—power input 1 and power input 2.STEP 1: Insert the dual set positive/negative DC wires into PWR1and PWR2 terminals (+ → pins 1, 9, - → pins 2, 10). Or insert the L/N AC wires into the PWR1 terminals (L → pin 1, N → pin 2). STEP 2: To keep the DC or AC wires from pulling loose, use ascrewdriver to tighten the wire-clamp screws on the front of the terminal block connector.LED IndicatorsThe front panel of the IKS-6324 switch contains several LED indicators. The function of each LED is described in the table below.NOTE: Use the Mode push-button switch to cycle among the LNK/ACT, SPEED, and FDX/HDX LEDs. The status of these three settings is indicated by the LEDs for the various ports. The system will switch to LNK/ACT automatically after 5 seconds.* Slot 1 (M1) is mainly used for Gigabit modules. If 100BaseFX modules are used in Slot 1 (M1), the modules will not support “Far End Fault”. The Link/ACT LED indicator will stay at “Green (ON)” status when Fiber TX cable is unplugged.SpecificationsTechnology Standards IEEE802.3, 802.3u, 802.3ab, 802.3z, 802.3x Flow Control IEEE802.3x flow control, back pressure flow controlInterface Fast Ethernet 10/100BaseT(X) or 100BaseFX (SC/ST connector)Gigabit Ethernet10/100/1000BaseT(X),1000BaseSX/LX/LHX/ZX (SFP slot, LC connector)System LED Indicators STAT, PWR1, PWR2, FAULTModule LED IndicatorsLNK/ACT, FDX/HDX, SPEED Optical Fiber (100BaseFX) Distance Multi mode0 to 5 km, 1300 nm (50/125μm , 800 MHz*km) 0 to 4 km, 1300 nm (62.5/125μm , 500 MHz*km)Single mode0 to 40 km, 1310 nm (9/125μm , 3.5 PS/(nm*km))Min. TX Output Multi mode: -20 dBm; Single mode: -5 dbm Max. TX Output Multi mode: -10 dBm; Single mode: 0 dbm RX Sensitivity -36 to -32 dBm (Single), -34 to -30 dBm (Multi)PowerInput VoltageLow Voltage: 24/48 VDC (9 to 60 V)High Voltage: 110/250 VDC (88 to 300 V) and 100/240 VAC (85 to 264 V)Input Current Max. 0.68A @ 24 VDCMax. 0.35A @ 48 VDCMax. 0.17/0.11A @ 110/220 VDC Max. 0.33/0.23A @ 110/220 VACConnection 10-pin Terminal Block Overload Current Protection6.3 A Reverse Polarity Protection Present Mechanical Casing IP 30 protection, metal case Dimensions (W x H x D) 440 x 44 x 254 mm (17.32 x 1.73 x 10.00 in.) Weight 4300g Installation 19-inch Rack Mounting EnvironmentalOperating Temp. -40 to 75°C (-40 to 167°F) for -T models Storage Temp. -40 to 85°C (-40 to 185°F) Ambient Relative Humidity5 to 95% (non-condensing) Regulatory Approvals Safety EN60950-1 (Pending) Maritime ABS/BV/CCS/DNV/GL/KR/LR/NKK/PR/RINA(Pending)Road Traffic NEMA TS2 (Pending) EMI FCC Part 15, CISPR (EN55022) class A Railway EN50121-4 (Pending)Shock & Vibration EN50155 (EN/IEC 61373, Category 1, Class B) Warranty 5 years。
概述DS33Z44开发板是使用方便的评估板,用于评估以太网在串行链路上的传输器件DS33Z44。
DS33Z44DK的串行链路由子卡提供。
串行子卡包括接口、变压器以及网络接口。
Dallas的ChipView软件随开发板一起提供,可在基于Windows®的PC上访问配置寄存器和状态寄存器。
板载LED用于指示接收信号丢失、队列溢出、以太网链路、Tx/Rx和中断状态。
Windows是Microsoft Corp.的注册商标。
定购信息PART DESCRIPTIONDS33Z44DKDS33Z44 demo card, T3/E3, T1/E1transceiver resource card included特性演示DS33Z44以太网传输芯片组的主要功能包括两块子卡:一块DS21458 T1/E1 SCT和一块DS3174 T3/E3 SCT,提供变压器、BNC和RJ48网络连接器以及终端匹配提供硬件和软件模式支持板载MMC2107处理器和ChipView软件允许访问DS33Z44的寄存器组所有DS33Z44接口引脚便于与外部数据源/接收器连接LED指示信号丢失、队列溢出、以太网链路、Tx/Rx以及中断状态丝网印制标记清晰标识与所有连接器、跳线和LED相关的信号开发套件内容• DS33Z44DK主板•具有DS21458 T1/E1 SCT的4端口串口卡•具有DS3174 T3/E3 SCT的4端口串口卡• CD_ROMo ChipView软件和手册o DS33Z44DK数据资料o配置文件DS33Z44DK以太网传输开发套件概述 (1)定购信息 (1)开发套件内容 (1)元件清单 (3)PCB勘误表 (10)文件位置 (10)基本操作 (11)开发板供电 (11)概要 (11)基本的DS33Z44初始化(用于所有的快速设置) (11)快速配置#1 (Device Driver + CPLD环回) (11)快速配置#2 (DS3174 T3E3) (12)快速配置#3 (DS21458 T1E1) (12)配置开关和跳线 (13)地址映射(所有板卡) (15)DS33Z44信息 (15)DS33Z44DK信息 (15)技术支持 (15)文档版本历史 (15)原理图 (16)图片列表图1. 系统平面图 (8)图2. DS3174子卡平面图 (8)图3. DS21458子卡平面图 (9)表格清单表1. 元件清单(未显示去耦电容) (3)表2. 主板PCB配置 (13)表3. DS3174串行子卡跳线设置 (14)表4. 卡地址映射概述 (15)表1给出了DS33Z44和DS33Z11/DS33Z41开发板及其子卡的元件清单。
AO4459中⽂资料SymbolTyp Max 33406275R θJL 1824Maximum Junction-to-Lead CSteady-State°C/WThermal Characteristics ParameterUnits Maximum Junction-to-AmbientAt ≤ 10s R θJA °C/W Maximum Junction-to-Ambient ASteady-State °C/W AO4459AO4459SymbolMin TypMaxUnits BV DSS -30V -1T J =55°C-5I GSS ±100nA V GS(th)-1.5-1.85-2.5V I D(ON)-30A 3846T J =125°C53685872m ?g FS 11S V SD -0.78-1V I S-3.5A C iss 668830pF C oss 126pF C rss 92pF R g69?Q g (10V)12.716nC Q g (4.5V) 6.4nC Q gs 2nC Q gd 4nC t D(on)7.7ns t r 6.8ns t D(off)20ns t f 10ns t rr 2230ns Q rr15nCTHIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN,FUNCTIONS AND RELIABILITY WITHOUT NOTICE.DYNAMIC PARAMETERS Maximum Body-Diode Continuous CurrentGate resistanceV GS =0V, V DS =0V, f=1MHzV GS =0V, V DS =-15V, f=1MHz Input Capacitance Output Capacitance Turn-On Rise Time Turn-Off DelayTime V GS =-10V, V DS =-15V, R L =2.5?, R GEN =3?Turn-Off Fall TimeTurn-On DelayTime SWITCHING PARAMETERSTotal Gate Charge (4.5V)Gate Source Charge Gate Drain Charge Total Gate Charge (10V)V GS =-10V, V DS =-15V, I D =-6.5Am ?V GS =-4.5V, I D =-5AI S =-1A,V GS =0V V DS =-5V, I D =-6.5AR DS(ON)Static Drain-Source On-ResistanceForward TransconductanceDiode Forward VoltageI DSS µA Gate Threshold Voltage V DS =V GS I D =-250µA V DS =-24V, V GS =0VV DS =0V, V GS =±20V Zero Gate Voltage Drain Current Gate-Body leakage current Electrical Characteristics (T J =25°C unless otherwise noted)STATIC PARAMETERS ParameterConditions Body Diode Reverse Recovery Time Body Diode Reverse Recovery ChargeI F =-6.5A, dI/dt=100A/µsDrain-Source Breakdown Voltage On state drain currentI D =-250µA, V GS =0V V GS =-10V, V DS =-5V V GS =-10V, I D =-6.5AReverse Transfer Capacitance I F =-6.5A, dI/dt=100A/µs A: The value of R θJA is measured with the device mounted on 1in 2FR-4 board with 2oz. Copper, in a still air environment with T A =25°C. The value in any a given application depends on the user's specific board design. The current rating is based on the t ≤ 10s thermal resistance rating.B: Repetitive rating, pulse width limited by junction temperature.C. The R θJA is the sum of the thermal impedence from junction to lead R θJL and lead to ambient.D. The static characteristics in Figures 1 to 6 are obtained using < 300µs pulses, duty cycle 0.5% max.E. These tests are performed with the device mounted on 1 in 2FR-4 board with 2oz. Copper, in a still air environment with T A =25°C. The SOA curve provides a single pulse rating. Rev0 Sept 2006AO4459AO4459。
用于Peltier模块的集成温度控制器概论MAX1978 / MAX1979是用于Peltier热电冷却器(TEC)模块的最小, 最安全, 最精确完整的单芯片温度控制器。
片上功率FET和热控制环路电路可最大限度地减少外部元件, 同时保持高效率。
可选择的500kHz / 1MHz开关频率和独特的纹波消除方案可优化元件尺寸和效率, 同时降低噪声。
内部MOSFET的开关速度经过优化, 可降低噪声和EMI。
超低漂移斩波放大器可保持±0.001°C的温度稳定性。
直接控制输出电流而不是电压, 以消除电流浪涌。
独立的加热和冷却电流和电压限制提供最高水平的TEC保护。
MAX1978采用单电源供电, 通过在两个同步降压调节器的输出之间偏置TEC, 提供双极性±3A输出。
真正的双极性操作控制温度, 在低负载电流下没有“死区”或其他非线性。
当设定点非常接近自然操作点时, 控制系统不会捕获, 其中仅需要少量的加热或冷却。
模拟控制信号精确设置TEC 电流。
MAX1979提供高达6A的单极性输出。
提供斩波稳定的仪表放大器和高精度积分放大器, 以创建比例积分(PI)或比例积分微分(PID)控制器。
仪表放大器可以连接外部NTC或PTC热敏电阻, 热电偶或半导体温度传感器。
提供模拟输出以监控TEC温度和电流。
此外, 单独的过热和欠温输出表明当TEC温度超出范围时。
片上电压基准为热敏电阻桥提供偏置。
MAX1978 / MAX1979采用薄型48引脚薄型QFN-EP 封装, 工作在-40°C至+ 85°C温度范围。
采用外露金属焊盘的耐热增强型QFN-EP封装可最大限度地降低工作结温。
评估套件可用于加速设计。
应用光纤激光模块典型工作电路出现在数据手册的最后。
WDM, DWDM激光二极管温度控制光纤网络设备EDFA光放大器电信光纤接口ATE特征♦尺寸最小, 最安全, 最精确完整的单芯片控制器♦片上功率MOSFET-无外部FET♦电路占用面积<0.93in2♦回路高度<3mm♦温度稳定性为0.001°C♦集成精密积分器和斩波稳定运算放大器♦精确, 独立的加热和冷却电流限制♦通过直接控制TEC电流消除浪涌♦可调节差分TEC电压限制♦低纹波和低噪声设计♦TEC电流监视器♦温度监控器♦过温和欠温警报♦双极性±3A输出电流(MAX1978)♦单极性+ 6A输出电流(MAX1979)订购信息* EP =裸焊盘。
General DescriptionThe MAX9030/MAX9031/MAX9032/MAX9034 single/dual/quad comparators are optimized for single-supply applications from +2.5V to +5.5V but can also be oper-ated from dual supplies. These comparators have a 188ns propagation delay and consume 35µA of supply current per comparator over the -40°C to +125°C oper-ating temperature range. The combination of low-power, single-supply operation down to +2.5V, and ultra-small footprint makes these devices ideal for portable applications.The MAX9030 is a low-cost single comparator with shutdown. The MAX9031, MAX9032, and MAX9034 are low-cost single, dual, and quad comparators without shutdown, respectively. The comparators’ 4mV of built-in hysteresis provides noise immunity and prevents oscillations even with a slow-moving input signal. The input common-mode range extends from the negative supply to within 1.1V of the positive supply. The design of the comparator output stage substantially reduces switching current during output transitions, virtually eliminating power-supply glitches.The MAX9030 single comparator with shutdown is avail-able in the space-saving 6-pin SC70 and SOT23 pack-ages. The MAX9031 single comparator is available in tiny 5-pin SC70 and SOT23 packages. The MAX9032 dual comparator is available in 8-pin SOT23 and µMAX pack-ages, and the MAX9034 quad comparator is available in a 14-pin TSSOP package.________________________ApplicationsFeatureso Low-Cost Solution Available in Space-Saving SC70 Packages (MAX9030/MAX9031)o +2.5 to +5.5V Single-Supply Voltage Range o Comparator Output Swings Rail-to-Rail ®o Internal 4mV Comparator Hysteresis o 188ns Propagation Delay o Low 35µA Supply Currento No Phase Reversal for Overdriven Inputs o Space-Saving Packages5-Pin SC70 (MAX9031)6-Pin SC70 (MAX9030)8-Pin SOT23 (MAX9032)14-Pin TSSOP (MAX9034)MAX9030/MAX9031/MAX9032/MAX9034Low-Cost, Ultra-Small, Single/Dual/QuadSingle-Supply Comparators________________________________________________________________Maxim Integrated Products1Pin Configurations19-1767; Rev 0; 10/00Ordering Information*Future product–contact factory for availability.Battery-PoweredPortable SystemsMobile Communications Sensor Signal Detection Photodiode PreampsDigital Line Receivers Keyless Entry Systems Threshold Detectors/DiscriminatorsTypical Application Circuit appears at end of data sheet.Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.For price, delivery, and to place orders,please contact Maxim Distribution at 1-888-629-4642,or visit Maxim’s website at .M A X 9030/M A X 9031/M A X 9032/M A X 9034Low-Cost, Ultra-Small, Single/Dual/Quad Single-Supply Comparators 2_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGSELECTRICAL CHARACTERISTICS(V DD = +5V, V SS = 0, V CM = 0, V SHDN = +5V (Note 1), T A = -40°C to +125°C, unless otherwise noted. Typical values are at T A = +25°C.) (Note 2)Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.Supply Voltage (V DD to V SS )....................................-0.3V to +6V Voltage Inputs (IN+, IN- to V SS ).................-0.3V to (V DD + 0.3V)Differential Input Voltage (IN+ to IN-).................................+6.6V Output Short-CircuitDuration...............................................2s to Either V DD or V SS Current into Any Pin............................................................20mA Continuous Power Dissipation (T A = +70°C)...............................5-Pin SC70 (derate 3.1mW/°C above +70°C)...............247mW 5-Pin SOT23 (derate 7.1mW/°C above +70°C).............571mW 6-Pin SC70 (derate 3.1mW/°C above +70°C)...............245mW 6-Pin SOT23 (derate 8.7mW/°C above +70°C).............696mW8-Pin SOT23 (derate 9.1mW/°C above +70°C).............727mW 8-Pin µMAX (derate 4.5mW/°C above +70°C)..............362mW 8-Pin SO (derate 5.88mW/°C above +70°C).................471mW 14-Pin TSSOP (derate 9.1mW/°C above +70°C)..........727mW 14-Pin SO (derate 8.33mW/°C above +70°C)...............667mW Operating Temperature RangeAutomotive Application...................................-40°C to +125°C Junction Temperature......................................................+150°C Storage Temperature Range.............................-65°C to +150°C Lead Temperature (soldering, 10s)................................+300°CMAX9030/MAX9031/MAX9032/MAX9034Low-Cost, Ultra-Small, Single/Dual/QuadSingle-Supply Comparators_______________________________________________________________________________________3ELECTRICAL CHARACTERISTICS (continued)Note 2:All devices are production tested at +25°C. All temperature limits are guaranteed by design.Note 3:Comparator Input Offset is defined as the center of the hysteresis zone.Note 4:Hysteresis is defined as the difference of the trip points required to change comparator output states.Note 5:V OD is the overdrive that is beyond the offset and hysteresis-determined trip points.Note 6:Rise and fall times are measured between 10% and 90% at OUT.Typical Operating Characteristics(V DD = +5V, V SS = 0, V CM = 0, R L = 10k Ω, C L = 15pF, V OD = 100mV, T A = +25°C, unless otherwise noted.)M A X 9030/M A X 9031/M A X 9032/M A X 9034Low-Cost, Ultra-Small, Single/Dual/Quad Single-Supply Comparators 4_______________________________________________________________________________________Typical Operating Characteristics (continued)(V DD = +5V, V SS = 0, V CM = 0, R L = 10k Ω, C L = 15pF, V OD = 100mV, T A = +25°C, unless otherwise noted.)-0.5-0.2-0.3-0.40-0.10.40.30.20.10.5-50-25255075100125INPUT OFFSET VOLTAGE vs. TEMPERATUREM A X 9030/1/2/4 t o c 04TEMPERATURE (°C)I N P U T O F F S E T V O L T A G E (m V )402010080601401601201800 1.5 2.00.5 1.0 2.5 3.0 3.5 4.0 4.5OUTPUT HIGH VOLTAGE vs. SOURCE CURRENTM A X 9030/1/2/4 t o c 05SOURCE CURRENT (mA)V D D - V O U T O U T P U T H I G H V O L T A G E (m V )402010080601401601201800 1.5 2.00.5 1.0 2.5 3.0 3.5 4.0 4.5OUTPUT LOW VOLTAGE vs. SINK CURRENTM A X 9030/1/2/4 t o c 06SINK CURRENT (mA)O U T P U T L O W V O L T A G E (m V )30403550455560-502550-2575100125OUTPUT SHORT-CIRCUIT (SINK) CURRENTvs. TEMPERATUREM A X 9030/1/2/4 t o c 07TEMPERATURE (°C)S H O R T -C I R C U I T S I N K C U R R E N T (m A )30403550455560-502550-25075100125OUTPUT SHORT-CIRCUIT (SOURCE) CURRENTvs. TEMPERATUREM A X 9030/1/2/4 t o c 08TEMPERATURE (°C)S H O R T -C I R C U I T S O U R C E C U R R E N T (m A )1001601401201802002202402602803000502575100125150PROPAGATION DELAY vs. CAPACITIVE LOAD(V DD = 2.7V)M A X 9030/1/2/4 t o c 09CAPACITIVE LOAD (pF)P R O P A G A T I O N D E L A Y (n s )1001601401201802002202402602803000502575100125150PROPAGATION DELAY vs. CAPACITIVE LOAD(V DD = +5V)CAPACITIVE LOAD (pF)P R O P A G A T I O N D E L A Y (n s )100160140120200180280260240220300-50-250255075100125PROPAGATION DELAY vs. TEMPERATURETEMPERATURE (°C)P R O P A G A T I O N D E L A Y (n s )5012510075175150275250225200300020406080100120140PROPAGATION DELAYvs. INPUT OVERDRIVE VOLTAGEINPUT OVERDRIVE VOLTAGE (mV)P R O P A G A T I O N D E L A Y (n s )MAX9030/MAX9031/MAX9032/MAX9034Low-Cost, Ultra-Small, Single/Dual/QuadSingle-Supply Comparators_______________________________________________________________________________________5TIME (200ns/div)PROPAGATION DELAYM A X 9030/1/2/4 t o c 13OUT 2V/divIN+ - IN-200mV/divTIME (2µs/div)OUTPUT SWITCHING CURRENT, RISINGM A X 9030/1/2/4 t o c 14SWITCHING CURRENT 200µA/divIN+ - IN-5V/divOUT 5V/divTIME (1µs/div)OUTPUT SWITCHING CURRENT, FALLINGM A X 9030/1/2/4 t o c 15SWITCHING CURRENT 50µA/divIN+ - IN-5V/divOUT5V/divTIME (100ns/div)SINUSOID 1MHz RESPONSE AT 1.25MHzV OD = 100mVM A X 9030/1/2/4 t o c 16IN+ - IN-100mV/divOUT2V/divTIME (100ns/div)SINUSOID 1MHz RESPONSE AT 1.25MHzV OD = 10mVM A X 9030/1/2/4 t o c 17IN+ - IN-10mV/divOUT 2V/divTIME (200ns/div)POWER-UP DELAYM A X 9030/1/2/4 t o c 18V DD OUT2.5V/divTypical Operating Characteristics (continued)(V DD = +5V, V SS = 0, V CM = 0, R L = 10k Ω, C L = 15pF, V OD = 100mV, T A = +25°C, unless otherwise noted.)M A X 9030/M A X 9031/M A X 9032/M A X 9034Detailed DescriptionThe MAX9030/MAX9031/MAX9032/MAX9034 are sin-gle/dual/quad low-cost comparators. They have an operating supply voltage from +2.5V to +5.5V when operating from a single supply and from ±1.25V to ±2.75V when operating from dual power supplies, and consume only 35µA. Their common-mode input voltage range extends from the negative supply to within 1.1V of the positive supply. Internal hysteresis ensures clean output switching, even with slow-moving input signals.Shutdown ModeThe MAX9030 comparator comes with a power-saving shutdown mode. When in shutdown, the supply current drops from a typical 35µA to 0.05µA, and the outputs become high impedance. SHDN has a high input imped-ance and typically draws 0.1µA when connected to V SS or V DD . A maximum logic low voltage of 0.3V ✕ V DDapplied to SHDN places the device in the shutdown mode. A minimum logic high voltage of 0.7V ✕ V DD applied to SHDN will enable normal operation. To dis-able shutdown, connect SHDN to V DD .Applications InformationAdding HysteresisH ysteresis extends the comparator ’s noise margin by increasing the upper threshold and decreasing the lower threshold. A voltage-divider from the output of the comparator sets the trip voltage. Therefore, the trip volt-age is related to the output voltage.These comparators have 4mV internal hysteresis.Additional hysteresis can be generated with two resis-tors using positive feedback (Figure 1). Use the follow-ing procedure to calculate resistor values:Low-Cost, Ultra-Small, Single/Dual/Quad Single-Supply Comparators 6_______________________________________________________________________________________Pin Description1) Find the trip points of the comparator using these formulas:V TH = V REF +[((V DD - V REF )R2) / (R1 + R2)V TL = V REF (1 - (R2 / (R1 + R2))]where V TH is the threshold voltage at which the com-parator switches its output from high to low as V IN rises above the trip point. V TL is the threshold volt-age at which the comparator switches its output from low to high as V IN drops below the trip point.2) The hysteresis band will be:V HYS = V TH - V TL = V DD (R2 / (R1 + R2))3) In this example, let V DD = +5V and V REF = +2.5V.V TH = 2.5V + 2.5(R2 / (R1 + R2))VandV TL = 2.5[1 - (R2 / (R1 + R2))]4) Select R2. In this example, we will choose 1k Ω.5) Select V HYS . In this example, we will choose 50mV.6) Solve for R1.V HYS = V DD (R2 / (R1 + R2))0.050V = 5(1000Ω/(R1 + 1000Ω)) Vwhere R1 ≈100k Ω, V TH = 2.525V, and V TL = 2.475V.The above-described design procedure assumes rail-to-rail output swing. If the output is significantly loaded,the results should be corrected.Board Layout and BypassingUse 100nF bypass as a starting point. Minimize signal trace lengths to reduce stray capacitance. Minimize the capacitive coupling between IN- and OUT. For slow-moving input signals (rise-time > 1ms), use a 1nF capacitor between IN+ and IN-.Biasing for Data RecoveryDigital data is often embedded into a bandwidth and amplitude-limited analog path. Recovering the data can be difficult. Figure 2 compares the input signal to a time-averaged version of itself. This self-biases the threshold to the average input voltage for optimal noise margin. Even severe phase distortion is eliminated from the digital output signal. Be sure to choose R1 and C1so that:ƒCAR >> 1 / (2πR1C1)where ƒCAR is the fundamental carrier frequency of the digital data stream.MAX9030/MAX9031/MAX9032/MAX9034Low-Cost, Ultra-Small, Single/Dual/QuadSingle-Supply Comparators_______________________________________________________________________________________7M A X 9030/M A X 9031/M A X 9032/M A X 9034Low-Cost, Ultra-Small, Single/Dual/Quad Single-Supply Comparators 8_______________________________________________________________________________________Typical Application CircuitChip InformationTRANSISTOR COUNT/MAX9030/MAX9031: 123TRANSISTOR COUNT/MAX9032: 184TRANSISTOR COUNT/MAX9034: 368MAX9030/MAX9031/MAX9032/MAX9034Low-Cost, Ultra-Small, Single/Dual/QuadSingle-Supply ComparatorsPackage InformationM A X 9030/M A X 9031/M A X 9032/M A X 9034Low-Cost, Ultra-Small, Single/Dual/Quad Single-Supply Comparators 10______________________________________________________________________________________Package Information (continued)MAX9030/MAX9031/MAX9032/MAX9034Low-Cost, Ultra-Small, Single/Dual/Quad Single-Supply ComparatorsPackage Information (continued)Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600_____________________11©2000 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.元器件交易网。
元器件交易网IMPORTANT NOTICETexas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinueany product or service without notice, and advise customers to obtain the latest version of relevant informationto verify, before placing orders, that information being relied on is current and complete. All products are soldsubject to the terms and conditions of sale supplied at the time of order acknowledgement, including thosepertaining to warranty, patent infringement, and limitation of liability.TI warrants performance of its semiconductor products to the specifications applicable at the time of sale inaccordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extentTI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarilyperformed, except those mandated by government requirements.CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OFDEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICALAPPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, ORWARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHERCRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TOBE FULLY AT THE CUSTOMER’S RISK.In order to minimize risks associated with the customer’s applications, adequate design and operatingsafeguards must be provided by the customer to minimize inherent or procedural hazards.TI assumes no liability for applications assistance or customer product design. TI does not warrant or representthat any license, either express or implied, is granted under any patent right, copyright, mask work right, or otherintellectual property right of TI covering or relating to any combination, machine, or process in which suchsemiconductor products or services might be or are used. TI’s publication of information regarding any thirdparty’s products or services does not constitute TI’s approval, warranty or endorsement thereof.Copyright © 1998, Texas Instruments Incorporated。