No.12利用平方差公式分解因式
- 格式:ppt
- 大小:980.00 KB
- 文档页数:14
运用平方差公式进行因式分解教学内容:运用平方差公式进行分解因式教学目标:1、使学生进一步理解因式分解的意义。
2、使学生理解平方差公式的意义,弄清公式的形式和特征。
3、会运用平方差公式分解因式。
4、通过对比整式乘法和分解因式的关系,进一步发展学生的逆向思维能力。
教学重难点:1、弄清公式的形式和特征。
2、会运用平方差公式分解因式。
3、整式乘法和分解因式的关系。
学习过程:一、预习检测1.自学课本P39——40上部分内容。
2.平方差公式反过来是:相等吗?3.填空。
(1)4=()2 64=()2 b6=()2 9a2b8=()2(2)a2-16=a2-()2=(a+)(a-)(3)64-b2=()2-()2=(+b)(-b)二、尝试探究1.小组讨论:992-1是100的整数倍吗?你是怎样想的?(1).判断某个数是否是另一个数的整数倍可以怎么判断?如:12是3的整数倍吗?(2).992-1可以写成(99+1)(99-1)吗?为什么可以这么写?9992-1 可以吗?(3).a2-1可以写成(a+1)(a-1)吗?(4).a2-4可以写成乘积形式吗?你认为可以写成什么样子呢?(5).a2-b2呢?2. 比一比,看谁算的又快又准确:572-562962-952 ( )2-( )23.平方差公式的特征辨析:把乘法公式(a+b)(a-b)=a2-b2反过来得:a2-b2=(a+b)(a-b)我们可以运用这个公式对某些多项式进行分解因式。
这种方法叫运用平方差公式法。
(注意:能运用平方差公式分解因式的多项式有两个特点:一是它的两项的差;二是这两项都可以写成一个整式的平方。
4.[议一议]:下列多项式可以用平方差公式分解吗?(1)x2-y2(2)x2+y2(3)-x2-y2(4)-x2+y2(5)64-a2(64)x2_9y2三、典型例题讲解例1 把下列多项式分解因式:’(1) 36-25x2 (2) 16a2-9b2 (x+p)2-(x+q)2 9(a+b)2-4(a-b)2四、课堂检测1.把下列各式因式分解36-x2 a2-9b2 x2y2-z2 (x+2)2-81 (x+a)2-(y-b)22.指出下列因式分解中的错误,并给以改正:① x2–4y2=(4x+y)(4x–y).② –m2+n2=(m+n)(m–n).3.把下列各式因式分解:(1)16a2–25b2x2;(2) 0.49 a2–49 b2。
运用平方差公式分解因式平方差公式是一种常用的因式分解方法,可以将一个二次方程的平方项和常数项分解成两个平方差的形式。
下面我们将通过数学推导和实例来详细解释平方差公式的运用。
首先,设一个二次方程为x^2 + 2ax + a^2,我们可以观察到这个二次方程的平方项和常数项都是两个平方的形式。
根据平方差公式,我们可以将它分解为(x + a)^2 的形式。
证明过程如下:(x + a)^2 = x^2 + 2ax + a^2由此可见,我们通过平方差公式,成功将x^2 + 2ax + a^2这个二次方程分解为了(x + a)^2的形式。
接下来我们通过一个具体的例子来演示平方差公式的运用。
例子:将x^2+6x+9进行因式分解。
解答:根据平方差公式,我们可以将x^2+6x+9分解为(x+3)^2的形式。
因为二次项的系数是1,常数项是9,并且常数项的开方是3、所以我们可以得到:x^2+6x+9=(x+3)^2通过这个实例,我们可以看到平方差公式的运用非常简单。
我们只需要找到平方项和常数项,并求出常数项的开方,就能分解出一个平方差的形式。
除了基本形式的平方差公式,还存在其他一些特殊形式的平方差公式。
下面我们来介绍其中两个特殊形式。
1.差的平方公式:差的平方公式是指形如a^2-b^2的表达式,可以分解为(a+b)(a-b)的形式。
例如:将x^2-9分解为因式。
因为表达式的形式是差的平方形式,即a^2-b^2,其中a是x,b是3、所以我们可以得到:x^2-9=(x+3)(x-3)2.和的平方公式:和的平方公式是指形如a^2 + 2ab + b^2的表达式,可以分解为(a + b)^2的形式。
例如:将x^2+4x+4分解为因式。
因为表达式的形式是和的平方形式,即 a^2 + 2ab + b^2,其中a是x,b是2、所以我们可以得到:x^2 + 4x + 4 = (x + 2)^2通过这两个特殊形式的平方差公式,我们可以在因式分解过程中更灵活地运用平方差公式。
北师大版数学八年级下册《利用平方差公式进行因式分解》教学设计一. 教材分析北师大版数学八年级下册《利用平方差公式进行因式分解》这一节,是在学生已经掌握了有理数的乘法、完全平方公式的基础上进行学习的。
平方差公式的引入,既是对前面所学知识的巩固,又是进一步学习因式分解的重要工具。
本节课的内容主要包括平方差公式的推导、理解和应用。
通过本节课的学习,学生能够掌握平方差公式的结构特征,学会运用平方差公式进行因式分解,提高解决问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了有理数的乘法和完全平方公式,对因式分解有一定的了解。
但学生在运用平方差公式进行因式分解时,可能会对公式的结构特征和运用方法产生困惑。
因此,在教学过程中,需要关注学生的认知基础,引导学生理解平方差公式的本质,并通过大量的练习,让学生熟练运用平方差公式进行因式分解。
三. 教学目标1.理解平方差公式的结构特征和推导过程。
2.学会运用平方差公式进行因式分解。
3.提高解决问题的能力。
四. 教学重难点1.重难点:平方差公式的推导和运用。
2.重点:引导学生理解平方差公式的结构特征,学会运用平方差公式进行因式分解。
3.难点:对平方差公式的灵活运用,解决实际问题。
五. 教学方法1.讲授法:讲解平方差公式的推导过程,解释公式的作用。
2.引导法:引导学生通过观察、思考,发现平方差公式的结构特征。
3.练习法:布置适量的练习题,让学生在实践中掌握平方差公式的运用。
六. 教学准备1.准备相关的教学PPT,展示平方差公式的推导过程和应用实例。
2.准备一些练习题,用于课堂练习和巩固知识。
七. 教学过程1.导入(5分钟)通过一个具体的数学问题,引入平方差公式的概念。
例如:已知一个正方形的面积是36,求这个正方形的边长。
让学生尝试解决这个问题,从而引出平方差公式。
2.呈现(10分钟)讲解平方差公式的推导过程,解释公式的作用。
通过PPT展示平方差公式的推导过程,让学生直观地理解平方差公式的来源。
平方差公式因式分解【教学目标】知识与技能:1、会用平方差公式因式分解。
2、能熟练应用提公因式法、套平方差公式因式分解。
过程与方法:通过复习平方差公式,逆向思维归纳出利用平方差公式因式分解的方法,初步掌握一提二套的方法、步骤。
情感、态度与价值观:体会平方差公式的特点及应用于整式的因式分解,从而进一步认识数学的严谨性与灵活性,感受观察、分析是获取知识的先导和解决问题的关键。
【教学重点】用平方差公式因式分解【教学难点】把多项式适当变形后套平方差公式因式分解【易错点】公式a2-b2中a ,b 易找错,如a2-4=(a+4)(a-4)中对应公式中的b 为2。
【教学过程】一:探究新知活动1:忆一忆1、下列各式中能用平方差公式计算的是 ( B )A 、(2a+b )(a-b)B 、(-2a+b)(-2a-b)C 、(2a+b)(-2a-b)D 、(2a+b) (a-2b)2、填空:25x2=(5x)2, 162m =(4m )20.09a2b4=(0.3ab2)2, 0.49(x+y)2=[0.7(x+y)]2活动2:想一想同学们,你能很快得出992-1是100的倍数吗?你是怎么想出来的?答案:利用平方差公式得992-1=100×98,是100的倍数,这就是我们今天所要学习的内容。
二:新知梳理知识点:用平方差公式因式分解公式(a+b )(a-b)= a2-b2 叫做平方差公式,把这个公式从右至左使用,可把某些多项式因式分解,即两个数的平方差等于这两个数的和与这两个数的差的积。
三:应用示例例1:把25x2-4y2因式分解分析:25x2=(5x)2,4y2=(2y)2,25x2-4y2=(5x)2-(2y)2,原式即可以用平方差公式进行因式分解。
解:25x2-4y2=(5x)2-(2y)2=(5x+2y )(5x-2y )例2:把(x+y )2-(x-y )2因式分解。
分析:将(x+y )看成a,(x-y )看成b ,原式即可用平方差公式进行因式分解。
初中数学因式分解教案初中数学因式分解教案(5篇)作为一名优秀的教育工作者,可能需要进行教案编写工作,编写教案助于积累教学经验,不断提高教学质量。
如何把教案做到重点突出呢?下面是小编帮大家整理的初中数学因式分解教案,欢迎阅读,希望大家能够喜欢。
初中数学因式分解教案1教学目标1.知识与技能会应用平方差公式进行因式分解,发展学生推理能力.2.过程与方法经历探索利用平方差公式进行因式分解的过程,发展学生的逆向思维,感受数学知识的完整性.3.情感、态度与价值观培养学生良好的互动交流的习惯,体会数学在实际问题中的应用价值.重、难点与关键1.重点:利用平方差公式分解因式.2.难点:领会因式分解的解题步骤和分解因式的彻底性.3.关键:应用逆向思维的方向,演绎出平方差公式,•对公式的应用首先要注意其特征,其次要做好式的变形,把问题转化成能够应用公式的方面上来.教学方法采用“问题解决”的教学方法,让学生在问题的牵引下,推进自己的思维.教学过程一、观察探讨,体验新知【问题牵引】请同学们计算下列各式.(1)(a+5)(a-5);(2)(4m+3n)(4m-3n).【学生活动】动笔计算出上面的两道题,并踊跃上台板演.(1)(a+5)(a-5)=a2-52=a2-25;(2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.【教师活动】引导学生完成下面的两道题目,并运用数学“互逆”的思想,寻找因式分解的规律.1.分解因式:a2-25;2.分解因式16m2-9n.【学生活动】从逆向思维入手,很快得到下面答案:(1)a2-25=a2-52=(a+5)(a-5).(2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n).【教师活动】引导学生完成a2-b2=(a+b)(a-b)的同时,导出课题:用平方差公式因式分解.平方差公式:a2-b2=(a+b)(a-b).评析:平方差公式中的字母a、b,教学中还要强调一下,可以表示数、含字母的代数式(单项式、多项式).二、范例学习,应用所学【例1】把下列各式分解因式:(投影显示或板书)(1)x2-9y2;(2)16x4-y4;(3)12a2x2-27b2y2;(4)(x+2y)2-(x-3y)2;(5)m2(16x-y)+n2(y-16x).【思路点拨】在观察中发现1~5题均满足平方差公式的特征,可以使用平方差公式因式分解.【教师活动】启发学生从平方差公式的角度进行因式分解,请5位学生上讲台板演.【学生活动】分四人小组,合作探究.解:(1)x2-9y2=(x+3y)(x-3y);(2)16x4-y4=(4x2+y2)(4x2-y2)=(4x2+y2)(2x+y)(2x-y);(3)12a2x2-27b2y2=3(4a2x2-9b2y2)=3(2ax+3by)(2ax-3by);(4)(x+2y)2-(x-3y)2=[(x+2y)+(x-3y)][(x+2y)-(x-3y)]=5y(2x-y);(5)m2(16x-y)+n2(y-16x)=(16x-y)(m2-n2)=(16x-y)(m+n)(m-n).初中数学因式分解教案2教学目标1.知识与技能了解因式分解的意义,以及它与整式乘法的关系.2.过程与方法经历从分解因数到分解因式的类比过程,掌握因式分解的概念,感受因式分解在解决问题中的作用.3.情感、态度与价值观在探索因式分解的方法的活动中,培养学生有条理的'思考、表达与交流的能力,培养积极的进取意识,体会数学知识的内在含义与价值.重、难点与关键:1.重点:了解因式分解的意义,感受其作用.2.难点:整式乘法与因式分解之间的关系.3.关键:通过分解因数引入到分解因式,并进行类比,加深理解.教学方法:采用“激趣导学”的教学方法.教学过程:一、创设情境,激趣导入【问题牵引】请同学们探究下面的2个问题:问题1:720能被哪些数整除?谈谈你的想法.问题2:当a=102,b=98时,求a2-b2的值.二、丰富联想,展示思维探索:你会做下面的填空吗?1.ma+mb+mc=()();2.x2-4=()();3.x2-2xy+y2=()2.【师生共识】把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做分解因式.三、小组活动,共同探究【问题牵引】(1)下列各式从左到右的变形是否为因式分解:①(x+1)(x-1)=x2-1;②a2-1+b2=(a+1)(a-1)+b2;③7x-7=7(x-1).(2)在下列括号里,填上适当的项,使等式成立.①9x2(______)+y2=(3x+y)(_______);②x2-4xy+(_______)=(x-_______)2.四、随堂练习,巩固深化课本练习.【探研时空】计算:993-99能被100整除吗?五、课堂总结,发展潜能由学生自己进行小结,教师提出如下纲目:1.什么叫因式分解?2.因式分解与整式运算有何区别?六、布置作业,专题突破选用补充作业。
北师大版数学八年级下册《利用平方差公式进行因式分解》说课稿7一. 教材分析北师大版数学八年级下册《利用平方差公式进行因式分解》这一节,是在学生已经掌握了有理数的乘方、平方差公式、多项式的乘法等知识的基础上进行讲解的。
通过这一节课的学习,让学生能够理解并掌握平方差公式的结构特征,能够运用平方差公式进行因式分解,进一步培养学生的数学思维能力和解决问题的能力。
二. 学情分析学生在学习这一节内容时,已经有了一定的数学基础,对于有理数的乘方、平方差公式、多项式的乘法等知识有一定的了解。
但是,对于平方差公式的灵活运用和因式分解的方法还需要进一步的引导和培养。
因此,在教学过程中,要注重学生对平方差公式的理解,以及让学生通过实践操作,掌握因式分解的方法。
三. 说教学目标1.知识与技能目标:让学生理解平方差公式的结构特征,能够运用平方差公式进行因式分解。
2.过程与方法目标:通过学生的自主探究和合作交流,培养学生的数学思维能力和解决问题的能力。
3.情感态度与价值观目标:让学生在解决数学问题的过程中,体验到数学的乐趣,增强对数学学习的信心。
四. 说教学重难点1.教学重点:平方差公式的结构特征,以及运用平方差公式进行因式分解的方法。
2.教学难点:平方差公式的灵活运用,以及因式分解的方法。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、合作交流法等,引导学生自主探究,培养学生的数学思维能力和解决问题的能力。
2.教学手段:利用多媒体课件,进行直观演示,帮助学生理解平方差公式的结构特征,以及因式分解的方法。
六. 说教学过程1.导入:通过一个具体的例子,让学生尝试进行因式分解,引出平方差公式。
2.自主探究:让学生通过小组合作,探讨平方差公式的结构特征,以及如何运用平方差公式进行因式分解。
3.讲解与演示:教师对学生的探究结果进行讲解和演示,让学生进一步理解平方差公式,以及因式分解的方法。
4.实践操作:让学生进行实际的练习,运用平方差公式进行因式分解。