4-2 不定积分的换元积分法
- 格式:ppt
- 大小:800.00 KB
- 文档页数:35
第四章 不 定 积 分§ 4 – 1 不定积分的概念与性质一.填空题1.若在区间上)()(x f x F =',则F(x)叫做)(x f 在该区间上的一个 , )(x f 的 所有原函数叫做)(x f 在该区间上的__________。
2.F(x)是)(x f 的一个原函数,则y=F(x)的图形为ƒ(x)的一条_________. 3.因为dxx x d 211)(arcsin -=,所以arcsinx 是______的一个原函数。
4.若曲线y=ƒ(x)上点(x,y)的切线斜率与3x 成正比例,并且通过点A(1,6)和B(2,-9),则该 曲线方程为__________ 。
二.是非判断题1. 若f ()x 的某个原函数为常数,则f ()x ≡0. [ ] 2. 一切初等函数在其定义区间上都有原函数. [ ] 3.()()()⎰⎰'='dx x f dx x f . [ ]4. 若f ()x 在某一区间内不连续,则在这个区间内f ()x 必无原函数. [ ] 5.=y ()ax ln 与x y ln =是同一函数的原函数. [ ]三.单项选择题1.c 为任意常数,且)('x F =f(x),下式成立的有 。
(A )⎰=dx x F )('f(x)+c; (B )⎰dx x f )(=F(x)+c; (C )⎰=dx x F )()('x F +c; (D) ⎰dx x f )('=F(x)+c.2. F(x)和G(x)是函数f(x)的任意两个原函数,f(x)≠0,则下式成立的有 。
(A )F(x)=cG(x); (B )F(x)= G(x)+c; (C )F(x)+G(x)=c; (D) )()(x G x F ⋅=c. 3.下列各式中 是||sin )(x x f =的原函数。
(A) ||cos x y -= ; (B) y=-|cosx|; (c)y={;0,2cos ,0,cos <-≥-x x x x (D) y={.0,cos ,0,cos 21<+≥+-x c x x c x 1c 、2c 任意常数。
·复习 1 原函数的定义.2 不定积分的定义。
3 不定积分的性质。
4 不定积分的几何意义.·引入在不定积分的定义、性质以及基本公式的基础上,我们进一步来讨论不定积分的计算问题,不定积分的计算方法主要有三种:直接积分法、换元积分法和分部积分法。
·讲授新课第二节不定积分的基本公式和运算直接积分法一基本积分公式由于求不定积分的运算是求导运算的逆运算,所以有导数的基本公式相应地可以得到积分的基本公式如下:以上十五个公式是求不定积分的基础,必须熟记,不仅要记右端的结果,还要熟悉左端被积函数的的形式.求函数的不定积分的方法叫积分法。
例1。
求下列不定积分。
(1)dx x⎰21(2)dx x x⎰解:(1)dx x ⎰21=212121x x dx C C x-+-=+=-+-+⎰ (2)dx x x ⎰=C x dx x +=⎰252352此例表明,对某些分式或根式函数求不定积分时,可先把它们化为x α的形式,然后应用幂函数的积分公式求积分。
二 不定积分的基本运算法则法则1 两个函数代数和的积分,等于各函数积分的代数和,即dx x g dx x f dx x g x f ⎰⎰⎰±=±)()()]()([法则1对于有限多个函数的和也成立的.法则2 被积函数中不为零的常数因子可提到积分号外,即dx x f k dx x kf ⎰⎰=)()( (0≠k )例2 求3(21)x x e dx +-⎰解 3(21)x x e dx +-⎰=23x dx ⎰+dx ⎰-x e dx ⎰=412x x x e C +-+。
注 其中每一项的不定积分虽然都应当有一个积分常数,但是这里并不需要在每一项后面加上一个积分常数,因为任意常数之和还是任意常数,所以这里只把它的和C 写在末尾,以后仿此。
注 检验解放的结果是否正确,只把结果求导,看它的导数是否等于被积函数就行了。
如上例由于41()2x x x e C '+-+=321xx e +-,所以结果是正确的。
第四章第1页第四章不定积分讲授内容§4-1不定积分的概念与性质教学目的与要求1、理解不定积分的概念理解不定积分与微分之间的关系. 2、掌握不定积分的性质会用常见不定积分公式和不定积分性质求一些不定积分. 3、熟练掌握常用积分公式. 教学重难点重点——理解的概念与性质熟练掌握常用积分公式. 难点——不定积分的公式熟练掌握. 教学方法讲授法教学建议1、加深对原函数、不定积分的理解. 2、对15个积分公式要进行大量练习. 3、求不定积分一定注意不能漏C . 学时2学时教学过程第二章我们研究了如何求一个函数的导函数问题本章将讨论它的反问题即要寻求一个可导函数使它的导函数等于已知函数.这是积分学的基本问题之一. 一原函数与不定积分的概念1. 定义如果在区间I上函数Fx和fx使得F′xfx 或dFxfxdxx∈I. 称Fx为fx或fxdx在区间I上的原函数. 如sincosxx则cosx是sinx 的一个原函数. 第四章第2页1lnxx1x是lnx的一个原函数问ln2x是否是1x的原函数.2. 定理原函数的存在定理连续函数必有原函数.即: 如果fx在I上连续则在I上必有Fx 使得: F′xfx. x∈I. 注①初等函数在定义区间上必有原函数但原函数并非都是初等函数. ②函数在区间上连续只是在区间上有原函数的充分条件不连续的函数也可能有原函数.3. 两个原函数的关系如果Fx为fx在区间I上的一个原函数则FxC为fx的原函数. 因为FxC′fx 如果Fx和Gx为fx的两个原函数则有FxGxC. 因为Fx-Gx′0 FxGxC. 4. 定义在区间I上函数fx的带有任意常数项的原函数称为fx 或fxdx在I上的不定积分记为xxfd. 即∫ fxdxFxC. 其中∫为积分符号fx为被积函数fxdx为被积表达式x为积分变量. 注①不定积分∫fxdx可以表示fx的任意一个原函数. ②C 不能去掉5. 函数fx的原函数Fx的图形称为fx的积分曲线. 6. 微分与积分的关系: 1 dxfxxf 或xxfxxfddd. 2 CxFxxFd或dFxFxC. 例1 求2xdx 第四章第3页解Cxdxxxx333223 例2 求dxx1 解当xgt0时由于lnx′1/x ∫1/xdxlnxC. 当xlt0时由于ln-x′1/x ∫1/xdxln-xC. 因此∫fxdxlnxC x≠0 例3 设曲线通过点12且其上任意一点处的切线的斜率等于这点横坐标的两倍求此曲线方程. 解设所求曲线方程为yyx由题义有y′x2x y12. y′x2xyx2C. 代y12 得C1. 所以yx21 二、基本积分表见书本P186 注①11d1xxxC 其中1 ②1dlnxxCx 例4 求下列积分1 ∫x-3dx 解∫x-3dx1313xC-221xC 2 ∫x2xdx 第四章第4页解∫x2xdx∫25xdx125125xC2772xC 注用分式或根式表示的幂函数应化为x的形式然后用公式三、不定积分的性质性质1. dxxgxxfxxgxfdd 性质2. dxxfkdxxkf k≠0k 为常数注性质说明不定积分具有线性性可以推广到所有的积分例5 求下列不定积分1∫xx2-5dx∫21255xxdx732221073xxc 2∫ax-3cosxdx∫axdx-3∫cosxdxaaxln-3sinxc. 3∫2xexdx∫2exdx2ln2eexc2ln12xec 4 ∫tan2xdx∫sec2x-1dxtanx-xc 5∫221xxdx∫2121xxdxx-2lnx-x1c 6 ∫1122xxxxdx∫ x1211xdxlnxarctanxc 7∫241xxdx∫24111xxdx∫2221111xxxdx ∫x2-1211xdx33x-xarctanxc 第四章第5页8∫2sin2xdx∫211-cosxdx21x-sinxc 9 ∫2cos2sin122xxdx∫22sin1xdx24cscdxx-4cotxc 例6 设f′lnxx1求fx 解设tlnx 则f′tet1 从而ft∫et1dtettC fxex xc 例7 设xxfxd arctanxC求xxfd 解将darctanxxxCfx两边求导可得211xxfx 所以12xxxf 从而Cxxdxxf4242. 故有dfxxFxC 作业高等数学练习册C类习题十九教学后记第四章第6页参考书《高等数学》同济五版《高等数学》全真课堂北大数学科学学院编《高等数学典型题精解》陈兰祥编思考题证明xxeshxechx都是的xechxshx原函数. 第四章第7页讲授内容: §4-2换元积分法1 教学目的与要求1、理解第一换元积分法. 2、熟练掌握各种形式的“凑微分”. 教学方法讲授法重难点重点——各种形式的“凑微分”的方法. 难点——灵活的使用“凑微分”法. . 教学建议常用的凑微分的公式和方法要求学生牢记. 学时2学时教学过程将复合函数的微分法用于求不定积分利用中间变量的代换得到求复合函数的不定积分的方法称为换元积分法一、第一类换元法定理1设函数fu具有原函数Fuuφx可导则有换元公式∫fφxφ′xdx∫fuduFuCFφxC 证明由复合函数的微分法有FφxC ′ F′φxφ′x fφxφ′x 注关键是找uφx 例1. 求下列积分: 1∫2cos2xdx∫cos2xd2x sin2xC. u2x 第四章第8页2 ∫x231dx21∫xxd232321ln32xC. u32x 3 cxxddxxx31.3231313113121 u1-3x 注1. 形如faxb总可作uaxb把它化为fu 2. 不要忘记变量还原熟练后中间变量可不用设出4 ∫2x2xedx∫2xedx22xeC. u2x 5∫x21xdx-21∫21xd1-x2 -311-x23/2C. u1-x2 注11dnnnnnfaxbxxfaxbdaxba 10na 6∫tanxdx∫xxcossindx -∫xxdcoscos-lncosxC ucosx 7 ∫221xadx∫12axaaxda1arctanaxC uax 8 ∫221xadxa21∫xa1ax1dxa21∫xa1dx∫ax1dx a21∫ax1dxa-∫xa1da-xln21axaxaC agt0 注对21dxaxbxc 若240bac则用法8 若240bac则用法7 第四章第9页如①221d11darctan232122xxxCxxx ②2dd1dd11ln231341343xxxxxCxxxxxxx 9∫chaxdxa∫chaxdax ashaxC uax 10 ∫22xadx∫21axaxdarcsinaxC 11∫ln21xxdx∫xxdln21ln21∫xxdln21ln2121ln12lnxC 12 ∫xex3dx2∫xdex332∫xdex3332xe3C 13 ∫10121xxdx∫1012111xxdx∫101111xxx10111xdx∫100121xx10111xdx∫9911x10012x10111xdx -981981x991992x10011001xc 另一解法另1tx则原式2981001011011d2dttttttt 14 ∫sin3xdx-∫1-cos2xdcosx-cosx31cos3xC 15∫sin2xcos5xdx∫sin2x1-sin2x2dsinx∫sin2x-2sin4xsinx6dsinx 第四章第10页31sin3x-52sin5x71sin7xC 16 ∫cos2xdx∫1cos2x/2dxx/2sin2x/4C 17∫cos4xdx∫22cos1x2dx41∫12cos2xcos22xdx 41∫12cos2x 24cos1xdx41∫232cos2x 24cosxdx 83x41sin2x321sin4xC 18 ∫cscxdx∫xdxsin∫2cos2sin2xxdx∫2cos2tan22xxxd∫2tan2tanxxdln2tanxClncscx-cotxC 注2tanxxxsin2sin22xxsincos1cscx-cotx 19∫secxdx∫xdxcos∫2sin2xxdlncsc2x-cot2xC lnsecxtanxC 20∫sec6xdx∫1tan2x2dtanx∫12tan2xtan4xdtanx tanx32tan3x51tan5xC 21 ∫tan5xsec3xdx∫tan4xsec2xdsecx∫sec2x-12sec2xdsecx 第四章第11页71sec7x-52sec5x31sec3xC 注被积函数中含三角函数2secx经常将它化为正切22cxxxdxxxdxxdxtan2arctan22tan21tantansecsecsin122222 23∫cos3xcos2xdx21∫cosxcos5xdx21sinx101sin5xC. 2411dddd111xxxxxxeee xxxxeee1d1ln11xxxxexeCe 25665666114111dddd444444xxxxxxxxxxxxx 611lnln4424xxC 26322222221111dd1d122111xxxxxxxxx 3122222221111d111231xxxxcx 注1 将代数式进行恒等变形、分子分母同乘一个阶印⒗ 萌范ㄊ 泻愕裙叵怠⑷ 枪 蕉际谴瘴⒎值某S梅椒? 2 常用的公式adxdaxb nndxdxnx1 1lnxdxdxlnx xxxtanddsec2 第四章第12页arcsindd122axxxa 作业高等数学练习册C类习题二十1、2 1-14 教学后记参考书《高等数学》同济五版《高等数学》全真课堂北大数学科学学院编《高等数学典型题精解》陈兰祥编思考题计算dxxxx2211tan 第四章第13页讲授内容§4-2换元积分法2 教学目的与要求1、理解第二类换元积分法的原理. 2、熟练掌握第二类换元积分法中的几种常用的换元方法及第二类换元积分法所适用的类型. 教学方法讲授法重难点重点——第二类换元积分法中的几种常用的换元法. 难点——如何熟练应用第二类换元法. 教学建议熟悉常用变量代换. 学时2学时教学过程定理设xψt单调可导且ψ′t≠0. 又设fψtψ′t有原函数Ft则有∫fxdx∫fψtψ′tdtFtCFψ--1xC. 证明由复合函数和反函数的求导法则有Fψ-1xC′F′t??txfψtψ′t??1/ψ′tfψtfx. 1三角代换例1 求下列积分1∫22xadxtaxsina2∫cos2tdt22at22asintcostC 22aarcsinax21x22xaC agt02∫22xadxtaxtan∫sectdtlnsecttantC 第四章第14页lnx22axC agt0 3∫22axdx 当xgta时设xasect 0lttltπ/2 则22dxxa∫sectdt lnsecttantC lnx22axC 当xlt-a时令x-u那么ugta则22dxxa22duua -lnu22auC - ln-x-22axC 所以x≠a 有∫22axdx lnx22axC421dxxxtxsincossincostttdt 21cossincossin dtsincossincostttttttt 21tlnsintcostC21arcsinxlnx21xC. 5 22211dxxx tanxt 2222secsinarctansin1sin2tan11tantdtdttcttt2arctan1xcx 第四章第15页注22dfaxx一般令sinxat 22dfaxx一般令tanxat 22dfxax一般令secxat 2倒数代换例2 求下列积分14422 1/ d11dxtxttxxt2211d1ttt-t3/3t-arctantC-231xx1-arctanx1C. 2222211arcsin11dxtdtctxxxtt 0x结果一样3∫4211xxdx21∫4222111xxxxdx 21∫42211xxxdx-21∫42211xxxdx21∫1111222xxxdx-21∫1111222xxxdx 21∫3112xxxxd-21∫1112xxxxd321arctan31xx-41ln1111xxxxC 第四章第16页4∫4211xxxdx∫41xxdx∫411xxdx21∫2221xdx∫43111xxdx 21lnx241x-21∫222111xxd 21lnx241x-21ln21x4111xC 3万能代换例3 求积分xdxcos3 解设2tanxt xdxcos3cxdtt2tan21arctan2122 4整体代换例4 求积分exdx1 解设1ln1xetxt dttdx11 1xdxe11ln111xxdtedtctttte 5根式代换第四章第17页例5 求下列积分xdx21 解设xt2 xdx21cxxcttdttt21ln21ln1 注关于第二类换元法非常灵活除上面几种常用代换外经常二类换元同时应用作业高等数学练习册C类习题二十2 15-28 教学后记参考书《高等数学》同济五版《高等数学》全真课堂北大数学科学学院编《高等数学典型题精解》陈兰祥编思考题计算33411xdxx 第四章第18页讲授内容§4-3分部积分法教学目的与要求1、熟练掌握分部积分法公式. 2、会灵活应用分部积分法求一些函数的积分. 教学方法讲授法重难点重点——恰当选取u和v. 难点——恰当选取u和v. 教学建议1、选取原则1v易求2vdu 要比udv简单. 2、用分部积分法有时会出现复原的情况学时2学时教学过程一、分部积分法设ux和vx具有连续导数则uv′u′vuv′ 于是有分部积分法公式∫udvuv-∫vdu. 二、分部积分法常见的几种用法1降幂降低被积函数中幂函数的次幂例1求下列积分 1 ∫xcosxdx∫xdsinxxsinx-∫sinxdxxsinxcosxC 2∫x2exdx∫x2dexx2ex-2∫xexdxx2ex-2xex2exexx2-2x2C 注当被积函数为幂函数、三角函数、指数函数时一般将幂函数视为u将三角函数、指数函数凑微分. 2化难为易降低被积函数中幂函数的次幂利用分部积分法将被积函数中的难积函数如对称函数、反三角函数消第四章第19页除掉. 例2 求下列积分1∫xlnxdx21∫lnxdx221x2lnx-∫xdx21x2lnx-41x2C 2arctanxdx xarctanx-∫21xxdx xarctanx-21ln1x2C 3∫xarcsinxdx∫arcsinxdx2x2arcsinx-∫221xxdx x2arcsinx∫22111xxdx x2arcsinx∫21x-211xdx x2-1arcsinx21arcsinx-21x21xC x2-21arcsinx-21x21xC 注当被积函数为幂函数与反三角函数、对称函数乘积时一般将反三角函数、对称函数视为u 将幂函数凑微3循环积分用分部积分公式后原来积分又重新出现例31∫exsinxdx∫sinxdexexsinx-∫excosxdx exsinx-∫cosxdexexsinx-excosx-∫exsinx21exsinx-cosxC 2sec3xdx∫secxdtanxsecxtanx-∫tan2xsecxdx secxtanx-∫sec3xdx∫secxdx21secxtanxlnsecxtanxC 注当被积函数为指数函数与三角函数乘积时将其中之一视为u用两次分部积分法会出现循环. 第四章第20页4递推例4 求积分sindnxx 导出递推公式解111sindsind-coscossin-cosdsinnnnnnIxxxxxxxx 12cossincos1sincosdnnxxxnxxx 122cossin1sin1sindnnxxnxxx 12cossin11nnnxxnInI12cossin1nnnnIxxnI 所以1211cossinnnnnIxxInn 三、两种积分法的同时运用例5 求下列积分1∫xedx tx 2∫ettdt2ett-1C2xex-1C2∫xsinxcosxdx21∫sin2xdx-41∫xdcos2x-41xcos2x41∫cos2xdx-41xcos2x81∫dsin2x-41xcos2x81sin2xC.3∫23lnxxdx∫ln3xd-x1xx3ln3∫22lnxxdx-xx3ln3∫ln2xd-x1-xx3ln-xx2ln36∫2lnxxdx-xx3ln-xx2ln36∫lnxdx1-xx3ln-xx2ln3-xxln66∫21xdxx1ln3x3ln2x6lnx6C. 或∫23lnxxdxtx/1∫ln3tdttln3t-3∫ln2tdttln3t-3tln2t6∫lntdt 第四章第21页tln3t-3tln2t6tlnt-6tCtln3t-3ln2t6lnt-6C x1 ln3x1-3ln2x16lnx1-6C-x1 ln3x3ln2x6lnx6C4∫coslnxdxxcoslnx∫xsinlnx·x1dxxcoslnxxsinlnx∫xcoslnx·x1dxxcoslnxxsinlnx∫coslnxdx21xsinlnxcoslnxC5∫exsin2xdx∫ex22cos1xdx21ex21∫excos2xdx 121ex21∫exdsin2x2xe41exsin2x∫exsin2xdx 2xe4xesin2x81∫exdcos2x2xe4xesin2x8xecos2x81∫excos2xdx 2 ∫excos2xdx58??4xesin2x21cos2xC1 原式2xe5xesin2x21cos2xCex21101cos2x51sin2xC. 6x2cos22xdx∫x22cos1x21∫x2x2cosxdx2131x3∫x2dsinx61x321x2sinx21∫2xsinxdx63x22xsinx∫xdcosx 63x22xsinxxcosxsinxC. 第四章第22页例6 求In∫naxdx22其中n为正整数. 解当ngt1时有: In-1∫122naxdx122naxx2n-1∫naxx222dx 122naxx2n-1 ∫1221nax-naxa222dx 122naxx2n-1In-1-a2In. 于是In1212na122naxx2n-3In-1. 其中I1a1arctanaxC. 作业高等数学练习册C类习题二十一教学后记参考书《高等数学》同济五版《高等数学》全真课堂北大数学科学学院编《高等数学典型题精解》陈兰祥编思考题计算dxxcosln 第四章第23页讲授内容§4-4 有理函数的不定积分教学目的与要求熟练掌握几种特殊类型函数公式.重难点重点——有理函数的积分三角函数有理式的积分. 难点——无理函数的积分. 教学方法讲授法教学建议1、有理函数必可积但不一定是最简单. 2、三角函数有理式的积分和简单无理函数的积分通常是运用变量代换学时2学时教学过程一、有理函数的积分称xQxPmmmmnnnnbxbxbxbaxaxaxa11101110为有理函数.1 其中m和n为非负整数a0 a1??an b0 b1??bm 为实数a0≠0 b0≠0 . 以下总假设Px和Qx没有公因子. 当nltm时称1为真分式当n≥m时称1为假分式. 对假分式总可以利用多项式的除法将其变为一个多项式与一个真分式的和.真分式划为部分分式的和: 设1为一个真分式且Qx在实数范围内可分解为一次因式和二次因式的乘积Qxb0x-aα??x-bβx2pxqλ??x2rxsμ. 其中p2-4qlt0??r2-4slt0. 则第四章第24页xQxP1axA12axA??axA 1bxB12bxB??bxB 211qpxxNxM1222qpxxNxM??qpxxNxM2 211srxxSxR1222srxxSxR??srxxSxR2 其中A1??Aα B1??Bβ M1??Mλ N1??Nλ R1??Rμ S1??Sμ为待定常数. 有理分式函数的积分只有三种形式多项式函数分式函数naxA 和nqpxxNMx2 但前两个函数的积分较简单主要是第三个积分. 对∫nqpxxNMx2dx 可以用配方法x2pxqx2p2q-22p设tx2p a2q-22p bN-2Mp 则有∫nqpxxNMx2dx∫natMtdt22∫natbdt22 例1. 将真分式6532xxx分解为部分分式. 解设6532xxx323xxx32xBxA 第四章第25页方法一两边去分母:x3Ax-3Bx-2 2 比较同次幂的系数有:AB1-3A-2B3解得A-5B6. 方法二在2中代特殊值:令x2得A-5令x3得B6. 例2. 将真分式1122xxx分解为部分分式. 解设1122xxxxA121xB21xDCx 去分母得xA1x1x2B1x2CxD1x23 即xABDAC2DxAB2CDx2ACx3 于是002020CADCBADCADBA解得A0 B-21C0 D21. 即有1122xxx21211x-211x. 例3. 求下列积分: 1∫6532xxxdx∫36x-25xdx6lnx-3-5lnx-2C 2 ∫1122xxxdx21∫211x-211xdx21 arctanxx11C 3 ∫3222xxxdx21∫326222xxxdx 21∫323222xxxxddx-3∫22211x xd 21lnx22x3-23 arctan21xC 第四章第26页 4 ∫xxxx3458dx∫x2x11182xxxxxdx 31x321x2x∫14138xxxdx31x321x2x8lnx-3lnx-1-4lnx1C. 5 ∫411xdx21∫422111xxxdx21∫222111xxxdx-∫222111xxxdx 21∫22211xxxxd-∫22211xxxxd2121xxarctan21xx-221ln2121xxxxC 42arctanxx212-82ln121222xx.。
不定积分第二换元积分法根式换元不定积分第二换元积分法根式换元一、引言在微积分学习中,不定积分是一个重要的概念,而其中的第二换元积分法和根式换元是比较常见的技巧。
在本文中,我将结合实例,深入探讨不定积分第二换元积分法和根式换元的相关知识,希望能够为大家对这些概念的理解提供一些帮助。
二、不定积分第二换元积分法不定积分第二换元积分法是在进行积分运算时,为了将被积函数进行合适的分解,从而使得积分的计算变得简单起来。
具体来说,通过对积分式进行适当的变量变换,可以将原积分转化为一个更容易求解的形式,这就是不定积分第二换元积分法的基本思想。
下面我们通过一个例子来展示不定积分第二换元积分法的具体应用。
例:计算不定积分∫(x+2)sin(x^2+2x+1)dx。
解:我们对被积函数sin(x^2+2x+1)进行展开,得到sin[(x+1)^2]。
接下来,我们可以将x+1定义为t,这样原积分可以被变换为∫sin(t^2)dt,这在形式上更加简单。
进一步,我们通过对sin(t^2)的泰勒级数展开,可以将其表示为t^2-t^6/3!+t^10/5!-…,于是原积分可以进一步转化为∫(t^2-t^6/3!+t^10/5!-…)dt。
我们可以通过对每一项的积分计算,得到最后的结果。
这个例子展示了不定积分第二换元积分法的基本思路和应用过程。
三、根式换元根式换元是在进行积分运算时,为了简化被积函数的形式,我们会尝试将根式部分通过变量变换的形式进行消除。
具体来说,我们可以选择一个合适的变量代换,使得原积分式中的根式部分能够被简化或消除。
下面,我们通过一个实例来展示根式换元的具体应用。
例:计算不定积分∫x*sqrt(4x^2+5)dx。
解:我们可以选择根式4x^2+5的部分进行变量代换。
取u=4x^2+5,那么对u求导得du=8xdx。
可以发现,被积函数中的x部分很好地与du的一部分相吻合,于是我们可以将被积函数导数的一部分与du相互匹配,从而将根式部分消除。
不定积分24个基本公式一、原函数不定积分的概念原函数的定义:如果区间I上,可导函数F(x)的导函数为f'(x),即对任一x∈I都有 F'(x)=f(x) 或 dF(x)=f(x) dx 那么函数F(x)就称为f(x)(或 f(x) dx)在区间 I 内的一个原函数。
原函数存在定理:如果函数f(x)在区间 I 上连续,那么在区间 I 上存在可导函数F(x),使对任一x∈I都有 F'(x)=f(x).简单地说:连续函数一定有原函数。
不定积分的定义:在区间 I 上,函数f(x)的带有任意常数项的的原函数称为f(x)( f(x)dx ) 在区间 I 上的不定积分,记作∫ f(x)dx . 其中记号∫ 称为积分号,f(x)称为被积函数 f(x)dx 称为被积表达式,x 称为积分变量。
二、基本积分公式三、不定积分的性质设函数f(x)及g(x)的原函数存在,则∫ [ f(x) ± g(x)]dx= ∫ f(x) dx ± ∫ g(x) dx 。
记:合拢的加减积分可以分开加减积分2. 设函数f(x)及g(x)的原函数存在,k为非零常数,则∫ k f(x) dx=k ∫ f(x) dx记者:非零常数乘以积分,可以把常数拿出来,乘以不定积分。
四、第一类换元积分法设f(u)具有原函数,u=φ(x)可导,则有换元公式:也叫做凑微分法五、第二类换元积分法设x=ψ(t)是单调的可导函数,并且ψ'(t)≠0,又设f[ψ(t)]ψ'(t)具有原函数,则有换元公式是x=ψ(x)的反函数。
三种常见的换元公式(注:利用三角形理解去记)利用第二种换元积分法解出的常见的积分公式:六、分部积分法设函数u=u(x)及v=v(x)具有连续导数,则两个函数乘积的导数公式为 (uv)'=u'v+uv',移项,得: u v'=(u v)'-u' v对这个等式两边求积分∫ u v' dx=u v- ∫ u' v dx 称为分部积分公式按零件的集成顺序集成:反对力量指的是三,意思是从后面集成容易,先集成那个。
§ 4.2 -换元积分法(第一类换元§ 4.2 换元积分法I 授课题目§ 4.2 换元积分法(第一类换元法)n 教学目的与要求:1. 理解第一类换元法的基本思想,它实际上是 复合函数求导法则的逆过程,其关键是“凑微 分",d (x) (x)dx.2. 掌握几种典型的凑微分的方法,熟练应用第 一类换元积分法求有关不定积分. 皿教学重点与难点:重点:第一换元法的思想,难点:熟练应用第一换元法计算有关函数的不定积 分.W 讲授内容:一、第一类换元积分法设f(u)具有原函数F(u), f(u)du F(u) C .若u 是中间变 量,u (x),(x)可微,则根据复合函数求导法则,有所以根据不定积分的定义可得:dF( (x))dxd£du du dxf(u)乎 dxf[ (x)] (x)。
f[ (X)] (x)dx F[ (x)] C u (x)F[u] C [ f(u)du]以上是一个连等式可以改变顺序从新写一遍,就有f[ (x)] (x)]dx u (x)[ f (u)du] F u C F (x) C .以上就是第一换元积分法。
从以上可以看出,虽然f[ (x)] (x)dx是一个整体记号,但是被积表达式中的dx可当作变量x的微分来对待从而上式中的(x)dx可以看成是(x)的微分,通过换兀u(X),应用到被积表达式中就得到(x)dx du .定理1设f(u)具有原函数F(u) , u (x)可导,du (x)dx , 则f[ (x) (x)dx f(u)du F(u) C F[ (x)] C (1)如何应用公式(1),在求不定积分积分g(x)dx时如果被积函数g(x)可以化为一个复合函数与它内函数的导函数的积的形式f[ (x)] (x)的形式那么g(x)dx f[ (x)] (x)dx (x) u[ f(u)du] F(u) C u (x)F[ (x)] C.所以第一换元积分法体现了“凑”的思想•把被积函数凑出一个复合函数与其内函数的积f[ (x)] (x)来.例 1 求3e3x dx角军3e3x dx e3x3dx= e3x(3x) dx,可设中间变量u 3x,du d (3x) 3dx 3dx du,1 5 1 63dx 二一(3x 2) d(3x 2)(3x 2) 3183 2x^^以^^ e 3xdxe 3x 3dxe u du e u C e 3x C .首先观察被积函数的复合函数是什么样的, 看是否有它的内函数的导数,若没有就去凑。